code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput a_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): @register_to_config def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None ): '''simple docstring''' super().__init__() __lowerCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __lowerCamelCase = torch.zeros(__UpperCAmelCase , __UpperCAmelCase ) else: __lowerCamelCase = None __lowerCamelCase = torch.nn.Parameter(__UpperCAmelCase ) class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__UpperCAmelCase , transformer=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else 1 # get prompt text embeddings __lowerCamelCase = self.tokenizer( __UpperCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) __lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] __lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __lowerCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate text embeddings for each generation per prompt __lowerCamelCase = prompt_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __lowerCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings __lowerCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCAmelCase , 1 , 1 ) else: __lowerCamelCase = [''''''] * batch_size __lowerCamelCase = text_input_ids.shape[-1] __lowerCamelCase = self.tokenizer( __UpperCAmelCase , padding='''max_length''' , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' , ) __lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __lowerCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase = negative_prompt_embeds.shape[1] __lowerCamelCase = negative_prompt_embeds.repeat(1 , __UpperCAmelCase , 1 ) __lowerCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , __UpperCAmelCase , __UpperCAmelCase = 100 , __UpperCAmelCase = 5.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 , ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = len(__UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}""" ) __lowerCamelCase = batch_size * num_images_per_prompt __lowerCamelCase = guidance_scale > 1.0 __lowerCamelCase = self._encode_prompt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__UpperCAmelCase )}.""" ) # get the initial completely masked latents unless the user supplied it __lowerCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: __lowerCamelCase = self.transformer.num_vector_embeds - 1 __lowerCamelCase = torch.full(__UpperCAmelCase , __UpperCAmelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" ) __lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase , device=self.device ) __lowerCamelCase = self.scheduler.timesteps.to(self.device ) __lowerCamelCase = latents for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the sample if we are doing classifier free guidance __lowerCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __lowerCamelCase = self.transformer(__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , timestep=__UpperCAmelCase ).sample if do_classifier_free_guidance: __lowerCamelCase ,__lowerCamelCase = model_output.chunk(2 ) __lowerCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCAmelCase , dim=1 , keepdim=__UpperCAmelCase ) __lowerCamelCase = self.truncate(__UpperCAmelCase , __UpperCAmelCase ) # remove `log(0)`'s (`-inf`s) __lowerCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step(__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = self.vqvae.config.vq_embed_dim __lowerCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __lowerCamelCase = self.vqvae.quantize.get_codebook_entry(__UpperCAmelCase , shape=__UpperCAmelCase ) __lowerCamelCase = self.vqvae.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase ).sample __lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = torch.sort(__UpperCAmelCase , 1 , descending=__UpperCAmelCase ) __lowerCamelCase = torch.exp(__UpperCAmelCase ) __lowerCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __lowerCamelCase = torch.full_like(keep_mask[:, 0:1, :] , __UpperCAmelCase ) __lowerCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) __lowerCamelCase = keep_mask[:, :-1, :] __lowerCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) __lowerCamelCase = log_p_x_0.clone() __lowerCamelCase = -torch.inf # -inf = log(0) return rv
330
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
1
"""simple docstring""" import numpy as np from PIL import Image def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) A__ = 0 A__ = 0 A__ = 0 A__ = 0 # compute the shape of the output matrix A__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape A__ = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix A__ = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A__ = 0 A__ = 0 return updated_arr def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = np.array(UpperCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) A__ = 0 A__ = 0 A__ = 0 A__ = 0 # compute the shape of the output matrix A__ = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape A__ = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix A__ = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 A__ = 0 A__ = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __lowerCamelCase = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
154
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class UpperCamelCase__( unittest.TestCase ): lowerCAmelCase__ : Dict = StableDiffusionLDMaDPipeline lowerCAmelCase__ : List[Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self ) -> str: torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) A__ = DDIMScheduler( beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,beta_schedule='scaled_linear' ,clip_sample=__UpperCAmelCase ,set_alpha_to_one=__UpperCAmelCase ,) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=6 ,out_channels=6 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) A__ = CLIPTextModel(__UpperCAmelCase ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> Dict: if str(__UpperCAmelCase ).startswith('mps' ): A__ = torch.manual_seed(__UpperCAmelCase ) else: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> str: A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1] A__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A__ = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) A__ = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def snake_case__ ( self ) -> List[str]: A__ = self.get_dummy_components() A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 3 * [inputs['prompt']] # forward A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb_slice_a[0, -3:, -3:, -1] A__ = depth_slice_a[0, -3:, -1] A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 3 * [inputs.pop('prompt' )] A__ = ldmad_pipe.tokenizer( __UpperCAmelCase ,padding='max_length' ,max_length=ldmad_pipe.tokenizer.model_max_length ,truncation=__UpperCAmelCase ,return_tensors='pt' ,) A__ = text_inputs['input_ids'].to(__UpperCAmelCase ) A__ = ldmad_pipe.text_encoder(__UpperCAmelCase )[0] A__ = prompt_embeds # forward A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb_slice_a[0, -3:, -3:, -1] A__ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def snake_case__ ( self ) -> int: A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = PNDMScheduler(skip_prk_steps=__UpperCAmelCase ) A__ = StableDiffusionLDMaDPipeline(**__UpperCAmelCase ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_dummy_inputs(__UpperCAmelCase ) A__ = 'french fries' A__ = ldmad_pipe(**__UpperCAmelCase ,negative_prompt=__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1] A__ = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) A__ = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) A__ = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="cpu" ,__UpperCAmelCase=torch.floataa ,__UpperCAmelCase=0 ) -> Optional[int]: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) A__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) A__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> Optional[Any]: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ) A__ = ldmad_pipe.to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = rgb[0, -3:, -3:, -1].flatten() A__ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12) A__ = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) A__ = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="cpu" ,__UpperCAmelCase=torch.floataa ,__UpperCAmelCase=0 ) -> int: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) A__ = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) A__ = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> str: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = 0.4_9_5_5_8_6 A__ = 0.3_3_7_9_5_5_1_5 A__ = 1_1_2.4_8_5_1_8 A__ = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def snake_case__ ( self ) -> Optional[int]: A__ = StableDiffusionLDMaDPipeline.from_pretrained('Intel/ldm3d-4c' ).to(__UpperCAmelCase ) ldmad_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) A__ = self.get_inputs(__UpperCAmelCase ) A__ = ldmad_pipe(**__UpperCAmelCase ) A__ , A__ = output.rgb, output.depth A__ = 0.4_1_9_4_1_2_7 A__ = 0.3_5_3_7_5_5_8_6 A__ = 0.5_6_3_8_5_0_2 A__ = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 5_12, 5_12, 3) assert depth.shape == (1, 5_12, 5_12, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
154
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' __lowercase =3_84 __lowercase =7 if "tiny" in model_name: __lowercase =96 __lowercase =(2, 2, 6, 2) __lowercase =(3, 6, 12, 24) elif "small" in model_name: __lowercase =96 __lowercase =(2, 2, 18, 2) __lowercase =(3, 6, 12, 24) elif "base" in model_name: __lowercase =1_28 __lowercase =(2, 2, 18, 2) __lowercase =(4, 8, 16, 32) __lowercase =12 __lowercase =5_12 elif "large" in model_name: __lowercase =1_92 __lowercase =(2, 2, 18, 2) __lowercase =(6, 12, 24, 48) __lowercase =12 __lowercase =7_68 # set label information __lowercase =1_50 __lowercase ='huggingface/label-files' __lowercase ='ade20k-id2label.json' __lowercase =json.load(open(hf_hub_download(lowercase__, lowercase__, repo_type='dataset' ), 'r' ) ) __lowercase ={int(lowercase__ ): v for k, v in idalabel.items()} __lowercase ={v: k for k, v in idalabel.items()} __lowercase =SwinConfig( embed_dim=lowercase__, depths=lowercase__, num_heads=lowercase__, window_size=lowercase__, out_features=['stage1', 'stage2', 'stage3', 'stage4'], ) __lowercase =UperNetConfig( backbone_config=lowercase__, auxiliary_in_channels=lowercase__, num_labels=lowercase__, idalabel=lowercase__, labelaid=lowercase__, ) return config def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' __lowercase =[] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def __UpperCamelCase ( lowercase__ : str, lowercase__ : Any, lowercase__ : Union[str, Any] ): '''simple docstring''' __lowercase =dct.pop(lowercase__ ) __lowercase =val def __UpperCamelCase ( lowercase__ : int, lowercase__ : int ): '''simple docstring''' __lowercase =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase =state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) __lowercase =state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __lowercase =in_proj_weight[:dim, :] __lowercase =in_proj_bias[: dim] __lowercase =in_proj_weight[ dim : dim * 2, : ] __lowercase =in_proj_bias[ dim : dim * 2 ] __lowercase =in_proj_weight[ -dim :, : ] __lowercase =in_proj_bias[-dim :] # fmt: on def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' __lowercase , __lowercase =x.shape __lowercase =x.reshape(lowercase__, 4, in_channel // 4 ) __lowercase =x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(lowercase__, lowercase__ ) return x def __UpperCamelCase ( lowercase__ : Union[str, Any] ): '''simple docstring''' __lowercase , __lowercase =x.shape __lowercase =x.reshape(lowercase__, in_channel // 4, 4 ) __lowercase =x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(lowercase__, lowercase__ ) return x def __UpperCamelCase ( lowercase__ : Optional[Any] ): '''simple docstring''' __lowercase =x.shape[0] __lowercase =x.reshape(4, in_channel // 4 ) __lowercase =x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(lowercase__ ) return x def __UpperCamelCase ( lowercase__ : Any ): '''simple docstring''' __lowercase =x.shape[0] __lowercase =x.reshape(in_channel // 4, 4 ) __lowercase =x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(lowercase__ ) return x def __UpperCamelCase ( lowercase__ : Optional[int], lowercase__ : List[str], lowercase__ : Union[str, Any] ): '''simple docstring''' __lowercase ={ 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } __lowercase =model_name_to_url[model_name] __lowercase =torch.hub.load_state_dict_from_url(lowercase__, map_location='cpu', file_name=lowercase__ )[ 'state_dict' ] for name, param in state_dict.items(): print(lowercase__, param.shape ) __lowercase =get_upernet_config(lowercase__ ) __lowercase =UperNetForSemanticSegmentation(lowercase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowercase =state_dict.pop(lowercase__ ) if "bn" in key: __lowercase =key.replace('bn', 'batch_norm' ) __lowercase =val # rename keys __lowercase =create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__, lowercase__, lowercase__ ) read_in_q_k_v(lowercase__, config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowercase =reverse_correct_unfold_reduction_order(lowercase__ ) if "norm" in key: __lowercase =reverse_correct_unfold_norm_order(lowercase__ ) model.load_state_dict(lowercase__ ) # verify on image __lowercase ='https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' __lowercase =Image.open(requests.get(lowercase__, stream=lowercase__ ).raw ).convert('RGB' ) __lowercase =SegformerImageProcessor() __lowercase =processor(lowercase__, return_tensors='pt' ).pixel_values with torch.no_grad(): __lowercase =model(lowercase__ ) __lowercase =outputs.logits print(logits.shape ) print('First values of logits:', logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowercase =torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": __lowercase =torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": __lowercase =torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": __lowercase =torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:', outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], lowercase__, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F'''upernet-swin-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
141
'''simple docstring''' import datasets UpperCAmelCase = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' UpperCAmelCase = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' UpperCAmelCase = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : List[str] ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase ( datasets.Metric ): def snake_case ( self : int ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def snake_case ( self : List[str] , __lowercase : Dict , __lowercase : Optional[Any] ): """simple docstring""" return {"accuracy": simple_accuracy(__lowercase , __lowercase )}
141
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ ( a_ ): def __init__( self , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: """simple docstring""" super().__init__() self.register_modules(vqvae=snake_case__ , unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ = 1 , snake_case__ = None , snake_case__ = 0.0 , snake_case__ = 50 , snake_case__ = "pil" , snake_case__ = True , **snake_case__ , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" UpperCAmelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=snake_case__ , ) UpperCAmelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(snake_case__ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCAmelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase = {} if accepts_eta: UpperCAmelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCAmelCase = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual UpperCAmelCase = self.unet(snake_case__ , snake_case__ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # decode the image latents with the VAE UpperCAmelCase = self.vqvae.decode(snake_case__ ).sample UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
365
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( a_ ): def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def UpperCamelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(snake_case__ ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case__ ) return metrics def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(snake_case__ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case__ )
248
0
"""simple docstring""" lowerCAmelCase : Dict = 256 # Modulus to hash a string lowerCAmelCase : str = 100_0003 def a__ ( snake_case__ , snake_case__ ) -> bool: lowerCamelCase = len(snake_case__ ) lowerCamelCase = len(snake_case__ ) if p_len > t_len: return False lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case__ ): lowerCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def a__ ( ) -> None: lowerCamelCase = """abc1abc12""" lowerCamelCase = """alskfjaldsabc1abc1abc12k23adsfabcabc""" lowerCamelCase = """alskfjaldsk23adsfabcabc""" assert rabin_karp(snake_case__ , snake_case__ ) and not rabin_karp(snake_case__ , snake_case__ ) # Test 2) lowerCamelCase = """ABABX""" lowerCamelCase = """ABABZABABYABABX""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 3) lowerCamelCase = """AAAB""" lowerCamelCase = """ABAAAAAB""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 4) lowerCamelCase = """abcdabcy""" lowerCamelCase = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(snake_case__ , snake_case__ ) # Test 5) lowerCamelCase = """Lü""" lowerCamelCase = """Lüsai""" assert rabin_karp(snake_case__ , snake_case__ ) lowerCamelCase = """Lue""" assert not rabin_karp(snake_case__ , snake_case__ ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
291
"""simple docstring""" from math import ceil def a__ ( snake_case__ , snake_case__ ) -> Optional[int]: lowerCamelCase = list(range(0 , snake_case__ ) ) lowerCamelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowerCamelCase = [] for i in device_map_blocks: if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case__ ) # Missing blocks lowerCamelCase = [i for i in blocks if i not in device_map_blocks] lowerCamelCase = [i for i in device_map_blocks if i not in blocks] if len(snake_case__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case__ ) ) def a__ ( snake_case__ , snake_case__ ) -> List[Any]: lowerCamelCase = list(range(snake_case__ ) ) lowerCamelCase = int(ceil(n_layers / len(snake_case__ ) ) ) lowerCamelCase = [layers[i : i + n_blocks] for i in range(0 , snake_case__ , snake_case__ )] return dict(zip(snake_case__ , snake_case__ ) )
291
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Any = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'TsinghuaAI/CPM-Generate': 'https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model', } } class lowerCamelCase__ ( __lowercase): '''simple docstring''' def __init__( self :int , a :List[Any] , a :Optional[Any]=False , a :List[str]=True , a :str=False , a :Optional[Any]="<s>" , a :Tuple="</s>" , a :int="<unk>" , a :Optional[Any]="<sep>" , a :List[str]="<pad>" , a :Any="<cls>" , a :List[Any]="<mask>" , a :Optional[Any]=["<eop>", "<eod>"] , a :Optional[Dict[str, Any]] = None , **a :List[str] , ) -> None: __UpperCamelCase : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token __UpperCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=a , remove_space=a , keep_accents=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , additional_special_tokens=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) __UpperCamelCase : int = 3 __UpperCamelCase : Union[str, Any] = do_lower_case __UpperCamelCase : str = remove_space __UpperCamelCase : int = keep_accents __UpperCamelCase : Optional[int] = vocab_file __UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) __UpperCamelCase : Optional[Any] = jieba __UpperCamelCase : Optional[int] = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowerCamelCase ( self :Optional[int] ) -> List[str]: return len(self.sp_model ) def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Optional[int] ) -> int: __UpperCamelCase : Tuple = self.__dict__.copy() __UpperCamelCase : Optional[Any] = None return state def __setstate__( self :Optional[int] , a :Dict ) -> str: __UpperCamelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase : Union[str, Any] = {} __UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self :List[Any] , a :str ) -> int: if self.remove_space: __UpperCamelCase : int = " ".join(inputs.strip().split() ) else: __UpperCamelCase : Union[str, Any] = inputs __UpperCamelCase : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: __UpperCamelCase : Tuple = unicodedata.normalize("NFKD" , a ) __UpperCamelCase : Optional[Any] = "".join([c for c in outputs if not unicodedata.combining(a )] ) if self.do_lower_case: __UpperCamelCase : Any = outputs.lower() return outputs def _lowerCamelCase ( self :Tuple , a :str ) -> List[str]: __UpperCamelCase : List[Any] = self.preprocess_text(a ) __UpperCamelCase : int = self.sp_model.encode(a , out_type=a ) __UpperCamelCase : Optional[Any] = [] for piece in pieces: if len(a ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): __UpperCamelCase : str = self.sp_model.EncodeAsPieces(piece[:-1].replace(a , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __UpperCamelCase : List[str] = cur_pieces[1:] else: __UpperCamelCase : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(a ) else: new_pieces.append(a ) return new_pieces def _lowerCamelCase ( self :str , a :Dict ) -> List[str]: return self.sp_model.PieceToId(a ) def _lowerCamelCase ( self :Tuple , a :int ) -> Tuple: return self.sp_model.IdToPiece(a ) def _lowerCamelCase ( self :Union[str, Any] , a :Union[str, Any] ) -> List[Any]: __UpperCamelCase : str = "".join(a ).replace(a , " " ).strip() return out_string def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Tuple = [self.sep_token_id] __UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCamelCase ( self :Any , a :List[int] , a :Optional[List[int]] = None , a :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is not None: return ([0] * len(a )) + [1] + ([0] * len(a )) + [1, 1] return ([0] * len(a )) + [1, 1] def _lowerCamelCase ( self :Dict , a :List[int] , a :Optional[List[int]] = None ) -> List[int]: __UpperCamelCase : Optional[int] = [self.sep_token_id] __UpperCamelCase : Dict = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCamelCase ( self :Union[str, Any] , a :str , a :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __UpperCamelCase : Tuple = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , "wb" ) as fi: __UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,) def _lowerCamelCase ( self :str , *a :str , **a :Any ) -> Tuple: __UpperCamelCase : int = super()._decode(*a , **a ) __UpperCamelCase : int = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
151
import random def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : bool = False) -> dict: '''simple docstring''' __UpperCamelCase : dict = {i: [] for i in range(_lowerCamelCase)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_lowerCamelCase) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_lowerCamelCase): for j in range(i + 1 , _lowerCamelCase): if random.random() < probability: graph[i].append(_lowerCamelCase) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_lowerCamelCase) return graph def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> dict: '''simple docstring''' return { i: [j for j in range(_lowerCamelCase) if i != j] for i in range(_lowerCamelCase) } if __name__ == "__main__": import doctest doctest.testmod()
151
1
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__ = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__ = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
150
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Optional[Any] ) -> Dict: """simple docstring""" return (-y * np.log(_UpperCamelCase ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case = np.dot(_UpperCamelCase , _UpperCamelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCamelCase ) ) ) def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : Any , _UpperCamelCase : List[Any]=7_0_0_0_0 ) -> Optional[int]: """simple docstring""" snake_case = np.zeros(x.shape[1] ) for iterations in range(_UpperCamelCase ): snake_case = np.dot(_UpperCamelCase , _UpperCamelCase ) snake_case = sigmoid_function(_UpperCamelCase ) snake_case = np.dot(x.T , h - y ) / y.size snake_case = theta - alpha * gradient # updating the weights snake_case = np.dot(_UpperCamelCase , _UpperCamelCase ) snake_case = sigmoid_function(_UpperCamelCase ) snake_case = cost_function(_UpperCamelCase , _UpperCamelCase ) if iterations % 1_0_0 == 0: print(f"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = datasets.load_iris() SCREAMING_SNAKE_CASE__ = iris.data[:, :2] SCREAMING_SNAKE_CASE__ = (iris.target != 0) * 1 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = logistic_reg(alpha, x, y, max_iterations=70_000) print("theta: ", theta) # printing the theta i.e our weights vector def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return sigmoid_function( np.dot(_UpperCamelCase , _UpperCamelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = (x[:, 0].min(), x[:, 0].max()) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = (x[:, 1].min(), x[:, 1].max()) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) SCREAMING_SNAKE_CASE__ = np.c_[xxa.ravel(), xxa.ravel()] SCREAMING_SNAKE_CASE__ = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
150
1
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A( a , unittest.TestCase ): snake_case_ = CTRLTokenizer snake_case_ = False snake_case_ = False def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] __a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] __a = {'''unk_token''': '''<unk>'''} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = '''adapt react readapt apt''' __a = '''adapt react readapt apt''' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' __a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __a = '''adapt react readapt apt''' __a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() __a = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __a = tokens + [tokenizer.unk_token] __a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case )
33
import os # Precomputes a list of the 100 first triangular numbers A : List[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __lowerCAmelCase ( ) -> Tuple: __a = os.path.dirname(os.path.realpath(a__ ) ) __a = os.path.join(a__ , '''words.txt''' ) __a = '''''' with open(a__ ) as f: __a = f.readline() __a = [word.strip('''"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] __a = [ word for word in [sum(ord(a__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(a__ ) if __name__ == "__main__": print(solution())
33
1
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort lowercase__ = '1' lowercase__ = '0' lowercase__ = '1' lowercase__ = ort.SessionOptions() lowercase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") lowercase__ = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] lowercase__ = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) lowercase__ = ort.RunOptions() lowercase__ = 128 lowercase__ = 1 lowercase__ = np.ones((batch, sequence), dtype=np.intaa) lowercase__ = np.ones((batch, sequence), dtype=np.intaa) lowercase__ = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") lowercase__ = time.time() lowercase__ = 2000 lowercase__ = {} for iter in range(max_iters): lowercase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1000 / max_iters))
96
import math def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' if not isinstance(lowerCamelCase_ ,lowerCamelCase_): lowerCAmelCase__ : Union[str, Any] = f"""Input value of [number={number}] must be an integer""" raise TypeError(lowerCamelCase_) if number < 1: lowerCAmelCase__ : Dict = f"""Input value of [number={number}] must be > 0""" raise ValueError(lowerCamelCase_) elif number == 1: return 3 elif number == 2: return 5 else: lowerCAmelCase__ : Optional[Any] = int(math.log(number // 3 ,2)) + 2 lowerCAmelCase__ : Optional[Any] = [3, 5] lowerCAmelCase__ : List[Any] = 2 lowerCAmelCase__ : Tuple = 3 for block in range(1 ,lowerCamelCase_): for _ in range(lowerCamelCase_): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1]) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): __snake_case : Optional[int] =0 try: __snake_case : List[Any] =proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
129
0
from __future__ import annotations def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> list[list[int]]: '''simple docstring''' _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = sum(_UpperCAmelCase ) create_state_space_tree(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return result def A ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : list[list[int]] , _UpperCAmelCase : int , ) -> None: '''simple docstring''' if sum(_UpperCAmelCase ) > max_sum or (remaining_nums_sum + sum(_UpperCAmelCase )) < max_sum: return if sum(_UpperCAmelCase ) == max_sum: result.append(_UpperCAmelCase ) return for index in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): create_state_space_tree( _UpperCAmelCase , _UpperCAmelCase , index + 1 , [*path, nums[index]] , _UpperCAmelCase , remaining_nums_sum - nums[index] , ) UpperCAmelCase__ = [3, 34, 4, 12, 5, 2] UpperCAmelCase__ = 9 UpperCAmelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
368
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __lowerCAmelCase : def __init__( self : Any , A : str = "cpu" , A : str = "openai/clip-vit-large-patch14") -> None: """simple docstring""" _UpperCAmelCase = device _UpperCAmelCase = CLIPTokenizerFast.from_pretrained(A) _UpperCAmelCase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] _UpperCAmelCase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] _UpperCAmelCase = torchvision.transforms.Normalize(self.image_mean , self.image_std) _UpperCAmelCase = torchvision.transforms.Resize(2_24) _UpperCAmelCase = torchvision.transforms.CenterCrop(2_24) def _lowerCamelCase ( self : str , A : Any) -> str: """simple docstring""" _UpperCAmelCase = self.resize(A) _UpperCAmelCase = self.center_crop(A) _UpperCAmelCase = self.normalize(A) return images def __call__( self : Any , A : Dict=None , A : Dict=None , **A : List[Any]) -> Dict: """simple docstring""" _UpperCAmelCase = self.tokenizer(text=A , **A) _UpperCAmelCase = self.preprocess_img(A) _UpperCAmelCase = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class __lowerCAmelCase ( nn.Module ): def __init__( self : List[Any] , A : Any=10 , A : List[Any]=0.0_1 , A : Optional[int]=None , A : int=None , A : Dict=None , A : Tuple=None , A : str=None , A : Dict=None , A : Union[str, Any]=False , A : Any=True , A : Any="image" , A : Tuple=True , A : List[Any]=False , A : int=False , A : int=False , ) -> None: """simple docstring""" super().__init__() _UpperCAmelCase = None _UpperCAmelCase = device if device else get_device() if vqgan: _UpperCAmelCase = vqgan else: _UpperCAmelCase = load_vqgan(self.device , conf_path=A , ckpt_path=A) self.vqgan.eval() if clip: _UpperCAmelCase = clip else: _UpperCAmelCase = CLIPModel.from_pretrained('openai/clip-vit-base-patch32') self.clip.to(self.device) _UpperCAmelCase = ProcessorGradientFlow(device=self.device) _UpperCAmelCase = iterations _UpperCAmelCase = lr _UpperCAmelCase = log _UpperCAmelCase = make_grid _UpperCAmelCase = return_val _UpperCAmelCase = quantize _UpperCAmelCase = self.vqgan.decoder.z_shape def _lowerCamelCase ( self : Optional[int] , A : int=None , A : Union[str, Any]=None , A : Dict=5 , A : Optional[Any]=True) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = [] if output_path is None: _UpperCAmelCase = './animation.gif' if input_path is None: _UpperCAmelCase = self.save_path _UpperCAmelCase = sorted(glob(input_path + '/*')) if not len(A): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)') if len(A) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)') _UpperCAmelCase = total_duration / len(A) _UpperCAmelCase = [frame_duration] * len(A) if extend_frames: _UpperCAmelCase = 1.5 _UpperCAmelCase = 3 for file_name in paths: if file_name.endswith('.png'): images.append(imageio.imread(A)) imageio.mimsave(A , A , duration=A) print(F"gif saved to {output_path}") def _lowerCamelCase ( self : List[str] , A : Optional[Any]=None , A : Optional[int]=None) -> int: """simple docstring""" if not (path or img): raise ValueError('Input either path or tensor') if img is not None: raise NotImplementedError _UpperCAmelCase = preprocess(Image.open(A) , target_image_size=2_56).to(self.device) _UpperCAmelCase = preprocess_vqgan(A) _UpperCAmelCase , *_UpperCAmelCase = self.vqgan.encode(A) return z def _lowerCamelCase ( self : List[str] , A : int) -> Dict: """simple docstring""" _UpperCAmelCase = self.latent.detach().requires_grad_() _UpperCAmelCase = base_latent + transform_vector if self.quantize: _UpperCAmelCase , *_UpperCAmelCase = self.vqgan.quantize(A) else: _UpperCAmelCase = trans_latent return self.vqgan.decode(A) def _lowerCamelCase ( self : Any , A : Dict , A : Dict , A : Optional[Any]=None) -> Any: """simple docstring""" _UpperCAmelCase = self.clip_preprocessor(text=A , images=A , return_tensors='pt' , padding=A) _UpperCAmelCase = self.clip(**A) _UpperCAmelCase = clip_outputs.logits_per_image if weights is not None: _UpperCAmelCase = similarity_logits * weights return similarity_logits.sum() def _lowerCamelCase ( self : Optional[int] , A : Dict , A : int , A : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self._get_clip_similarity(pos_prompts['prompts'] , A , weights=(1 / pos_prompts['weights'])) if neg_prompts: _UpperCAmelCase = self._get_clip_similarity(neg_prompts['prompts'] , A , weights=neg_prompts['weights']) else: _UpperCAmelCase = torch.tensor([1] , device=self.device) _UpperCAmelCase = -torch.log(A) + torch.log(A) return loss def _lowerCamelCase ( self : Tuple , A : Optional[int] , A : List[Any] , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = torch.randn_like(self.latent , requires_grad=A , device=self.device) _UpperCAmelCase = torch.optim.Adam([vector] , lr=self.lr) for i in range(self.iterations): optim.zero_grad() _UpperCAmelCase = self._add_vector(A) _UpperCAmelCase = loop_post_process(A) _UpperCAmelCase = self._get_CLIP_loss(A , A , A) print('CLIP loss' , A) if self.log: wandb.log({'CLIP Loss': clip_loss}) clip_loss.backward(retain_graph=A) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def _lowerCamelCase ( self : Dict , A : Any , A : Optional[int] , A : str) -> Any: """simple docstring""" wandb.init(reinit=A , project='face-editor') wandb.config.update({'Positive Prompts': positive_prompts}) wandb.config.update({'Negative Prompts': negative_prompts}) wandb.config.update({'lr': self.lr, 'iterations': self.iterations}) if image_path: _UpperCAmelCase = Image.open(A) _UpperCAmelCase = image.resize((2_56, 2_56)) wandb.log('Original Image' , wandb.Image(A)) def _lowerCamelCase ( self : Dict , A : int) -> Dict: """simple docstring""" if not prompts: return [] _UpperCAmelCase = [] _UpperCAmelCase = [] if isinstance(A , A): _UpperCAmelCase = [prompt.strip() for prompt in prompts.split('|')] for prompt in prompts: if isinstance(A , (tuple, list)): _UpperCAmelCase = prompt[0] _UpperCAmelCase = float(prompt[1]) elif ":" in prompt: _UpperCAmelCase , _UpperCAmelCase = prompt.split(':') _UpperCAmelCase = float(A) else: _UpperCAmelCase = prompt _UpperCAmelCase = 1.0 processed_prompts.append(A) weights.append(A) return { "prompts": processed_prompts, "weights": torch.tensor(A , device=self.device), } def _lowerCamelCase ( self : Optional[int] , A : Union[str, Any] , A : Union[str, Any]=None , A : int=None , A : Optional[Any]=True , A : Dict=False , A : Union[str, Any]=True , A : Any=True , A : Any=None , ) -> Dict: """simple docstring""" if image_path: _UpperCAmelCase = self._get_latent(A) else: _UpperCAmelCase = torch.randn(self.latent_dim , device=self.device) if self.log: self._init_logging(A , A , A) assert pos_prompts, "You must provide at least one positive prompt." _UpperCAmelCase = self.process_prompts(A) _UpperCAmelCase = self.process_prompts(A) if save_final and save_path is None: _UpperCAmelCase = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'])) if not os.path.exists(A): os.makedirs(A) else: _UpperCAmelCase = save_path + '_' + get_timestamp() os.makedirs(A) _UpperCAmelCase = save_path _UpperCAmelCase = self.vqgan.decode(self.latent)[0] if show_intermediate: print('Original Image') show_pil(custom_to_pil(A)) _UpperCAmelCase = loop_post_process(A) for iter, transformed_img in enumerate(self._optimize_CLIP(A , A , A)): if show_intermediate: show_pil(A) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png")) if self.log: wandb.log({'Image': wandb.Image(A)}) if show_final: show_pil(A) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png"))
290
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL SCREAMING_SNAKE_CASE_:List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , ) -> int: """simple docstring""" output_path.parent.mkdir(parents=_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , use_external_data_format=_lowerCAmelCase , enable_onnx_checker=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) else: export( _lowerCAmelCase , _lowerCAmelCase , f=output_path.as_posix() , input_names=_lowerCAmelCase , output_names=_lowerCAmelCase , dynamic_axes=_lowerCAmelCase , do_constant_folding=_lowerCAmelCase , opset_version=_lowerCAmelCase , ) @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = False ) -> List[Any]: """simple docstring""" A : Tuple = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A : Union[str, Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: A : Any = """cpu""" A : Any = Path(_lowerCAmelCase ) # VAE DECODER A : Union[str, Any] = AutoencoderKL.from_pretrained(model_path + """/vae""" ) A : Any = vae_decoder.config.latent_channels # forward only through the decoder part A : Optional[int] = vae_decoder.decode onnx_export( _lowerCAmelCase , model_args=( torch.randn(1 , _lowerCAmelCase , 25 , 25 ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_lowerCAmelCase , ) del vae_decoder if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Tuple = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") SCREAMING_SNAKE_CASE_:Tuple = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
116
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=5, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=16, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=4, ): A : List[str] = parent A : Optional[int] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : List[str] = use_attention_mask A : Union[str, Any] = use_token_type_ids A : Any = use_labels A : str = vocab_size A : Union[str, Any] = hidden_size A : str = num_hidden_layers A : List[Any] = num_attention_heads A : Optional[int] = intermediate_size A : Optional[Any] = hidden_act A : Dict = hidden_dropout_prob A : List[Any] = attention_probs_dropout_prob A : Optional[int] = max_position_embeddings A : int = type_vocab_size A : str = type_sequence_label_size A : List[Any] = initializer_range A : str = num_choices def _lowerCAmelCase ( self ): A : Optional[int] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : Union[str, Any] = None if self.use_attention_mask: A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) A : int = None if self.use_token_type_ids: A : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) A : Optional[int] = AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=lowerCamelCase__, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ): A : Dict = self.prepare_config_and_inputs() A , A , A , A : str = config_and_inputs A : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ): A : Dict = FlaxAlbertModelTester(self ) @slow def _lowerCAmelCase ( self ): for model_class_name in self.all_model_classes: A : Dict = model_class_name.from_pretrained("""albert-base-v2""" ) A : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : Dict = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) A : List[str] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) A : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) A : Optional[int] = model(lowerCamelCase__, attention_mask=lowerCamelCase__ )[0] A : str = (1, 11, 768) self.assertEqual(output.shape, lowerCamelCase__ ) A : Optional[int] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], lowerCamelCase__, atol=1e-4 ) )
116
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } lowerCamelCase = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def lowerCamelCase_ ( _a , _a=False ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = create_model( '''HTSAT-tiny''' , '''roberta''' , _a , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_a , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : Dict = R'''.*sequential.(\d+).*''' lowerCAmelCase__ : Optional[Any] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCAmelCase__ : int = key.replace(_a , _a ) if re.match(_a , _a ): # replace sequential layers with list lowerCAmelCase__ : int = re.match(_a , _a ).group(1 ) lowerCAmelCase__ : Any = key.replace(f'sequential.{sequential_layer}.' , f'layers.{int(_a )//3}.linear.' ) elif re.match(_a , _a ): lowerCAmelCase__ : Tuple = int(re.match(_a , _a ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCAmelCase__ : List[str] = 1 if projecton_layer == 0 else 2 lowerCAmelCase__ : str = key.replace(f'_projection.{projecton_layer}.' , f'_projection.linear{transformers_projection_layer}.' ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCAmelCase__ : Union[str, Any] = value lowerCAmelCase__ : Dict = mixed_qkv.size(0 ) // 3 lowerCAmelCase__ : int = mixed_qkv[:qkv_dim] lowerCAmelCase__ : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] lowerCAmelCase__ : Optional[Any] = mixed_qkv[qkv_dim * 2 :] lowerCAmelCase__ : Any = query_layer lowerCAmelCase__ : List[Any] = key_layer lowerCAmelCase__ : List[str] = value_layer else: lowerCAmelCase__ : str = value return model_state_dict def lowerCamelCase_ ( _a , _a , _a , _a=False ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : int = init_clap(_a , enable_fusion=_a ) clap_model.eval() lowerCAmelCase__ : Tuple = clap_model.state_dict() lowerCAmelCase__ : Optional[int] = rename_state_dict(_a ) lowerCAmelCase__ : Union[str, Any] = ClapConfig() lowerCAmelCase__ : Optional[Any] = enable_fusion lowerCAmelCase__ : Any = ClapModel(_a ) # ignore the spectrogram embedding layer model.load_state_dict(_a , strict=_a ) model.save_pretrained(_a ) transformers_config.save_pretrained(_a ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') lowerCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
211
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _a ( _lowercase): _a : Optional[int] = '''xlm-roberta-xl''' def __init__( self : Any , _SCREAMING_SNAKE_CASE : str=25_0880 , _SCREAMING_SNAKE_CASE : Optional[Any]=2560 , _SCREAMING_SNAKE_CASE : int=36 , _SCREAMING_SNAKE_CASE : Optional[int]=32 , _SCREAMING_SNAKE_CASE : Any=1_0240 , _SCREAMING_SNAKE_CASE : List[str]="gelu" , _SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE : Dict=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=514 , _SCREAMING_SNAKE_CASE : Optional[int]=1 , _SCREAMING_SNAKE_CASE : Tuple=0.02 , _SCREAMING_SNAKE_CASE : Dict=1E-05 , _SCREAMING_SNAKE_CASE : Tuple=1 , _SCREAMING_SNAKE_CASE : Optional[int]=0 , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]="absolute" , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : Any=None , **_SCREAMING_SNAKE_CASE : Tuple , )-> str: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : List[Any] = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : Any = type_vocab_size lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : Optional[int] = layer_norm_eps lowerCAmelCase__ : Optional[int] = position_embedding_type lowerCAmelCase__ : Any = use_cache lowerCAmelCase__ : List[Any] = classifier_dropout class _a ( _lowercase): @property def UpperCAmelCase__( self : Any )-> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCAmelCase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
211
1
import math __UpperCamelCase : Any = 10 __UpperCamelCase : int = 7 __UpperCamelCase : List[Any] = BALLS_PER_COLOUR * NUM_COLOURS def A ( _lowercase = 20 ): SCREAMING_SNAKE_CASE : List[Any] = math.comb(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE : Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
182
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( UpperCamelCase = "laptop" ): A = F"https://www.amazon.in/laptop/s?k={product}" A = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } A = BeautifulSoup(requests.get(UpperCamelCase , headers=UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: A = item.ha.text A = "https://www.amazon.in/" + item.ha.a["href"] A = item.find("span" , attrs={"class": "a-offscreen"} ).text try: A = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: A = "Not available" try: A = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: A = "" try: A = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: A = float("nan" ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = " " A = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case : Optional[int] = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
292
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase : int = "focalnet" def __init__( self : List[str] , __snake_case : int=2_24 , __snake_case : Union[str, Any]=4 , __snake_case : int=3 , __snake_case : Any=96 , __snake_case : List[str]=False , __snake_case : Union[str, Any]=[1_92, 3_84, 7_68, 7_68] , __snake_case : Any=[2, 2, 6, 2] , __snake_case : Optional[Any]=[2, 2, 2, 2] , __snake_case : Dict=[3, 3, 3, 3] , __snake_case : Union[str, Any]="gelu" , __snake_case : Dict=4.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : List[Any]=False , __snake_case : Union[str, Any]=1E-4 , __snake_case : Any=False , __snake_case : Dict=False , __snake_case : str=False , __snake_case : Union[str, Any]=0.02 , __snake_case : int=1E-5 , __snake_case : Tuple=32 , __snake_case : Optional[Any]=None , __snake_case : Dict=None , **__snake_case : str , ): super().__init__(**__UpperCAmelCase ) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = use_conv_embed UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = focal_levels UpperCAmelCase_ = focal_windows UpperCAmelCase_ = hidden_act UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = use_layerscale UpperCAmelCase_ = layerscale_value UpperCAmelCase_ = use_post_layernorm UpperCAmelCase_ = use_post_layernorm_in_modulation UpperCAmelCase_ = normalize_modulator UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = encoder_stride UpperCAmelCase_ = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
366
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: UpperCAmelCase_ = [] if isinstance(__UpperCamelCase , __UpperCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Tuple[int, ...] ) -> Tuple[int, ...]: UpperCAmelCase_ = [] for d in reversed(__UpperCamelCase ): idx.append(flat_idx % d ) UpperCAmelCase_ = flat_idx // d return tuple(reversed(__UpperCamelCase ) ) @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Sequence[int] , __UpperCamelCase : Sequence[int] , __UpperCamelCase : Sequence[int] , __UpperCamelCase : Optional[Sequence[bool]] = None , __UpperCamelCase : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(__UpperCamelCase : List[bool] ) -> None: UpperCAmelCase_ = True for i in range(len(__UpperCamelCase ) ): UpperCAmelCase_ = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ = l[reversed_idx] if start_edges is None: UpperCAmelCase_ = [s == 0 for s in start] reduce_edge_list(__UpperCamelCase ) if end_edges is None: UpperCAmelCase_ = [e == (d - 1) for e, d in zip(__UpperCamelCase , __UpperCamelCase )] reduce_edge_list(__UpperCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCamelCase ) == 0: return [()] elif len(__UpperCamelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCamelCase , __UpperCamelCase ): if s == e: path_list.append(slice(__UpperCamelCase , s + 1 ) ) else: break UpperCAmelCase_ = tuple(__UpperCamelCase ) UpperCAmelCase_ = len(__UpperCamelCase ) # start == end, and we're done if divergence_idx == len(__UpperCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = start[divergence_idx] return tuple( path + (slice(__UpperCamelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = end[divergence_idx] return tuple( path + (slice(__UpperCamelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def SCREAMING_SNAKE_CASE ( __UpperCamelCase : torch.Tensor , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) -> torch.Tensor: UpperCAmelCase_ = t.shape[:no_batch_dims] UpperCAmelCase_ = list(_flat_idx_to_idx(__UpperCamelCase , __UpperCamelCase ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ = list(_flat_idx_to_idx(flat_end - 1 , __UpperCamelCase ) ) # Get an ordered list of slices to perform UpperCAmelCase_ = _get_minimal_slice_set( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) UpperCAmelCase_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Callable , __UpperCamelCase : Dict[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : bool = False , __UpperCamelCase : Any = None , __UpperCamelCase : bool = False , ) -> Any: if not (len(__UpperCamelCase ) > 0): raise ValueError('''Must provide at least one input''' ) UpperCAmelCase_ = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCamelCase )] UpperCAmelCase_ = tuple([max(__UpperCamelCase ) for s in zip(*__UpperCamelCase )] ) def _prep_inputs(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ = tensor_tree_map(_prep_inputs , __UpperCamelCase ) UpperCAmelCase_ = None if _out is not None: UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase_ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ = 0 UpperCAmelCase_ = prepped_outputs for _ in range(__UpperCamelCase ): # Chunk the input if not low_mem: UpperCAmelCase_ = _select_chunk else: UpperCAmelCase_ = partial( _chunk_slice , flat_start=__UpperCamelCase , flat_end=min(__UpperCamelCase , i + chunk_size ) , no_batch_dims=len(__UpperCamelCase ) , ) UpperCAmelCase_ = tensor_tree_map(__UpperCamelCase , __UpperCamelCase ) # Run the layer on the chunk UpperCAmelCase_ = layer(**__UpperCamelCase ) # Allocate space for the output if out is None: UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __UpperCamelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCamelCase , __UpperCamelCase ): def assign(__UpperCamelCase : dict , __UpperCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): assign(__UpperCamelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ = da[k] assign(__UpperCamelCase , __UpperCamelCase ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): for xa, xa in zip(__UpperCamelCase , __UpperCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ = xa elif isinstance(__UpperCamelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size UpperCAmelCase_ = tensor_tree_map(lambda __UpperCamelCase : t.view(orig_batch_dims + t.shape[1:] ) , __UpperCamelCase ) return out class a : '''simple docstring''' def __init__( self : List[Any] , __snake_case : int = 5_12 , ): UpperCAmelCase_ = max_chunk_size UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCamelCase_ ( self : List[Any] , __snake_case : Callable , __snake_case : tuple , __snake_case : int ): logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__snake_case : int ) -> bool: try: with torch.no_grad(): fn(*__snake_case , chunk_size=__snake_case ) return True except RuntimeError: return False UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__snake_case ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ = i UpperCAmelCase_ = (i + len(__snake_case ) - 1) // 2 return candidates[min_viable_chunk_size_index] def lowerCamelCase_ ( self : int , __snake_case : Iterable , __snake_case : Iterable ): UpperCAmelCase_ = True for aa, aa in zip(__snake_case , __snake_case ): assert type(__snake_case ) == type(__snake_case ) if isinstance(__snake_case , (list, tuple) ): consistent &= self._compare_arg_caches(__snake_case , __snake_case ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __snake_case : x[0] )] UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __snake_case : x[0] )] consistent &= self._compare_arg_caches(__snake_case , __snake_case ) else: consistent &= aa == aa return consistent def lowerCamelCase_ ( self : str , __snake_case : Callable , __snake_case : tuple , __snake_case : int , ): UpperCAmelCase_ = True UpperCAmelCase_ = tree_map(lambda __snake_case : a.shape if isinstance(__snake_case , torch.Tensor ) else a , __snake_case , __snake_case ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__snake_case ) UpperCAmelCase_ = self._compare_arg_caches(self.cached_arg_data , __snake_case ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ = False if not consistent: UpperCAmelCase_ = self._determine_favorable_chunk_size( __snake_case , __snake_case , __snake_case , ) UpperCAmelCase_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
177
0
import datasets from .evaluate import evaluate _UpperCAmelCase : Union[str, Any] = """\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ _UpperCAmelCase : Any = """ This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ _UpperCAmelCase : Any = """ Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': {'id': datasets.Value('string' ), 'prediction_text': datasets.Value('string' )}, 'references': { 'id': datasets.Value('string' ), 'answers': datasets.features.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), }, } ) , codebase_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , reference_urls=['https://rajpurkar.github.io/SQuAD-explorer/'] , ) def a ( self , snake_case , snake_case ): snake_case_ = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} snake_case_ = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] snake_case_ = evaluate(dataset=snake_case , predictions=snake_case ) return score
285
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def a__ ( lowerCAmelCase__ ) -> bool: UpperCAmelCase__ : int = int(number**0.5 ) return number == sq * sq def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> tuple[int, int]: UpperCAmelCase__ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase__ : int = x_den * y_den * z_den UpperCAmelCase__ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def a__ ( lowerCAmelCase__ = 35 ) -> int: UpperCAmelCase__ : set = set() UpperCAmelCase__ : int UpperCAmelCase__ : Fraction = Fraction(0 ) UpperCAmelCase__ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase__ : str = x_num * y_den + x_den * y_num UpperCAmelCase__ : int = x_den * y_den UpperCAmelCase__ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : Optional[int] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase__ : int = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase__ : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase__ : Any = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : str = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : str = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : str = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=-1 UpperCAmelCase__ : Union[str, Any] = x_num * y_num UpperCAmelCase__ : Optional[Any] = x_den * y_num + x_num * y_den UpperCAmelCase__ : Dict = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : Union[str, Any] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 UpperCAmelCase__ : Any = x_num * x_num * y_num * y_num UpperCAmelCase__ : Tuple = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): UpperCAmelCase__ : Optional[int] = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : Any = int(sqrt(lowerCAmelCase__ ) ) UpperCAmelCase__ : List[str] = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase__ : str = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) for num, den in unique_s: total += Fraction(lowerCAmelCase__ , lowerCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
299
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'new-model' if is_tf_available(): class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewModelConfig @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''bert-base-cased''' UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = '''bert-base-cased''' UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForPreTraining.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : int ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : str = TFAutoModelForCausalLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForCausalLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : List[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : List[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = TFAutoModelForMaskedLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(_A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Any = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow def lowercase_ ( self : Any ): '''simple docstring''' for model_name in ["bert-base-uncased"]: UpperCAmelCase__ : Optional[Any] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) @slow @require_tensorflow_probability def lowercase_ ( self : Optional[int] ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase__ : List[str] = AutoConfig.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(_A ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = TFAutoModelForTableQuestionAnswering.from_pretrained( _A , output_loading_info=_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_A ) self.assertIsInstance(_A , _A ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=_A ) , 14_410 ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Any = copy.deepcopy(model.config ) UpperCAmelCase__ : Tuple = ['''FunnelBaseModel'''] UpperCAmelCase__ : int = TFAutoModel.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = TFAutoModel.from_pretrained(_A ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: AutoConfig.register('''new-model''' , _A ) UpperCAmelCase__ : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) auto_class.register(_A , _A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): auto_class.register(_A , _A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase__ : Tuple = BertModelTester(self ).get_config() UpperCAmelCase__ : str = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase__ : str = auto_class.from_config(_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_A ) UpperCAmelCase__ : str = auto_class.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def lowercase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Dict = TFAutoModel.from_pretrained('''bert-base''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex(_A , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase__ : int = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[str] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Union[str, Any] = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase__ : Optional[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: UpperCAmelCase__ : List[Any] = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
1
def _a ( UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(1_00, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
142
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _a ( UpperCAmelCase ) -> List[str]: """simple docstring""" lowerCamelCase__ : Union[str, Any] = 384 if "tiny" in model_name: lowerCamelCase__ : Optional[int] = [3, 3, 9, 3] lowerCamelCase__ : Tuple = [96, 192, 384, 768] if "small" in model_name: lowerCamelCase__ : Dict = [3, 3, 27, 3] lowerCamelCase__ : Any = [96, 192, 384, 768] if "base" in model_name: lowerCamelCase__ : Optional[int] = [3, 3, 27, 3] lowerCamelCase__ : Optional[Any] = [128, 256, 512, 1024] lowerCamelCase__ : List[Any] = 512 if "large" in model_name: lowerCamelCase__ : List[str] = [3, 3, 27, 3] lowerCamelCase__ : int = [192, 384, 768, 1536] lowerCamelCase__ : str = 768 if "xlarge" in model_name: lowerCamelCase__ : Any = [3, 3, 27, 3] lowerCamelCase__ : str = [256, 512, 1024, 2048] lowerCamelCase__ : Optional[Any] = 1024 # set label information lowerCamelCase__ : Optional[int] = 150 lowerCamelCase__ : Any = '''huggingface/label-files''' lowerCamelCase__ : Any = '''ade20k-id2label.json''' lowerCamelCase__ : str = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase__ : Optional[Any] = {int(UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Any = ConvNextConfig( depths=UpperCAmelCase , hidden_sizes=UpperCAmelCase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) lowerCamelCase__ : Dict = UperNetConfig( backbone_config=UpperCAmelCase , auxiliary_in_channels=UpperCAmelCase , num_labels=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , ) return config def _a ( UpperCAmelCase ) -> int: """simple docstring""" lowerCamelCase__ : Dict = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"backbone.stages.{i}.{j}.gamma", f"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.weight", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.depthwise_conv.bias", f"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.weight", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.norm.bias", f"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv1.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.weight", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") ) rename_keys.append((f"backbone.stages.{i}.{j}.pointwise_conv2.bias", f"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") ) if i > 0: rename_keys.append((f"backbone.downsample_layers.{i}.0.weight", f"backbone.encoder.stages.{i}.downsampling_layer.0.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.0.bias", f"backbone.encoder.stages.{i}.downsampling_layer.0.bias") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.weight", f"backbone.encoder.stages.{i}.downsampling_layer.1.weight") ) rename_keys.append((f"backbone.downsample_layers.{i}.1.bias", f"backbone.encoder.stages.{i}.downsampling_layer.1.bias") ) rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight") ) rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: """simple docstring""" lowerCamelCase__ : str = dct.pop(UpperCAmelCase ) lowerCamelCase__ : List[Any] = val def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : str = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } lowerCamelCase__ : Union[str, Any] = model_name_to_url[model_name] lowerCamelCase__ : int = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''state_dict'''] lowerCamelCase__ : List[str] = get_upernet_config(UpperCAmelCase ) lowerCamelCase__ : Tuple = UperNetForSemanticSegmentation(UpperCAmelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase__ : Optional[int] = state_dict.pop(UpperCAmelCase ) if "bn" in key: lowerCamelCase__ : str = key.replace('''bn''' , '''batch_norm''' ) lowerCamelCase__ : List[Any] = val # rename keys lowerCamelCase__ : List[str] = create_rename_keys(UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) # verify on image lowerCamelCase__ : Any = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowerCamelCase__ : List[str] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ).convert('''RGB''' ) lowerCamelCase__ : Optional[int] = SegformerImageProcessor() lowerCamelCase__ : Any = processor(UpperCAmelCase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) if model_name == "upernet-convnext-tiny": lowerCamelCase__ : Any = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": lowerCamelCase__ : List[str] = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": lowerCamelCase__ : str = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": lowerCamelCase__ : Optional[int] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase__ : Tuple = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(f"Pushing model and processor for {model_name} to hub" ) model.push_to_hub(f"openmmlab/{model_name}" ) processor.push_to_hub(f"openmmlab/{model_name}" ) if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
142
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class __snake_case ( _lowercase): snake_case__ : Optional[int] = None snake_case__ : Optional[Any] = None snake_case__ : str = None snake_case__ : int = None class __snake_case ( _lowercase): def __init__( self : Dict , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : List[Any]=5_1_2 , __lowerCAmelCase : Optional[int]="cls" , __lowerCAmelCase : str=False , __lowerCAmelCase : List[str]=True , **__lowerCAmelCase : str , ): """simple docstring""" super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) _lowerCamelCase : Optional[Any] = project_dim _lowerCamelCase : List[str] = pooler_fn _lowerCamelCase : Dict = learn_encoder _lowerCamelCase : int = use_attention_mask class __snake_case ( _lowercase): snake_case__ : int = [R"pooler", R"logit_scale"] snake_case__ : List[Any] = [R"position_ids", R"predictions.decoder.bias"] snake_case__ : Dict = "roberta" snake_case__ : Optional[Any] = RobertaSeriesConfig def __init__( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" super().__init__(lowercase_ ) _lowerCamelCase : Any = XLMRobertaModel(lowercase_ ) _lowerCamelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.project_dim ) _lowerCamelCase : Any = getattr(lowercase_ , '''has_pre_transformation''' , lowercase_ ) if self.has_pre_transformation: _lowerCamelCase : Dict = nn.Linear(config.hidden_size , config.project_dim ) _lowerCamelCase : Optional[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[torch.Tensor] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[bool] = None , ): """simple docstring""" _lowerCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCamelCase : Dict = self.base_model( input_ids=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , position_ids=lowercase_ , head_mask=lowercase_ , inputs_embeds=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_attentions=lowercase_ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowercase_ , ) if self.has_pre_transformation: _lowerCamelCase : Optional[Any] = outputs['''hidden_states'''][-2] _lowerCamelCase : Any = self.pre_LN(lowercase_ ) _lowerCamelCase : Any = self.transformation_pre(lowercase_ ) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: _lowerCamelCase : Dict = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowercase_ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
369
"""simple docstring""" from maths.prime_factors import prime_factors def snake_case_ ( A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): _lowerCamelCase : str = F'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(A_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
175
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( _lowercase : str , _lowercase : List[Any] , _lowercase : Dict) -> Union[str, Any]: """simple docstring""" # Initialise PyTorch model a__ : List[str] = BertConfig.from_json_file(_lowerCamelCase) print(F'''Building PyTorch model from configuration: {config}''') a__ : Optional[Any] = BertForPreTraining(_lowerCamelCase) # Load weights from tf checkpoint load_tf_weights_in_bert(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''') torch.save(model.state_dict() , _lowerCamelCase) if __name__ == "__main__": _lowercase : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : Optional[int] =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
170
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[str]=False): try: lowercase__ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : int = default else: # KEY is set, convert it to True or False. try: lowercase__ : Optional[int] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) UpperCamelCase = parse_flag_from_env('''RUN_REMOTE''', default=False) UpperCamelCase = parse_flag_from_env('''RUN_LOCAL''', default=True) UpperCamelCase = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression UpperCamelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') UpperCamelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') UpperCamelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio UpperCamelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam UpperCamelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility UpperCamelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows UpperCamelCase = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def lowercase_ ( _lowerCamelCase : int): try: import faiss # noqa except ImportError: lowercase__ : Optional[Any] = unittest.skip("test requires faiss")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): try: import regex # noqa except ImportError: lowercase__ : List[Any] = unittest.skip("test requires regex")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): try: import elasticsearch # noqa except ImportError: lowercase__ : Optional[int] = unittest.skip("test requires elasticsearch")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Union[str, Any]): try: import sqlalchemy # noqa except ImportError: lowercase__ : Optional[int] = unittest.skip("test requires sqlalchemy")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not config.TORCH_AVAILABLE: lowercase__ : Tuple = unittest.skip("test requires PyTorch")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): if not config.TF_AVAILABLE: lowercase__ : Any = unittest.skip("test requires TensorFlow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Dict): if not config.JAX_AVAILABLE: lowercase__ : List[str] = unittest.skip("test requires JAX")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not config.PIL_AVAILABLE: lowercase__ : Dict = unittest.skip("test requires Pillow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Optional[Any]): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Dict): try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Optional[int]): def _require_spacy_model(_lowerCamelCase : Optional[int]): try: import spacy # noqa F401 spacy.load(_lowerCamelCase) except ImportError: return unittest.skip("test requires spacy")(_lowerCamelCase) except OSError: return unittest.skip("test requires spacy model '{}'".format(_lowerCamelCase))(_lowerCamelCase) else: return test_case return _require_spacy_model def lowercase_ ( _lowerCamelCase : Dict): try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : List[str]): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Dict): if not _run_slow_tests or _run_slow_tests == 0: lowercase__ : Tuple = unittest.skip("test is slow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not _run_local_tests or _run_local_tests == 0: lowercase__ : str = unittest.skip("test is local")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Optional[int]): if not _run_packaged_tests or _run_packaged_tests == 0: lowercase__ : List[Any] = unittest.skip("test is packaged")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): if not _run_remote_tests or _run_remote_tests == 0: lowercase__ : Union[str, Any] = unittest.skip("test requires remote")(_lowerCamelCase) return test_case def lowercase_ ( *_lowerCamelCase : str): def decorate(cls : str): for name, fn in cls.__dict__.items(): if callable(_lowerCamelCase) and name.startswith("test"): for decorator in decorators: lowercase__ : Optional[int] = decorator(_lowerCamelCase) setattr(cls , _lowerCamelCase , _lowerCamelCase) return cls return decorate class snake_case_ ( __A ): pass class snake_case_ ( __A ): __A : List[Any] = 0 __A : str = 1 __A : int = 2 @contextmanager def lowercase_ ( _lowerCamelCase : List[str]=OfflineSimulationMode.CONNECTION_FAILS , _lowerCamelCase : int=1E-16): lowercase__ : int = requests.Session().request def timeout_request(_lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict , **_lowerCamelCase : str): # Change the url to an invalid url so that the connection hangs lowercase__ : Any = "https://10.255.255.1" if kwargs.get("timeout") is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''') lowercase__ : Dict = timeout try: return online_request(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowercase__ : Dict = url lowercase__ : Union[str, Any] = e.args[0] lowercase__ : Optional[Any] = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]'''),) lowercase__ : int = (max_retry_error,) raise def raise_connection_error(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , **_lowerCamelCase : Tuple): raise requests.ConnectionError("Offline mode is enabled." , request=_lowerCamelCase) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _lowerCamelCase): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _lowerCamelCase): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum.") @contextmanager def lowercase_ ( *_lowerCamelCase : str , **_lowerCamelCase : Tuple): lowercase__ : Dict = str(Path().resolve()) with tempfile.TemporaryDirectory(*_lowerCamelCase , **_lowerCamelCase) as tmp_dir: try: os.chdir(_lowerCamelCase) yield finally: os.chdir(_lowerCamelCase) @contextmanager def lowercase_ ( ): import gc gc.collect() lowercase__ : Union[str, Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase_ ( ): import gc gc.collect() lowercase__ : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]): return deepcopy(_lowerCamelCase).integers(0 , 100 , 10).tolist() == deepcopy(_lowerCamelCase).integers(0 , 100 , 10).tolist() def lowercase_ ( _lowerCamelCase : str): import decorator from requests.exceptions import HTTPError def _wrapper(_lowerCamelCase : str , *_lowerCamelCase : Dict , **_lowerCamelCase : Dict): try: return func(*_lowerCamelCase , **_lowerCamelCase) except HTTPError as err: if str(_lowerCamelCase).startswith("500") or str(_lowerCamelCase).startswith("502"): pytest.xfail(str(_lowerCamelCase)) raise err return decorator.decorator(_wrapper , _lowerCamelCase) class snake_case_ : def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : List[str] ) -> List[str]: lowercase__ : Tuple = returncode lowercase__ : int = stdout lowercase__ : Union[str, Any] = stderr async def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict): while True: lowercase__ : Optional[int] = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=None , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Tuple=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : str = [] lowercase__ : List[str] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:")), _read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:")), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : int=180 , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[Any]=True): lowercase__ : Any = asyncio.get_event_loop() lowercase__ : Tuple = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : int = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Any = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''') return result def lowercase_ ( ): lowercase__ : List[str] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0") lowercase__ : str = re.sub(R"^gw" , "" , _lowerCamelCase , 0 , re.M) return int(_lowerCamelCase) def lowercase_ ( ): lowercase__ : Union[str, Any] = 2_9500 lowercase__ : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
87
0
def A (__A : dict ) -> set: """simple docstring""" UpperCAmelCase_ = set() # edges = list of graph's edges UpperCAmelCase_ = get_edges(__A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCAmelCase_ , UpperCAmelCase_ = edges.pop() chosen_vertices.add(__A ) chosen_vertices.add(__A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__A ) return chosen_vertices def A (__A : dict ) -> set: """simple docstring""" UpperCAmelCase_ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
357
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING snake_case_ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a ) class __snake_case ( a ): def __init__( self : Tuple , *_snake_case : List[Any] , **_snake_case : Optional[Any]): """simple docstring""" super().__init__(*_snake_case , **_snake_case) self.check_model_type(_snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=None , _snake_case : Optional[Any]=None , _snake_case : str=None , **_snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = {}, {} if padding is not None: UpperCAmelCase_ = padding if truncation is not None: UpperCAmelCase_ = truncation if top_k is not None: UpperCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self : List[Any] , _snake_case : Union["Image.Image", str] , _snake_case : str = None , **_snake_case : str): """simple docstring""" if isinstance(_snake_case , (Image.Image, str)) and isinstance(_snake_case , _snake_case): UpperCAmelCase_ = {'''image''': image, '''question''': question} else: UpperCAmelCase_ = image UpperCAmelCase_ = super().__call__(_snake_case , **_snake_case) return results def lowerCamelCase ( self : Union[str, Any] , _snake_case : int , _snake_case : Optional[int]=False , _snake_case : int=False): """simple docstring""" UpperCAmelCase_ = load_image(inputs['''image''']) UpperCAmelCase_ = self.tokenizer( inputs['''question'''] , return_tensors=self.framework , padding=_snake_case , truncation=_snake_case) UpperCAmelCase_ = self.image_processor(images=_snake_case , return_tensors=self.framework) model_inputs.update(_snake_case) return model_inputs def lowerCamelCase ( self : List[Any] , _snake_case : Optional[Any]): """simple docstring""" UpperCAmelCase_ = self.model(**_snake_case) return model_outputs def lowerCamelCase ( self : str , _snake_case : Optional[Any] , _snake_case : List[str]=5): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase_ = model_outputs.logits.sigmoid()[0] UpperCAmelCase_ , UpperCAmelCase_ = probs.topk(_snake_case) else: raise ValueError(F"""Unsupported framework: {self.framework}""") UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case)]
7
0
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Optional[int] =ReformerTokenizer __lowerCamelCase : Optional[Any] =ReformerTokenizerFast __lowerCamelCase : List[str] =True __lowerCamelCase : Optional[Any] =False __lowerCamelCase : int =True def UpperCamelCase_ ( self : int ): '''simple docstring''' super().setUp() __a = ReformerTokenizer(__lowercase , keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = """<s>""" __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__lowercase ) , 1000 ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = """I was born in 92000, and this is falsé.""" __a = tokenizer.tokenize(__lowercase ) __a = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __a = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __a = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(__lowercase ) __a = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] , __lowercase : Dict=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): __a = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase ) # Simple input __a = """This is a simple input""" __a = ["""This is a simple input 1""", """This is a simple input 2"""] __a = ("""This is a simple input""", """This is a pair""") __a = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Simple input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Simple input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" , ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" ) # Pair input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding="""max_length""" , ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = ReformerTokenizer(__lowercase , keep_accents=__lowercase ) __a = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__lowercase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) , [285, 46, 10, 170, 382] , ) __a = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = """Hello World!""" __a = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __a = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(__lowercase , self.big_tokenizer.encode(__lowercase ) ) @require_torch @slow def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence __a = list(self.big_tokenizer.get_vocab().keys() )[:10] __a = """ """.join(__lowercase ) __a = self.big_tokenizer.encode_plus(__lowercase , return_tensors="""pt""" ) __a = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) __a = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __a = encoded_sequence["""input_ids"""].shape __a = ReformerModel(__lowercase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__lowercase ) model(**__lowercase ) @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' # fmt: off __a = {"""input_ids""": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __a = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=__lowercase , sequences=__lowercase , )
302
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : Dict =['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Optional[Dict[str, int]] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Union[int, float] = 1 / 255 , __lowercase : Dict[str, int] = None , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Dict , ): '''simple docstring''' super().__init__(**__lowercase ) __a = size if size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase ) __a = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __a = get_size_dict(__lowercase , default_to_square=__lowercase , param_name="""crop_size""" ) __a = do_resize __a = do_rescale __a = do_normalize __a = do_center_crop __a = crop_size __a = size __a = resample __a = rescale_factor __a = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __a = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : PILImageResampling = PILImageResampling.BILINEAR , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "shortest_edge" in size: __a = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __a = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ): '''simple docstring''' __a = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : np.ndarray , __lowercase : float , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : str ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Any , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : ImageInput , __lowercase : Optional[bool] = None , __lowercase : Dict[str, int] = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : int = None , __lowercase : Optional[bool] = None , __lowercase : Optional[float] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowercase : List[Any] , ): '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = do_normalize if do_normalize is not None else self.do_normalize __a = do_center_crop if do_center_crop is not None else self.do_center_crop __a = crop_size if crop_size is not None else self.crop_size __a = get_size_dict(__lowercase , param_name="""crop_size""" , default_to_square=__lowercase ) __a = resample if resample is not None else self.resample __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = size if size is not None else self.size __a = get_size_dict(__lowercase ) if not is_batched(__lowercase ): __a = [images] if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __a = [to_numpy_array(__lowercase ) for image in images] if do_resize: __a = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __a = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __a = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __a = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
302
1
def UpperCamelCase ( ): '''simple docstring''' lowercase = [] lowercase = 1 while len(lowerCAmelCase__ ) < 1E6: constant.append(str(lowerCAmelCase__ ) ) i += 1 lowercase = ''''''.join(lowerCAmelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
97
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = torch.exp(lowerCAmelCase__ ) lowercase = torch.sum(lowerCAmelCase__ , dim=1 ) # sum of exp(x_i) lowercase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(lowerCAmelCase__ ) - B / A class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = config.output_attentions lowercase = config.output_hidden_states lowercase = nn.ModuleList([BertLayer(A__) for _ in range(config.num_hidden_layers)]) lowercase = nn.ModuleList([BertHighway(A__) for _ in range(config.num_hidden_layers)]) lowercase = [-1 for _ in range(config.num_hidden_layers)] def A__ ( self ,A__): if (type(A__) is float) or (type(A__) is int): for i in range(len(self.early_exit_entropy)): lowercase = x else: lowercase = x def A__ ( self ,A__): lowercase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name]) def A__ ( self ,A__ ,A__=None ,A__=None ,A__=None ,A__=None ,): lowercase = () lowercase = () lowercase = () for i, layer_module in enumerate(self.layer): if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = layer_module( A__ ,A__ ,head_mask[i] ,A__ ,A__) lowercase = layer_outputs[0] if self.output_attentions: lowercase = all_attentions + (layer_outputs[1],) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = current_outputs + (all_hidden_states,) if self.output_attentions: lowercase = current_outputs + (all_attentions,) lowercase = self.highway[i](A__) # logits, pooled_output if not self.training: lowercase = highway_exit[0] lowercase = entropy(A__) lowercase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy lowercase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: lowercase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(A__ ,i + 1) else: lowercase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: lowercase = all_hidden_states + (hidden_states,) lowercase = (hidden_states,) if self.output_hidden_states: lowercase = outputs + (all_hidden_states,) if self.output_attentions: lowercase = outputs + (all_attentions,) lowercase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__): super().__init__(A__) lowercase = config lowercase = BertEmbeddings(A__) lowercase = DeeBertEncoder(A__) lowercase = BertPooler(A__) self.init_weights() def A__ ( self): self.encoder.init_highway_pooler(self.pooler) def A__ ( self): return self.embeddings.word_embeddings def A__ ( self ,A__): lowercase = value def A__ ( self ,A__): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(A__) @add_start_docstrings_to_model_forward(A__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,): if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''') elif input_ids is not None: lowercase = input_ids.size() elif inputs_embeds is not None: lowercase = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''') lowercase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase = torch.ones(A__ ,device=A__) if encoder_attention_mask is None: lowercase = torch.ones(A__ ,device=A__) if token_type_ids is None: lowercase = torch.zeros(A__ ,dtype=torch.long ,device=A__) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase = self.get_extended_attention_mask(A__ ,A__ ,A__) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: lowercase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: lowercase = encoder_attention_mask[:, None, None, :] lowercase = encoder_extended_attention_mask.to( dtype=next(self.parameters()).dtype) # fp16 compatibility lowercase = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase = self.get_head_mask(A__ ,self.config.num_hidden_layers) lowercase = self.embeddings( input_ids=A__ ,position_ids=A__ ,token_type_ids=A__ ,inputs_embeds=A__) lowercase = self.encoder( A__ ,attention_mask=A__ ,head_mask=A__ ,encoder_hidden_states=A__ ,encoder_attention_mask=A__ ,) lowercase = encoder_outputs[0] lowercase = self.pooler(A__) lowercase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__): lowercase = message lowercase = exit_layer # start from 1! class lowercase ( nn.Module ): def __init__( self ,A__): super().__init__() lowercase = BertPooler(A__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,config.num_labels) def A__ ( self ,A__): # Pooler lowercase = encoder_outputs[0] lowercase = self.pooler(A__) # "return" pooler_output # BertModel lowercase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification lowercase = bmodel_output[1] lowercase = self.dropout(A__) lowercase = self.classifier(A__) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , SCREAMING_SNAKE_CASE__ , ) class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__): super().__init__(A__) lowercase = config.num_labels lowercase = config.num_hidden_layers lowercase = DeeBertModel(A__) lowercase = nn.Dropout(config.hidden_dropout_prob) lowercase = nn.Linear(config.hidden_size ,self.config.num_labels) self.init_weights() @add_start_docstrings_to_model_forward(A__) def A__ ( self ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=None ,A__=-1 ,A__=False ,): lowercase = self.num_layers try: lowercase = self.bert( A__ ,attention_mask=A__ ,token_type_ids=A__ ,position_ids=A__ ,head_mask=A__ ,inputs_embeds=A__ ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits lowercase = outputs[1] lowercase = self.dropout(A__) lowercase = self.classifier(A__) lowercase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: lowercase = e.message lowercase = e.exit_layer lowercase = outputs[0] if not self.training: lowercase = entropy(A__) lowercase = [] lowercase = [] if labels is not None: if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 ,self.num_labels) ,labels.view(-1)) # work with highway exits lowercase = [] for highway_exit in outputs[-1]: lowercase = highway_exit[0] if not self.training: highway_logits_all.append(A__) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression lowercase = MSELoss() lowercase = loss_fct(highway_logits.view(-1) ,labels.view(-1)) else: lowercase = CrossEntropyLoss() lowercase = loss_fct(highway_logits.view(-1 ,self.num_labels) ,labels.view(-1)) highway_losses.append(A__) if train_highway: lowercase = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: lowercase = (loss,) + outputs if not self.training: lowercase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: lowercase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
97
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 42 class UpperCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_): @register_to_config def __init__( self , lowercase = 3_2 , lowercase = 6_4 , lowercase = 2_0 , lowercase = 7_6_8 , lowercase=7_7 , lowercase=4 , lowercase = 0.0 , lowercase = "silu" , lowercase = None , lowercase = None , lowercase = "linear" , lowercase = "prd" , lowercase = None , lowercase = None , lowercase = None , ) -> Any: super().__init__() __UpperCamelCase = num_attention_heads __UpperCamelCase = attention_head_dim __UpperCamelCase = num_attention_heads * attention_head_dim __UpperCamelCase = additional_embeddings __UpperCamelCase = time_embed_dim or inner_dim __UpperCamelCase = embedding_proj_dim or embedding_dim __UpperCamelCase = clip_embed_dim or embedding_dim __UpperCamelCase = Timesteps(lowercase , lowercase , 0 ) __UpperCamelCase = TimestepEmbedding(lowercase , lowercase , out_dim=lowercase , act_fn=lowercase ) __UpperCamelCase = nn.Linear(lowercase , lowercase ) if embedding_proj_norm_type is None: __UpperCamelCase = None elif embedding_proj_norm_type == "layer": __UpperCamelCase = nn.LayerNorm(lowercase ) else: raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" ) __UpperCamelCase = nn.Linear(lowercase , lowercase ) if encoder_hid_proj_type is None: __UpperCamelCase = None elif encoder_hid_proj_type == "linear": __UpperCamelCase = nn.Linear(lowercase , lowercase ) else: raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowercase ) ) if added_emb_type == "prd": __UpperCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowercase ) ) elif added_emb_type is None: __UpperCamelCase = None else: raise ValueError( f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) __UpperCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowercase , lowercase , lowercase , dropout=lowercase , activation_fn="""gelu""" , attention_bias=lowercase , ) for d in range(lowercase ) ] ) if norm_in_type == "layer": __UpperCamelCase = nn.LayerNorm(lowercase ) elif norm_in_type is None: __UpperCamelCase = None else: raise ValueError(f"Unsupported norm_in_type: {norm_in_type}." ) __UpperCamelCase = nn.LayerNorm(lowercase ) __UpperCamelCase = nn.Linear(lowercase , lowercase ) __UpperCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCamelCase = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , lowercase , persistent=lowercase ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , lowercase ) ) __UpperCamelCase = nn.Parameter(torch.zeros(1 , lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCamelCase ( self ) -> Dict[str, AttentionProcessor]: __UpperCamelCase = {} def fn_recursive_add_processors(lowercase , lowercase , lowercase ): if hasattr(lowercase , """set_processor""" ): __UpperCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , lowercase , lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowercase , lowercase , lowercase ) return processors def __lowerCamelCase ( self , lowercase ) -> Any: __UpperCamelCase = len(self.attn_processors.keys() ) if isinstance(lowercase , lowercase ) and len(lowercase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(lowercase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(lowercase , lowercase , lowercase ): if hasattr(lowercase , """set_processor""" ): if not isinstance(lowercase , lowercase ): module.set_processor(lowercase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , lowercase , lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(lowercase , lowercase , lowercase ) def __lowerCamelCase ( self ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def __lowerCamelCase ( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = None , lowercase = True , ) -> List[str]: __UpperCamelCase = hidden_states.shape[0] __UpperCamelCase = timestep if not torch.is_tensor(lowercase ): __UpperCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowercase ) and len(timesteps.shape ) == 0: __UpperCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCamelCase = timesteps * torch.ones(lowercase , dtype=timesteps.dtype , device=timesteps.device ) __UpperCamelCase = self.time_proj(lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCamelCase = timesteps_projected.to(dtype=self.dtype ) __UpperCamelCase = self.time_embedding(lowercase ) if self.embedding_proj_norm is not None: __UpperCamelCase = self.embedding_proj_norm(lowercase ) __UpperCamelCase = self.embedding_proj(lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCamelCase = self.encoder_hidden_states_proj(lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) __UpperCamelCase = self.proj_in(lowercase ) __UpperCamelCase = self.positional_embedding.to(hidden_states.dtype ) __UpperCamelCase = [] __UpperCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCamelCase = hidden_states[:, None, :] __UpperCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowercase , -1 , -1 ) additional_embeds.append(lowercase ) __UpperCamelCase = torch.cat( lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCamelCase = F.pad( lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __UpperCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCamelCase = F.pad(lowercase , (0, self.additional_embeddings) , value=0.0 ) __UpperCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCamelCase = self.norm_in(lowercase ) for block in self.transformer_blocks: __UpperCamelCase = block(lowercase , attention_mask=lowercase ) __UpperCamelCase = self.norm_out(lowercase ) if self.prd_embedding is not None: __UpperCamelCase = hidden_states[:, -1] else: __UpperCamelCase = hidden_states[:, additional_embeddings_len:] __UpperCamelCase = self.proj_to_clip_embeddings(lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowercase ) def __lowerCamelCase ( self , lowercase ) -> List[str]: __UpperCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
349
'''simple docstring''' import pytest a__ : List[str] = '__dummy_dataset1__' a__ : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _lowercase ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = dataset_loading_script_name __UpperCamelCase = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=__A ) __UpperCamelCase = script_dir / f"{script_name}.py" with open(__A ,"""w""" ) as f: f.write(__A ) return str(__A )
349
1
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ = set() return any( node not in visited and depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for node in graph ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: visited.add(_SCREAMING_SNAKE_CASE ) rec_stk.add(_SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
357
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase ) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) _UpperCamelCase : ClassVar[Features] = Features({} ) _UpperCamelCase : str = "text" @property def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Dict[str, str]: """simple docstring""" return {self.text_column: "text"}
269
0
"""simple docstring""" UpperCAmelCase_ : Any = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase_ : Union[str, Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase_ : Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
91
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase_ , '''hidden_sizes''')) self.parent.assertTrue(hasattr(lowercase_ , '''num_attention_heads''')) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : str , lowercase_ : Union[str, Any] , lowercase_ : List[Any]=13 , lowercase_ : Dict=64 , lowercase_ : Dict=3 , lowercase_ : Optional[Any]=3 , lowercase_ : List[Any]=2 , lowercase_ : Any=1 , lowercase_ : List[Any]=16 , lowercase_ : int=[128, 256, 384] , lowercase_ : str=[4, 6, 8] , lowercase_ : Optional[Any]=[2, 3, 4] , lowercase_ : Union[str, Any]=[16, 16, 16] , lowercase_ : Optional[Any]=0 , lowercase_ : Optional[int]=[2, 2, 2] , lowercase_ : Any=[2, 2, 2] , lowercase_ : List[str]=0.02 , lowercase_ : Any=True , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[int]=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = image_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : List[Any] = kernel_size SCREAMING_SNAKE_CASE_ : Optional[Any] = stride SCREAMING_SNAKE_CASE_ : List[str] = padding SCREAMING_SNAKE_CASE_ : int = hidden_sizes SCREAMING_SNAKE_CASE_ : Tuple = num_attention_heads SCREAMING_SNAKE_CASE_ : int = depths SCREAMING_SNAKE_CASE_ : Optional[Any] = key_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = drop_path_rate SCREAMING_SNAKE_CASE_ : Tuple = patch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_ratio SCREAMING_SNAKE_CASE_ : str = mlp_ratio SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = LevitModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model(lowercase_) SCREAMING_SNAKE_CASE_ : Any = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1) SCREAMING_SNAKE_CASE_ : Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LevitModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''') def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''') def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Dict = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' def check_hidden_states_output(lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : str): SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Tuple = model(**self._prepare_for_class(lowercase_ , lowercase_)) SCREAMING_SNAKE_CASE_ : str = outputs.hidden_states SCREAMING_SNAKE_CASE_ : Optional[int] = len(self.model_tester.depths) + 1 self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = (self.model_tester.image_size, self.model_tester.image_size) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size[0], image_size[1] for _ in range(4): SCREAMING_SNAKE_CASE_ : Optional[Any] = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) SCREAMING_SNAKE_CASE_ : Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : Tuple = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Tuple=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Optional[Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue SCREAMING_SNAKE_CASE_ : List[str] = model_class(lowercase_) model.gradient_checkpointing_enable() model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Dict = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(**lowercase_).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}'): SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''title'''] SCREAMING_SNAKE_CASE_ : Optional[int] = problem_type['''num_labels'''] SCREAMING_SNAKE_CASE_ : str = model_class(lowercase_) model.to(lowercase_) model.train() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_) if problem_type["num_labels"] > 1: SCREAMING_SNAKE_CASE_ : str = inputs['''labels'''].unsqueeze(1).repeat(1 , problem_type['''num_labels''']) SCREAMING_SNAKE_CASE_ : Any = inputs['''labels'''].to(problem_type['''dtype''']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_) as warning_list: SCREAMING_SNAKE_CASE_ : int = model(**lowercase_).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}') loss.backward() @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[Any] = LevitModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _A () -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE_ : str = prepare_img() SCREAMING_SNAKE_CASE_ : List[Any] = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Any = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Tuple = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([1.04_48, -0.37_45, -1.83_17]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4))
91
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class A__ : """simple docstring""" def __init__( self , lowercase) -> Tuple: '''simple docstring''' a__ : Optional[int] = data a__ : Optional[int] = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def __lowercase ( lowercase , lowercase) -> List[str]: '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] = b'\x80' + b'\x00' * (63 - (len(self.data) + 8) % 64) a__ : Union[str, Any] = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def __lowercase ( self) -> List[Any]: '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def __lowercase ( self , lowercase) -> Optional[Any]: '''simple docstring''' a__ : List[str] = list(struct.unpack('>16L' , lowercase)) + [0] * 64 for i in range(16 , 80): a__ : List[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def __lowercase ( self) -> int: '''simple docstring''' a__ : int = self.padding() a__ : Union[str, Any] = self.split_blocks() for block in self.blocks: a__ : int = self.expand_block(lowercase) a__ : List[str] = self.h for i in range(0 , 80): if 0 <= i < 20: a__ : Optional[int] = (b & c) | ((~b) & d) a__ : Optional[int] = 0x5a_827_999 elif 20 <= i < 40: a__ : List[Any] = b ^ c ^ d a__ : List[Any] = 0x6e_d9e_ba1 elif 40 <= i < 60: a__ : List[str] = (b & c) | (b & d) | (c & d) a__ : int = 0x8f_1bb_cdc elif 60 <= i < 80: a__ : Any = b ^ c ^ d a__ : int = 0xca_62c_1d6 a__ : List[Any] = ( self.rotate(lowercase , 5) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(lowercase , 30), c, d, ) a__ : Optional[Any] = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h) def A_ ( ) -> Optional[Any]: a__ : Tuple = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def A_ ( ) -> int: a__ : str = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) a__ : Optional[int] = parser.parse_args() a__ : int = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: a__ : Dict = f.read() else: a__ : Union[str, Any] = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
363
from __future__ import annotations from collections.abc import Callable def A_ ( A__ , A__ , A__ , A__ = 100 , ) -> float: a__ : Dict = x_start a__ : Any = fnc(A__ ) a__ : Optional[int] = 0.0 for _ in range(A__ ): # Approximates small segments of curve as linear and solve # for trapezoidal area a__ : Union[str, Any] = (x_end - x_start) / steps + xa a__ : str = fnc(A__ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step a__ : Optional[Any] = xa a__ : Optional[int] = fxa return area if __name__ == "__main__": def A_ ( A__ ) -> List[str]: return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") lowercase : Union[str, Any] = 1_0 while i <= 1_0_0_0_0_0: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
225
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Optional[int] = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _lowerCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
300
def __snake_case ( _lowerCAmelCase : list ) -> list: if len(_lowerCAmelCase ) <= 1: return [tuple(_lowerCAmelCase )] A_ : Tuple = [] def generate(_lowerCAmelCase : int , _lowerCAmelCase : list ): A_ : List[str] = [0] * n res.append(tuple(_lowerCAmelCase ) ) A_ : int = 0 while i < n: if c[i] < i: if i % 2 == 0: A_ , A_ : str = arr[i], arr[0] else: A_ , A_ : List[str] = arr[i], arr[c[i]] res.append(tuple(_lowerCAmelCase ) ) c[i] += 1 A_ : Tuple = 0 else: A_ : Dict = 0 i += 1 generate(len(_lowerCAmelCase ) , _lowerCAmelCase ) return res if __name__ == "__main__": _lowerCAmelCase : str = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : str = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
300
1
class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None ): """simple docstring""" lowerCAmelCase__ = data lowerCAmelCase__ = previous lowerCAmelCase__ = next_node def __str__( self ): """simple docstring""" return F"{self.data}" def UpperCamelCase__ ( self ): """simple docstring""" return self.data def UpperCamelCase__ ( self ): """simple docstring""" return self.next def UpperCamelCase__ ( self ): """simple docstring""" return self.previous class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = head def __iter__( self ): """simple docstring""" return self def UpperCamelCase__ ( self ): """simple docstring""" if not self.current: raise StopIteration else: lowerCAmelCase__ = self.current.get_data() lowerCAmelCase__ = self.current.get_next() return value class __SCREAMING_SNAKE_CASE : def __init__( self ): """simple docstring""" lowerCAmelCase__ = None # First node in list lowerCAmelCase__ = None # Last node in list def __str__( self ): """simple docstring""" lowerCAmelCase__ = self.head lowerCAmelCase__ = [] while current is not None: nodes.append(current.get_data() ) lowerCAmelCase__ = current.get_next() return " ".join(str(_UpperCamelCase ) for node in nodes ) def __contains__( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.head while current: if current.get_data() == value: return True lowerCAmelCase__ = current.get_next() return False def __iter__( self ): """simple docstring""" return LinkedListIterator(self.head ) def UpperCamelCase__ ( self ): """simple docstring""" if self.head: return self.head.get_data() return None def UpperCamelCase__ ( self ): """simple docstring""" if self.tail: return self.tail.get_data() return None def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if self.head is None: lowerCAmelCase__ = node lowerCAmelCase__ = node else: self.insert_before_node(self.head , _UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if self.head is None: self.set_head(_UpperCamelCase ) else: self.insert_after_node(self.tail , _UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = Node(_UpperCamelCase ) if self.head is None: self.set_head(_UpperCamelCase ) else: self.set_tail(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = node lowerCAmelCase__ = node.previous if node.get_previous() is None: lowerCAmelCase__ = node_to_insert else: lowerCAmelCase__ = node_to_insert lowerCAmelCase__ = node_to_insert def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = node lowerCAmelCase__ = node.next if node.get_next() is None: lowerCAmelCase__ = node_to_insert else: lowerCAmelCase__ = node_to_insert lowerCAmelCase__ = node_to_insert def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = 1 lowerCAmelCase__ = Node(_UpperCamelCase ) lowerCAmelCase__ = self.head while node: if current_position == position: self.insert_before_node(_UpperCamelCase , _UpperCamelCase ) return current_position += 1 lowerCAmelCase__ = node.next self.insert_after_node(self.tail , _UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self.head while node: if node.get_data() == item: return node lowerCAmelCase__ = node.get_next() raise Exception('Node not found' ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if (node := self.get_node(_UpperCamelCase )) is not None: if node == self.head: lowerCAmelCase__ = self.head.get_next() if node == self.tail: lowerCAmelCase__ = self.tail.get_previous() self.remove_node_pointers(_UpperCamelCase ) @staticmethod def UpperCamelCase__ ( _UpperCamelCase ): """simple docstring""" if node.get_next(): lowerCAmelCase__ = node.previous if node.get_previous(): lowerCAmelCase__ = node.next lowerCAmelCase__ = None lowerCAmelCase__ = None def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def _UpperCamelCase ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
353
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __snake_case : Optional[Any] = TypeVar("""KEY""") __snake_case : str = TypeVar("""VAL""") @dataclass(frozen=__lowercase , slots=__lowercase) class __SCREAMING_SNAKE_CASE ( Generic[KEY, VAL]): _SCREAMING_SNAKE_CASE : KEY _SCREAMING_SNAKE_CASE : VAL class __SCREAMING_SNAKE_CASE ( _Item): def __init__( self ): """simple docstring""" super().__init__(_UpperCamelCase , _UpperCamelCase ) def __bool__( self ): """simple docstring""" return False __snake_case : int = _DeletedItem() class __SCREAMING_SNAKE_CASE ( MutableMapping[KEY, VAL]): def __init__( self , _UpperCamelCase = 8 , _UpperCamelCase = 0.75 ): """simple docstring""" lowerCAmelCase__ = initial_block_size lowerCAmelCase__ = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCAmelCase__ = capacity_factor lowerCAmelCase__ = 0 def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return hash(_UpperCamelCase ) % len(self._buckets ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" return (ind + 1) % len(self._buckets ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._buckets[ind] if not stored: lowerCAmelCase__ = _Item(_UpperCamelCase , _UpperCamelCase ) self._len += 1 return True elif stored.key == key: lowerCAmelCase__ = _Item(_UpperCamelCase , _UpperCamelCase ) return True else: return False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = len(self._buckets ) * self._capacity_factor return len(self ) >= int(_UpperCamelCase ) def UpperCamelCase__ ( self ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False lowerCAmelCase__ = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._buckets lowerCAmelCase__ = [None] * new_size lowerCAmelCase__ = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = self._get_bucket_index(_UpperCamelCase ) for _ in range(len(self._buckets ) ): yield ind lowerCAmelCase__ = self._get_next_ind(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): if self._try_set(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): break def __setitem__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(_UpperCamelCase , _UpperCamelCase ) def __delitem__( self , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): lowerCAmelCase__ = self._buckets[ind] if item is None: raise KeyError(_UpperCamelCase ) if item is _deleted: continue if item.key == key: lowerCAmelCase__ = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , _UpperCamelCase ): """simple docstring""" for ind in self._iterate_buckets(_UpperCamelCase ): lowerCAmelCase__ = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(_UpperCamelCase ) def __len__( self ): """simple docstring""" return self._len def __iter__( self ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self ): """simple docstring""" lowerCAmelCase__ = ' ,'.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
122
0
'''simple docstring''' def A__ ( UpperCAmelCase_ ): _UpperCamelCase : str = [0] * len(UpperCAmelCase_ ) _UpperCamelCase : Any = [] _UpperCamelCase : Optional[int] = [] _UpperCamelCase : List[str] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCAmelCase_ ) ): if indegree[i] == 0: queue.append(UpperCAmelCase_ ) while queue: _UpperCamelCase : Any = queue.pop(0 ) cnt += 1 topo.append(UpperCAmelCase_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(UpperCAmelCase_ ) if cnt != len(UpperCAmelCase_ ): print('Cycle exists' ) else: print(UpperCAmelCase_ ) # Adjacency List of Graph snake_case_ : List[str] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
83
'''simple docstring''' import os def snake_case_ (): UpperCAmelCase = os.path.join(os.path.dirname(_a ) , '''num.txt''' ) with open(_a ) as file_hand: return str(sum(int(_a ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
34
0
from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase__ ( a__): UpperCamelCase_ = """Salesforce/blip-image-captioning-base""" UpperCamelCase_ = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) UpperCamelCase_ = """image_captioner""" UpperCamelCase_ = AutoModelForVisionaSeq UpperCamelCase_ = ["""image"""] UpperCamelCase_ = ["""text"""] def __init__( self : Any , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Tuple ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def __A ( self : Union[str, Any] , UpperCamelCase__ : "Image" ): '''simple docstring''' return self.pre_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) def __A ( self : Optional[int] , UpperCamelCase__ : int ): '''simple docstring''' return self.model.generate(**UpperCamelCase__ ) def __A ( self : Optional[int] , UpperCamelCase__ : Dict ): '''simple docstring''' return self.pre_processor.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ )[0].strip()
370
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __UpperCamelCase : Union[str, Any] = datasets.load_iris() __UpperCamelCase : Any = np.array(data['data']) __UpperCamelCase : Dict = np.array(data['target']) __UpperCamelCase : Union[str, Any] = data['target_names'] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[Any] = train_test_split(X, y) def A ( _lowercase , _lowercase ): return np.linalg.norm(np.array(_lowercase ) - np.array(_lowercase ) ) def A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=5 ): SCREAMING_SNAKE_CASE : int = zip(_lowercase , _lowercase ) # List of distances of all points from the point to be classified SCREAMING_SNAKE_CASE : str = [] for data_point in data: SCREAMING_SNAKE_CASE : Optional[Any] = euclidean_distance(data_point[0] , _lowercase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. SCREAMING_SNAKE_CASE : Optional[int] = [i[1] for i in sorted(_lowercase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified SCREAMING_SNAKE_CASE : Optional[int] = Counter(_lowercase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
258
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __lowerCamelCase : int = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __lowerCamelCase : str = logging.getLogger() def A_ ( ) -> List[str]: UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase : Union[str, Any] = parser.parse_args() return args.f def A_ ( _lowerCAmelCase , _lowerCAmelCase="eval" ) -> Optional[int]: UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , F"""{split}_results.json""" ) if os.path.exists(_lowerCAmelCase ): with open(_lowerCAmelCase , "r" ) as f: return json.load(_lowerCAmelCase ) raise ValueError(F"""can't find {path}""" ) __lowerCamelCase : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.get_auto_remove_tmp_dir() UpperCamelCase : Optional[Any] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A_ , "argv" , A_ ): run_flax_glue.main() UpperCamelCase : int = get_results(A_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.get_auto_remove_tmp_dir() UpperCamelCase : Optional[Any] = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , "argv" , A_ ): run_clm_flax.main() UpperCamelCase : Optional[Any] = get_results(A_ ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.get_auto_remove_tmp_dir() UpperCamelCase : Optional[Any] = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A_ , "argv" , A_ ): run_summarization_flax.main() UpperCamelCase : Optional[Any] = get_results(A_ , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.get_auto_remove_tmp_dir() UpperCamelCase : Tuple = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A_ , "argv" , A_ ): run_mlm_flax.main() UpperCamelCase : Dict = get_results(A_ ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() UpperCamelCase : Any = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A_ , "argv" , A_ ): run_ta_mlm_flax.main() UpperCamelCase : Tuple = get_results(A_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = 7 if get_gpu_count() > 1 else 2 UpperCamelCase : int = self.get_auto_remove_tmp_dir() UpperCamelCase : Dict = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A_ , "argv" , A_ ): run_flax_ner.main() UpperCamelCase : Tuple = get_results(A_ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.get_auto_remove_tmp_dir() UpperCamelCase : str = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A_ , "argv" , A_ ): run_qa.main() UpperCamelCase : Optional[int] = get_results(A_ ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
52
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : str = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = 'roberta' def __init__( self , A_=5_0265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Dict = hidden_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : Tuple = max_position_embeddings UpperCamelCase : Any = type_vocab_size UpperCamelCase : int = initializer_range UpperCamelCase : str = layer_norm_eps UpperCamelCase : Dict = position_embedding_type UpperCamelCase : Any = use_cache UpperCamelCase : Union[str, Any] = classifier_dropout class A__ ( __snake_case ): @property def __UpperCamelCase( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase : Optional[int] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase : Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
52
1
from typing import Dict, Optional import numpy as np import datasets lowerCamelCase = ''' IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. ''' lowerCamelCase = ''' Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric("mean_iou") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} ''' lowerCamelCase = '''\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }''' def lowerCamelCase_ ( _a , _a , _a , _a , _a = None , _a = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): lowerCAmelCase__ : List[Any] = new_id # turn into Numpy arrays lowerCAmelCase__ : Any = np.array(_a ) lowerCAmelCase__ : List[Any] = np.array(_a ) if reduce_labels: lowerCAmelCase__ : str = 255 lowerCAmelCase__ : int = label - 1 lowerCAmelCase__ : List[str] = 255 lowerCAmelCase__ : Union[str, Any] = label != ignore_index lowerCAmelCase__ : Dict = np.not_equal(_a , _a ) lowerCAmelCase__ : str = pred_label[mask] lowerCAmelCase__ : List[Any] = np.array(_a )[mask] lowerCAmelCase__ : Dict = pred_label[pred_label == label] lowerCAmelCase__ : List[Any] = np.histogram(_a , bins=_a , range=(0, num_labels - 1) )[0] lowerCAmelCase__ : Optional[Any] = np.histogram(_a , bins=_a , range=(0, num_labels - 1) )[0] lowerCAmelCase__ : Optional[Any] = np.histogram(_a , bins=_a , range=(0, num_labels - 1) )[0] lowerCAmelCase__ : Union[str, Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowerCamelCase_ ( _a , _a , _a , _a , _a = None , _a = False , ): """simple docstring""" lowerCAmelCase__ : Any = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase__ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase__ : List[str] = np.zeros((num_labels,) , dtype=np.floataa ) lowerCAmelCase__ : Dict = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_a , _a ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = intersect_and_union( _a , _a , _a , _a , _a , _a ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowerCamelCase_ ( _a , _a , _a , _a , _a = None , _a = None , _a = False , ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : str = total_intersect_and_union( _a , _a , _a , _a , _a , _a ) # compute metrics lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : Optional[Any] = total_area_intersect.sum() / total_area_label.sum() lowerCAmelCase__ : Tuple = total_area_intersect / total_area_union lowerCAmelCase__ : Optional[Any] = total_area_intersect / total_area_label lowerCAmelCase__ : Dict = np.nanmean(_a ) lowerCAmelCase__ : int = np.nanmean(_a ) lowerCAmelCase__ : Tuple = all_acc lowerCAmelCase__ : str = iou lowerCAmelCase__ : str = acc if nan_to_num is not None: lowerCAmelCase__ : Tuple = {metric: np.nan_to_num(_a , nan=_a ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a ( datasets.Metric): def UpperCAmelCase__( self : List[str] )-> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : bool , _SCREAMING_SNAKE_CASE : Optional[int] = None , _SCREAMING_SNAKE_CASE : Optional[Dict[int, int]] = None , _SCREAMING_SNAKE_CASE : bool = False , )-> int: lowerCAmelCase__ : Union[str, Any] = mean_iou( results=_SCREAMING_SNAKE_CASE , gt_seg_maps=_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , ignore_index=_SCREAMING_SNAKE_CASE , nan_to_num=_SCREAMING_SNAKE_CASE , label_map=_SCREAMING_SNAKE_CASE , reduce_labels=_SCREAMING_SNAKE_CASE , ) return iou_result
211
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ : List[str] = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1_024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1_024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } lowerCAmelCase__ : int = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ : List[Any] = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=_a , output_all_encodings=_a , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , _a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ : Union[str, Any] = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ : Optional[Any] = os.path.join(get_home_dir() , '''models''' ) lowerCAmelCase__ : Optional[int] = _load_vocab(_a , _a , _a , cls=_a ) lowerCAmelCase__ : Any = nlp.model.BERTModel( _a , len(_a ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=_a , use_token_type_embed=_a , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=_a , use_decoder=_a , ) original_bort.load_parameters(_a , cast_dtype=_a , ignore_extra=_a ) lowerCAmelCase__ : Tuple = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ : int = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(_a ), } lowerCAmelCase__ : str = BertConfig.from_dict(_a ) lowerCAmelCase__ : Optional[Any] = BertForMaskedLM(_a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_a ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_a , _a ): lowerCAmelCase__ : Dict = hf_param.shape lowerCAmelCase__ : List[str] = to_torch(params[gluon_param] ) lowerCAmelCase__ : Any = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param lowerCAmelCase__ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowerCAmelCase__ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowerCAmelCase__ : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowerCAmelCase__ : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ : BertSelfAttention = layer.attention.self lowerCAmelCase__ : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) lowerCAmelCase__ : str = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) lowerCAmelCase__ : int = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) lowerCAmelCase__ : Optional[Any] = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) lowerCAmelCase__ : Any = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) lowerCAmelCase__ : Any = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output lowerCAmelCase__ : BertSelfOutput = layer.attention.output lowerCAmelCase__ : Dict = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) lowerCAmelCase__ : Optional[int] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) lowerCAmelCase__ : int = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) lowerCAmelCase__ : List[str] = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate lowerCAmelCase__ : BertIntermediate = layer.intermediate lowerCAmelCase__ : Union[str, Any] = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) lowerCAmelCase__ : Union[str, Any] = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output lowerCAmelCase__ : BertOutput = layer.output lowerCAmelCase__ : Optional[int] = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) lowerCAmelCase__ : int = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) lowerCAmelCase__ : Optional[int] = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) lowerCAmelCase__ : List[str] = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ : Dict = RobertaTokenizer.from_pretrained('''roberta-base''' ) lowerCAmelCase__ : List[str] = tokenizer.encode_plus(_a )['''input_ids'''] # Get gluon output lowerCAmelCase__ : str = mx.nd.array([input_ids] ) lowerCAmelCase__ : List[str] = original_bort(inputs=_a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_a ) lowerCAmelCase__ : Optional[int] = BertModel.from_pretrained(_a ) hf_bort_model.eval() lowerCAmelCase__ : Tuple = tokenizer.encode_plus(_a , return_tensors='''pt''' ) lowerCAmelCase__ : Optional[Any] = hf_bort_model(**_a )[0] lowerCAmelCase__ : str = output_gluon[0].asnumpy() lowerCAmelCase__ : Optional[Any] = output_hf[0].detach().numpy() lowerCAmelCase__ : str = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ : int = np.allclose(_a , _a , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , _a ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
211
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument UpperCAmelCase_ : str = { """/attention/""": """/0/SelfAttention/""", """/self_attention/""": """/0/SelfAttention/""", """/encoder_decoder_attention/""": """/1/EncDecAttention/""", """value""": """v""", """query""": """q""", """key""": """k""", """out""": """o""", """pre_self_attention_layer_norm""": """0/layer_norm""", """pre_cross_attention_layer_norm""": """1/layer_norm""", """pre_attention_layer_norm""": """0/layer_norm""", # previously 1, but seems wrong """token_embedder""": """shared""", """encoder_norm""": """final_layer_norm""", """decoder_norm""": """final_layer_norm""", """relpos_bias/rel_embedding""": """block/0/layer/0/SelfAttention/relative_attention_bias/weight""", """router/router_weights/w/""": """router/classifier/""", """roer/roer_weights/w/""": """router/classifier/""", """logits_dense""": """lm_head""", } def _A (__a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE_ : Tuple = R'''.*/layers_(\d+)''' SCREAMING_SNAKE_CASE_ : Optional[Any] = key if re.match(__a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = R'''(encoder|decoder)\/''' if re.match(__a , __a ): SCREAMING_SNAKE_CASE_ : Optional[Any] = re.match(__a , __a ).groups() if groups[0] == "encoder": SCREAMING_SNAKE_CASE_ : Optional[int] = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , __a ) elif groups[0] == "decoder": SCREAMING_SNAKE_CASE_ : Optional[Any] = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , __a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: SCREAMING_SNAKE_CASE_ : Optional[int] = new_key.replace(__a , __a ) print(f'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = s_dict.pop(__a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: SCREAMING_SNAKE_CASE_ : List[Any] = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: SCREAMING_SNAKE_CASE_ : Any = s_dict[key].shape[0] SCREAMING_SNAKE_CASE_ : Any = s_dict[key] for idx in range(__a ): SCREAMING_SNAKE_CASE_ : str = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(__a ) return s_dict UpperCAmelCase_ : Tuple = { """NUM_ENCODER_LAYERS""": """num_layers""", """NUM_DECODER_LAYERS""": """num_decoder_layers""", """NUM_HEADS""": """num_heads""", """HEAD_DIM""": """d_kv""", """EMBED_DIM""": """d_model""", """MLP_DIM""": """d_ff""", """NUM_SELECTED_EXPERTS""": """num_selected_experts""", """NUM_ENCODER_SPARSE_LAYERS""": """num_sparse_encoder_layers""", """NUM_DECODER_SPARSE_LAYERS""": """num_sparse_decoder_layers""", """dense.MlpBlock.activations""": """feed_forward_proj""", } def _A (__a , __a ) -> List[Any]: """simple docstring""" import regex as re with open(__a , '''r''' ) as f: SCREAMING_SNAKE_CASE_ : List[Any] = f.read() SCREAMING_SNAKE_CASE_ : Any = re.findall(R'''(.*) = ([0-9.]*)''' , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": SCREAMING_SNAKE_CASE_ : Union[str, Any] = float(__a ) if '''.''' in value else int(__a ) SCREAMING_SNAKE_CASE_ : Dict = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , __a )[0] SCREAMING_SNAKE_CASE_ : Optional[int] = str(activation[1] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = num_experts SCREAMING_SNAKE_CASE_ : List[str] = SwitchTransformersConfig(**__a ) return config def _A (__a , __a , __a=None , __a="./" , __a=8 ) -> Union[str, Any]: """simple docstring""" print(f'Loading flax weights from : {flax_checkpoint_path}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = checkpoints.load_tax_checkpoint(__a ) if gin_file is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = convert_gin_to_config(__a , __a ) else: SCREAMING_SNAKE_CASE_ : int = SwitchTransformersConfig.from_pretrained(__a ) SCREAMING_SNAKE_CASE_ : Dict = SwitchTransformersForConditionalGeneration(__a ) SCREAMING_SNAKE_CASE_ : Dict = flax_params['''target'''] SCREAMING_SNAKE_CASE_ : Any = flatten_dict(__a , sep='''/''' ) SCREAMING_SNAKE_CASE_ : List[Any] = rename_keys(__a ) SCREAMING_SNAKE_CASE_ : int = unflatten_dict(__a , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__a , __a ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(__a ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the""" """ model architecture. If not provided, a `gin_file` has to be provided.""" ), ) parser.add_argument( """--gin_file""", default=None, type=str, required=False, help="""Path to the gin config file. If not provided, a `config_file` has to be passed """, ) parser.add_argument( """--config_name""", default=None, type=str, required=False, help="""Config name of SwitchTransformers model.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output pytorch model.""" ) parser.add_argument("""--num_experts""", default=8, type=int, required=False, help="""Number of experts""") UpperCAmelCase_ : Any = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
91
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : List[Any] , lowercase_ : List[str]=13 , lowercase_ : int=7 , lowercase_ : Any=True , lowercase_ : str=True , lowercase_ : List[Any]=True , lowercase_ : List[Any]=True , lowercase_ : Dict=99 , lowercase_ : Union[str, Any]=24 , lowercase_ : int=2 , lowercase_ : List[str]=6 , lowercase_ : Any=37 , lowercase_ : Dict="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : Union[str, Any]=512 , lowercase_ : List[str]=16 , lowercase_ : Any=2 , lowercase_ : Any=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Optional[int]=None , lowercase_ : str=1000 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = parent SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = seq_length SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE_ : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : int = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE_ : Tuple = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : Optional[Any] = num_labels SCREAMING_SNAKE_CASE_ : Tuple = scope SCREAMING_SNAKE_CASE_ : Optional[int] = range_bbox def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 3] SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 1] SCREAMING_SNAKE_CASE_ : str = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE_ : List[str] = bbox[i, j, 2] SCREAMING_SNAKE_CASE_ : Optional[int] = bbox[i, j, 0] SCREAMING_SNAKE_CASE_ : List[str] = t SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : Any = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = LiltModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , bbox=lowercase_ , token_type_ids=lowercase_) SCREAMING_SNAKE_CASE_ : int = model(lowercase_ , bbox=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = LiltForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = LiltForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE_ : str = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str): '''simple docstring''' return True def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = LiltModelTester(self) SCREAMING_SNAKE_CASE_ : Optional[int] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE_ : Dict = type self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[int] = LiltModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_torch @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''').to(lowercase_) SCREAMING_SNAKE_CASE_ : str = torch.tensor([[1, 2]] , device=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(input_ids=lowercase_ , bbox=lowercase_) SCREAMING_SNAKE_CASE_ : str = torch.Size([1, 2, 768]) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=lowercase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowercase_ , atol=1e-3))
91
1
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> str: # Construct model if openai_config_file == "": UpperCamelCase = OpenAIGPTConfig() else: UpperCamelCase = OpenAIGPTConfig.from_json_file(__UpperCamelCase ) UpperCamelCase = OpenAIGPTModel(__UpperCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model UpperCamelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME UpperCamelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __UpperCamelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
357
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> int: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None )-> Dict: UpperCamelCase = tesseract_config if tesseract_config is not None else """""" # apply OCR UpperCamelCase = to_pil_image(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = pil_image.size UpperCamelCase = pytesseract.image_to_data(__UpperCamelCase , lang=__UpperCamelCase , output_type="""dict""" , config=__UpperCamelCase ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates UpperCamelCase = [idx for idx, word in enumerate(__UpperCamelCase ) if not word.strip()] UpperCamelCase = [word for idx, word in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] UpperCamelCase = [coord for idx, coord in enumerate(__UpperCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase = [] for x, y, w, h in zip(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): UpperCamelCase = [x, y, x + w, y + h] actual_boxes.append(__UpperCamelCase ) # finally, normalize the bounding boxes UpperCamelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class a_ ( lowerCamelCase ): lowercase = ["""pixel_values"""] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "" , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = size if size is not None else {"""height""": 224, """width""": 224} UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = apply_ocr UpperCamelCase = ocr_lang UpperCamelCase = tesseract_config def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) UpperCamelCase = (size["""height"""], size["""width"""]) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) UpperCamelCase = [] UpperCamelCase = [] for image in images: UpperCamelCase ,UpperCamelCase = apply_tesseract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) words_batch.append(_SCREAMING_SNAKE_CASE ) boxes_batch.append(_SCREAMING_SNAKE_CASE ) if do_resize: UpperCamelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase = [flip_channel_order(_SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=_SCREAMING_SNAKE_CASE ) if apply_ocr: UpperCamelCase = words_batch UpperCamelCase = boxes_batch return data
183
0
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase=13 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=99 , __lowerCamelCase=64 , __lowerCamelCase=32 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=37 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=16 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ): '''simple docstring''' __A : Optional[Any] = parent __A : List[str] = batch_size __A : str = seq_length __A : Any = is_training __A : Dict = use_input_mask __A : Tuple = use_token_type_ids __A : Any = use_labels __A : Dict = vocab_size __A : Any = hidden_size __A : Dict = embedding_size __A : str = num_hidden_layers __A : Dict = num_attention_heads __A : Dict = intermediate_size __A : Optional[int] = hidden_act __A : int = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : str = type_vocab_size __A : Optional[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : int = num_labels __A : Union[str, Any] = num_choices __A : Optional[int] = scope def UpperCamelCase__( self ): '''simple docstring''' __A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Union[str, Any] = None if self.use_input_mask: __A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __A : str = None if self.use_token_type_ids: __A : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Dict = None __A : int = None __A : str = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : str = ids_tensor([self.batch_size] , self.num_choices ) __A : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Optional[Any] = MegatronBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : List[str] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) __A : int = model(lowercase_ , token_type_ids=lowercase_ ) __A : Optional[Any] = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : List[str] = MegatronBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Tuple = MegatronBertForCausalLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Tuple = MegatronBertForNextSentencePrediction(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : Dict = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = MegatronBertForPreTraining(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : List[str] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , next_sentence_label=lowercase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Any = MegatronBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Tuple = self.num_labels __A : Union[str, Any] = MegatronBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() __A : Tuple = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : int = self.num_labels __A : List[str] = MegatronBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = self.num_choices __A : int = MegatronBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() __A : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Dict = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__( self ): '''simple docstring''' __A : str = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : List[str] = config_and_inputs __A : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase = True # test_resize_embeddings = False _lowerCamelCase = False def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ): '''simple docstring''' __A : str = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): __A : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ ) __A : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = MegatronBertModelTester(self ) __A : List[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def UpperCamelCase__( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__( self ): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowercase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowercase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowercase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowercase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowercase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowercase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowercase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowercase_ ) def __lowercase ( snake_case_ : int ) ->Any: '''simple docstring''' return torch.tensor( SCREAMING_SNAKE_CASE__ ,dtype=torch.long ,device=SCREAMING_SNAKE_CASE__ ,) a_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip('''Model is not available.''' ) def UpperCamelCase__( self ): '''simple docstring''' __A : str = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __A : str = os.path.join(os.environ['''MYDIR'''] , lowercase_ ) __A : Tuple = MegatronBertModel.from_pretrained(lowercase_ ) model.to(lowercase_ ) model.half() __A : List[str] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): __A : str = model(lowercase_ )[0] __A : List[Any] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , lowercase_ ) __A : List[str] = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8] for ii in range(3 ): for jj in range(3 ): __A : Tuple = output[0, ii, jj] __A : Optional[int] = expected[3 * ii + jj] __A : int = '''ii={} jj={} a={} b={}'''.format(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) self.assertTrue(math.isclose(lowercase_ , lowercase_ , rel_tol=lowercase_ , abs_tol=lowercase_ ) , msg=lowercase_ )
179
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = (DPMSolverSinglestepScheduler,) lowerCamelCase = (('num_inference_steps', 25),) def snake_case__ ( self : Tuple,**lowercase_ : Dict )-> Optional[int]: '''simple docstring''' A__ = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**lowercase_ ) return config def snake_case__ ( self : str,lowercase_ : Optional[Any]=0,**lowercase_ : Any )-> List[Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ , A__ = sample, sample for t in range(lowercase_,time_step + scheduler.config.solver_order + 1 ): A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : List[str] )-> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any]=0,**lowercase_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop('num_inference_steps',lowercase_ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) A__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[: new_scheduler.config.solver_order] A__ = scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample A__ = new_scheduler.step(lowercase_,lowercase_,lowercase_,**lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case__ ( self : Optional[Any],lowercase_ : Optional[int]=None,**lowercase_ : int )-> int: '''simple docstring''' if scheduler is None: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**lowercase_ ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample return sample def snake_case__ ( self : Any )-> str: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = 5_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ ) def snake_case__ ( self : int )-> Optional[Any]: '''simple docstring''' A__ = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 A__ = DEISMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverMultistepScheduler.from_config(scheduler.config ) A__ = UniPCMultistepScheduler.from_config(scheduler.config ) A__ = DPMSolverSinglestepScheduler.from_config(scheduler.config ) A__ = self.full_loop(scheduler=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Tuple )-> Any: '''simple docstring''' self.check_over_configs(thresholding=lowercase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowercase_,prediction_type=lowercase_,sample_max_value=lowercase_,algorithm_type='dpmsolver++',solver_order=lowercase_,solver_type=lowercase_,) def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def snake_case__ ( self : Dict )-> List[Any]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) A__ = self.full_loop( solver_order=lowercase_,solver_type=lowercase_,prediction_type=lowercase_,algorithm_type=lowercase_,) assert not torch.isnan(lowercase_ ).any(), "Samples have nan numbers" def snake_case__ ( self : Optional[int] )-> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=lowercase_ ) self.check_over_configs(lower_order_final=lowercase_ ) def snake_case__ ( self : Tuple )-> Optional[int]: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' self.check_over_configs(variance_type=lowercase_ ) self.check_over_configs(variance_type='learned_range' ) def snake_case__ ( self : str )-> Any: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowercase_,time_step=0 ) def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' A__ = self.full_loop() A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def snake_case__ ( self : Any )-> Union[str, Any]: '''simple docstring''' A__ = self.full_loop(use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def snake_case__ ( self : Union[str, Any] )-> Tuple: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction' ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def snake_case__ ( self : Tuple )-> int: '''simple docstring''' A__ = self.full_loop(prediction_type='v_prediction',use_karras_sigmas=lowercase_ ) A__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(thresholding=lowercase_,dynamic_thresholding_ratio=0 ) A__ = scheduler_class(**lowercase_ ) A__ = 1_0 A__ = self.dummy_model() A__ = self.dummy_sample_deter.half() scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(lowercase_,lowercase_ ) A__ = scheduler.step(lowercase_,lowercase_,lowercase_ ).prev_sample assert sample.dtype == torch.floataa
7
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowercase__ ( _UpperCAmelCase=None , _UpperCAmelCase=None ) -> Optional[int]: '''simple docstring''' return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class a__ : _lowerCamelCase = field( metadata={'help': 'The csv file to plot.'}, ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'}, ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'}, ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Disable logarithmic scale when plotting'}, ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={ 'help': 'Whether the csv file has training results or inference results. Defaults to inference results.' }, ) _lowerCamelCase = field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'}, ) _lowerCamelCase = list_field( default=SCREAMING_SNAKE_CASE__, metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} ) def lowercase__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' try: int(_UpperCAmelCase ) return True except ValueError: return False def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' try: float(_UpperCAmelCase ) return True except ValueError: return False class a__ : def __init__( self : Optional[Any], lowerCAmelCase : List[str] ) -> Tuple: lowercase : List[str] = args lowercase : str = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file, newline='' ) as csv_file: lowercase : Any = csv.DictReader(__UpperCAmelCase ) for row in reader: lowercase : Any = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None lowercase : Dict = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None lowercase : int = float(row['result'] ) def lowercase ( self : Optional[Any] ) -> int: lowercase , lowercase : Any = plt.subplots() lowercase : Any = 'Time usage' if self.args.is_time else 'Memory usage' lowercase : Tuple = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): lowercase : Optional[Any] = sorted(set(self.result_dict[model_name]['bsz'] ) ) lowercase : Union[str, Any] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) lowercase : Any = self.result_dict[model_name]['result'] ((lowercase) , (lowercase)) : Dict = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) lowercase : List[Any] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: lowercase : int = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results], dtype=__UpperCAmelCase, ) else: lowercase : Any = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results], dtype=np.floataa, ) ((lowercase) , (lowercase)) : str = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) lowercase : Tuple = np.asarray(__UpperCAmelCase, __UpperCAmelCase )[: len(__UpperCAmelCase )] plt.scatter( __UpperCAmelCase, __UpperCAmelCase, label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__UpperCAmelCase, __UpperCAmelCase, '--' ) title_str += f''' {label_model_name} vs.''' lowercase : str = title_str[:-4] lowercase : Any = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__UpperCAmelCase ) plt.xlabel(__UpperCAmelCase ) plt.ylabel(__UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowercase__ ( ) -> Any: '''simple docstring''' lowercase : Tuple = HfArgumentParser(_UpperCAmelCase ) lowercase : int = parser.parse_args_into_dataclasses()[0] lowercase : Tuple = Plot(args=_UpperCAmelCase ) plot.plot() if __name__ == "__main__": main()
354
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _UpperCamelCase: Optional[int] = logging.get_logger(__name__) _UpperCamelCase: Union[str, Any] = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a__ ( SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = 'gpt_neo' _lowerCamelCase = ['past_key_values'] _lowerCamelCase = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[Any], lowerCAmelCase : int=50257, lowerCAmelCase : Tuple=2048, lowerCAmelCase : int=2048, lowerCAmelCase : Tuple=24, lowerCAmelCase : Optional[Any]=[[["global", "local"], 12]], lowerCAmelCase : Optional[int]=16, lowerCAmelCase : Optional[Any]=None, lowerCAmelCase : Dict=256, lowerCAmelCase : Optional[int]="gelu_new", lowerCAmelCase : Any=0.0, lowerCAmelCase : Dict=0.0, lowerCAmelCase : Optional[Any]=0.0, lowerCAmelCase : Dict=0.1, lowerCAmelCase : List[Any]=1e-5, lowerCAmelCase : Optional[Any]=0.02, lowerCAmelCase : Dict=True, lowerCAmelCase : int=50256, lowerCAmelCase : Optional[Any]=50256, **lowerCAmelCase : Any, ) -> Optional[Any]: lowercase : List[Any] = vocab_size lowercase : Optional[Any] = max_position_embeddings lowercase : Dict = hidden_size lowercase : Optional[Any] = num_layers lowercase : str = num_heads lowercase : Optional[int] = intermediate_size lowercase : List[str] = window_size lowercase : Dict = activation_function lowercase : Dict = resid_dropout lowercase : int = embed_dropout lowercase : Optional[Any] = attention_dropout lowercase : Tuple = classifier_dropout lowercase : Optional[int] = layer_norm_epsilon lowercase : Dict = initializer_range lowercase : Optional[Any] = use_cache lowercase : Union[str, Any] = bos_token_id lowercase : int = eos_token_id lowercase : str = attention_types lowercase : int = self.expand_attention_types_params(lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase, eos_token_id=lowerCAmelCase, **lowerCAmelCase ) @staticmethod def lowercase ( lowerCAmelCase : str ) -> Optional[Any]: lowercase : Dict = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: '''simple docstring''' import torch lowercase : Dict = input.size() lowercase : Optional[int] = len(_UpperCAmelCase ) lowercase : str = shape[dimension] lowercase : Optional[Any] = torch.arange(0 , _UpperCAmelCase , _UpperCAmelCase ) lowercase : List[str] = torch.div(sizedim - size , _UpperCAmelCase , rounding_mode='floor' ) + 1 lowercase : Any = torch.arange(_UpperCAmelCase ) + low_indices[:min_length][:, None] lowercase : List[Any] = [slice(_UpperCAmelCase )] * rank lowercase : int = indices lowercase : Optional[Any] = input[s] lowercase : str = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_UpperCAmelCase ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Any: '''simple docstring''' import torch lowercase : int = torch.arange(1 , _UpperCAmelCase ) lowercase : List[str] = torch.remainder(_UpperCAmelCase , _UpperCAmelCase ) lowercase : Optional[int] = remainders == 0 lowercase : Tuple = candidates[divisor_indices] lowercase : Any = torch.max(_UpperCAmelCase ) return largest_divisor, torch.div(_UpperCAmelCase , _UpperCAmelCase , rounding_mode='floor' ) class a__ ( SCREAMING_SNAKE_CASE__ ): @property def lowercase ( self : int ) -> Mapping[str, Mapping[int, str]]: lowercase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase, direction='inputs' ) lowercase : Dict = {0: 'batch', 1: 'past_sequence + sequence'} else: lowercase : List[str] = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase ( self : int ) -> int: return self._config.num_heads def lowercase ( self : Tuple, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int = -1, lowerCAmelCase : int = -1, lowerCAmelCase : bool = False, lowerCAmelCase : Optional[TensorType] = None, ) -> Mapping[str, Any]: lowercase : Union[str, Any] = super(lowerCAmelCase, self ).generate_dummy_inputs( lowerCAmelCase, batch_size=lowerCAmelCase, seq_length=lowerCAmelCase, is_pair=lowerCAmelCase, framework=lowerCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase : int = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch lowercase , lowercase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase : Tuple = seqlen + 2 lowercase : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase : Any = [ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(self.num_layers ) ] lowercase : Optional[int] = common_inputs['attention_mask'] if self.use_past: lowercase : Optional[int] = ordered_inputs['attention_mask'].dtype lowercase : Dict = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase, lowerCAmelCase, dtype=lowerCAmelCase )], dim=1 ) return ordered_inputs @property def lowercase ( self : int ) -> int: return 13
53
0
"""simple docstring""" def _snake_case ( lowercase__ : List[Any]=2_8_1_2_3 ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :int = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i lowerCAmelCase_ :Dict = set() lowerCAmelCase_ :Union[str, Any] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(a__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
84
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : str ={ '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = '''unispeech-sat''' def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.0_2 , _A=1e-5 , _A="group" , _A="gelu" , _A=(512, 512, 512, 512, 512, 512, 512) , _A=(5, 2, 2, 2, 2, 2, 2) , _A=(10, 3, 3, 3, 3, 2, 2) , _A=False , _A=128 , _A=16 , _A=False , _A=True , _A=0.0_5 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A=320 , _A=2 , _A=0.1 , _A=100 , _A=256 , _A=256 , _A=0.1 , _A="mean" , _A=False , _A=False , _A=256 , _A=(512, 512, 512, 512, 1_500) , _A=(5, 3, 3, 1, 1) , _A=(1, 2, 3, 1, 1) , _A=512 , _A=0 , _A=1 , _A=2 , _A=504 , **_A , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = num_clusters __SCREAMING_SNAKE_CASE = do_stable_layer_norm __SCREAMING_SNAKE_CASE = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE = num_codevectors_per_group __SCREAMING_SNAKE_CASE = num_codevector_groups __SCREAMING_SNAKE_CASE = contrastive_logits_temperature __SCREAMING_SNAKE_CASE = feat_quantizer_dropout __SCREAMING_SNAKE_CASE = num_negatives __SCREAMING_SNAKE_CASE = codevector_dim __SCREAMING_SNAKE_CASE = proj_codevector_dim __SCREAMING_SNAKE_CASE = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = xvector_output_dim @property def _A ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
257
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = False): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.') # array bounds provided by analysis SCREAMING_SNAKE_CASE = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] SCREAMING_SNAKE_CASE = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_UpperCAmelCase , 1): if n < _p: # then we have our last prime to check SCREAMING_SNAKE_CASE = primes[:idx] break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: SCREAMING_SNAKE_CASE = False for r in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = pow(_UpperCAmelCase , d * 2**r , _UpperCAmelCase) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): SCREAMING_SNAKE_CASE = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase__ (): assert not miller_rabin(561) assert miller_rabin(563) # 2047 assert not miller_rabin(83_8201) assert miller_rabin(83_8207) # 1_373_653 assert not miller_rabin(1731_6001) assert miller_rabin(1731_6017) # 25_326_001 assert not miller_rabin(30_7838_6641) assert miller_rabin(30_7838_6653) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801) assert miller_rabin(1_7130_4557_4819) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307) assert miller_rabin(2_7797_9972_8327) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441) assert miller_rabin(113_8500_2390_9527) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351) assert miller_rabin(127_5041_0188_4880_4391) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867) assert miller_rabin(796_6646_4458_5077_8779_1951) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333) assert miller_rabin(5528_4067_7446_6478_9766_0359) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
327
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase__ (_UpperCAmelCase): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _snake_case ( nn.Module ): def __init__( self , a , a) -> Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE = module SCREAMING_SNAKE_CASE = nn.Sequential( nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , ) SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=a) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any: return self.module(a , *a , **a) + self.adapter(a) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowercase : Union[str, Any] = '''bigscience/bloom-1b7''' # Constant values _lowercase : str = 2.109_6595_5269_2574 _lowercase : Any = '''Hello my name is''' _lowercase : Any = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) _lowercase : Union[str, Any] = 10 def SCREAMING_SNAKE_CASE__ ( self) -> Any: # Models and tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto') SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_abit.config self.assertTrue(hasattr(a , 'quantization_config')) SCREAMING_SNAKE_CASE = config.to_dict() SCREAMING_SNAKE_CASE = config.to_diff_dict() SCREAMING_SNAKE_CASE = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self) -> Any: from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(a , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> str: with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() with self.assertRaises(a): SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , ) def SCREAMING_SNAKE_CASE__ ( self) -> int: with self.assertRaises(a): # Tries with `str` self.model_abit.to('cpu') with self.assertRaises(a): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(a): # Tries with a `device` self.model_abit.to(torch.device('cuda:0')) with self.assertRaises(a): # Tries with a `device` self.model_abit.float() with self.assertRaises(a): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa) SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu') # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple: SCREAMING_SNAKE_CASE = 't5-small' SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name) SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute' def SCREAMING_SNAKE_CASE__ ( self) -> Dict: gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE = None # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) SCREAMING_SNAKE_CASE = modules def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> str: super().setUp() # model_name SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m' SCREAMING_SNAKE_CASE = 't5-small' # Different types of model SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Sequence classification model SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=a , device_map='auto') # CausalLM model SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Seq2seq model SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Dict: del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE = self.pipe(self.input_text) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> int: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=a , device_map='balanced') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') # Second real batch SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 'facebook/opt-350m' super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Any: if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE = param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(a)): SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16) # Step 3: dummy batch SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE = model.forward(**a) out.logits.norm().backward() for module in model.modules(): if isinstance(a , a): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(a , nn.Embedding): self.assertTrue(module.weight.grad is None) class _snake_case ( A__ ): _lowercase : str = '''gpt2-xl''' _lowercase : Union[str, Any] = 3.3191_8548_5415_2187
327
1
from collections.abc import Callable class _A : def __init__( self : str , _A : Callable | None = None ) -> None: """simple docstring""" lowercase : list = [] # Stores indexes of each item for supporting updates and deletion. lowercase : dict = {} # Stores current size of heap. lowercase : Any = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowercase : Any = key or (lambda _A : x) def __a ( self : Tuple , _A : int ) -> int | None: """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def __a ( self : int , _A : int ) -> int | None: """simple docstring""" lowercase : List[str] = int(2 * i + 1 ) return left if 0 < left < self.size else None def __a ( self : Optional[int] , _A : int ) -> int | None: """simple docstring""" lowercase : List[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __a ( self : int , _A : int , _A : int ) -> None: """simple docstring""" lowercase , lowercase : str = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowercase , lowercase : Union[str, Any] = self.arr[j], self.arr[i] def __a ( self : List[str] , _A : int , _A : int ) -> bool: """simple docstring""" return self.arr[i][1] < self.arr[j][1] def __a ( self : int , _A : int ) -> int: """simple docstring""" lowercase : Any = self._left(_A ) lowercase : Any = self._right(_A ) lowercase : Tuple = i if left is not None and not self._cmp(_A , _A ): lowercase : str = left if right is not None and not self._cmp(_A , _A ): lowercase : Tuple = right return valid_parent def __a ( self : Any , _A : int ) -> None: """simple docstring""" lowercase : str = self._parent(_A ) while parent is not None and not self._cmp(_A , _A ): self._swap(_A , _A ) lowercase , lowercase : Optional[Any] = parent, self._parent(_A ) def __a ( self : int , _A : int ) -> None: """simple docstring""" lowercase : List[Any] = self._get_valid_parent(_A ) while valid_parent != index: self._swap(_A , _A ) lowercase , lowercase : Tuple = valid_parent, self._get_valid_parent(_A ) def __a ( self : List[str] , _A : int , _A : int ) -> None: """simple docstring""" if item not in self.pos_map: return lowercase : Optional[Any] = self.pos_map[item] lowercase : Union[str, Any] = [item, self.key(_A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_A ) self._heapify_down(_A ) def __a ( self : Optional[Any] , _A : int ) -> None: """simple docstring""" if item not in self.pos_map: return lowercase : Tuple = self.pos_map[item] del self.pos_map[item] lowercase : Tuple = self.arr[self.size - 1] lowercase : str = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_A ) self._heapify_down(_A ) def __a ( self : List[str] , _A : int , _A : int ) -> None: """simple docstring""" lowercase : Union[str, Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_A )] ) else: lowercase : Any = [item, self.key(_A )] lowercase : List[str] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __a ( self : str ) -> tuple | None: """simple docstring""" return self.arr[0] if self.size else None def __a ( self : List[Any] ) -> tuple | None: """simple docstring""" lowercase : List[str] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def snake_case( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
308
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : int = 1.5 lowercase : int = int(factor * num_class_images ) lowercase : Any = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 ) os.makedirs(F"""{class_data_dir}/images""" , exist_ok=__magic_name__ ) if len(list(Path(F"""{class_data_dir}/images""" ).iterdir() ) ) >= num_class_images: return while True: lowercase : str = client.query(text=__magic_name__ ) if len(__magic_name__ ) >= factor * num_class_images or num_images > 1e4: break else: lowercase : List[str] = int(factor * num_images ) lowercase : List[str] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=__magic_name__ , aesthetic_weight=0.1 , ) lowercase : Dict = 0 lowercase : Optional[Any] = 0 lowercase : List[Any] = tqdm(desc='''downloading real regularization images''' , total=__magic_name__ ) with open(F"""{class_data_dir}/caption.txt""" , '''w''' ) as fa, open(F"""{class_data_dir}/urls.txt""" , '''w''' ) as fa, open( F"""{class_data_dir}/images.txt""" , '''w''' ) as fa: while total < num_class_images: lowercase : int = class_images[count] count += 1 try: lowercase : int = requests.get(images['''url'''] ) if img.status_code == 2_00: lowercase : List[Any] = Image.open(BytesIO(img.content ) ) with open(F"""{class_data_dir}/images/{total}.jpg""" , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F"""{class_data_dir}/images/{total}.jpg""" + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : List[str] = argparse.ArgumentParser('''''' , add_help=__magic_name__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=__magic_name__ , type=__magic_name__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_00 , type=__magic_name__ ) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
308
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( __SCREAMING_SNAKE_CASE): snake_case__ : Any = "poolformer" def __init__( self : List[str] , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : List[str]=1_6 , __lowerCAmelCase : int=1_6 , __lowerCAmelCase : str=3 , __lowerCAmelCase : List[str]=4.0 , __lowerCAmelCase : List[str]=[2, 2, 6, 2] , __lowerCAmelCase : int=[6_4, 1_2_8, 3_2_0, 5_1_2] , __lowerCAmelCase : str=[7, 3, 3, 3] , __lowerCAmelCase : List[str]=[4, 2, 2, 2] , __lowerCAmelCase : Union[str, Any]=[2, 1, 1, 1] , __lowerCAmelCase : str=4 , __lowerCAmelCase : int=0.0 , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : Dict=True , __lowerCAmelCase : int=1E-5 , __lowerCAmelCase : List[Any]=0.02 , **__lowerCAmelCase : Union[str, Any] , ): """simple docstring""" _lowerCamelCase : Union[str, Any] = num_channels _lowerCamelCase : List[str] = patch_size _lowerCamelCase : List[str] = stride _lowerCamelCase : Dict = padding _lowerCamelCase : Tuple = pool_size _lowerCamelCase : Optional[Any] = hidden_sizes _lowerCamelCase : List[Any] = mlp_ratio _lowerCamelCase : List[str] = depths _lowerCamelCase : Union[str, Any] = patch_sizes _lowerCamelCase : Dict = strides _lowerCamelCase : Dict = num_encoder_blocks _lowerCamelCase : Any = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Optional[Any] = use_layer_scale _lowerCamelCase : Tuple = layer_scale_init_value _lowerCamelCase : Union[str, Any] = initializer_range super().__init__(**__UpperCAmelCase ) class __snake_case ( __SCREAMING_SNAKE_CASE): snake_case__ : List[str] = version.parse("1.11") @property def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return 2E-3
366
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowerCAmelCase__ = logging.get_logger(__name__) logging.set_verbosity_info() def snake_case_ ( A_ : str, A_ : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _lowerCamelCase : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(A_ ) _lowerCamelCase , _lowerCamelCase : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained( A_, output_loading_info=A_ ) else: _lowerCamelCase : str = ProphetNetForConditionalGenerationOld.from_pretrained(A_ ) _lowerCamelCase , _lowerCamelCase : Any = ProphetNetForConditionalGeneration.from_pretrained( A_, output_loading_info=A_ ) _lowerCamelCase : Optional[Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] _lowerCamelCase : List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _lowerCamelCase : Union[str, Any] = key.split('''.''' ) if attributes[0] == "lm_head": _lowerCamelCase : str = prophet _lowerCamelCase : List[Any] = prophet_old else: _lowerCamelCase : Optional[int] = prophet.prophetnet _lowerCamelCase : Optional[Any] = prophet_old.model _lowerCamelCase : Any = False for attribute in attributes: if attribute in mapping: _lowerCamelCase : Optional[int] = mapping[attribute] if not hasattr(A_, A_ ) and len(A_ ) > 0: _lowerCamelCase : int = attribute elif hasattr(A_, A_ ): _lowerCamelCase : int = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _lowerCamelCase : Optional[int] = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _lowerCamelCase : List[str] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _lowerCamelCase : int = old_model.bias logger.info(F'''{attribute} is initialized''' ) _lowerCamelCase : Union[str, Any] = True break elif attribute in special_keys and hasattr(A_, '''in_proj_weight''' ): _lowerCamelCase : Tuple = old_model.in_proj_weight.shape[0] // 3 _lowerCamelCase : List[Any] = getattr(A_, A_ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _lowerCamelCase : Optional[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _lowerCamelCase : int = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _lowerCamelCase : int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _lowerCamelCase : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _lowerCamelCase : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _lowerCamelCase : Dict = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _lowerCamelCase : List[str] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _lowerCamelCase : Optional[Any] = True break if attribute.isdigit(): _lowerCamelCase : Optional[int] = model[int(A_ )] _lowerCamelCase : List[Any] = old_model[int(A_ )] else: _lowerCamelCase : List[str] = getattr(A_, A_ ) if old_attribute == "": _lowerCamelCase : str = old_model else: if not hasattr(A_, A_ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _lowerCamelCase : Optional[int] = getattr(A_, A_ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(A_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--prophetnet_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
175
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = 42 class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Optional[int] , UpperCAmelCase__ : int = 16 , UpperCAmelCase__ : int = 88 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 32 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : str = "geglu" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , ) ->Union[str, Any]: '''simple docstring''' super().__init__() A__ = num_attention_heads A__ = attention_head_dim A__ = num_attention_heads * attention_head_dim A__ = in_channels A__ = torch.nn.GroupNorm(num_groups=UpperCAmelCase__ , num_channels=UpperCAmelCase__ , eps=1e-6 , affine=UpperCAmelCase__) A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__) # 3. Define transformers blocks A__ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , dropout=UpperCAmelCase__ , cross_attention_dim=UpperCAmelCase__ , activation_fn=UpperCAmelCase__ , attention_bias=UpperCAmelCase__ , double_self_attention=UpperCAmelCase__ , norm_elementwise_affine=UpperCAmelCase__ , ) for d in range(UpperCAmelCase__) ]) A__ = nn.Linear(UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : int=None , UpperCAmelCase__ : bool = True , ) ->List[str]: '''simple docstring''' A__ , A__ , A__ , A__ = hidden_states.shape A__ = batch_frames // num_frames A__ = hidden_states A__ = hidden_states[None, :].reshape(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) A__ = hidden_states.permute(0 , 2 , 1 , 3 , 4) A__ = self.norm(UpperCAmelCase__) A__ = hidden_states.permute(0 , 3 , 4 , 2 , 1).reshape(batch_size * height * width , UpperCAmelCase__ , UpperCAmelCase__) A__ = self.proj_in(UpperCAmelCase__) # 2. Blocks for block in self.transformer_blocks: A__ = block( UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , timestep=UpperCAmelCase__ , cross_attention_kwargs=UpperCAmelCase__ , class_labels=UpperCAmelCase__ , ) # 3. Output A__ = self.proj_out(UpperCAmelCase__) A__ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) .permute(0 , 3 , 4 , 1 , 2) .contiguous() ) A__ = hidden_states.reshape(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) A__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase__)
14
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __snake_case : Optional[int] = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' __snake_case : str = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' __snake_case : str = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _lowercase ( __snake_case ,__snake_case ) -> Union[str, Any]: return float((preds == labels).mean() ) def _lowercase ( __snake_case ,__snake_case ) -> str: __lowerCAmelCase : str = simple_accuracy(__snake_case ,__snake_case ) __lowerCAmelCase : Any = float(fa_score(y_true=__snake_case ,y_pred=__snake_case ) ) return { "accuracy": acc, "f1": fa, } def _lowercase ( __snake_case ,__snake_case ) -> int: __lowerCAmelCase : Union[str, Any] = np.array(__snake_case ) __lowerCAmelCase : Tuple = np.array(__snake_case ) __lowerCAmelCase : List[Any] = en_sentvecs.shape[0] # mean centering __lowerCAmelCase : Union[str, Any] = en_sentvecs - np.mean(__snake_case ,axis=0 ) __lowerCAmelCase : int = in_sentvecs - np.mean(__snake_case ,axis=0 ) __lowerCAmelCase : Optional[Any] = cdist(__snake_case ,__snake_case ,"cosine" ) __lowerCAmelCase : int = np.array(range(__snake_case ) ) __lowerCAmelCase : int = sim.argsort(axis=1 )[:, :10] __lowerCAmelCase : Optional[Any] = np.any(preds == actual[:, None] ,axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: int) -> str: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), "references": datasets.Value("int64") if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32")), }) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any]) -> int: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)} elif self.config_name in ["wiki-ner"]: return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]")
269
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCAmelCase: Optional[int] = datasets.load_iris() lowerCAmelCase: List[Any] = np.array(data['data']) lowerCAmelCase: Union[str, Any] = np.array(data['target']) lowerCAmelCase: Optional[int] = data['target_names'] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase: Dict = train_test_split(X, y) def lowerCamelCase__ ( _A , _A ): return np.linalg.norm(np.array(_A ) - np.array(_A ) ) def lowerCamelCase__ ( _A , _A , _A , _A , _A=5 ): a : Union[str, Any] = zip(_A , _A ) # List of distances of all points from the point to be classified a : Union[str, Any] = [] for data_point in data: a : Dict = euclidean_distance(data_point[0] , _A ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. a : int = [i[1] for i in sorted(_A )[:k]] # Most commonly occurring class among them # is the class into which the point is classified a : Dict = Counter(_A ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
96
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase: Any = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowerCAmelCase: Optional[int] = parser.parse_args() lowerCAmelCase: List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase: Optional[Any] = CLIPImageProcessor() lowerCAmelCase: Tuple = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowerCAmelCase: List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
96
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , __lowercase : List[str] , __lowercase : List[Any]=7 , __lowercase : str=3 , __lowercase : Optional[Any]=18 , __lowercase : Union[str, Any]=30 , __lowercase : int=400 , __lowercase : Optional[int]=True , __lowercase : int=None , __lowercase : Optional[int]=True , __lowercase : List[str]=None , __lowercase : int=True , __lowercase : Optional[int]=[0.5, 0.5, 0.5] , __lowercase : List[str]=[0.5, 0.5, 0.5] , ): """simple docstring""" __lowercase =size if size is not None else {'shortest_edge': 18} __lowercase =crop_size if crop_size is not None else {'height': 18, 'width': 18} __lowercase =parent __lowercase =batch_size __lowercase =num_channels __lowercase =image_size __lowercase =min_resolution __lowercase =max_resolution __lowercase =do_resize __lowercase =size __lowercase =do_center_crop __lowercase =crop_size __lowercase =do_normalize __lowercase =image_mean __lowercase =image_std def snake_case ( self : Any ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase ( A , unittest.TestCase ): lowerCAmelCase_ = LevitImageProcessor if is_vision_available() else None def snake_case ( self : str ): """simple docstring""" __lowercase =LevitImageProcessingTester(self ) @property def snake_case ( self : str ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : Union[str, Any] ): """simple docstring""" __lowercase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , 'image_mean' ) ) self.assertTrue(hasattr(__lowercase , 'image_std' ) ) self.assertTrue(hasattr(__lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(__lowercase , 'do_resize' ) ) self.assertTrue(hasattr(__lowercase , 'do_center_crop' ) ) self.assertTrue(hasattr(__lowercase , 'size' ) ) def snake_case ( self : Optional[int] ): """simple docstring""" __lowercase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __lowercase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def snake_case ( self : Optional[Any] ): """simple docstring""" pass def snake_case ( self : Optional[int] ): """simple docstring""" __lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input __lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowercase =image_processing(__lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def snake_case ( self : List[Any] ): """simple docstring""" __lowercase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input __lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowercase =image_processing(__lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def snake_case ( self : List[str] ): """simple docstring""" __lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input __lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __lowercase =image_processing(__lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
141
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class lowerCAmelCase ( A ): def __init__( self : Optional[Any] , *__lowercase : str , **__lowercase : Union[str, Any] ): """simple docstring""" super().__init__(*__lowercase , **__lowercase ) __lowercase ={} def snake_case ( self : Union[str, Any] , __lowercase : List[Any] , *__lowercase : Optional[int] , **__lowercase : int ): """simple docstring""" __lowercase =super().add_tokens(__lowercase , *__lowercase , **__lowercase ) if num_added_tokens == 0: raise ValueError( f'''The tokenizer already contains the token {placeholder_token}. Please pass a different''' ' `placeholder_token` that is not already in the tokenizer.' ) def snake_case ( self : int , __lowercase : List[Any] , *__lowercase : Union[str, Any] , __lowercase : Dict=1 , **__lowercase : Dict ): """simple docstring""" __lowercase =[] if num_vec_per_token == 1: self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) else: __lowercase =[] for i in range(__lowercase ): __lowercase =placeholder_token + f'''_{i}''' self.try_adding_tokens(__lowercase , *__lowercase , **__lowercase ) output.append(__lowercase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f'''The tokenizer already has placeholder token {token} that can get confused with''' f''' {placeholder_token}keep placeholder tokens independent''' ) __lowercase =output def snake_case ( self : Tuple , __lowercase : Optional[int] , __lowercase : Optional[int]=False , __lowercase : Optional[int]=1.0 ): """simple docstring""" if isinstance(__lowercase , __lowercase ): __lowercase =[] for i in range(len(__lowercase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__lowercase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: __lowercase =self.token_map[placeholder_token] __lowercase =tokens[: 1 + int(len(__lowercase ) * prop_tokens_to_load )] if vector_shuffle: __lowercase =copy.copy(__lowercase ) random.shuffle(__lowercase ) __lowercase =text.replace(__lowercase , ' '.join(__lowercase ) ) return text def __call__( self : int , __lowercase : List[Any] , *__lowercase : Tuple , __lowercase : Optional[Any]=False , __lowercase : Dict=1.0 , **__lowercase : List[Any] ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , ) def snake_case ( self : Dict , __lowercase : List[str] , *__lowercase : Tuple , __lowercase : Dict=False , __lowercase : List[str]=1.0 , **__lowercase : Optional[int] ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( __lowercase , vector_shuffle=__lowercase , prop_tokens_to_load=__lowercase ) , *__lowercase , **__lowercase , )
141
1
"""simple docstring""" from __future__ import annotations import math def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" if len(__UpperCamelCase ) != 2 or len(a[0] ) != 2 or len(__UpperCamelCase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) __UpperCamelCase =[ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__UpperCamelCase ) ) ] def lowerCAmelCase (__UpperCamelCase : list ): """simple docstring""" if len(__UpperCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) __UpperCamelCase =len(__UpperCamelCase ) __UpperCamelCase =matrix_length // 2 __UpperCamelCase =[[a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase )] __UpperCamelCase =[ [a[i][j] for j in range(__UpperCamelCase , __UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase ) ] __UpperCamelCase =[[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase )] __UpperCamelCase =[[a[i][j] for j in range(__UpperCamelCase )] for i in range(__UpperCamelCase , __UpperCamelCase )] return top_left, top_right, bot_left, bot_right def lowerCAmelCase (__UpperCamelCase : list ): """simple docstring""" return len(__UpperCamelCase ), len(matrix[0] ) def lowerCAmelCase (__UpperCamelCase : list ): """simple docstring""" print('''\n'''.join(str(__UpperCamelCase ) for line in matrix ) ) def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase ) == (2, 2): return default_matrix_multiplication(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =split_matrix(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =split_matrix(__UpperCamelCase ) __UpperCamelCase =actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) __UpperCamelCase =actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) __UpperCamelCase =actual_strassen(__UpperCamelCase , matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =actual_strassen(matrix_subtraction(__UpperCamelCase , __UpperCamelCase ) , matrix_addition(__UpperCamelCase , __UpperCamelCase ) ) __UpperCamelCase =matrix_addition(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) __UpperCamelCase =matrix_addition(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =matrix_addition(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =matrix_subtraction(matrix_subtraction(matrix_addition(__UpperCamelCase , __UpperCamelCase ) , __UpperCamelCase ) , __UpperCamelCase ) # construct the new matrix from our 4 quadrants __UpperCamelCase =[] for i in range(len(__UpperCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__UpperCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCAmelCase (__UpperCamelCase : list , __UpperCamelCase : list ): """simple docstring""" if matrix_dimensions(__UpperCamelCase )[1] != matrix_dimensions(__UpperCamelCase )[0]: __UpperCamelCase =( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__UpperCamelCase ) __UpperCamelCase =matrix_dimensions(__UpperCamelCase ) __UpperCamelCase =matrix_dimensions(__UpperCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __UpperCamelCase =max(*__UpperCamelCase , *__UpperCamelCase ) __UpperCamelCase =int(math.pow(2 , math.ceil(math.loga(__UpperCamelCase ) ) ) ) __UpperCamelCase =matrixa __UpperCamelCase =matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __UpperCamelCase =actual_strassen(__UpperCamelCase , __UpperCamelCase ) # Removing the additional zeros for i in range(0 , __UpperCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __UpperCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": __lowercase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] __lowercase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _lowercase ( __a ): """simple docstring""" lowercase__ = '''albert''' def __init__( self : List[Any] , UpperCamelCase__ : List[Any]=30000 , UpperCamelCase__ : int=128 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Union[str, Any]=64 , UpperCamelCase__ : Any=16384 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Optional[int]="gelu_new" , UpperCamelCase__ : int=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Dict=512 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : Tuple=1E-12 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Optional[Any]=3 , **UpperCamelCase__ : List[str] , ) -> Dict: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) __UpperCamelCase =vocab_size __UpperCamelCase =embedding_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_hidden_groups __UpperCamelCase =num_attention_heads __UpperCamelCase =inner_group_num __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =classifier_dropout_prob __UpperCamelCase =position_embedding_type class _lowercase ( __a ): """simple docstring""" @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __UpperCamelCase ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
85
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __magic_name__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __magic_name__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __magic_name__ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1E-3 ) ) @slow def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" __magic_name__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __magic_name__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __magic_name__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim __magic_name__ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1E-3 ) )
88
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def A ( _lowercase ): if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE : int = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse('''0.17.0''' ): return method def wrapper(self , *_lowercase , **_lowercase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_lowercase , **_lowercase ) return wrapper
182
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : UNetaDModel __SCREAMING_SNAKE_CASE : ScoreSdeVeScheduler def __init__( self : Union[str, Any] , A : UNetaDModel , A : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=A , scheduler=A ) @torch.no_grad() def __call__( self : Dict , A : int = 1 , A : int = 2_0_0_0 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : Optional[str] = "pil" , A : bool = True , **A : Union[str, Any] , ): _UpperCAmelCase : Union[str, Any] = self.unet.config.sample_size _UpperCAmelCase : Any = (batch_size, 3, img_size, img_size) _UpperCAmelCase : Optional[int] = self.unet _UpperCAmelCase : Optional[Any] = randn_tensor(A , generator=A ) * self.scheduler.init_noise_sigma _UpperCAmelCase : Tuple = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _UpperCAmelCase : int = self.unet(A , A ).sample _UpperCAmelCase : int = self.scheduler.step_correct(A , A , generator=A ).prev_sample # prediction step _UpperCAmelCase : Optional[int] = model(A , A ).sample _UpperCAmelCase : int = self.scheduler.step_pred(A , A , A , generator=A ) _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = output.prev_sample, output.prev_sample_mean _UpperCAmelCase : Optional[Any] = sample_mean.clamp(0 , 1 ) _UpperCAmelCase : Any = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase : Tuple = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
202
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : List[Any] ): _UpperCAmelCase : List[str] = tempfile.mkdtemp() # fmt: off _UpperCAmelCase : Union[str, Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _UpperCAmelCase : List[Any] = dict(zip(A , range(len(A ) ) ) ) _UpperCAmelCase : Union[str, Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _UpperCAmelCase : Optional[int] = {"unk_token": "<unk>"} _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(A ) ) _UpperCAmelCase : List[str] = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _UpperCAmelCase : Any = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A , A ) def snake_case_ ( self : List[Any] , **A : Union[str, Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : int , **A : Any ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : List[str] , **A : Optional[Any] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : Optional[int] ): shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : str ): _UpperCAmelCase : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase : Dict = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : List[str] ): _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : int = self.get_image_processor() _UpperCAmelCase : List[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A ) _UpperCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : List[str] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : Any = self.get_image_processor(do_normalize=A , padding_value=1.0 ) _UpperCAmelCase : Any = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def snake_case_ ( self : List[Any] ): _UpperCAmelCase : str = self.get_image_processor() _UpperCAmelCase : List[str] = self.get_tokenizer() _UpperCAmelCase : Any = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Dict = self.prepare_image_inputs() _UpperCAmelCase : Optional[int] = image_processor(A , return_tensors="np" ) _UpperCAmelCase : Any = processor(images=A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self : str ): _UpperCAmelCase : Tuple = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : List[str] = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Optional[int] = "lower newer" _UpperCAmelCase : Union[str, Any] = processor(text=A ) _UpperCAmelCase : Optional[int] = tokenizer(A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = self.get_image_processor() _UpperCAmelCase : Tuple = self.get_tokenizer() _UpperCAmelCase : str = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Tuple = "lower newer" _UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCAmelCase : str = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def snake_case_ ( self : int ): _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : Dict = self.get_tokenizer() _UpperCAmelCase : List[Any] = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : List[str] = processor.batch_decode(A ) _UpperCAmelCase : int = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : int = CLIPProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : str = "lower newer" _UpperCAmelCase : int = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
202
1
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging lowerCamelCase_ : Any = ( 'https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py' ) lowerCamelCase_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( ): """simple docstring""" A_ : str = 'https://pypi.org/pypi/diffusers/json' A_ : List[str] = json.loads(request.urlopen(_UpperCAmelCase ).read() )['releases'].keys() return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : version.Version(_UpperCAmelCase ) ) def UpperCAmelCase__ ( ): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(_UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) A_ : Any = Path(_UpperCAmelCase ) / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" init_hf_modules() A_ : Dict = Path(_UpperCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) A_ : Tuple = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: A_ : Optional[Any] = f.read() # Imports of the form `import .xxx` A_ : Optional[int] = re.findall('^\s*import\s+\.(\S+)\s*$' , _UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , _UpperCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(_UpperCAmelCase ) ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = False A_ : Dict = [module_file] A_ : Dict = [] # Let's recurse through all relative imports while not no_change: A_ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(_UpperCAmelCase ) ) A_ : int = Path(_UpperCAmelCase ).parent A_ : Tuple = [str(module_path / m ) for m in new_imports] A_ : str = [f for f in new_import_files if f not in all_relative_imports] A_ : int = [f"""{f}.py""" for f in new_import_files] A_ : Optional[Any] = len(_UpperCAmelCase ) == 0 all_relative_imports.extend(_UpperCAmelCase ) return all_relative_imports def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" with open(_UpperCAmelCase , 'r' , encoding='utf-8' ) as f: A_ : Any = f.read() # Imports of the form `import xxx` A_ : Any = re.findall('^\s*import\s+(\S+)\s*$' , _UpperCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , _UpperCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module A_ : Any = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all A_ : List[Any] = list(set(_UpperCAmelCase ) ) A_ : Any = [] for imp in imports: try: importlib.import_module(_UpperCAmelCase ) except ImportError: missing_packages.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' f"""{", ".join(_UpperCAmelCase )}. Run `pip install {" ".join(_UpperCAmelCase )}`""" ) return get_relative_imports(_UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Any = module_path.replace(os.path.sep , '.' ) A_ : int = importlib.import_module(_UpperCAmelCase ) if class_name is None: return find_pipeline_class(_UpperCAmelCase ) return getattr(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" from ..pipelines import DiffusionPipeline A_ : int = dict(inspect.getmembers(_UpperCAmelCase , inspect.isclass ) ) A_ : List[str] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _UpperCAmelCase ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) A_ : Union[str, Any] = cls return pipeline_class def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , ): """simple docstring""" A_ : int = str(_UpperCAmelCase ) A_ : Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ): A_ : List[str] = module_file_or_url A_ : Union[str, Any] = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: A_ : Union[str, Any] = get_diffusers_versions() # cut ".dev0" A_ : Optional[Any] = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: A_ : List[Any] = latest_version if latest_version[1:] in available_versions else 'main' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: A_ : Optional[int] = f"""v{revision}""" elif revision == "main": A_ : Union[str, Any] = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {", ".join(available_versions + ["main"] )}.""" ) # community pipeline on GitHub A_ : List[Any] = COMMUNITY_PIPELINES_URL.format(revision=_UpperCAmelCase , pipeline=_UpperCAmelCase ) try: A_ : Dict = cached_download( _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , ) A_ : Optional[int] = 'git' A_ : Optional[Any] = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached A_ : Optional[Any] = hf_hub_download( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , ) A_ : str = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment A_ : Optional[int] = check_imports(_UpperCAmelCase ) # Now we move the module inside our cached dynamic modules. A_ : str = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_UpperCAmelCase ) A_ : Optional[Any] = Path(_UpperCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_UpperCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: A_ : Tuple = f"""{module_needed}.py""" shutil.copy(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ : Union[str, Any] = use_auth_token elif use_auth_token is True: A_ : List[Any] = HfFolder.get_token() else: A_ : Dict = None A_ : List[Any] = model_info(_UpperCAmelCase , revision=_UpperCAmelCase , token=_UpperCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. A_ : Optional[Any] = submodule_path / commit_hash A_ : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(_UpperCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_UpperCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _UpperCAmelCase , f"""{module_needed}.py""" , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) return os.path.join(_UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , **_UpperCAmelCase , ): """simple docstring""" A_ : Optional[Any] = get_cached_module_file( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) return get_class_in_module(_UpperCAmelCase , final_module.replace('.py' , '' ) )
286
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *snake_case_ , **snake_case_ ): """simple docstring""" super().__init__(*snake_case_ , **snake_case_ ) A_ : Tuple = {} def lowerCamelCase_ ( self , snake_case_ , *snake_case_ , **snake_case_ ): """simple docstring""" A_ : str = super().add_tokens(snake_case_ , *snake_case_ , **snake_case_ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.' ) def lowerCamelCase_ ( self , snake_case_ , *snake_case_ , snake_case_=1 , **snake_case_ ): """simple docstring""" A_ : Tuple = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case_ , *snake_case_ , **snake_case_ ) output.append(snake_case_ ) else: A_ : Tuple = [] for i in range(snake_case_ ): A_ : List[str] = placeholder_token + F"""_{i}""" self.try_adding_tokens(snake_case_ , *snake_case_ , **snake_case_ ) output.append(snake_case_ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) A_ : Any = output def lowerCamelCase_ ( self , snake_case_ , snake_case_=False , snake_case_=1.0 ): """simple docstring""" if isinstance(snake_case_ , snake_case_ ): A_ : Optional[Any] = [] for i in range(len(snake_case_ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case_ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A_ : List[Any] = self.token_map[placeholder_token] A_ : Optional[int] = tokens[: 1 + int(len(snake_case_ ) * prop_tokens_to_load )] if vector_shuffle: A_ : Optional[Any] = copy.copy(snake_case_ ) random.shuffle(snake_case_ ) A_ : List[str] = text.replace(snake_case_ , ' '.join(snake_case_ ) ) return text def __call__( self , snake_case_ , *snake_case_ , snake_case_=False , snake_case_=1.0 , **snake_case_ ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( snake_case_ , vector_shuffle=snake_case_ , prop_tokens_to_load=snake_case_ ) , *snake_case_ , **snake_case_ , ) def lowerCamelCase_ ( self , snake_case_ , *snake_case_ , snake_case_=False , snake_case_=1.0 , **snake_case_ ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( snake_case_ , vector_shuffle=snake_case_ , prop_tokens_to_load=snake_case_ ) , *snake_case_ , **snake_case_ , )
286
1
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) lowercase__ = sorted(string.lower() ) return len(SCREAMING_SNAKE_CASE__ ) == len(set(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": lowercase_ = input("""Enter a string """).strip() lowercase_ = is_isogram(input_str) print(F'{input_str} is {"an" if isogram else "not an"} isogram.')
367
from __future__ import annotations def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return len(set(SCREAMING_SNAKE_CASE_ ) ) == len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
224
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = 0 def UpperCamelCase ( self: str ): """simple docstring""" A__ = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = Path(UpperCamelCase ) / """preprocessor_config.json""" A__ = Path(UpperCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase , """w""" ) ) A__ = AutoImageProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = Path(UpperCamelCase ) / """preprocessor_config.json""" A__ = Path(UpperCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase , """w""" ) ) A__ = AutoImageProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = CLIPConfig() # Create a dummy config file with image_proceesor_type A__ = Path(UpperCamelCase ) / """preprocessor_config.json""" A__ = Path(UpperCamelCase ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally A__ = AutoImageProcessor.from_pretrained(UpperCamelCase ).to_dict() config_dict.pop("""image_processor_type""" ) A__ = CLIPImageProcessor(**UpperCamelCase ) # save in new folder model_config.save_pretrained(UpperCamelCase ) config.save_pretrained(UpperCamelCase ) A__ = AutoImageProcessor.from_pretrained(UpperCamelCase ) # make sure private variable is not incorrectly saved A__ = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: A__ = Path(UpperCamelCase ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase , """w""" ) , ) A__ = AutoImageProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: Optional[int] ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase , """clip-base is not a local folder and is not a valid model identifier""" ): A__ = AutoImageProcessor.from_pretrained("""clip-base""" ) def UpperCamelCase ( self: str ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): A__ = AutoImageProcessor.from_pretrained(UpperCamelCase , revision="""aaaaaa""" ) def UpperCamelCase ( self: Dict ): """simple docstring""" with self.assertRaisesRegex( UpperCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): A__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def UpperCamelCase ( self: Any ): """simple docstring""" with self.assertRaises(UpperCamelCase ): A__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase ): A__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase ) A__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase ) A__ = AutoImageProcessor.from_pretrained(UpperCamelCase , trust_remote_code=UpperCamelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def UpperCamelCase ( self: str ): """simple docstring""" try: AutoConfig.register("""custom""" , UpperCamelCase ) AutoImageProcessor.register(UpperCamelCase , UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase ): AutoImageProcessor.register(UpperCamelCase , UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: A__ = Path(UpperCamelCase ) / """preprocessor_config.json""" A__ = Path(UpperCamelCase ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(UpperCamelCase , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(UpperCamelCase , """w""" ) ) A__ = CustomImageProcessor.from_pretrained(UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCamelCase ) A__ = AutoImageProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = True try: AutoConfig.register("""custom""" , UpperCamelCase ) AutoImageProcessor.register(UpperCamelCase , UpperCamelCase ) # If remote code is not set, the default is to use local A__ = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. A__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub A__ = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=UpperCamelCase ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(UpperCamelCase , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
335
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "dandelin/vilt-b32-finetuned-vqa" UpperCAmelCase = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) UpperCAmelCase = "image_qa" UpperCAmelCase = AutoProcessor UpperCAmelCase = AutoModelForVisualQuestionAnswering UpperCAmelCase = ["image", "text"] UpperCAmelCase = ["text"] def __init__( self: List[str] , *UpperCamelCase: Dict , **UpperCamelCase: List[str] ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: str , UpperCamelCase: "Image" , UpperCamelCase: str ): """simple docstring""" return self.pre_processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) def UpperCamelCase ( self: str , UpperCamelCase: str ): """simple docstring""" with torch.no_grad(): return self.model(**UpperCamelCase ).logits def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: int ): """simple docstring""" A__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
335
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 10**-10 ): UpperCAmelCase_ = a while True: UpperCAmelCase_ = Decimal(lowerCAmelCase__ ) - ( Decimal(eval(lowerCAmelCase__ ) ) / Decimal(eval(str(diff(lowerCAmelCase__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowerCAmelCase__ ) ) < precision: # noqa: S307 return float(lowerCAmelCase__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(F"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(F"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
363
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase = 250_004 lowerCamelCase = 250_020 @require_sentencepiece @require_tokenizers class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartTokenizer UpperCamelCase = MBartTokenizerFast UpperCamelCase = True UpperCamelCase = True def lowercase__ ( self : int ) -> Union[str, Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCAmelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=True UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_UpperCAmelCase , _UpperCAmelCase ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) # Save tokenizer rust, legacy_format=False UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = tokenizer_r.save_pretrained(_UpperCAmelCase , legacy_format=_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.save_pretrained(_UpperCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase_ = tokenizer_r.from_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = tokenizer_p.from_pretrained(_UpperCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_UpperCAmelCase , _UpperCAmelCase ) ) shutil.rmtree(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' UpperCamelCase = '''facebook/mbart-large-en-ro''' UpperCamelCase = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCamelCase = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCamelCase = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def lowercase__ ( cls : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCAmelCase_ = 1 return cls def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 ) def lowercase__ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) UpperCAmelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase_ = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) UpperCAmelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCAmelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , _UpperCAmelCase ) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.tokenizer(_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _UpperCAmelCase ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250026, 250001] ) def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_UpperCAmelCase ) UpperCAmelCase_ = MBartTokenizer.from_pretrained(_UpperCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _UpperCAmelCase ) @require_torch def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCAmelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _UpperCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.tokenizer(self.src_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=3 , return_tensors="pt" ) UpperCAmelCase_ = self.tokenizer( text_target=self.tgt_text , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=10 , return_tensors="pt" ) UpperCAmelCase_ = targets["input_ids"] UpperCAmelCase_ = shift_tokens_right(_UpperCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(_UpperCAmelCase ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
241
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __lowerCamelCase = { """E""": 12.70, """T""": 9.06, """A""": 8.17, """O""": 7.51, """I""": 6.97, """N""": 6.75, """S""": 6.33, """H""": 6.09, """R""": 5.99, """D""": 4.25, """L""": 4.03, """C""": 2.78, """U""": 2.76, """M""": 2.41, """W""": 2.36, """F""": 2.23, """G""": 2.02, """Y""": 1.97, """P""": 1.93, """B""": 1.29, """V""": 0.98, """K""": 0.77, """J""": 0.15, """X""": 0.15, """Q""": 0.10, """Z""": 0.07, } __lowerCamelCase = """ETAOINSHRDLCUMWFGYPBVKJXQZ""" __lowerCamelCase = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Any = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def UpperCamelCase ( __lowerCamelCase : tuple ): return x[0] def UpperCamelCase ( __lowerCamelCase : str ): snake_case : List[Any] = get_letter_count(__lowerCamelCase ) snake_case : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowerCamelCase ) snake_case : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__lowerCamelCase ) snake_case : Optional[Any] = "".join(freq_to_letter[freq] ) snake_case : Any = list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowerCamelCase , reverse=__lowerCamelCase ) snake_case : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Dict = get_frequency_order(__lowerCamelCase ) snake_case : List[Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
59
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __lowerCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": 5_12, } __lowerCamelCase = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class UpperCAmelCase ( A_ ): A__ : Any = VOCAB_FILES_NAMES A__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : List[Any] = LxmertTokenizer def __init__(self : Dict , snake_case__ : Tuple=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[Any]=True , snake_case__ : Tuple="[UNK]" , snake_case__ : Optional[Any]="[SEP]" , snake_case__ : Optional[Any]="[PAD]" , snake_case__ : List[Any]="[CLS]" , snake_case__ : Tuple="[MASK]" , snake_case__ : Dict=True , snake_case__ : Union[str, Any]=None , **snake_case__ : Dict , ) -> Optional[int]: '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , snake_case__ ) != do_lower_case or normalizer_state.get("strip_accents" , snake_case__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , snake_case__ ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(snake_case__ , normalizer_state.pop("type" ) ) snake_case : str = do_lower_case snake_case : List[Any] = strip_accents snake_case : Optional[int] = tokenize_chinese_chars snake_case : int = normalizer_class(**snake_case__ ) snake_case : Optional[Any] = do_lower_case def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Dict=None ) -> Any: '''simple docstring''' snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE (self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' snake_case : Optional[Any] = [self.sep_token_id] snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE (self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' snake_case : List[Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
59
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
357
from __future__ import annotations lowercase = list[list[int]] # assigning initial values to the grid lowercase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution lowercase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCamelCase_ ( UpperCamelCase__ : Matrix, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' if location := find_empty_location(UpperCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1, 10 ): if is_safe(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): UpperCamelCase__ = digit if sudoku(UpperCamelCase__ ) is not None: return grid UpperCamelCase__ = 0 return None def lowerCamelCase_ ( UpperCamelCase__ : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(UpperCamelCase__, end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 2_0) print_solution(example_grid) print("""\nExample grid solution:""") lowercase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
35
0
'''simple docstring''' from typing import Any def lowercase__( __UpperCamelCase: list ,__UpperCamelCase: list ,__UpperCamelCase: dict ,__UpperCamelCase: dict ,__UpperCamelCase: dict ,): """simple docstring""" _validation( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) # Creates data structures and fill initial step SCREAMING_SNAKE_CASE : dict = {} SCREAMING_SNAKE_CASE : dict = {} for state in states_space: SCREAMING_SNAKE_CASE : Any = observations_space[0] SCREAMING_SNAKE_CASE : Dict = ( initial_probabilities[state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE : List[Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 ,len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE : List[Any] = observations_space[o] SCREAMING_SNAKE_CASE : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function SCREAMING_SNAKE_CASE : List[Any] = '' SCREAMING_SNAKE_CASE : Dict = -1 for k_state in states_space: SCREAMING_SNAKE_CASE : Optional[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: SCREAMING_SNAKE_CASE : Optional[Any] = probability SCREAMING_SNAKE_CASE : Optional[Any] = k_state # Update probabilities and pointers dicts SCREAMING_SNAKE_CASE : List[Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) SCREAMING_SNAKE_CASE : Union[str, Any] = arg_max # The final observation SCREAMING_SNAKE_CASE : str = observations_space[len(__UpperCamelCase ) - 1] # argmax for given final observation SCREAMING_SNAKE_CASE : str = '' SCREAMING_SNAKE_CASE : Union[str, Any] = -1 for k_state in states_space: SCREAMING_SNAKE_CASE : Any = probabilities[(k_state, final_observation)] if probability > max_probability: SCREAMING_SNAKE_CASE : Dict = probability SCREAMING_SNAKE_CASE : Any = k_state SCREAMING_SNAKE_CASE : Any = arg_max # Process pointers backwards SCREAMING_SNAKE_CASE : Union[str, Any] = last_state SCREAMING_SNAKE_CASE : Optional[int] = [] for o in range(len(__UpperCamelCase ) - 1 ,-1 ,-1 ): result.append(__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Any ,): """simple docstring""" _validate_not_empty( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) _validate_lists(__UpperCamelCase ,__UpperCamelCase ) _validate_dicts( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Any ,): """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ): """simple docstring""" _validate_list(__UpperCamelCase ,'observations_space' ) _validate_list(__UpperCamelCase ,'states_space' ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: str ): """simple docstring""" if not isinstance(_object ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : int = f"{var_name} must be a list" raise ValueError(__UpperCamelCase ) else: for x in _object: if not isinstance(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = f"{var_name} must be a list of strings" raise ValueError(__UpperCamelCase ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Any ,__UpperCamelCase: Any ,): """simple docstring""" _validate_dict(__UpperCamelCase ,'initial_probabilities' ,__UpperCamelCase ) _validate_nested_dict(__UpperCamelCase ,'transition_probabilities' ) _validate_nested_dict(__UpperCamelCase ,'emission_probabilities' ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: str ): """simple docstring""" _validate_dict(_object ,__UpperCamelCase ,__UpperCamelCase ) for x in _object.values(): _validate_dict(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: str ,__UpperCamelCase: type ,__UpperCamelCase: bool = False ): """simple docstring""" if not isinstance(_object ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = f"{var_name} must be a dict" raise ValueError(__UpperCamelCase ) if not all(isinstance(__UpperCamelCase ,__UpperCamelCase ) for x in _object ): SCREAMING_SNAKE_CASE : Union[str, Any] = f"{var_name} all keys must be strings" raise ValueError(__UpperCamelCase ) if not all(isinstance(__UpperCamelCase ,__UpperCamelCase ) for x in _object.values() ): SCREAMING_SNAKE_CASE : Union[str, Any] = 'nested dictionary ' if nested else '' SCREAMING_SNAKE_CASE : Optional[int] = f"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(__UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
251
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''openai-gpt''' A : str = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=40_478, A=512, A=768, A=12, A=12, A="gelu", A=0.1, A=0.1, A=0.1, A=1E-5, A=0.02, A="cls_index", A=True, A=None, A=True, A=0.1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = n_positions SCREAMING_SNAKE_CASE : List[str] = n_embd SCREAMING_SNAKE_CASE : Optional[Any] = n_layer SCREAMING_SNAKE_CASE : Optional[Any] = n_head SCREAMING_SNAKE_CASE : str = afn SCREAMING_SNAKE_CASE : List[str] = resid_pdrop SCREAMING_SNAKE_CASE : int = embd_pdrop SCREAMING_SNAKE_CASE : Optional[Any] = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = summary_type SCREAMING_SNAKE_CASE : Tuple = summary_use_proj SCREAMING_SNAKE_CASE : Dict = summary_activation SCREAMING_SNAKE_CASE : Tuple = summary_first_dropout SCREAMING_SNAKE_CASE : List[str] = summary_proj_to_labels super().__init__(**A )
251
1
import os from pathlib import Path def lowerCamelCase__ ( ) -> Optional[Any]: from torch.utils.cpp_extension import load _A: str = Path(a ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' _A: Tuple = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , a , with_cuda=a , extra_include_paths=[str(a )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
366
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase__ : Tuple = { 'config': [ 'EXTERNAL_DATA_FORMAT_SIZE_LIMIT', 'OnnxConfig', 'OnnxConfigWithPast', 'OnnxSeq2SeqConfigWithPast', 'PatchingSpec', ], 'convert': ['export', 'validate_model_outputs'], 'features': ['FeaturesManager'], 'utils': ['ParameterFormat', 'compute_serialized_parameters_size'], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
301
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
1
def __lowerCamelCase ( snake_case__ = 1_00 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = n * (n + 1) * (2 * n + 1) / 6 _SCREAMING_SNAKE_CASE = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"{solution() = }")
125
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCAmelCase (_UpperCAmelCase ): __snake_case : Optional[Any] = (UnCLIPScheduler,) def UpperCamelCase ( self: int , **UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**UpperCAmelCase_ ) return config def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=UpperCAmelCase_ ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=UpperCAmelCase_ , prev_timestep=UpperCAmelCase_ ) def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="""fixed_small_log""" ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def UpperCamelCase ( self: int ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="""learned_range""" ) _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = 0.5 assert scheduler._get_variance(1 , predicted_variance=UpperCAmelCase_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=UpperCAmelCase_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=UpperCAmelCase_ ) - -0.0_01_00_11 < 1E-5 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = scheduler.timesteps _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase_ ): # 1. predict noise residual _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict previous mean of sample x_t-1 _SCREAMING_SNAKE_CASE = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = pred_prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(25 ) _SCREAMING_SNAKE_CASE = scheduler.timesteps _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) for i, t in enumerate(UpperCAmelCase_ ): # 1. predict noise residual _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , UpperCAmelCase_ ) if i + 1 == timesteps.shape[0]: _SCREAMING_SNAKE_CASE = None else: _SCREAMING_SNAKE_CASE = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _SCREAMING_SNAKE_CASE = scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , prev_timestep=UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample _SCREAMING_SNAKE_CASE = pred_prev_sample _SCREAMING_SNAKE_CASE = torch.sum(torch.abs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def UpperCamelCase ( self: List[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: str ): '''simple docstring''' pass
125
1
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""image_processor""", """tokenizer"""] lowerCamelCase__ = """BlipImageProcessor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self , lowercase , lowercase , lowercase ): super().__init__(lowercase , lowercase ) # add QFormer tokenizer _lowerCamelCase : int = qformer_tokenizer def __call__( self , lowercase = None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _lowerCamelCase : int = BatchFeature() if text is not None: _lowerCamelCase : List[str] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) encoding.update(lowercase ) _lowerCamelCase : List[str] = self.qformer_tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) _lowerCamelCase : List[Any] = qformer_text_encoding.pop('input_ids' ) _lowerCamelCase : Tuple = qformer_text_encoding.pop('attention_mask' ) if images is not None: _lowerCamelCase : int = self.image_processor(lowercase , return_tensors=lowercase ) encoding.update(lowercase ) return encoding def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.tokenizer.decode(*lowercase , **lowercase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.tokenizer.model_input_names _lowerCamelCase : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def A_ ( self , lowercase , **lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : Optional[Any] = os.path.join(lowercase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(lowercase ) return super().save_pretrained(lowercase , **lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase , subfolder='qformer_tokenizer' ) _lowerCamelCase : Dict = cls._get_arguments_from_pretrained(lowercase , **lowercase ) args.append(lowercase ) return cls(*lowercase )
96
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( lowercase, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DDIMPipeline lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCamelCase__ = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } lowerCamelCase__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__ = False def A_ ( self ): torch.manual_seed(0 ) _lowerCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) _lowerCamelCase : List[str] = DDIMScheduler() _lowerCamelCase : Optional[int] = {'unet': unet, 'scheduler': scheduler} return components def A_ ( self , lowercase , lowercase=0 ): if str(lowercase ).startswith('mps' ): _lowerCamelCase : Dict = torch.manual_seed(lowercase ) else: _lowerCamelCase : List[str] = torch.Generator(device=lowercase ).manual_seed(lowercase ) _lowerCamelCase : Tuple = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def A_ ( self ): _lowerCamelCase : Any = 'cpu' _lowerCamelCase : Tuple = self.get_dummy_components() _lowerCamelCase : Optional[Any] = self.pipeline_class(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : str = self.get_dummy_inputs(lowercase ) _lowerCamelCase : int = pipe(**lowercase ).images _lowerCamelCase : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _lowerCamelCase : Tuple = np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) _lowerCamelCase : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase , 1E-3 ) def A_ ( self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def A_ ( self ): super().test_save_load_local(expected_max_difference=3E-3 ) def A_ ( self ): super().test_save_load_optional_components(expected_max_difference=3E-3 ) def A_ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Optional[Any] = 'google/ddpm-cifar10-32' _lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(lowercase ) _lowerCamelCase : Dict = DDIMScheduler() _lowerCamelCase : Dict = DDIMPipeline(unet=lowercase , scheduler=lowercase ) ddim.to(lowercase ) ddim.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : List[str] = torch.manual_seed(0 ) _lowerCamelCase : str = ddim(generator=lowercase , eta=0.0 , output_type='numpy' ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : List[Any] = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A_ ( self ): _lowerCamelCase : Optional[int] = 'google/ddpm-ema-bedroom-256' _lowerCamelCase : str = UNetaDModel.from_pretrained(lowercase ) _lowerCamelCase : str = DDIMScheduler.from_pretrained(lowercase ) _lowerCamelCase : Optional[int] = DDIMPipeline(unet=lowercase , scheduler=lowercase ) ddpm.to(lowercase ) ddpm.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = torch.manual_seed(0 ) _lowerCamelCase : int = ddpm(generator=lowercase , output_type='numpy' ).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : str = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
96
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class __snake_case ( __lowerCAmelCase ): a__ = """yolos""" def __init__( self , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=[5_12, 8_64] , lowercase=16 , lowercase=3 , lowercase=True , lowercase=1_00 , lowercase=True , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=5 , lowercase=2 , lowercase=0.1 , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(**lowercase) a__: int = hidden_size a__: Optional[Any] = num_hidden_layers a__: str = num_attention_heads a__: List[str] = intermediate_size a__: Optional[Any] = hidden_act a__: str = hidden_dropout_prob a__: Union[str, Any] = attention_probs_dropout_prob a__: Optional[int] = initializer_range a__: int = layer_norm_eps a__: List[str] = image_size a__: Optional[int] = patch_size a__: Optional[int] = num_channels a__: List[str] = qkv_bias a__: List[Any] = num_detection_tokens a__: Dict = use_mid_position_embeddings a__: Optional[Any] = auxiliary_loss # Hungarian matcher a__: Dict = class_cost a__: str = bbox_cost a__: List[Any] = giou_cost # Loss coefficients a__: Union[str, Any] = bbox_loss_coefficient a__: Tuple = giou_loss_coefficient a__: Any = eos_coefficient class __snake_case ( __lowerCAmelCase ): a__ = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCamelCase_ ( self) -> float: '''simple docstring''' return 1e-4 @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return 12
353
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np lowercase__ = re.compile(r'\b(a|an|the)\b', re.UNICODE) lowercase__ = None def __a ( ) ->List[Any]: a__: Dict = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_SCREAMING_SNAKE_CASE , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_SCREAMING_SNAKE_CASE , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __a ( _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: a__: Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__: Optional[Any] = bool(qa['answers']['text'] ) return qid_to_has_ans def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[Any]: def remove_articles(_SCREAMING_SNAKE_CASE ): return ARTICLES_REGEX.sub(' ' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE ): a__: Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def __a ( _SCREAMING_SNAKE_CASE ) ->Optional[int]: if not s: return [] return normalize_answer(_SCREAMING_SNAKE_CASE ).split() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: a__: Any = get_tokens(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = get_tokens(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = collections.Counter(_SCREAMING_SNAKE_CASE ) & collections.Counter(_SCREAMING_SNAKE_CASE ) a__: Tuple = sum(common.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0 or len(_SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__: Any = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a__: Optional[int] = 1.0 * num_same / len(_SCREAMING_SNAKE_CASE ) a__: Dict = (2 * precision * recall) / (precision + recall) return fa def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: a__: Union[str, Any] = {} a__: Dict = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__: Optional[int] = qa['id'] a__: List[Any] = [t for t in qa['answers']['text'] if normalize_answer(_SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__: str = [''] if qid not in preds: print(F'Missing prediction for {qid}' ) continue a__: Any = preds[qid] # Take max over all gold answers a__: List[str] = max(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) a__: Optional[int] = max(compute_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[Any]: a__: List[str] = {} for qid, s in scores.items(): a__: List[Any] = na_probs[qid] > na_prob_thresh if pred_na: a__: Optional[int] = float(not qid_to_has_ans[qid] ) else: a__: Optional[Any] = s return new_scores def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) ->Tuple: if not qid_list: a__: str = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: a__: Optional[Any] = len(_SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: for k in new_eval: a__: List[Any] = new_eval[k] def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: plt.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_SCREAMING_SNAKE_CASE ) plt.savefig(_SCREAMING_SNAKE_CASE ) plt.clf() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->List[str]: a__: Optional[int] = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) a__: Dict = 0.0 a__: Optional[int] = 1.0 a__: Tuple = 0.0 a__: Tuple = [1.0] a__: Optional[Any] = [0.0] a__: Optional[Any] = 0.0 for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__: Optional[Any] = true_pos / float(i + 1 ) a__: int = true_pos / float(_SCREAMING_SNAKE_CASE ) if i == len(_SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_SCREAMING_SNAKE_CASE ) recalls.append(_SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {"ap": 100.0 * avg_prec} def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->int: if out_image_dir and not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) a__: Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__: Optional[Any] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) a__: List[str] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) a__: Optional[Any] = {k: float(_SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} a__: List[Any] = make_precision_recall_eval( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_image=os.path.join(_SCREAMING_SNAKE_CASE , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_exact' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_f1' ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'pr_oracle' ) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: if not qid_list: return a__: Any = [na_probs[k] for k in qid_list] a__: List[str] = np.ones_like(_SCREAMING_SNAKE_CASE ) / float(len(_SCREAMING_SNAKE_CASE ) ) plt.hist(_SCREAMING_SNAKE_CASE , weights=_SCREAMING_SNAKE_CASE , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(_SCREAMING_SNAKE_CASE , F'na_prob_hist_{name}.png' ) ) plt.clf() def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__: str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__: List[Any] = num_no_ans a__: Union[str, Any] = cur_score a__: Optional[Any] = 0.0 a__: str = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(_SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: a__: Tuple = scores[qid] else: if preds[qid]: a__: Optional[Any] = -1 else: a__: Optional[int] = 0 cur_score += diff if cur_score > best_score: a__: Dict = cur_score a__: Optional[int] = na_probs[qid] return 100.0 * best_score / len(_SCREAMING_SNAKE_CASE ), best_thresh def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: a__ , a__: str = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__ , a__: Optional[int] = find_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: List[Any] = best_exact a__: Dict = exact_thresh a__: Optional[int] = best_fa a__: str = fa_thresh def __a ( ) ->int: with open(OPTS.data_file ) as f: a__: Tuple = json.load(_SCREAMING_SNAKE_CASE ) a__: Union[str, Any] = dataset_json['data'] with open(OPTS.pred_file ) as f: a__: Dict = json.load(_SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__: Dict = json.load(_SCREAMING_SNAKE_CASE ) else: a__: Optional[Any] = {k: 0.0 for k in preds} a__: List[Any] = make_qid_to_has_ans(_SCREAMING_SNAKE_CASE ) # maps qid to True/False a__: Optional[int] = [k for k, v in qid_to_has_ans.items() if v] a__: Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__ , a__: Optional[Any] = get_raw_scores(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a__: Any = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__: Dict = apply_no_ans_threshold(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) a__: str = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if has_ans_qids: a__: List[str] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'HasAns' ) if no_ans_qids: a__: Optional[Any] = make_eval_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , qid_list=_SCREAMING_SNAKE_CASE ) merge_eval(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: print(json.dumps(_SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": lowercase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
203
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
158
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __a(SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( SCREAMING_SNAKE_CASE_ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
158
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : int = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
74
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : List[str] ,lowercase_ : int=1_3 ,lowercase_ : Optional[int]=3_0 ,lowercase_ : int=2 ,lowercase_ : List[Any]=3 ,lowercase_ : str=True ,lowercase_ : int=True ,lowercase_ : str=3_2 ,lowercase_ : Optional[int]=5 ,lowercase_ : Optional[Any]=4 ,lowercase_ : Any=3_7 ,lowercase_ : str="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : List[Any]=0.1 ,lowercase_ : int=1_0 ,lowercase_ : str=0.02 ,): lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : int = batch_size lowerCAmelCase__ : str = image_size lowerCAmelCase__ : Dict = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Union[str, Any] = is_training lowerCAmelCase__ : Optional[int] = use_labels lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : List[Any] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : List[str] = attention_probs_dropout_prob lowerCAmelCase__ : Any = type_sequence_label_size lowerCAmelCase__ : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (image_size // patch_size) ** 2 lowerCAmelCase__ : Dict = num_patches + 1 def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ : List[Any] = ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowercase_ ,initializer_range=self.initializer_range ,) return config, pixel_values def __lowerCAmelCase ( self : Tuple ,lowercase_ : List[Any] ,lowercase_ : Optional[int] ): lowerCAmelCase__ : Optional[Any] = FlaxViTModel(config=lowercase_ ) lowerCAmelCase__ : Dict = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase__ : int = (self.image_size, self.image_size) lowerCAmelCase__ : int = (self.patch_size, self.patch_size) lowerCAmelCase__ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ,lowercase_ : List[str] ): lowerCAmelCase__ : Optional[int] = self.type_sequence_label_size lowerCAmelCase__ : Any = FlaxViTForImageClassification(config=lowercase_ ) lowerCAmelCase__ : Any = model(lowercase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : Tuple = FlaxViTForImageClassification(lowercase_ ) lowerCAmelCase__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase__ : str = model(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ): lowerCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) ,( lowerCAmelCase__ ) , ) : Any = config_and_inputs lowerCAmelCase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Tuple = FlaxViTModelTester(self ) lowerCAmelCase__ : List[str] = ConfigTester(self ,config_class=lowercase_ ,has_text_modality=lowercase_ ,hidden_size=3_7 ) def __lowerCAmelCase ( self : Dict ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Union[str, Any] = model_class(lowercase_ ) lowerCAmelCase__ : List[str] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : List[Any] = [*signature.parameters.keys()] lowerCAmelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,lowercase_ ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase__ : Dict = self._prepare_for_class(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ : List[Any] ,**lowercase_ : Optional[int] ): return model(pixel_values=lowercase_ ,**lowercase_ ) with self.subTest('''JIT Enabled''' ): lowerCAmelCase__ : Optional[Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCAmelCase__ : Optional[int] = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) ,len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ ,lowercase_ ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def __lowerCAmelCase ( self : List[Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase__ : List[Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) lowerCAmelCase__ : Optional[int] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(lowercase_ )
74
1
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowercase__ : Union[str, Any] = logging.getLogger(__name__) lowercase__ : str = """pytorch_model.bin""" @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" _SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""}, ) @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" _SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """A csv or a json file containing the validation data."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """The name of the task to train on."""}, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class UpperCamelCase__ : """simple docstring""" _SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default="""accuracy""", metadata={"""help""": """The evaluation metric used for the task."""} ) _SCREAMING_SNAKE_CASE = dataclasses.field( default="""no""", metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" }, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=10, metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""}, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0, metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" }, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""}, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""}, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""}, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0, metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""}, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=100, metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""}, ) _SCREAMING_SNAKE_CASE = dataclasses.field( default=lowercase_, metadata={"""help""": """Random seed for initialization."""}, ) def UpperCamelCase_ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> Optional[int]: """simple docstring""" lowerCAmelCase_ : List[Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: lowerCAmelCase_ : str = dataset.filter(lambda lowerCAmelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 lowerCAmelCase_ : str = int(eval_result * len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) lowerCAmelCase_ : str = dataset.sort('probability' , reverse=lowerCAmelCase__ ) lowerCAmelCase_ : Union[str, Any] = dataset.select(range(lowerCAmelCase__ ) ) lowerCAmelCase_ : str = dataset.remove_columns(['label', 'probability'] ) lowerCAmelCase_ : Optional[Any] = dataset.rename_column('prediction' , 'label' ) lowerCAmelCase_ : List[str] = dataset.map(lambda lowerCAmelCase__ : {"label": idalabel[example["label"]]} ) lowerCAmelCase_ : List[Any] = dataset.shuffle(seed=args.seed ) lowerCAmelCase_ : List[Any] = os.path.join(lowerCAmelCase__ , f"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase__ , index=lowerCAmelCase__ ) else: dataset.to_json(lowerCAmelCase__ ) def UpperCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , **lowerCAmelCase__ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() lowerCAmelCase_ : List[str] = STModelArguments(model_name_or_path=lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = STDataArguments(train_file=lowerCAmelCase__ , infer_file=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = STTrainingArguments(output_dir=lowerCAmelCase__ ) lowerCAmelCase_ : List[str] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase__ ).items(): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for key, value in kwargs.items(): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Sanity checks lowerCAmelCase_ : Union[str, Any] = {} lowerCAmelCase_ : str = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None lowerCAmelCase_ : Any = args.train_file lowerCAmelCase_ : Optional[int] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None lowerCAmelCase_ : List[str] = args.eval_file for key in data_files: lowerCAmelCase_ : int = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], f"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: lowerCAmelCase_ : Optional[int] = extension else: assert extension == args.data_file_extension, f"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), f"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) lowerCAmelCase_ : Tuple = f"{args.output_dir}/self-train_iter-{{}}".format lowerCAmelCase_ : int = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) accelerator.wait_for_everyone() lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = None lowerCAmelCase_ : str = 0 lowerCAmelCase_ : int = False # Show the progress bar lowerCAmelCase_ : List[str] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): lowerCAmelCase_ : Tuple = data_dir_format(lowerCAmelCase__ ) assert os.path.exists(lowerCAmelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 lowerCAmelCase_ : List[Any] = os.path.join(lowerCAmelCase__ , 'stage-1' ) lowerCAmelCase_ : List[str] = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): arguments_dict.update({key: value} ) lowerCAmelCase_ : int = os.path.join(lowerCAmelCase__ , 'best-checkpoint' , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , lowerCAmelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data lowerCAmelCase_ : int = os.path.join(lowerCAmelCase__ , 'best-checkpoint' ) lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'stage-2' ) # Update arguments_dict lowerCAmelCase_ : str = model_path lowerCAmelCase_ : List[Any] = data_files['train'] lowerCAmelCase_ : Union[str, Any] = current_output_dir lowerCAmelCase_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'best-checkpoint' , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , lowerCAmelCase__ ) lowerCAmelCase_ : Any = iteration lowerCAmelCase_ : List[Any] = data_dir_format(iteration + 1 ) lowerCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase__ , 'best-checkpoint' ) ) lowerCAmelCase_ : List[Any] = config.idalabel lowerCAmelCase_ : Optional[Any] = os.path.join(lowerCAmelCase__ , 'eval_results_best-checkpoint.json' ) lowerCAmelCase_ : str = os.path.join(lowerCAmelCase__ , 'test_results_best-checkpoint.json' ) assert os.path.exists(lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'r' ) as f: lowerCAmelCase_ : str = float(json.load(lowerCAmelCase__ )[args.eval_metric] ) lowerCAmelCase_ : Any = os.path.join(lowerCAmelCase__ , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(lowerCAmelCase__ ) # Loading the dataset from local csv or json files. lowerCAmelCase_ : List[Any] = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] lowerCAmelCase_ : Optional[Any] = load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f"eval_results_iter-{iteration}.json" ) ) if os.path.exists(lowerCAmelCase__ ): shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , f"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.wait_for_everyone() lowerCAmelCase_ : Tuple = os.path.join(lowerCAmelCase__ , f"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: lowerCAmelCase_ : List[Any] = eval_result if best_iteration is None: lowerCAmelCase_ : str = new_iteration lowerCAmelCase_ : str = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: lowerCAmelCase_ : int = new_iteration lowerCAmelCase_ : Optional[int] = new_eval_result lowerCAmelCase_ : List[Any] = 0 else: if new_eval_result == best_eval_result: lowerCAmelCase_ : Tuple = new_iteration lowerCAmelCase_ : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: lowerCAmelCase_ : Optional[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , lowerCAmelCase__ ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , f"eval_results_iter-{iteration}.json" ) , os.path.join(lowerCAmelCase__ , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , f"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(lowerCAmelCase__ , 'eval_results_best-iteration.json' ) , )
224
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = "cpu" , lowerCAmelCase__ : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase_ : Any = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase_ : str = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Dict = src_path torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
224
1
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( snake_case_ : Optional[int] = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' UpperCamelCase : List[str] = BeautifulSoup(requests.get(__UpperCAmelCase ).text ,"""html.parser""" ) UpperCamelCase : List[Any] = soup.findAll("""h1""" ) UpperCamelCase : int = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} ) values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(__UpperCAmelCase ,__UpperCAmelCase )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
352
"""simple docstring""" from typing import Any class lowerCamelCase : def __init__( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = data UpperCamelCase : Optional[Any] = None def __repr__( self ): return f'Node({self.data})' class lowerCamelCase : def __init__( self ): UpperCamelCase : Dict = None def __iter__( self ): UpperCamelCase : int = self.head while node: yield node.data UpperCamelCase : Union[str, Any] = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(SCREAMING_SNAKE_CASE_ ) for item in self] ) def __getitem__( self , SCREAMING_SNAKE_CASE_ ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) UpperCamelCase : List[Any] = self.head for _ in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = current.next UpperCamelCase : Optional[Any] = data def a_ ( self , SCREAMING_SNAKE_CASE_ ): self.insert_nth(len(self ) , SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): self.insert_nth(0 , SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) UpperCamelCase : Optional[Any] = Node(SCREAMING_SNAKE_CASE_ ) if self.head is None: UpperCamelCase : Dict = new_node elif index == 0: UpperCamelCase : Any = self.head # link new_node to head UpperCamelCase : Any = new_node else: UpperCamelCase : Dict = self.head for _ in range(index - 1 ): UpperCamelCase : str = temp.next UpperCamelCase : Any = temp.next UpperCamelCase : Optional[Any] = new_node def a_ ( self ): # print every node data print(self ) def a_ ( self ): return self.delete_nth(0 ) def a_ ( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def a_ ( self , SCREAMING_SNAKE_CASE_ = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) UpperCamelCase : Union[str, Any] = self.head # default first node if index == 0: UpperCamelCase : Optional[Any] = self.head.next else: UpperCamelCase : Dict = self.head for _ in range(index - 1 ): UpperCamelCase : int = temp.next UpperCamelCase : Optional[Any] = temp.next UpperCamelCase : Dict = temp.next.next return delete_node.data def a_ ( self ): return self.head is None def a_ ( self ): UpperCamelCase : Optional[Any] = None UpperCamelCase : Union[str, Any] = self.head while current: # Store the current node's next node. UpperCamelCase : Optional[int] = current.next # Make the current node's next point backwards UpperCamelCase : Optional[Any] = prev # Make the previous node be the current node UpperCamelCase : int = current # Make the current node the next node (to progress iteration) UpperCamelCase : Optional[int] = next_node # Return prev in order to put the head at the end UpperCamelCase : Optional[int] = prev def A_ ( ): '''simple docstring''' UpperCamelCase : int = LinkedList() assert linked_list.is_empty() is True assert str(snake_case_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(snake_case_ ) == i linked_list.insert_nth(snake_case_ ,i + 1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 ,1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(snake_case_ ) == 9 assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 ,1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 ,9 ) ) is True for i in range(0 ,9 ): UpperCamelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 ,9 ) ) is True linked_list.reverse() assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(-8 ,1 ) ) def A_ ( ): '''simple docstring''' UpperCamelCase : int = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), """dlrow olleH""", 7, 5_5_5_5, 0, -192.55555, """Hello, world!""", 77.9, Node(1_0 ), None, None, 12.20, ] UpperCamelCase : List[Any] = LinkedList() for i in test_input: linked_list.insert_tail(snake_case_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase : Dict = linked_list.delete_head() assert result == -9 assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase : int = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase : Optional[Any] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(snake_case_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(snake_case_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case_ ) assert ( str(snake_case_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A_ ( ): '''simple docstring''' from doctest import testmod testmod() UpperCamelCase : List[Any] = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(snake_case_ ) print("""\nReading/changing Node data using indexing:""" ) print(f'Element at Position 1: {linked_list[1]}' ) UpperCamelCase : List[Any] = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(snake_case_ ) print(f'length of linked_list is : {len(snake_case_ )}' ) if __name__ == "__main__": main()
27
0
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return int(input_a == input_a == 0 ) def __lowerCamelCase ( ): """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
130
"""simple docstring""" import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets UpperCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) UpperCAmelCase_ : List[str] = """\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\", author = \"Moosavi, Nafise Sadat and Strube, Michael\", booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\", month = aug, year = \"2016\", address = \"Berlin, Germany\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/P16-1060\", doi = \"10.18653/v1/P16-1060\", pages = \"632--642\", } """ UpperCAmelCase_ : Tuple = """\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. """ UpperCAmelCase_ : Union[str, Any] = """ Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting 'keep_singletons=False', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs. min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: 'mentions': mentions 'muc': MUC metric [Vilain et al, 1995] 'bcub': B-cubed [Bagga and Baldwin, 1998] 'ceafe': CEAFe [Luo et al., 2005] 'lea': LEA [Moosavi and Strube, 2016] 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric('coval') >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -', ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)', ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)', ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -', ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -', ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {'mentions/recall': 1.0,[...] 'conll_score': 100.0} """ def _A (__a , __a , __a=False , __a=False , __a=True , __a=False , __a="dummy_doc" ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {doc: key_lines} SCREAMING_SNAKE_CASE_ : List[str] = {doc: sys_lines} SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = reader.get_doc_mentions(__a , key_doc_lines[doc] , __a ) key_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = reader.get_doc_mentions(__a , sys_doc_lines[doc] , __a ) sys_singletons_num += singletons_num if NP_only or min_span: SCREAMING_SNAKE_CASE_ : Union[str, Any] = reader.set_annotated_parse_trees(__a , key_doc_lines[doc] , __a , __a ) if remove_nested: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = reader.remove_nested_coref_mentions(__a , __a ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = reader.remove_nested_coref_mentions(__a , __a ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.get_mention_assignments(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = reader.get_mention_assignments(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( '''Number of resulting singleton clusters in the key ''' f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' '''files, respectively''' ) return doc_coref_infos def _A (__a , __a , __a , __a , __a , __a , __a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = get_coref_infos(__a , __a , __a , __a , __a , __a ) SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : str = 0 for name, metric in metrics: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = evaluator.evaluate_documents(__a , __a , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} ) logger.info( name.ljust(10 ) , f'Recall: {recall * 1_00:.2f}' , f' Precision: {precision * 1_00:.2f}' , f' F1: {fa * 1_00:.2f}' , ) if conll_subparts_num == 3: SCREAMING_SNAKE_CASE_ : Tuple = (conll / 3) * 1_00 logger.info(f'CoNLL score: {conll:.2f}' ) output_scores.update({'''conll_score''': conll} ) return output_scores def _A (__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: SCREAMING_SNAKE_CASE_ : Any = line.split()[5] if not parse_col == "-": SCREAMING_SNAKE_CASE_ : Any = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''')), '''references''': datasets.Sequence(datasets.Value('''string''')), }) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Dict=True , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=False , lowercase_ : Dict=False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: SCREAMING_SNAKE_CASE_ : Union[str, Any] = util.check_gold_parse_annotation(lowercase_) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluate( key_lines=lowercase_ , sys_lines=lowercase_ , metrics=lowercase_ , NP_only=lowercase_ , remove_nested=lowercase_ , keep_singletons=lowercase_ , min_span=lowercase_ , ) return score
91
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->tuple[int, int]: """simple docstring""" if b == 0: return (1, 0) ((a_) , (a_)) = extended_euclid(UpperCAmelCase , a % b ) a_ = a // b return (y, x - k * y) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" ((a_) , (a_)) = extended_euclid(UpperCAmelCase , UpperCAmelCase ) a_ = na * na a_ = ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" ((a_) , (a_)) = extended_euclid(UpperCAmelCase , UpperCAmelCase ) if b < 0: a_ = (b % n + n) % n return b def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ , a_ = invert_modulo(UpperCAmelCase , UpperCAmelCase ), invert_modulo(UpperCAmelCase , UpperCAmelCase ) a_ = na * na a_ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers __a = float('nan') class A__ : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : List[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Tuple = sys.stdout _UpperCAmelCase : List[Any] = open(lowerCAmelCase__ , "a" ) def __getattr__( self : List[Any] , lowerCAmelCase__ : Dict ) -> List[Any]: """simple docstring""" return getattr(self.stdout , lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase__ : str ) -> Dict: """simple docstring""" self.stdout.write(lowerCAmelCase__ ) # strip tqdm codes self.file.write(re.sub(R"^.*\r" , "" , lowerCAmelCase__ , 0 , re.M ) ) def __UpperCAmelCase ( a_: List[str]=80, a_: Optional[int]=False ): _UpperCAmelCase : Any = [] # deal with critical env vars _UpperCAmelCase : Tuple = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: _UpperCAmelCase : List[str] = os.environ.get(a_, a_ ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) _UpperCAmelCase : Optional[int] = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(a_ ) # now the normal args cmd += list(map(shlex.quote, sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Dict = "" while len(a_ ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(a_ ) == 0 or len(a_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(a_ ) _UpperCAmelCase : int = "" return "\\\n".join(a_ ) def __UpperCAmelCase ( a_: Optional[Any], a_: List[str] ): # unwrap multi-line input _UpperCAmelCase : Optional[int] = re.sub(r"[\\\n]+", " ", args.base_cmd ) # remove --output_dir if any and set our own _UpperCAmelCase : Any = re.sub("--output_dir\s+[^\s]+", "", args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir _UpperCAmelCase : str = re.sub("--overwrite_output_dir\s+", "", args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( a_: List[str], a_: Optional[Any], a_: Optional[Any], a_: Any, a_: Dict, a_: Union[str, Any], a_: List[str] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0, 100 ) for k in metric_keys}, **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )}, ) _UpperCAmelCase : str = subprocess.run(a_, capture_output=a_, text=a_ ) if verbose: print("STDOUT", result.stdout ) print("STDERR", result.stderr ) # save the streams _UpperCAmelCase : List[Any] = variation.replace(" ", "-" ) with open(Path(a_ ) / f"""log.{prefix}.stdout.txt""", "w" ) as f: f.write(result.stdout ) with open(Path(a_ ) / f"""log.{prefix}.stderr.txt""", "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""", "r", encoding="utf-8" ) as f: _UpperCAmelCase : Optional[int] = json.load(a_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( a_: str, a_: List[str], a_: Tuple, a_: List[str], a_: Any, a_: Any, a_: Union[str, Any], a_: int, a_: str, a_: Any, ): _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : Any = f"""{id}: {variation:<{longest_variation_len}}""" _UpperCAmelCase : int = f"""{preamble}: """ _UpperCAmelCase : Optional[Any] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(a_ ), desc=a_, leave=a_ ): _UpperCAmelCase : Dict = process_run_single( a_, a_, a_, a_, a_, a_, a_ ) _UpperCAmelCase : Optional[Any] = single_run_metrics[target_metric_key] if not math.isnan(a_ ): metrics.append(a_ ) results.append(a_ ) outcome += "✓" else: outcome += "✘" _UpperCAmelCase : Union[str, Any] = f"""\33[2K\r{outcome}""" if len(a_ ) > 0: _UpperCAmelCase : str = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _UpperCAmelCase : int = round(mean_metrics[target_metric_key], 2 ) _UpperCAmelCase : List[str] = f"""{outcome} {mean_target}""" if len(a_ ) > 1: results_str += f""" {tuple(round(a_, 2 ) for x in results )}""" print(a_ ) _UpperCAmelCase : Dict = variation return mean_metrics else: print(a_ ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ): _UpperCAmelCase : Dict = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def __UpperCAmelCase ( a_: List[str], a_: Optional[Any], a_: List[Any], a_: Any, a_: Optional[Any] ): _UpperCAmelCase : List[str] = pd.DataFrame(a_ ) _UpperCAmelCase : Any = "variation" _UpperCAmelCase : int = "diff_%" _UpperCAmelCase : str = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _UpperCAmelCase : Union[str, Any] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(a_ ): # as a fallback, use the minimal value as the sentinel _UpperCAmelCase : Optional[int] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(a_ ): _UpperCAmelCase : str = df.apply( lambda a_ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0, axis="columns", ) # re-order columns _UpperCAmelCase : Dict = [variation_key, target_metric_key, diff_key, *report_metric_keys] _UpperCAmelCase : Union[str, Any] = df.reindex(a_, axis="columns" ) # reorder cols # capitalize _UpperCAmelCase : Optional[Any] = df.rename(str.capitalize, axis="columns" ) # make the cols as narrow as possible _UpperCAmelCase : Union[str, Any] = df.rename(lambda a_ : c.replace("_", "<br>" ), axis="columns" ) _UpperCAmelCase : Tuple = df.rename(lambda a_ : c.replace("_", "\n" ), axis="columns" ) _UpperCAmelCase : str = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=a_, floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=a_, floatfmt=".2f" )] print("\n\n".join(a_ ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( "--base-cmd", default=a_, type=a_, required=a_, help="Base cmd", ) parser.add_argument( "--variations", default=a_, type=a_, nargs="+", required=a_, help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'", ) parser.add_argument( "--base-variation", default=a_, type=a_, help="Baseline variation to compare to. if None the minimal target value will be used to compare against", ) parser.add_argument( "--target-metric-key", default=a_, type=a_, required=a_, help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second", ) parser.add_argument( "--report-metric-keys", default="", type=a_, help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples", ) parser.add_argument( "--repeat-times", default=1, type=a_, help="How many times to re-run each variation - an average will be reported", ) parser.add_argument( "--output_dir", default="output_benchmark", type=a_, help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked", ) parser.add_argument( "--verbose", default=a_, action="store_true", help="Whether to show the outputs of each run or just the benchmark progress", ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : List[str] = args.output_dir Path(a_ ).mkdir(exist_ok=a_ ) _UpperCAmelCase : List[str] = get_base_command(a_, a_ ) # split each dimension into its --foo variations _UpperCAmelCase : Optional[int] = [list(map(str.strip, re.split(r"\|", a_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _UpperCAmelCase : Optional[int] = list(map(str.strip, map(" ".join, itertools.product(*a_ ) ) ) ) _UpperCAmelCase : Tuple = max(len(a_ ) for x in variations ) # split wanted keys _UpperCAmelCase : Any = args.report_metric_keys.split() # capture prints into a log file for convenience _UpperCAmelCase : List[str] = f"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) _UpperCAmelCase : Optional[int] = Tee(a_ ) print(f"""\n*** Running {len(a_ )} benchmarks:""" ) print(f"""Base command: {' '.join(a_ )}""" ) _UpperCAmelCase : int = "variation" _UpperCAmelCase : Dict = [] for id, variation in enumerate(tqdm(a_, desc="Total completion: ", leave=a_ ) ): _UpperCAmelCase : str = base_cmd + variation.split() results.append( process_run( id + 1, a_, a_, a_, a_, args.target_metric_key, a_, args.repeat_times, a_, args.verbose, ) ) process_results(a_, args.target_metric_key, a_, args.base_variation, a_ ) if __name__ == "__main__": main()
145
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : str ) -> int: """simple docstring""" _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=lowerCAmelCase__ ).to(lowerCAmelCase__ ) _UpperCAmelCase : str = AutoTokenizer.from_pretrained("google/mt5-small" ) _UpperCAmelCase : str = tokenizer("Hello there" , return_tensors="pt" ).input_ids _UpperCAmelCase : str = tokenizer("Hi I am" , return_tensors="pt" ).input_ids _UpperCAmelCase : Any = model(input_ids.to(lowerCAmelCase__ ) , labels=labels.to(lowerCAmelCase__ ) ).loss _UpperCAmelCase : Dict = -(labels.shape[-1] * loss.item()) _UpperCAmelCase : Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
145
1
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int , snake_case_ : bool , snake_case_ : list[int] , snake_case_ : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , snake_case_ , snake_case_ , snake_case_ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case_ , snake_case_ , snake_case_ ) , ) ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase_ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] UpperCAmelCase_ = math.log(len(snake_case_ ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , snake_case_ , snake_case_ , snake_case_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
106
'''simple docstring''' import os import numpy import onnx def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = a.name UpperCAmelCase_ = b.name UpperCAmelCase_ = "" UpperCAmelCase_ = "" UpperCAmelCase_ = a == b UpperCAmelCase_ = name_a UpperCAmelCase_ = name_b return res def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Union[str, Any] ) -> Any: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(snake_case_ , snake_case_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , snake_case_ , snake_case_ ) _graph_replace_input_with(node_proto.attribute[1].g , snake_case_ , snake_case_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = list(model.graph.initializer ) UpperCAmelCase_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase_ = inits[i].name UpperCAmelCase_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = os.path.dirname(snake_case_ ) UpperCAmelCase_ = os.path.basename(snake_case_ ) UpperCAmelCase_ = onnx.load(os.path.join(snake_case_ , snake_case_ ) ) UpperCAmelCase_ = list(model.graph.initializer ) UpperCAmelCase_ = set() UpperCAmelCase_ = {} UpperCAmelCase_ = [] UpperCAmelCase_ = 0 for i in range(len(snake_case_ ) ): if i in dup_set: continue for j in range(i + 1 , len(snake_case_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(snake_case_ ) dup_set.add(snake_case_ ) UpperCAmelCase_ = inits[j].data_type UpperCAmelCase_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " , snake_case_ ) total_reduced_size += mem_size UpperCAmelCase_ = inits[i].name UpperCAmelCase_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(snake_case_ ) else: UpperCAmelCase_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 10_24 / 10_24 / 10_24 , "GB" ) UpperCAmelCase_ = sorted(snake_case_ ) _remove_dup_initializers_from_model(snake_case_ , snake_case_ , snake_case_ ) UpperCAmelCase_ = "optimized_" + model_file_name UpperCAmelCase_ = os.path.join(snake_case_ , snake_case_ ) onnx.save(snake_case_ , snake_case_ ) return new_model
106
1
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=32 , __UpperCAmelCase=3 , __UpperCAmelCase=10 , __UpperCAmelCase=[10, 20, 30, 40] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ): '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = image_size __lowerCamelCase = num_channels __lowerCamelCase = embeddings_size __lowerCamelCase = hidden_sizes __lowerCamelCase = depths __lowerCamelCase = is_training __lowerCamelCase = use_labels __lowerCamelCase = hidden_act __lowerCamelCase = num_labels __lowerCamelCase = scope __lowerCamelCase = len(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase = self.get_config() return config, pixel_values def lowerCamelCase ( self ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = FlaxRegNetModel(config=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.num_labels __lowerCamelCase = FlaxRegNetForImageClassification(config=__UpperCAmelCase ) __lowerCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase ,__lowerCamelCase = config_and_inputs __lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = FlaxRegNetModelTester(self ) __lowerCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase ( self ): '''simple docstring''' return def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def lowerCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase = [*signature.parameters.keys()] __lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowerCamelCase = model_class(__UpperCAmelCase ) __lowerCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __lowerCamelCase = model_class(__UpperCAmelCase ) @jax.jit def model_jitted(__UpperCAmelCase , **__UpperCAmelCase ): return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase ) with self.subTest('''JIT Enabled''' ): __lowerCamelCase = model_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def a__ ( ): __lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class __lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) __lowerCamelCase = self.default_image_processor __lowerCamelCase = prepare_img() __lowerCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='''np''' ) __lowerCamelCase = model(**__UpperCAmelCase ) # verify the logits __lowerCamelCase = (1, 1000) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowerCamelCase = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration a_ = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] a_ = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] a_ = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) a_ = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) a_ = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Optional[Any] ): for tf_name, hf_name in patterns: __lowerCamelCase = k.replace(_UpperCamelCase ,_UpperCamelCase ) return k def a__ ( _UpperCamelCase : dict ,_UpperCamelCase : dict ): __lowerCamelCase = BigBirdPegasusConfig(**_UpperCamelCase ) __lowerCamelCase = BigBirdPegasusForConditionalGeneration(_UpperCamelCase ) __lowerCamelCase = torch_model.state_dict() __lowerCamelCase = {} # separating decoder weights __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} __lowerCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = DECODER_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() ,'''tf -> hf conversion''' ): __lowerCamelCase = [k.endswith(_UpperCamelCase ) for ending in KEYS_TO_IGNORE] if any(_UpperCamelCase ): continue __lowerCamelCase = REMAINING_PATTERNS __lowerCamelCase = rename_state_dict_key(_UpperCamelCase ,_UpperCamelCase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): __lowerCamelCase = v.T __lowerCamelCase = torch.from_numpy(_UpperCamelCase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" __lowerCamelCase = mapping['''model.embed_positions.weight'''] __lowerCamelCase = mapping.pop('''model.embed_positions.weight''' ) __lowerCamelCase ,__lowerCamelCase = torch_model.load_state_dict(_UpperCamelCase ,strict=_UpperCamelCase ) __lowerCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def a__ ( _UpperCamelCase : int ): __lowerCamelCase = tf.train.list_variables(_UpperCamelCase ) __lowerCamelCase = {} __lowerCamelCase = ['''global_step'''] for name, shape in tqdm(_UpperCamelCase ,desc='''converting tf checkpoint to dict''' ): __lowerCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase = tf.train.load_variable(_UpperCamelCase ,_UpperCamelCase ) __lowerCamelCase = array return tf_weights def a__ ( _UpperCamelCase : str ,_UpperCamelCase : str ,_UpperCamelCase : dict ): __lowerCamelCase = get_tf_weights_as_numpy(_UpperCamelCase ) __lowerCamelCase = convert_bigbird_pegasus(_UpperCamelCase ,_UpperCamelCase ) torch_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") a_ = parser.parse_args() a_ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def a__ ( __lowercase ) -> List[Any]: _A = 384 if "tiny" in model_name: _A = [3, 3, 9, 3] _A = [96, 192, 384, 768] if "small" in model_name: _A = [3, 3, 27, 3] _A = [96, 192, 384, 768] if "base" in model_name: _A = [3, 3, 27, 3] _A = [128, 256, 512, 1024] _A = 512 if "large" in model_name: _A = [3, 3, 27, 3] _A = [192, 384, 768, 1536] _A = 768 if "xlarge" in model_name: _A = [3, 3, 27, 3] _A = [256, 512, 1024, 2048] _A = 1024 # set label information _A = 150 _A = "huggingface/label-files" _A = "ade20k-id2label.json" _A = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="dataset" ) , "r" ) ) _A = {int(__lowercase ): v for k, v in idalabel.items()} _A = {v: k for k, v in idalabel.items()} _A = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] ) _A = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def a__ ( __lowercase ) -> List[Any]: _A = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a__ ( __lowercase , __lowercase , __lowercase ) -> List[Any]: _A = dct.pop(__lowercase ) _A = val def a__ ( __lowercase , __lowercase , __lowercase ) -> Optional[Any]: _A = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } _A = model_name_to_url[model_name] _A = torch.hub.load_state_dict_from_url(__lowercase , map_location="cpu" )["state_dict"] _A = get_upernet_config(__lowercase ) _A = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _A = state_dict.pop(__lowercase ) if "bn" in key: _A = key.replace("bn" , "batch_norm" ) _A = val # rename keys _A = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image _A = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _A = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert("RGB" ) _A = SegformerImageProcessor() _A = processor(__lowercase , return_tensors="pt" ).pixel_values with torch.no_grad(): _A = model(__lowercase ) if model_name == "upernet-convnext-tiny": _A = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": _A = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": _A = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": _A = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": _A = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__lowercase ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
163
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class snake_case ( _UpperCamelCase): __UpperCamelCase = 'ctrl' __UpperCamelCase = ['past_key_values'] __UpperCamelCase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , a__ : Union[str, Any]=24_65_34 , a__ : int=2_56 , a__ : Any=12_80 , a__ : Optional[int]=81_92 , a__ : Union[str, Any]=48 , a__ : Optional[int]=16 , a__ : List[str]=0.1 , a__ : List[str]=0.1 , a__ : Optional[int]=1E-6 , a__ : Optional[int]=0.0_2 , a__ : Tuple=True , **a__ : List[Any] , ) -> Tuple: '''simple docstring''' _A = vocab_size _A = n_positions _A = n_embd _A = n_layer _A = n_head _A = dff _A = resid_pdrop _A = embd_pdrop _A = layer_norm_epsilon _A = initializer_range _A = use_cache super().__init__(**a__ )
163
1
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class _snake_case ( pl.LightningModule ): '''simple docstring''' def __init__( self: str ,lowerCamelCase_: int ) -> int: super().__init__() UpperCAmelCase_ : int = model UpperCAmelCase_ : List[Any] = 2 UpperCAmelCase_ : Any = nn.Linear(self.model.config.hidden_size ,self.num_labels ) def A__ ( self: int ) -> Optional[Any]: pass def lowerCamelCase_ ( _a : str , _a : str , _a : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = LongformerModel.from_pretrained(_a ) UpperCAmelCase_ : Optional[int] = LightningModel(_a ) UpperCAmelCase_ : Optional[Any] = torch.load(_a , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model UpperCAmelCase_ : Optional[Any] = LongformerForQuestionAnswering.from_pretrained(_a ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_a ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase_ = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
345
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
1
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class snake_case ( lowercase_ ): def __init__( self , *__UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) ->Any: super().__init__(*a__ , **a__ ) a_ = eval_examples a_ = post_process_function def UpperCAmelCase__ ( self , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = "eval" , **__UpperCAmelCase , ) ->Dict[str, float]: a_ = gen_kwargs.copy() a_ = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) a_ = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) a_ = gen_kwargs a_ = self.eval_dataset if eval_dataset is None else eval_dataset a_ = self.get_eval_dataloader(a__ ) a_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a_ = self.compute_metrics a_ = None a_ = time.time() a_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a_ = eval_loop( a__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: a_ = compute_metrics a_ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a_ = self.post_process_function(a__ , a__ , a__ ) a_ = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ = metrics.pop(a__ ) metrics.update(output.metrics ) else: a_ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) a_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , a__ ) return metrics def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase = "test" , **__UpperCAmelCase ) ->List[str]: a_ = gen_kwargs.copy() a_ = self.get_test_dataloader(a__ ) # Temporarily disable metric computation, we will do it in the loop here. a_ = self.compute_metrics a_ = None a_ = time.time() a_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: a_ = eval_loop( a__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a__ , metric_key_prefix=a__ , ) finally: a_ = compute_metrics a_ = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( a__ , a__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output a_ = self.post_process_function(a__ , a__ , a__ , "predict" ) a_ = self.compute_metrics(a__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): a_ = metrics.pop(a__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a__ )
354
"""simple docstring""" from heapq import heappop, heappush import numpy as np def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) ->tuple[float | int, list[tuple[int, int]]]: """simple docstring""" a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) , np.inf ) a_ = 0 a_ = np.empty((rows, cols) , dtype=UpperCAmelCase ) a_ = None while queue: ((a_) , (a_)) = heappop(UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(UpperCAmelCase ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(UpperCAmelCase , (dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
303
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowercase__ : Any = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowercase__ : List[str] = ( subprocess.check_output(f"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() ) lowercase__ : Dict = '''|'''.join(sys.argv[1:]) lowercase__ : Optional[Any] = re.compile(rf"""^({joined_dirs}).*?\.py$""") lowercase__ : Optional[int] = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
190
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __A : Union[str, Any] = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase , cache_dir=_UpperCAmelCase) __A : Optional[Any] = [t[-1] for t in os.walk(os.path.join(_UpperCAmelCase , os.listdir(_UpperCAmelCase)[0] , 'snapshots'))] __A : int = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase) __A : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Optional[Any] = jax.random.PRNGKey(0) __A : int = 4 __A : Tuple = jax.device_count() __A : Union[str, Any] = num_samples * [prompt] __A : Tuple = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : str = replicate(_UpperCAmelCase) __A : Tuple = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = shard(_UpperCAmelCase) __A : Union[str, Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1514745) < 1e-3 assert np.abs(np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 49947.875) < 5e-1 __A : List[str] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(_UpperCAmelCase) == num_samples def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_UpperCAmelCase) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Tuple = jax.random.PRNGKey(0) __A : Any = 50 __A : str = jax.device_count() __A : Union[str, Any] = num_samples * [prompt] __A : List[str] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Dict = replicate(_UpperCAmelCase) __A : Optional[Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : int = shard(_UpperCAmelCase) __A : Tuple = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05652401)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2383808.2)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase) __A : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : str = jax.random.PRNGKey(0) __A : Any = 50 __A : Optional[int] = jax.device_count() __A : int = num_samples * [prompt] __A : Optional[int] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Optional[int] = replicate(_UpperCAmelCase) __A : List[str] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = shard(_UpperCAmelCase) __A : str = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2373516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) __A : Union[str, Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Any = jax.random.PRNGKey(0) __A : List[str] = 50 __A : Optional[int] = jax.device_count() __A : List[Any] = num_samples * [prompt] __A : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : Union[str, Any] = replicate(_UpperCAmelCase) __A : Optional[Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : List[str] = shard(_UpperCAmelCase) __A : int = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04003906)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2373516.75)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) __A ,__A : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , ) __A : Optional[Any] = scheduler.create_state() __A : Any = scheduler_state __A : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : Union[str, Any] = jax.random.PRNGKey(0) __A : Optional[int] = 50 __A : Optional[Any] = jax.device_count() __A : Any = num_samples * [prompt] __A : Optional[Any] = pipeline.prepare_inputs(_UpperCAmelCase) # shard inputs and rng __A : int = replicate(_UpperCAmelCase) __A : Any = jax.random.split(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = shard(_UpperCAmelCase) __A : Union[str, Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.045043945)) < 1e-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa).sum() - 2347693.5)) < 5e-1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __A : int = jax.device_count() __A : List[Any] = num_samples * [prompt] __A : List[Any] = jax.random.split(jax.random.PRNGKey(0) , _UpperCAmelCase) __A ,__A : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , ) __A : str = replicate(_UpperCAmelCase) __A : str = pipeline.prepare_inputs(_UpperCAmelCase) __A : str = shard(_UpperCAmelCase) __A : int = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images.shape == (num_samples, 1, 512, 512, 3) __A : Any = images[2, 0, 256, 10:17, 1] # With memory efficient attention __A ,__A : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , use_memory_efficient_attention=_UpperCAmelCase , ) __A : Any = replicate(_UpperCAmelCase) __A : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase) __A : Optional[Any] = shard(_UpperCAmelCase) __A : List[Any] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __A : List[Any] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1e-2
190
1
"""simple docstring""" def __lowercase ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE = 0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCamelCase )[-10:] if __name__ == "__main__": print(solution())
359
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ['''speech'''] def __init__( self , *_A , **_A ): '''simple docstring''' requires_backends(self , ['speech'] )
118
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE_ : Tuple = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple ): with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: A__ = json.loads(f.read() ) A__ = collections.OrderedDict() A__ = collections.OrderedDict() A__ = collections.OrderedDict() with open(UpperCAmelCase_ , """r""" , encoding="""utf-8""" ) as f: A__ = f.readlines() A__ = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(UpperCAmelCase_ ): A__ = b A__ = idx for wd in b: A__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] def __init__( self: Dict , UpperCamelCase: List[Any] , UpperCamelCase: int , UpperCamelCase: Tuple="<|endoftext|>" , UpperCamelCase: Any="<|endoftext|>" , UpperCamelCase: str="<|startoftext|>" , UpperCamelCase: int="<|endoftext|>" , UpperCamelCase: List[str]=False , **UpperCamelCase: Tuple , ): """simple docstring""" super().__init__( unk_token=UpperCamelCase , pad_token=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , do_clean_text=UpperCamelCase , **UpperCamelCase , ) if not os.path.isfile(UpperCamelCase ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(UpperCamelCase ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) A__ = do_clean_text A__ , A__ , A__ , A__ = load_vocab_and_emoji(UpperCamelCase , UpperCamelCase ) A__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCamelCase ( self: List[Any] ): """simple docstring""" return len(self.raw_vocab ) def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCamelCase ( self: Any , UpperCamelCase: Union[str, Any] ): """simple docstring""" return self.subword_tokenizer.tokenize(UpperCamelCase , clean=self.do_clean_text ) def UpperCamelCase ( self: Tuple , UpperCamelCase: Any ): """simple docstring""" return self.vocab.get(UpperCamelCase , self.vocab.get(self.unk_token ) ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict ): """simple docstring""" return self.subword_tokenizer.convert_id_to_token(UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = """""".join(UpperCamelCase ).strip() return out_string def UpperCamelCase ( self: Tuple , UpperCamelCase: "Conversation" ): """simple docstring""" A__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) + [self.eos_token_id] ) if len(UpperCamelCase ) > self.model_max_length: A__ = input_ids[-self.model_max_length :] return input_ids def UpperCamelCase ( self: Optional[int] , UpperCamelCase: str , UpperCamelCase: Optional[str] = None ): """simple docstring""" A__ = 0 if os.path.isdir(UpperCamelCase ): A__ = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: A__ = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) A__ = token_index writer.write(""",""".join(UpperCamelCase ) + """\n""" ) index += 1 with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , UpperCamelCase ) return vocab_file, emoji_file class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: List[str] , UpperCamelCase: List[Any] , UpperCamelCase: Tuple , UpperCamelCase: Union[str, Any] ): """simple docstring""" A__ = vocab # same as swe A__ = ids_to_tokens # same as bpe A__ = emoji A__ = np.max([len(UpperCamelCase ) for w in self.vocab.keys()] ) A__ = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) A__ = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) A__ = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) A__ = re.compile( r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) A__ = re.compile( r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) A__ = re.compile( r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) A__ = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" A__ = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" A__ = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self: Optional[Any] ): """simple docstring""" return len(self.ids_to_tokens ) def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Any ): """simple docstring""" A__ = self.content_repattera.sub("""<URL>""" , UpperCamelCase ) A__ = self.content_repattera.sub("""<EMAIL>""" , UpperCamelCase ) A__ = self.content_repattera.sub("""<TEL>""" , UpperCamelCase ) A__ = self.content_repattera.sub("""<DATE>""" , UpperCamelCase ) A__ = self.content_repattera.sub("""<DATE>""" , UpperCamelCase ) A__ = self.content_repattera.sub("""<PRICE>""" , UpperCamelCase ) A__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A__ = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def UpperCamelCase ( self: Dict , UpperCamelCase: Union[str, Any] , UpperCamelCase: List[Any]=False ): """simple docstring""" A__ = text.replace(""" """ , """<SP>""" ) A__ = text.replace(""" """ , """<SP>""" ) A__ = text.replace("""\r\n""" , """<BR>""" ) A__ = text.replace("""\n""" , """<BR>""" ) A__ = text.replace("""\r""" , """<BR>""" ) A__ = text.replace("""\t""" , """<TAB>""" ) A__ = text.replace("""—""" , """ー""" ) A__ = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: A__ = text.replace(UpperCamelCase , UpperCamelCase ) if clean: A__ = self.clean_text(UpperCamelCase ) def check_simbol(UpperCamelCase: str ): A__ = x.encode() if len(UpperCamelCase ) == 1 and len(UpperCamelCase ) == 2: A__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(UpperCamelCase: List[str] ): A__ = x.encode() if len(UpperCamelCase ) == 1 and len(UpperCamelCase ) == 3: A__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28080 and c <= 0Xe2b07f: return True return False A__ = 0 A__ = [] while pos < len(UpperCamelCase ): A__ = min(len(UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 A__ = [] # (token_id, token, pos) for e in range(UpperCamelCase , UpperCamelCase , -1 ): A__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase ) > 2: A__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase ) > 0: # the smallest token_id is adopted A__ , A__ , A__ = sorted(UpperCamelCase , key=lambda UpperCamelCase : x[0] )[0] result.append(UpperCamelCase ) A__ = e else: A__ = pos + 1 A__ = text[pos:end] if check_simbol(UpperCamelCase ): result.append("""<KIGOU>""" ) elif checkuae(UpperCamelCase ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) A__ = end return result def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Dict , UpperCamelCase: Tuple="\n" ): """simple docstring""" A__ = [] A__ = [] A__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase ) > 0: words.append(bytearray(UpperCamelCase ).decode("""utf-8""" , errors="""replace""" ) ) A__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(UpperCamelCase ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(UpperCamelCase ) if len(UpperCamelCase ) > 0: words.append(bytearray(UpperCamelCase ).decode("""utf-8""" , errors="""replace""" ) ) A__ = """""".join(UpperCamelCase ) return text
335
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Optional[int] = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Any = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A_ ( snake_case_ : int ,snake_case_ : int ,snake_case_ : List[str] ,snake_case_ : str ,snake_case_ : List[str] ,snake_case_ : List[str] ): '''simple docstring''' # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: UpperCamelCase : Union[str, Any] = ksize + 1 UpperCamelCase : Optional[Any] = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(lowerCAmelCase__ ): for x in range(lowerCAmelCase__ ): # distance from center UpperCamelCase : List[Any] = x - ksize // 2 UpperCamelCase : str = y - ksize // 2 # degree to radiant UpperCamelCase : Any = theta / 1_8_0 * np.pi UpperCamelCase : Any = np.cos(_theta ) UpperCamelCase : List[Any] = np.sin(_theta ) # get kernel x UpperCamelCase : Tuple = cos_theta * px + sin_theta * py # get kernel y UpperCamelCase : Union[str, Any] = -sin_theta * px + cos_theta * py # fill kernel UpperCamelCase : str = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __A : Union[str, Any] = imread('''../image_data/lena.jpg''') # turn image in gray scale value __A : int = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __A : int = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __A : Dict = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __A : Optional[int] = out / out.max() * 255 __A : Tuple = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
358
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( snake_case_ : str = "https://www.worldometers.info/coronavirus" ): '''simple docstring''' UpperCamelCase : Any = BeautifulSoup(requests.get(snake_case_ ).text ,"""html.parser""" ) UpperCamelCase : Optional[int] = soup.findAll("""h1""" ) UpperCamelCase : List[Any] = soup.findAll("""div""" ,{"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" ,{"""class""": """panel-title"""} ) values += soup.findAll("""div""" ,{"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(snake_case_ ,snake_case_ )} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
27
0
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _lowercase = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: bool = field(default=_lowercase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) _lowerCamelCase: bool = field( default=_lowercase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _lowerCamelCase: Optional[int] = field( default=_lowercase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) _lowerCamelCase: Optional[int] = field( default=_lowercase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) _lowerCamelCase: Optional[Union[str, Path, GenerationConfig]] = field( default=_lowercase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: A = super().to_dict() for k, v in d.items(): if isinstance(A_ ,A_ ): A = v.to_dict() return d
74
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ,A_ : list[int] ) -> None: A = len(A_ ) A = [0] * len_array if len_array > 0: A = array[0] for i in range(1 ,A_ ): A = self.prefix_sum[i - 1] + array[i] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ,A_ : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : int ) -> bool: A = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(A_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
74
1
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : Any = 4000000 ): _A : Any = [] _A , _A : List[str] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCamelCase ) _A , _A : Optional[Any] = b, a + b return sum(lowerCamelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
358
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCamelCase ( a_ ): """simple docstring""" a = 42 a = None def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : Tuple=0.999 ,lowerCamelCase : int="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _A : Tuple = [] for i in range(lowerCamelCase ): _A : Optional[Any] = i / num_diffusion_timesteps _A : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) ,lowerCamelCase ) ) return torch.tensor(lowerCamelCase ,dtype=torch.floataa ) class __lowerCamelCase ( a_ , a_ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Tuple , SCREAMING_SNAKE_CASE : int = 1000 , SCREAMING_SNAKE_CASE : float = 0.0001 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : float = 1.0 , **SCREAMING_SNAKE_CASE : List[str] , ): if kwargs.get('set_alpha_to_one' , SCREAMING_SNAKE_CASE) is not None: _A : Tuple = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE) _A : Tuple = kwargs['set_alpha_to_one'] if trained_betas is not None: _A : Any = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "linear": _A : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : List[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}') _A : Optional[int] = 1.0 - self.betas _A : Union[str, Any] = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _A : Optional[int] = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _A : Union[str, Any] = 1.0 # setable values _A : List[str] = None _A : Dict = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE).copy().astype(np.intaa)) def A ( self : str , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Optional[int] = None): return sample def A ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.') _A : Optional[Any] = num_inference_steps _A : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : List[str] = (np.arange(0 , SCREAMING_SNAKE_CASE) * step_ratio).round().copy().astype(np.intaa) _A : int = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) self.timesteps += self.config.steps_offset def A ( self : List[Any] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : bool = True , ): # 1. get previous step value (=t+1) _A : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _A : List[str] = self.alphas_cumprod[timestep] _A : List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _A : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _A : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _A : List[Any] = model_output elif self.config.prediction_type == "sample": _A : List[Any] = model_output _A : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _A : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _A : Optional[int] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`') # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _A : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE) def __len__( self : List[Any]): return self.config.num_train_timesteps
227
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart _lowerCAmelCase = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } _lowerCAmelCase = { '''facebook/bart-base''': 1024, '''facebook/bart-large''': 1024, '''facebook/bart-large-mnli''': 1024, '''facebook/bart-large-cnn''': 1024, '''facebook/bart-large-xsum''': 1024, '''yjernite/bart_eli5''': 1024, } @lru_cache() def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) lowerCAmelCase__ : Union[str, Any] = bs[:] lowerCAmelCase__ : int = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowerCAmelCase__ : Any = [chr(UpperCamelCase ) for n in cs] return dict(zip(UpperCamelCase , UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = set() lowerCAmelCase__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ : Optional[int] = char return pairs class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="replace" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<mask>" ,__UpperCAmelCase=False ,**__UpperCAmelCase ,) -> List[str]: lowerCAmelCase__ : Optional[Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else bos_token lowerCAmelCase__ : Any = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else eos_token lowerCAmelCase__ : Optional[Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else sep_token lowerCAmelCase__ : List[str] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else cls_token lowerCAmelCase__ : List[Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else unk_token lowerCAmelCase__ : List[str] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase__ : Union[str, Any] = AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,add_prefix_space=__UpperCAmelCase ,**__UpperCAmelCase ,) with open(__UpperCAmelCase ,encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase__ : int = json.load(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} lowerCAmelCase__ : List[str] = errors # how to handle errors in decoding lowerCAmelCase__ : Optional[int] = bytes_to_unicode() lowerCAmelCase__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase ,encoding="""utf-8""" ) as merges_handle: lowerCAmelCase__ : List[str] = merges_handle.read().split("""\n""" )[1:-1] lowerCAmelCase__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] lowerCAmelCase__ : Union[str, Any] = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCAmelCase__ : Tuple = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCAmelCase_ ( self ) -> str: return len(self.encoder ) def UpperCAmelCase_ ( self ) -> Tuple: return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: if token in self.cache: return self.cache[token] lowerCAmelCase__ : Tuple = tuple(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: lowerCAmelCase__ : Any = min(__UpperCAmelCase ,key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ : int = bigram lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : List[Any] = 0 while i < len(__UpperCAmelCase ): try: lowerCAmelCase__ : Union[str, Any] = word.index(__UpperCAmelCase ,__UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : Any = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : Tuple = tuple(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = new_word if len(__UpperCAmelCase ) == 1: break else: lowerCAmelCase__ : Any = get_pairs(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = """ """.join(__UpperCAmelCase ) lowerCAmelCase__ : int = word return word def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : int = [] for token in re.findall(self.pat ,__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(""" """ ) ) return bpe_tokens def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict: return self.encoder.get(__UpperCAmelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return self.decoder.get(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : List[Any] = """""".join(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" ,errors=self.errors ) return text def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : int = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : Union[str, Any] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__UpperCAmelCase ,ensure_ascii=__UpperCAmelCase ) + """\n""" ) lowerCAmelCase__ : Tuple = 0 with open(__UpperCAmelCase ,"""w""" ,encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) lowerCAmelCase__ : List[str] = token_index writer.write(""" """.join(__UpperCAmelCase ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : List[str] = [self.cls_token_id] lowerCAmelCase__ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : Tuple = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ,**__UpperCAmelCase ) -> Any: lowerCAmelCase__ : Any = kwargs.pop("""add_prefix_space""" ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): lowerCAmelCase__ : Union[str, Any] = """ """ + text return (text, kwargs)
37
import os import numpy import onnx def _lowerCamelCase( lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= a.name __lowercase= b.name __lowercase= '' __lowercase= '' __lowercase= a == b __lowercase= name_a __lowercase= name_b return res def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase__ , lowercase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase__ , lowercase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(lowercase__ , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= list(model.graph.initializer ) __lowercase= list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowercase= inits[i].name __lowercase= inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= os.path.dirname(lowercase__ ) __lowercase= os.path.basename(lowercase__ ) __lowercase= onnx.load(os.path.join(lowercase__ , lowercase__ ) ) __lowercase= list(model.graph.initializer ) __lowercase= set() __lowercase= {} __lowercase= [] __lowercase= 0 for i in range(len(lowercase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase__ ) dup_set.add(lowercase__ ) __lowercase= inits[j].data_type __lowercase= numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , lowercase__ ) total_reduced_size += mem_size __lowercase= inits[i].name __lowercase= inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase__ ) else: __lowercase= [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) __lowercase= sorted(lowercase__ ) _remove_dup_initializers_from_model(lowercase__ , lowercase__ , lowercase__ ) __lowercase= 'optimized_' + model_file_name __lowercase= os.path.join(lowercase__ , lowercase__ ) onnx.save(lowercase__ , lowercase__ ) return new_model
295
0
import math def UpperCamelCase_( lowerCamelCase_ = 100 ) -> int: _lowercase : int = sum(i * i for i in range(1 , n + 1 ) ) _lowercase : int = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"{solution() = }")
370
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = """char""" lowercase_ : Any = """bpe""" lowercase_ : Optional[int] = """wp""" SCREAMING_SNAKE_CASE : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowerCamelCase( _a ): lowercase_ : Any = ["""image_processor""", """char_tokenizer"""] lowercase_ : Tuple = """ViTImageProcessor""" lowercase_ : List[str] = """MgpstrTokenizer""" def __init__( self, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase, ) _lowercase : str = kwargs.pop('feature_extractor') _lowercase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') _lowercase : List[Any] = tokenizer _lowercase : Tuple = AutoTokenizer.from_pretrained('gpt2') _lowercase : Tuple = AutoTokenizer.from_pretrained('bert-base-uncased') super().__init__(lowerCamelCase, lowerCamelCase) def __call__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: _lowercase : Optional[Any] = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if text is not None: _lowercase : Optional[int] = self.char_tokenizer(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if text is None: return inputs elif images is None: return encodings else: _lowercase : Optional[int] = encodings['input_ids'] return inputs def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase , _lowercase : Optional[int] = sequences _lowercase : str = char_preds.size(0) _lowercase , _lowercase : List[Any] = self._decode_helper(lowerCamelCase, 'char') _lowercase , _lowercase : str = self._decode_helper(lowerCamelCase, 'bpe') _lowercase , _lowercase : str = self._decode_helper(lowerCamelCase, 'wp') _lowercase : Dict = [] _lowercase : Any = [] for i in range(lowerCamelCase): _lowercase : Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowercase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowercase : Union[str, Any] = scores.index(max(lowerCamelCase)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) _lowercase : str = {} _lowercase : int = final_strs _lowercase : Optional[Any] = final_scores _lowercase : Tuple = char_strs _lowercase : Dict = bpe_strs _lowercase : Tuple = wp_strs return out def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" if format == DecodeType.CHARACTER: _lowercase : Optional[Any] = self.char_decode _lowercase : int = 1 _lowercase : int = '[s]' elif format == DecodeType.BPE: _lowercase : List[Any] = self.bpe_decode _lowercase : Union[str, Any] = 2 _lowercase : Any = '#' elif format == DecodeType.WORDPIECE: _lowercase : int = self.wp_decode _lowercase : Optional[Any] = 1_02 _lowercase : List[Any] = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''') _lowercase , _lowercase : Tuple = [], [] _lowercase : str = pred_logits.size(0) _lowercase : Tuple = pred_logits.size(1) _lowercase , _lowercase : Dict = pred_logits.topk(1, dim=-1, largest=lowerCamelCase, sorted=lowerCamelCase) _lowercase : List[str] = preds_index.view(-1, lowerCamelCase)[:, 1:] _lowercase : int = decoder(lowerCamelCase) _lowercase , _lowercase : Optional[Any] = torch.nn.functional.softmax(lowerCamelCase, dim=2).max(dim=2) _lowercase : Optional[Any] = preds_max_prob[:, 1:] for index in range(lowerCamelCase): _lowercase : List[str] = preds_str[index].find(lowerCamelCase) _lowercase : int = preds_str[index][:pred_eos] _lowercase : List[str] = preds_index[index].cpu().tolist() _lowercase : Optional[int] = pred_index.index(lowerCamelCase) if eos_token in pred_index else -1 _lowercase : int = preds_max_prob[index][: pred_eos_index + 1] _lowercase : Tuple = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase) conf_scores.append(lowerCamelCase) return dec_strs, conf_scores def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = [seq.replace(' ', '') for seq in self.char_tokenizer.batch_decode(lowerCamelCase)] return decode_strs def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" return self.bpe_tokenizer.batch_decode(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = [seq.replace(' ', '') for seq in self.wp_tokenizer.batch_decode(lowerCamelCase)] return decode_strs
84
0
from __future__ import annotations def lowerCamelCase__ ( a , a ) -> list[str]: if nth_term == "": return [""] _A: Union[str, Any] = int(a ) _A: Optional[int] = int(a ) _A: list[str] = [] for temp in range(int(a ) ): series.append(f"""1 / {pow(temp + 1 , int(a ) )}""" if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : Optional[Any] = int(input('Enter the last number (nth term) of the P-Series')) UpperCAmelCase__ : int = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
121
def lowerCamelCase__ ( a ) -> bool: _A: Dict = [int(a ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(a ) == 4 and all(0 <= int(a ) <= 2_54 for octet in octets ) if __name__ == "__main__": UpperCAmelCase__ : str = input().strip() UpperCAmelCase__ : Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F"""{ip} is a {valid_or_invalid} IP v4 address.""")
121
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _A ( A__ ): """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __lowercase = model_type_to_module_name(A__ ) __lowercase = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(A__ , A__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(A__ , '''__name__''' , A__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowercase = importlib.import_module('''transformers''' ) if hasattr(A__ , A__ ): return getattr(A__ , A__ ) return None def _A ( A__ , A__ = None , A__ = False , A__ = False , A__ = None , A__ = None , A__ = None , A__ = False , **A__ , ): """simple docstring""" __lowercase = get_file_from_repo( A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(A__ , encoding='''utf-8''' ) as reader: return json.load(A__ ) class lowercase_ : """simple docstring""" def __init__( self : Tuple ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowercase__ ) def SCREAMING_SNAKE_CASE ( cls : List[str] ,lowercase__ : Optional[Any] ,**lowercase__ : List[Any] ): __lowercase = kwargs.pop('''config''' ,lowercase__ ) __lowercase = kwargs.pop('''trust_remote_code''' ,lowercase__ ) __lowercase = True __lowercase , __lowercase = FeatureExtractionMixin.get_feature_extractor_dict(lowercase__ ,**lowercase__ ) __lowercase = config_dict.get('''feature_extractor_type''' ,lowercase__ ) __lowercase = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' ,{} ): __lowercase = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowercase__ ,lowercase__ ): __lowercase = AutoConfig.from_pretrained(lowercase__ ,**lowercase__ ) # It could be in `config.feature_extractor_type`` __lowercase = getattr(lowercase__ ,'''feature_extractor_type''' ,lowercase__ ) if hasattr(lowercase__ ,'''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: __lowercase = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: __lowercase = feature_extractor_class_from_name(lowercase__ ) __lowercase = feature_extractor_auto_map is not None __lowercase = feature_extractor_class is not None or type(lowercase__ ) in FEATURE_EXTRACTOR_MAPPING __lowercase = resolve_trust_remote_code( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if has_remote_code and trust_remote_code: __lowercase = get_class_from_dynamic_module( lowercase__ ,lowercase__ ,**lowercase__ ) __lowercase = kwargs.pop('''code_revision''' ,lowercase__ ) if os.path.isdir(lowercase__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowercase__ ,**lowercase__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowercase__ ,**lowercase__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowercase__ ) in FEATURE_EXTRACTOR_MAPPING: __lowercase = FEATURE_EXTRACTOR_MAPPING[type(lowercase__ )] return feature_extractor_class.from_dict(lowercase__ ,**lowercase__ ) raise ValueError( F"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " F"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}" ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : List[str] ,lowercase__ : List[Any] ): FEATURE_EXTRACTOR_MAPPING.register(lowercase__ ,lowercase__ )
357
'''simple docstring''' import string def _A ( A__ ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): __lowercase = '''''' for symbol in message: if symbol in string.ascii_uppercase: __lowercase = string.ascii_uppercase.find(A__ ) __lowercase = num - key if num < 0: __lowercase = num + len(string.ascii_uppercase ) __lowercase = translated + string.ascii_uppercase[num] else: __lowercase = translated + symbol print(F"Decryption using Key #{key}: {translated}" ) def _A ( ): """simple docstring""" __lowercase = input('''Encrypted message: ''' ) __lowercase = message.upper() decrypt(A__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
52
0
"""simple docstring""" from __future__ import annotations import math import numpy as np from numpy.linalg import norm def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(_snake_case , _snake_case ) ) ) def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): if dataset.ndim != value_array.ndim: lowerCAmelCase : List[Any] = ( '''Wrong input data\'s dimensions... ''' f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(_snake_case ) try: if dataset.shape[1] != value_array.shape[1]: lowerCAmelCase : Dict = ( '''Wrong input data\'s shape... ''' f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(_snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: lowerCAmelCase : Optional[Any] = ( '''Input data have different datatype... ''' f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(_snake_case ) lowerCAmelCase : str = [] for value in value_array: lowerCAmelCase : int = euclidean(_snake_case , dataset[0] ) lowerCAmelCase : Union[str, Any] = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCAmelCase : Any = euclidean(_snake_case , _snake_case ) if dist > temp_dist: lowerCAmelCase : List[Any] = temp_dist lowerCAmelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def _snake_case ( _snake_case : np.ndarray , _snake_case : np.ndarray ): return np.dot(_snake_case , _snake_case ) / (norm(_snake_case ) * norm(_snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
60
"""simple docstring""" snake_case__ : str = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] snake_case__ : Optional[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] snake_case__ : Any = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] snake_case__ : Optional[Any] = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] snake_case__ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] snake_case__ : Union[str, Any] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] snake_case__ : List[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] snake_case__ : Optional[int] = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
60
1
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } UpperCAmelCase = {"""facebook/blenderbot_small-90M""": 512} def lowercase ( a__ : Dict ) -> Optional[Any]: _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char _UpperCamelCase = set(_a ) return pairs class UpperCAmelCase_ ( __snake_case): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : str , __UpperCamelCase : Optional[Any]="__start__" , __UpperCamelCase : Optional[Any]="__end__" , __UpperCamelCase : int="__unk__" , __UpperCamelCase : int="__null__" , **__UpperCamelCase : Tuple , ) -> Union[str, Any]: super().__init__(unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , **lowerCamelCase_ ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: _UpperCamelCase = json.load(lowerCamelCase_ ) _UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase_ , encoding='''utf-8''' ) as merges_handle: _UpperCamelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCamelCase = [tuple(merge.split() ) for merge in merges] _UpperCamelCase = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _UpperCamelCase = {} @property def _UpperCamelCase ( self : str ) -> int: return len(self.encoder ) def _UpperCamelCase ( self : int ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> str: if token in self.cache: return self.cache[token] _UpperCamelCase = re.sub('''([.,!?()])''' , R''' \1''' , lowerCamelCase_ ) _UpperCamelCase = re.sub('''(\')''' , R''' \1 ''' , lowerCamelCase_ ) _UpperCamelCase = re.sub(R'''\s{2,}''' , ''' ''' , lowerCamelCase_ ) if "\n" in token: _UpperCamelCase = token.replace('''\n''' , ''' __newln__''' ) _UpperCamelCase = token.split(''' ''' ) _UpperCamelCase = [] for token in tokens: if not len(lowerCamelCase_ ): continue _UpperCamelCase = token.lower() _UpperCamelCase = tuple(lowerCamelCase_ ) _UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _UpperCamelCase = get_pairs(lowerCamelCase_ ) if not pairs: words.append(lowerCamelCase_ ) continue while True: _UpperCamelCase = min(lowerCamelCase_ , key=lambda __UpperCamelCase : self.bpe_ranks.get(lowerCamelCase_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(lowerCamelCase_ ): try: _UpperCamelCase = word.index(lowerCamelCase_ , lowerCamelCase_ ) new_word.extend(word[i:j] ) _UpperCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCamelCase = tuple(lowerCamelCase_ ) _UpperCamelCase = new_word if len(lowerCamelCase_ ) == 1: break else: _UpperCamelCase = get_pairs(lowerCamelCase_ ) _UpperCamelCase = """@@ """.join(lowerCamelCase_ ) _UpperCamelCase = word[:-4] _UpperCamelCase = word words.append(lowerCamelCase_ ) return " ".join(lowerCamelCase_ ) def _UpperCamelCase ( self : Any , __UpperCamelCase : str ) -> List[str]: _UpperCamelCase = [] _UpperCamelCase = re.findall(R'''\S+\n?''' , lowerCamelCase_ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase_ ).split(''' ''' ) ) ) return split_tokens def _UpperCamelCase ( self : int , __UpperCamelCase : str ) -> int: _UpperCamelCase = token.lower() return self.encoder.get(lowerCamelCase_ , self.encoder.get(self.unk_token ) ) def _UpperCamelCase ( self : Dict , __UpperCamelCase : int ) -> str: return self.decoder.get(lowerCamelCase_ , self.unk_token ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : List[str] ) -> str: _UpperCamelCase = """ """.join(lowerCamelCase_ ).replace('''@@ ''' , '''''' ).strip() return out_string def _UpperCamelCase ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) _UpperCamelCase = 0 with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCamelCase = token_index writer.write(''' '''.join(lowerCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file
364
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def lowercase ( a__ : Union[str, Any] , a__ : int , a__ : List[Any] , a__ : Union[str, Any] , a__ : Tuple , a__ : List[Any] ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(a__ ) , version.parse(a__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( a__ : str , a__ : Optional[str] = None ) -> None: _UpperCamelCase = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , a__ ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = requirement, None, None else: _UpperCamelCase = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_full.split(''',''' ) # there could be multiple requirements _UpperCamelCase = {} for w in want_range: _UpperCamelCase = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": _UpperCamelCase = '''.'''.join([str(a__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) return # check if any version is installed try: _UpperCamelCase = importlib.metadata.version(a__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) def lowercase ( a__ : Tuple ) -> Any: _UpperCamelCase = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(a__ , a__ )
54
0
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration _UpperCAmelCase : Optional[Any] = 5_0_0_0_0 _UpperCAmelCase : Dict = 5_0_0_0 _UpperCAmelCase ,_UpperCAmelCase : Any = os.path.split(__file__) _UpperCAmelCase : str = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase): for i in range(lowerCamelCase): __lowerCAmelCase = dataset[i] @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): for i in range(0, len(lowerCamelCase), lowerCamelCase): __lowerCAmelCase = dataset[i : i + batch_size] @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): with dataset.formatted_as(type=lowerCamelCase): for i in range(lowerCamelCase): __lowerCAmelCase = dataset[i] @get_duration def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase): with dataset.formatted_as(type=lowerCamelCase): for i in range(0, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = dataset[i : i + batch_size] def __magic_name__( ): __lowerCAmelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES} __lowerCAmelCase = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0_0}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0_0_0}), ] __lowerCAmelCase = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_0_0_0}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('''generating dataset''') __lowerCAmelCase = datasets.Features( {'''list''': datasets.Sequence(datasets.Value('''float32''')), '''numbers''': datasets.Value('''float32''')}) __lowerCAmelCase = generate_example_dataset( os.path.join(lowerCamelCase, '''dataset.arrow'''), lowerCamelCase, num_examples=lowerCamelCase, seq_shapes={'''list''': (1_0_0,)}, ) print('''first set of iterations''') for func, kwargs in functions: print(func.__name__, str(lowerCamelCase)) __lowerCAmelCase = func(lowerCamelCase, **lowerCamelCase) print('''shuffling dataset''') __lowerCAmelCase = dataset.shuffle() print('''Second set of iterations (after shuffling''') for func, kwargs in functions_shuffled: print('''shuffled ''', func.__name__, str(lowerCamelCase)) __lowerCAmelCase = func( lowerCamelCase, **lowerCamelCase) with open(lowerCamelCase, '''wb''') as f: f.write(json.dumps(lowerCamelCase).encode('''utf-8''')) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
174
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase): __lowerCAmelCase = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __lowerCAmelCase = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } __lowerCAmelCase = F"""{src_lang}-{tgt_lang}""" __lowerCAmelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase) __lowerCAmelCase = os.path.join(lowerCamelCase, '''README.md''') print(F"""Generating {path}""") with open(lowerCamelCase, '''w''', encoding='''utf-8''') as f: f.write(lowerCamelCase) # make sure we are under the root of the project _UpperCAmelCase : Dict = Path(__file__).resolve().parent.parent.parent _UpperCAmelCase : Optional[int] = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = model_name.split("""-""") _UpperCAmelCase : Union[str, Any] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
174
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
1
"""simple docstring""" _a : List[str] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) _a : Optional[Any] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : str ,_lowerCamelCase : str ) -> float: _lowerCAmelCase : Tuple = from_type.lower().strip("""s""" ) _lowerCAmelCase : str = to_type.lower().strip("""s""" ) _lowerCAmelCase : int = UNIT_SYMBOL.get(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Any = UNIT_SYMBOL.get(_lowerCamelCase ,_lowerCamelCase ) if from_sanitized not in METRIC_CONVERSION: _lowerCAmelCase : Optional[int] = ( f"Invalid 'from_type' value: {from_type!r}.\n" f"Conversion abbreviations are: {', '.join(_lowerCamelCase )}" ) raise ValueError(_lowerCamelCase ) if to_sanitized not in METRIC_CONVERSION: _lowerCAmelCase : int = ( f"Invalid 'to_type' value: {to_type!r}.\n" f"Conversion abbreviations are: {', '.join(_lowerCamelCase )}" ) raise ValueError(_lowerCamelCase ) _lowerCAmelCase : Tuple = METRIC_CONVERSION[from_sanitized] _lowerCAmelCase : Optional[int] = METRIC_CONVERSION[to_sanitized] _lowerCAmelCase : List[str] = 1 if from_exponent > to_exponent: _lowerCAmelCase : str = from_exponent - to_exponent else: _lowerCAmelCase : Dict = -(to_exponent - from_exponent) return value * pow(10 ,_lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
44
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding="""utf-8""" ,check=__UpperCAmelCase ,) assert hasattr(self ,"""env""" ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = F"""{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}""" # distributed data settings lowerCAmelCase__ : Any = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=__UpperCAmelCase ,instance_count=__UpperCAmelCase ,instance_type=self.instance_type ,debugger_hook_config=__UpperCAmelCase ,hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} ,metric_definitions=self.env.metric_definitions ,distribution=__UpperCAmelCase ,py_version="""py36""" ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(2,)] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: # create estimator lowerCAmelCase__ : List[Any] = self.create_estimator(__UpperCAmelCase ) # run training estimator.fit() # result dataframe lowerCAmelCase__ : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase__ : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowerCAmelCase__ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase__ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,__UpperCAmelCase )
37
0
import functools def lowerCAmelCase_ ( _snake_case : Optional[int] , _snake_case : Optional[Any] ) -> int: '''simple docstring''' if not isinstance(a_ , a_ ) or not all(isinstance(a_ , a_ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(a_ ) != 3 or not all(isinstance(a_ , a_ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(a_ ) == 0: return 0 if min(a_ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(a_ ) >= 366: raise ValueError("All days elements should be less than 366" ) __magic_name__ : Any = set(a_ ) @functools.cache def dynamic_programming(_snake_case : Any ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
364
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging snake_case : Union[str, Any] = logging.get_logger(__name__) class _snake_case : UpperCamelCase__ = 42 UpperCamelCase__ = None @staticmethod def SCREAMING_SNAKE_CASE ( ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _a ): raise NotImplementedError def SCREAMING_SNAKE_CASE ( self ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def SCREAMING_SNAKE_CASE ( cls ): return f'''`pip install {cls.pip_package or cls.name}`''' class _snake_case ( snake_case ): UpperCamelCase__ = 'optuna' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_optuna_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_optuna(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_optuna(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'ray' UpperCamelCase__ = '\'ray[tune]\'' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_ray_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_ray(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_ray(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'sigopt' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_sigopt(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_sigopt(_a ) class _snake_case ( snake_case ): UpperCamelCase__ = 'wandb' @staticmethod def SCREAMING_SNAKE_CASE ( ): return is_wandb_available() def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , **_a ): return run_hp_search_wandb(_a , _a , _a , **_a ) def SCREAMING_SNAKE_CASE ( self , _a ): return default_hp_space_wandb(_a ) snake_case : int = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : List[Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_snake_case ) > 0: __magic_name__ : Dict = available_backends[0].name if len(_snake_case ) > 1: logger.info( F'''{len(_snake_case )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
41
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowercase__ :Optional[int] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , ): '''simple docstring''' output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): '''simple docstring''' lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: lowercase = '''cpu''' lowercase = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=lowerCAmelCase__ ).to(lowerCAmelCase__ ) lowercase = Path(lowerCAmelCase__ ) # TEXT ENCODER lowercase = pipeline.text_encoder.config.max_position_embeddings lowercase = pipeline.text_encoder.config.hidden_size lowercase = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowerCAmelCase__ , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=lowerCAmelCase__ , ) del pipeline.text_encoder # UNET lowercase = pipeline.unet.config.in_channels lowercase = pipeline.unet.config.sample_size lowercase = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=lowerCAmelCase__ , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , ) lowercase = str(unet_path.absolute().as_posix() ) lowercase = os.path.dirname(lowerCAmelCase__ ) lowercase = onnx.load(lowerCAmelCase__ ) # clean up existing tensor files shutil.rmtree(lowerCAmelCase__ ) os.mkdir(lowerCAmelCase__ ) # collate external tensor files into one onnx.save_model( lowerCAmelCase__ , lowerCAmelCase__ , save_as_external_data=lowerCAmelCase__ , all_tensors_to_one_file=lowerCAmelCase__ , location='''weights.pb''' , convert_attribute=lowerCAmelCase__ , ) del pipeline.unet # VAE ENCODER lowercase = pipeline.vae lowercase = vae_encoder.config.in_channels lowercase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase = lambda lowerCAmelCase__ , lowerCAmelCase__ : vae_encoder.encode(lowerCAmelCase__ , lowerCAmelCase__ )[0].sample() onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=lowerCAmelCase__ , ) # VAE DECODER lowercase = pipeline.vae lowercase = vae_decoder.config.latent_channels lowercase = vae_decoder.config.out_channels # forward only through the decoder part lowercase = vae_encoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=lowerCAmelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase = pipeline.safety_checker lowercase = safety_checker.config.vision_config.num_channels lowercase = safety_checker.config.vision_config.image_size lowercase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=lowerCAmelCase__ , ) del pipeline.safety_checker lowercase = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) lowercase = pipeline.feature_extractor else: lowercase = None lowercase = None lowercase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowerCAmelCase__ ) print('''ONNX pipeline saved to''' , lowerCAmelCase__ ) del pipeline del onnx_pipeline lowercase = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": lowercase__ :Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") lowercase__ :List[Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
101
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowercase__ :Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( SCREAMING_SNAKE_CASE__ ): def __init__( self ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,): super().__init__() self.register_modules( vae=A__ ,text_encoder=A__ ,tokenizer=A__ ,unet=A__ ,scheduler=A__ ,safety_checker=A__ ,feature_extractor=A__ ,) def A__ ( self ,A__ = "auto"): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__) def A__ ( self): self.enable_attention_slicing(A__) @torch.no_grad() def __call__( self ,A__ ,A__ = 5_1_2 ,A__ = 5_1_2 ,A__ = 5_0 ,A__ = 7.5 ,A__ = None ,A__ = 1 ,A__ = 0.0 ,A__ = None ,A__ = None ,A__ = "pil" ,A__ = True ,A__ = None ,A__ = 1 ,A__ = None ,**A__ ,): if isinstance(A__ ,A__): lowercase = 1 elif isinstance(A__ ,A__): lowercase = len(A__) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(A__)}') if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.') if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ ,A__) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__)}.') # get prompt text embeddings lowercase = self.tokenizer( A__ ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,) lowercase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowercase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f' {self.tokenizer.model_max_length} tokens: {removed_text}') lowercase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowercase = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowercase , lowercase , lowercase = text_embeddings.shape lowercase = text_embeddings.repeat(1 ,A__ ,1) lowercase = text_embeddings.view(bs_embed * num_images_per_prompt ,A__ ,-1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase = 42 if negative_prompt is None: lowercase = [''''''] elif type(A__) is not type(A__): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(A__)} !=' f' {type(A__)}.') elif isinstance(A__ ,A__): lowercase = [negative_prompt] elif batch_size != len(A__): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(A__)}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''') else: lowercase = negative_prompt lowercase = text_input_ids.shape[-1] lowercase = self.tokenizer( A__ ,padding='''max_length''' ,max_length=A__ ,truncation=A__ ,return_tensors='''pt''' ,) lowercase = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase = uncond_embeddings.shape[1] lowercase = uncond_embeddings.repeat(A__ ,A__ ,1) lowercase = uncond_embeddings.view(batch_size * num_images_per_prompt ,A__ ,-1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowercase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 6_4, 6_4) lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowercase = torch.randn( A__ ,generator=A__ ,device='''cpu''' ,dtype=A__).to(self.device) lowercase = torch.randn(A__ ,generator=A__ ,device='''cpu''' ,dtype=A__).to( self.device) else: lowercase = torch.randn( A__ ,generator=A__ ,device=self.device ,dtype=A__) lowercase = torch.randn(A__ ,generator=A__ ,device=self.device ,dtype=A__) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') lowercase = latents_reference.to(self.device) lowercase = latents.to(self.device) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowercase = (latents_shape[3] - latents_shape_reference[3]) // 2 lowercase = (latents_shape[2] - latents_shape_reference[2]) // 2 lowercase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowercase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowercase = 0 if dx < 0 else dx lowercase = 0 if dy < 0 else dy lowercase = max(-dx ,0) lowercase = max(-dy ,0) # import pdb # pdb.set_trace() lowercase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A__) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowercase = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase = '''eta''' in set(inspect.signature(self.scheduler.step).parameters.keys()) lowercase = {} if accepts_eta: lowercase = eta for i, t in enumerate(self.progress_bar(A__)): # expand the latents if we are doing classifier free guidance lowercase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase = self.scheduler.scale_model_input(A__ ,A__) # predict the noise residual lowercase = self.unet(A__ ,A__ ,encoder_hidden_states=A__).sample # perform guidance if do_classifier_free_guidance: lowercase , lowercase = noise_pred.chunk(2) lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowercase = self.scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ ,A__ ,A__) lowercase = 1 / 0.18215 * latents lowercase = self.vae.decode(A__).sample lowercase = (image / 2 + 0.5).clamp(0 ,1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowercase = image.cpu().permute(0 ,2 ,3 ,1).float().numpy() if self.safety_checker is not None: lowercase = self.feature_extractor(self.numpy_to_pil(A__) ,return_tensors='''pt''').to( self.device) lowercase , lowercase = self.safety_checker( images=A__ ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)) else: lowercase = None if output_type == "pil": lowercase = self.numpy_to_pil(A__) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A__ ,nsfw_content_detected=A__)
101
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCAmelCase = logging.getLogger() def lowerCamelCase () -> int: lowercase :str = argparse.ArgumentParser() parser.add_argument('''-f''') lowercase :Optional[Any] = parser.parse_args() return args.f class __magic_name__ ( __UpperCAmelCase ): def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case__ ) def __snake_case ( self : int , snake_case__ : List[str] ): '''simple docstring''' lowercase :str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(snake_case__ , '''argv''' , snake_case__ ): lowercase :Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case__ , 0.6_66 ) @slow @require_torch_non_multi_gpu def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Optional[Any] = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(snake_case__ ) lowercase :Any = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(snake_case__ ) lowercase :Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(snake_case__ )
172
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __magic_name__ ( __UpperCAmelCase ): __A : List[Any] = "retribert" def __init__( self : Dict , snake_case__ : Union[str, Any]=3_0_5_2_2 , snake_case__ : Union[str, Any]=7_6_8 , snake_case__ : Optional[Any]=8 , snake_case__ : int=1_2 , snake_case__ : Optional[int]=3_0_7_2 , snake_case__ : Any="gelu" , snake_case__ : str=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[str]=5_1_2 , snake_case__ : Union[str, Any]=2 , snake_case__ : Dict=0.02 , snake_case__ : Tuple=1e-1_2 , snake_case__ : Any=True , snake_case__ : Tuple=1_2_8 , snake_case__ : Optional[int]=0 , **snake_case__ : List[str] , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowercase :Any = vocab_size lowercase :Optional[Any] = hidden_size lowercase :str = num_hidden_layers lowercase :List[str] = num_attention_heads lowercase :Union[str, Any] = hidden_act lowercase :Any = intermediate_size lowercase :str = hidden_dropout_prob lowercase :str = attention_probs_dropout_prob lowercase :Optional[Any] = max_position_embeddings lowercase :Union[str, Any] = type_vocab_size lowercase :Any = initializer_range lowercase :int = layer_norm_eps lowercase :List[str] = share_encoders lowercase :Union[str, Any] = projection_dim
172
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model a : Optional[int] = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=None ): '''simple docstring''' if rng is None: UpperCAmelCase : str = random.Random() UpperCAmelCase : str = 1 for dim in shape: total_dims *= dim UpperCAmelCase : Dict = [] for _ in range(__UpperCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) UpperCAmelCase : int = np.array(__UpperCamelCase , dtype=jnp.intaa ).reshape(__UpperCamelCase ) return output def lowercase ( __magic_name__ , __magic_name__=None ): '''simple docstring''' UpperCAmelCase : Dict = ids_tensor(__UpperCamelCase , vocab_size=2 , rng=__UpperCamelCase ) # make sure that at least one token is attended to for each batch UpperCAmelCase : Optional[int] = 1 return attn_mask @require_flax class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = () def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 UpperCAmelCase : Tuple = 2 UpperCAmelCase : Optional[int] = inputs["input_ids"].shape[-1] // 2 UpperCAmelCase : Optional[int] = inputs["input_ids"][:max_batch_size, :sequence_length] UpperCAmelCase : Any = jnp.ones_like(_lowercase ) UpperCAmelCase : List[str] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens UpperCAmelCase : Tuple = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` UpperCAmelCase : Optional[int] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = self._get_input_ids_and_config() UpperCAmelCase : str = False UpperCAmelCase : Dict = max_length UpperCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: UpperCAmelCase : Union[str, Any] = model_class(_lowercase ) UpperCAmelCase : str = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Optional[Any] = getattr(_lowercase , _lowercase ) UpperCAmelCase : str = pt_model_class(_lowercase ).eval() UpperCAmelCase : Optional[Any] = load_flax_weights_in_pytorch_model(_lowercase , flax_model.params ) UpperCAmelCase : List[str] = flax_model.generate(_lowercase ).sequences UpperCAmelCase : Dict = pt_model.generate(torch.tensor(_lowercase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: UpperCAmelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_input_ids_and_config() UpperCAmelCase : List[Any] = False UpperCAmelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase : List[Any] = model_class(_lowercase ) UpperCAmelCase : Optional[int] = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : str = jit(model.generate ) UpperCAmelCase : Tuple = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = self._get_input_ids_and_config() UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase : Union[str, Any] = model_class(_lowercase ) UpperCAmelCase : Any = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : str = jit(model.generate ) UpperCAmelCase : List[Any] = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self._get_input_ids_and_config() UpperCAmelCase : List[Any] = False UpperCAmelCase : int = max_length UpperCAmelCase : Union[str, Any] = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase : List[Any] = model_class(_lowercase ) UpperCAmelCase : Any = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : str = jit(model.generate ) UpperCAmelCase : Optional[Any] = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self._get_input_ids_and_config() UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : List[str] = max_length UpperCAmelCase : Optional[Any] = 2 UpperCAmelCase : Optional[Any] = 2 for model_class in self.all_generative_model_classes: UpperCAmelCase : Tuple = model_class(_lowercase ) UpperCAmelCase : List[Any] = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = self._get_input_ids_and_config() UpperCAmelCase : List[Any] = True UpperCAmelCase : List[Any] = max_length UpperCAmelCase : List[str] = 0.8 UpperCAmelCase : List[str] = 1_0 UpperCAmelCase : Any = 0.3 UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Union[str, Any] = 8 UpperCAmelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase : List[str] = model_class(_lowercase ) UpperCAmelCase : Optional[Any] = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : int = jit(model.generate ) UpperCAmelCase : Tuple = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self._get_input_ids_and_config() UpperCAmelCase : Optional[Any] = max_length UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[Any] = 8 UpperCAmelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase : Optional[int] = model_class(_lowercase ) UpperCAmelCase : Dict = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : Dict = jit(model.generate ) UpperCAmelCase : Union[str, Any] = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = self._get_input_ids_and_config() UpperCAmelCase : Optional[int] = max_length UpperCAmelCase : Tuple = 2 UpperCAmelCase : int = 1 UpperCAmelCase : str = 8 UpperCAmelCase : Any = 9 for model_class in self.all_generative_model_classes: UpperCAmelCase : Union[str, Any] = model_class(_lowercase ) UpperCAmelCase : List[str] = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : List[Any] = jit(model.generate ) UpperCAmelCase : Union[str, Any] = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase : int = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase : str = False UpperCAmelCase : Dict = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase : List[str] = model_class(_lowercase ) UpperCAmelCase : Any = model.generate(_lowercase , attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : Dict = jit(model.generate ) UpperCAmelCase : str = jit_generate(_lowercase , attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase : List[Any] = True UpperCAmelCase : Dict = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase : List[Any] = model_class(_lowercase ) UpperCAmelCase : Any = model.generate(_lowercase , attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : Dict = jit(model.generate ) UpperCAmelCase : Union[str, Any] = jit_generate(_lowercase , attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self._get_input_ids_and_config() # pad attention mask on the left UpperCAmelCase : Dict = attention_mask.at[(0, 0)].set(0 ) UpperCAmelCase : Dict = 2 UpperCAmelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: UpperCAmelCase : Dict = model_class(_lowercase ) UpperCAmelCase : Dict = model.generate(_lowercase , attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , _lowercase ) UpperCAmelCase : Optional[Any] = jit(model.generate ) UpperCAmelCase : int = jit_generate(_lowercase , attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) UpperCAmelCase : Any = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) UpperCAmelCase : Optional[int] = "Hello world" UpperCAmelCase : Optional[int] = tokenizer(_lowercase , return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_lowercase , "do_samples" ): model.generate(_lowercase , do_samples=_lowercase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_lowercase , "foo" ): UpperCAmelCase : Optional[Any] = {"foo": "bar"} model.generate(_lowercase , **_lowercase )
311
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = "Salesforce/blip-image-captioning-base" lowerCAmelCase_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) lowerCAmelCase_ = "image_captioner" lowerCAmelCase_ = AutoModelForVisionaSeq lowerCAmelCase_ = ["image"] lowerCAmelCase_ = ["text"] def __init__( self : List[Any] , *_lowercase : Optional[int] , **_lowercase : Union[str, Any] ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*_lowercase , **_lowercase ) def __a ( self : Tuple , _lowercase : "Image" ): """simple docstring""" return self.pre_processor(images=_lowercase , return_tensors="""pt""" ) def __a ( self : Union[str, Any] , _lowercase : Optional[int] ): """simple docstring""" return self.model.generate(**_lowercase ) def __a ( self : int , _lowercase : Any ): """simple docstring""" return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase )[0].strip()
219
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCamelCase = InstructBlipProcessor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor def A__ ( self , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).qformer_tokenizer def A__ ( self ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) UpperCamelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) self.assertIsInstance(processor.qformer_tokenizer , __lowerCamelCase ) def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(__lowerCamelCase , return_tensors="""np""" ) UpperCamelCase = processor(images=__lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase ) UpperCamelCase = '''lower newer''' UpperCamelCase = processor(text=__lowerCamelCase ) UpperCamelCase = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) UpperCamelCase = qformer_tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase ) UpperCamelCase = '''lower newer''' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(__lowerCamelCase ) UpperCamelCase = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_qformer_tokenizer() UpperCamelCase = InstructBlipProcessor( tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase ) UpperCamelCase = '''lower newer''' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
356
'''simple docstring''' import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[32, 64, 128] , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2"] , _SCREAMING_SNAKE_CASE=[1, 2] , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = patch_norm UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = is_training UpperCamelCase = scope UpperCamelCase = use_labels UpperCamelCase = type_sequence_label_size UpperCamelCase = encoder_stride UpperCamelCase = out_features UpperCamelCase = out_indices def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> str: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = FocalNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = FocalNetBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = FocalNetBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase = FocalNetForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FocalNetForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = FocalNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def A__ ( self ) -> int: """simple docstring""" UpperCamelCase = FocalNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 , has_text_modality=_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Tuple: """simple docstring""" return def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def A__ ( self ) -> int: """simple docstring""" pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def A__ ( self ) -> int: """simple docstring""" pass def A__ ( self ) -> str: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # FocalNet has a different seq_length UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = reshaped_hidden_states[0].shape UpperCamelCase = ( reshaped_hidden_states[0].view(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A__ ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @slow def A__ ( self ) -> Union[str, Any]: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = FocalNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class a_ ( unittest.TestCase ): @cached_property def A__ ( self ) -> List[str]: """simple docstring""" return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def A__ ( self ) -> str: """simple docstring""" UpperCamelCase = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.default_image_processor UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class a_ ( lowerCamelCase , unittest.TestCase ): lowercase = (FocalNetBackbone,) if is_torch_available() else () lowercase = FocalNetConfig lowercase = False def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = FocalNetModelTester(self )
183
0
import socket def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : Tuple = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) __lowerCamelCase : Tuple = socket.gethostname() __lowerCamelCase : Union[str, Any] = 1_2_3_1_2 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: __lowerCamelCase : Dict = sock.recv(1_0_2_4 ) if not data: break out_file.write(lowerCamelCase__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
73
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A_ ( unittest.TestCase ): def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Any=1_3 ,SCREAMING_SNAKE_CASE__ : int=7 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : List[Any]=9_9 ,SCREAMING_SNAKE_CASE__ : List[Any]=3_2 ,SCREAMING_SNAKE_CASE__ : int=5 ,SCREAMING_SNAKE_CASE__ : List[Any]=4 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_7 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=5_1_2 ,SCREAMING_SNAKE_CASE__ : Dict=1_6 ,SCREAMING_SNAKE_CASE__ : Dict=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 ,SCREAMING_SNAKE_CASE__ : Dict=4 ,): __lowerCamelCase : int = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : Union[str, Any] = seq_length __lowerCamelCase : List[Any] = is_training __lowerCamelCase : Tuple = use_attention_mask __lowerCamelCase : List[str] = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : List[str] = vocab_size __lowerCamelCase : Any = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Union[str, Any] = type_vocab_size __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Optional[int] = num_choices def lowerCAmelCase ( self : Union[str, Any]): __lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) __lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length]) __lowerCamelCase : str = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=SCREAMING_SNAKE_CASE__ ,) return config, input_ids, attention_mask def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : List[str] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = config_and_inputs __lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase : Dict = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Tuple = FlaxDistilBertModelTester(self) @slow def lowerCAmelCase ( self : int): for model_class_name in self.all_model_classes: __lowerCamelCase : List[Any] = model_class_name.from_pretrained('distilbert-base-uncased') __lowerCamelCase : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE__) @require_flax class A_ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : str): __lowerCamelCase : Union[str, Any] = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased') __lowerCamelCase : str = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) __lowerCamelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) __lowerCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__)[0] __lowerCamelCase : Optional[int] = (1, 1_1, 7_6_8) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4))
73
1
"""simple docstring""" from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=36 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=1000 , )->List[Any]: '''simple docstring''' A_ : str = parent A_ : Optional[Any] = batch_size A_ : List[str] = num_channels A_ : Optional[Any] = image_size A_ : Any = patch_size A_ : Optional[Any] = is_training A_ : Dict = use_input_mask A_ : Union[str, Any] = use_token_type_ids A_ : Optional[Any] = use_labels A_ : str = vocab_size A_ : Tuple = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : Dict = num_attention_heads A_ : int = intermediate_size A_ : List[Any] = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : str = type_sequence_label_size A_ : List[str] = initializer_range A_ : List[str] = coordinate_size A_ : List[Any] = shape_size A_ : Optional[int] = num_labels A_ : Optional[Any] = num_choices A_ : List[Any] = scope A_ : List[str] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A_ : Dict = text_seq_length A_ : Dict = (image_size // patch_size) ** 2 + 1 A_ : Optional[int] = self.text_seq_length + self.image_seq_length def _snake_case ( self )->List[str]: '''simple docstring''' A_ : int = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A_ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) A_ : Any = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : Tuple = bbox[i, j, 3] A_ : int = bbox[i, j, 1] A_ : List[Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Tuple = bbox[i, j, 2] A_ : Dict = bbox[i, j, 0] A_ : Optional[Any] = tmp_coordinate A_ : str = tf.constant(_SCREAMING_SNAKE_CASE ) A_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Any = None if self.use_input_mask: A_ : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) A_ : Union[str, Any] = None if self.use_token_type_ids: A_ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : Optional[int] = None if self.use_labels: A_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A_ : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : List[str] = TFLayoutLMvaModel(config=_SCREAMING_SNAKE_CASE ) # text + image A_ : Tuple = model(_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) A_ : str = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) A_ : Tuple = model(_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A_ : Any = model(_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A_ : Union[str, Any] = model({'''pixel_values''': pixel_values} , training=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' A_ : str = self.num_labels A_ : int = TFLayoutLMvaForSequenceClassification(config=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : int = self.num_labels A_ : Dict = TFLayoutLMvaForTokenClassification(config=_SCREAMING_SNAKE_CASE ) A_ : Dict = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' A_ : str = 2 A_ : int = TFLayoutLMvaForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) A_ : List[str] = model( _SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , token_type_ids=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Dict = self.prepare_config_and_inputs() (A_) : Union[str, Any] = config_and_inputs A_ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) snake_case = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) snake_case = False snake_case = False snake_case = False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' return True def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False )->dict: '''simple docstring''' A_ : List[str] = copy.deepcopy(_SCREAMING_SNAKE_CASE ) if model_class in get_values(_SCREAMING_SNAKE_CASE ): A_ : Tuple = { k: tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_SCREAMING_SNAKE_CASE , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_SCREAMING_SNAKE_CASE ): A_ : str = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_SCREAMING_SNAKE_CASE ): A_ : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) A_ : Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_SCREAMING_SNAKE_CASE ): A_ : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(_SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _snake_case ( self )->int: '''simple docstring''' A_ : Optional[int] = TFLayoutLMvaModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self )->str: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) if getattr(_SCREAMING_SNAKE_CASE , '''hf_compute_loss''' , _SCREAMING_SNAKE_CASE ): # The number of elements in the loss should be the same as the number of elements in the label A_ : Dict = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ : List[str] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=_SCREAMING_SNAKE_CASE )[0] ] A_ : Optional[Any] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs A_ : Any = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = prepared_for_class.pop('''input_ids''' ) A_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions A_ : Dict = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ : Dict = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: A_ : List[str] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: A_ : Optional[int] = -100 A_ : int = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict A_ : int = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple A_ : str = self._prepare_for_class(inputs_dict.copy() , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) # Get keys that were added with the _prepare_for_class function A_ : str = prepared_for_class.keys() - inputs_dict.keys() A_ : int = inspect.signature(model.call ).parameters A_ : Optional[Any] = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple A_ : List[Any] = {0: '''input_ids'''} for label_key in label_keys: A_ : Any = signature_names.index(_SCREAMING_SNAKE_CASE ) A_ : Dict = label_key A_ : List[str] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple A_ : List[str] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: A_ : Any = prepared_for_class[value] A_ : str = tuple(_SCREAMING_SNAKE_CASE ) # Send to model A_ : Optional[Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _snake_case ( self )->Any: '''simple docstring''' ( A_ ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' ( A_ ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Any = type self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->str: '''simple docstring''' ( A_ ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->str: '''simple docstring''' ( A_ ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->List[Any]: '''simple docstring''' ( A_ ) : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->Tuple: '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[int] = TFLayoutLMvaModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self )->Any: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=_SCREAMING_SNAKE_CASE ) if is_vision_available() else None @slow def _snake_case ( self )->Dict: '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) A_ : Optional[Any] = self.default_image_processor A_ : Any = prepare_img() A_ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''tf''' ).pixel_values A_ : Optional[Any] = tf.constant([[1, 2]] ) A_ : List[str] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass A_ : List[str] = model(input_ids=_SCREAMING_SNAKE_CASE , bbox=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , training=_SCREAMING_SNAKE_CASE ) # verify the logits A_ : int = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , _SCREAMING_SNAKE_CASE ) A_ : Dict = tf.constant( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
361
from __future__ import annotations import math def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if num <= 0: A_ : Optional[int] = f'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = [True] * (num + 1) A_ : Tuple = [] A_ : Union[str, Any] = 2 A_ : Any = int(math.sqrt(SCREAMING_SNAKE_CASE ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(SCREAMING_SNAKE_CASE ) # Set multiples of start be False for i in range(start * start , num + 1 , SCREAMING_SNAKE_CASE ): if sieve[i] is True: A_ : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(SCREAMING_SNAKE_CASE ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
65
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : str = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Optional[int] = "camembert" def __init__( self , a=3_0_5_2_2 , a=7_6_8 , a=1_2 , a=1_2 , a=3_0_7_2 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=2 , a=0.02 , a=1e-12 , a=1 , a=0 , a=2 , a="absolute" , a=True , a=None , **a , ) -> Any: super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) lowercase__ : Any = vocab_size lowercase__ : Any = hidden_size lowercase__ : List[str] = num_hidden_layers lowercase__ : int = num_attention_heads lowercase__ : Optional[Any] = hidden_act lowercase__ : int = intermediate_size lowercase__ : Dict = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Optional[int] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Union[str, Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : str = position_embedding_type lowercase__ : Optional[Any] = use_cache lowercase__ : Any = classifier_dropout class UpperCAmelCase_ ( _a): @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase__ : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase__ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
77
import requests from bsa import BeautifulSoup def UpperCAmelCase_ ( _A = "AAPL" ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(_A ).text , '''html.parser''' ) SCREAMING_SNAKE_CASE__ = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
314
0
'''simple docstring''' from __future__ import annotations from random import choice def snake_case_ (UpperCamelCase : Tuple ): '''simple docstring''' return choice(UpperCamelCase ) def snake_case_ (UpperCamelCase : list[int] , UpperCamelCase : int ): '''simple docstring''' _a = random_pivot(UpperCamelCase ) # partition based on pivot # linear time _a = [e for e in lst if e < pivot] _a = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(UpperCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(UpperCamelCase ) < k - 1: return kth_number(UpperCamelCase , k - len(UpperCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
356
'''simple docstring''' def snake_case_ (UpperCamelCase : str , UpperCamelCase : Any ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def snake_case_ (UpperCamelCase : Any , UpperCamelCase : str=0 ): '''simple docstring''' return sorted(UpperCamelCase , key=lambda UpperCamelCase : x[column] ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : Any , UpperCamelCase : Union[str, Any]=float('''inf''' ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCamelCase ): _a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _a = current_dis return min_dis def snake_case_ (UpperCamelCase : int , UpperCamelCase : Tuple , UpperCamelCase : List[str]=float('''inf''' ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , UpperCamelCase ): for j in range(max(0 , i - 6 ) , UpperCamelCase ): _a = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _a = current_dis return min_dis def snake_case_ (UpperCamelCase : int , UpperCamelCase : List[Any] , UpperCamelCase : int ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(UpperCamelCase , UpperCamelCase ) # recursion _a = points_counts // 2 _a = closest_pair_of_points_sqr( UpperCamelCase , points_sorted_on_y[:mid] , UpperCamelCase ) _a = closest_pair_of_points_sqr( UpperCamelCase , points_sorted_on_y[mid:] , points_counts - mid ) _a = min(UpperCamelCase , UpperCamelCase ) _a = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCamelCase ) _a = dis_between_closest_in_strip( UpperCamelCase , len(UpperCamelCase ) , UpperCamelCase ) return min(UpperCamelCase , UpperCamelCase ) def snake_case_ (UpperCamelCase : Optional[int] , UpperCamelCase : List[str] ): '''simple docstring''' _a = column_based_sort(UpperCamelCase , column=0 ) _a = column_based_sort(UpperCamelCase , column=1 ) return ( closest_pair_of_points_sqr( UpperCamelCase , UpperCamelCase , UpperCamelCase ) ) ** 0.5 if __name__ == "__main__": _snake_case : int = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
179
0
"""simple docstring""" def _snake_case ( snake_case__ : str ): A = 0 for ch in input_str: A = ord(snake_case__ ) A = pow(2 , snake_case__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
74
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowercase__ : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase__ : int = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/')) __A : Optional[int] = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , 'src/diffusers/schedulers/scheduling_ddpm.py') , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py') , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = 'src/diffusers' shutil.rmtree(self.diffusers_dir) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): '''simple docstring''' __A : Any = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: __A : Optional[int] = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result __A : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119) __A : Union[str, Any] = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase) __A : List[Any] = os.path.join(self.diffusers_dir , 'new_code.py') with open(_UpperCAmelCase , 'w' , newline='\n') as f: f.write(_UpperCAmelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase) with open(_UpperCAmelCase , 'r') as f: self.assertTrue(f.read() , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput') self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , _UpperCAmelCase) , ) # Copy consistency with a really long name __A : int = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('Bert' , _UpperCAmelCase , _UpperCAmelCase) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , _UpperCAmelCase , overwrite_result=re.sub('DDPM' , 'Test' , _UpperCAmelCase) , )
190
'''simple docstring''' from math import pi, sqrt, tan def _lowerCAmelCase ( __snake_case : float ) -> float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _lowerCAmelCase ( __snake_case : float ) -> float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def _lowerCAmelCase ( __snake_case : float ) -> float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __A : Union[str, Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(__snake_case , 2 ) * torus_radius * tube_radius def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def _lowerCAmelCase ( __snake_case : float ) -> float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __A : int = (sidea + sidea + sidea) / 2 __A : Tuple = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def _lowerCAmelCase ( __snake_case : float ) -> float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def _lowerCAmelCase ( __snake_case : int , __snake_case : float ) -> float: if not isinstance(__snake_case , __snake_case ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print('''\nSurface Areas of various geometric shapes: \n''') print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
190
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : List[Any] = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''bloom''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self , __SCREAMING_SNAKE_CASE=25_08_80 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=1E-5 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg lowercase_ : Optional[int] = kwargs.pop('''n_embed''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = hidden_size if n_embed is None else n_embed lowercase_ : Union[str, Any] = n_layer lowercase_ : Union[str, Any] = n_head lowercase_ : Optional[int] = layer_norm_epsilon lowercase_ : str = initializer_range lowercase_ : Dict = use_cache lowercase_ : Union[str, Any] = pretraining_tp lowercase_ : Union[str, Any] = apply_residual_connection_post_layernorm lowercase_ : Union[str, Any] = hidden_dropout lowercase_ : List[str] = attention_dropout lowercase_ : Dict = bos_token_id lowercase_ : int = eos_token_id lowercase_ : Any = slow_but_exact super().__init__(bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = version.parse('''1.12''' ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "default" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , __SCREAMING_SNAKE_CASE ): # TODO: how to do that better? lowercase_ : Any = 0 @property def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction='''inputs''' , inverted_values_shape=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase_ : Any = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): """simple docstring""" return self._config.n_layer @property def _snake_case ( self ): """simple docstring""" return self._config.n_head @property def _snake_case ( self ): """simple docstring""" return 1E-3 def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" lowercase_ : Optional[int] = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( __SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() lowercase_ : Optional[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase_ , lowercase_ : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase_ : Tuple = seqlen + 2 lowercase_ : Optional[Any] = self._config.hidden_size // self.num_attention_heads lowercase_ : Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase_ : Tuple = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase_ : Union[str, Any] = [ (torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] lowercase_ : Union[str, Any] = common_inputs['''attention_mask'''] if self.use_past: lowercase_ : Any = ordered_inputs['''attention_mask'''].dtype lowercase_ : Union[str, Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): """simple docstring""" return 13
93
'''simple docstring''' import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCAmelCase__ : lowerCAmelCase_ = None def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowercase_ : Any = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : str = os.path.join(__SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_json_file(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Union[str, Any] = feat_extract_first.save_pretrained(__SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(__SCREAMING_SNAKE_CASE ) lowercase_ : str = self.feature_extraction_class.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.feature_extraction_class() self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
93
1
"""simple docstring""" from math import sqrt def __SCREAMING_SNAKE_CASE ( lowercase__ = 1_000_000 ): """simple docstring""" A = 0 A = 0 A = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
57
"""simple docstring""" import numpy as np import datasets __A : Optional[int] = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __A : Any = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __A : List[str] = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ (self : Dict): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence") , id="X"), }) , ) def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]): # convert to numpy arrays A = np.array(__SCREAMING_SNAKE_CASE) A = np.array(__SCREAMING_SNAKE_CASE) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError("Expected `X` to be a 2D vector") if len(reference_distribution.shape) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector") if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension") # Get mahalanobis distance for each prediction A = X - np.mean(__SCREAMING_SNAKE_CASE) A = np.cov(reference_distribution.T) try: A = np.linalg.inv(__SCREAMING_SNAKE_CASE) except np.linalg.LinAlgError: A = np.linalg.pinv(__SCREAMING_SNAKE_CASE) A = np.dot(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) A = np.dot(__SCREAMING_SNAKE_CASE , X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
57
1
'''simple docstring''' UpperCamelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : int ) -> Dict: # Return True if there is node that has not iterated. _lowerCAmelCase : Optional[int] = [False] * len(_lowerCamelCase ) _lowerCAmelCase : int = [s] _lowerCAmelCase : str = True while queue: _lowerCAmelCase : List[str] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : str = u return visited[t] def _UpperCAmelCase ( _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ) -> str: _lowerCAmelCase : Tuple = [-1] * (len(_lowerCamelCase )) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : str = [] _lowerCAmelCase : Union[str, Any] = [i[:] for i in graph] # Record original cut, copy. while bfs(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Optional[int] = float("""Inf""" ) _lowerCAmelCase : str = sink while s != source: # Find the minimum value in select path _lowerCAmelCase : int = min(_lowerCamelCase , graph[parent[s]][s] ) _lowerCAmelCase : Dict = parent[s] max_flow += path_flow _lowerCAmelCase : Union[str, Any] = sink while v != source: _lowerCAmelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _lowerCAmelCase : List[Any] = parent[v] for i in range(len(_lowerCamelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
309
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class a_ (_a ): __lowerCAmelCase : Dict = (DPMSolverSDEScheduler,) __lowerCAmelCase : Dict = 1_0 def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : List[Any] = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**snake_case_ ) return config def __UpperCamelCase ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case_ ) def __UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ ) def __UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case_ ) def __UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : Any = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : Optional[Any] = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Union[str, Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.scheduler_classes[0] _lowerCAmelCase : Optional[Any] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase : Dict = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase : int = self.dummy_model() _lowerCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase : int = sample.to(snake_case_ ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : List[Any] = model(snake_case_ , snake_case_ ) _lowerCAmelCase : str = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : int = output.prev_sample _lowerCAmelCase : str = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Optional[int] = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCAmelCase : str = self.get_scheduler_config() _lowerCAmelCase : str = scheduler_class(**snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : Tuple = self.dummy_model() _lowerCAmelCase : Optional[int] = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase : str = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Any = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : Dict = output.prev_sample _lowerCAmelCase : List[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.scheduler_classes[0] _lowerCAmelCase : Optional[int] = self.get_scheduler_config() _lowerCAmelCase : Tuple = scheduler_class(**snake_case_ , use_karras_sigmas=snake_case_ ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case_ ) _lowerCAmelCase : List[Any] = self.dummy_model() _lowerCAmelCase : str = self.dummy_sample_deter.to(snake_case_ ) * scheduler.init_noise_sigma _lowerCAmelCase : Optional[int] = sample.to(snake_case_ ) for t in scheduler.timesteps: _lowerCAmelCase : List[str] = scheduler.scale_model_input(snake_case_ , snake_case_ ) _lowerCAmelCase : int = model(snake_case_ , snake_case_ ) _lowerCAmelCase : Optional[int] = scheduler.step(snake_case_ , snake_case_ , snake_case_ ) _lowerCAmelCase : str = output.prev_sample _lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case_ ) ) _lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
309
1
def lowercase( UpperCamelCase_ = 4000000 ) -> int: '''simple docstring''' UpperCamelCase = [0, 1] UpperCamelCase = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCamelCase = 0 for j in range(len(UpperCamelCase_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F'''{solution() = }''')
350
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowercase( UpperCamelCase_ = True , *UpperCamelCase_ , **UpperCamelCase_ ) -> int: '''simple docstring''' if not is_tqdm_available(): raise ImportError("""Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.""" ) UpperCamelCase = False if main_process_only: UpperCamelCase = PartialState().local_process_index == 0 return _tqdm(*UpperCamelCase_ , **UpperCamelCase_ , disable=UpperCamelCase_ )
165
0