code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __snake_case ( unittest.TestCase ): _a = JukeboxTokenizer _a = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def UpperCAmelCase__ ( self : str): import torch lowerCAmelCase_ : List[Any] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''') lowerCAmelCase_ : Any = tokenizer(**self.metas)['''input_ids'''] # fmt: off lowerCAmelCase_ : List[str] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def UpperCAmelCase__ ( self : Any): import torch lowerCAmelCase_ : str = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''') lowerCAmelCase_ : List[Any] = tokenizer(**self.metas)['''input_ids'''] # fmt: off lowerCAmelCase_ : Optional[int] = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
103
from pathlib import Path import fire def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : int ): lowerCAmelCase_ : List[str] = Path(__UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = Path(__UpperCamelCase ) dest_dir.mkdir(exist_ok=__UpperCamelCase ) for path in src_dir.iterdir(): lowerCAmelCase_ : Optional[Any] = [x.rstrip() for x in list(path.open().readlines() )][:n] lowerCAmelCase_ : List[str] = dest_dir.joinpath(path.name ) print(__UpperCamelCase ) dest_path.open('''w''' ).write('''\n'''.join(__UpperCamelCase ) ) if __name__ == "__main__": fire.Fire(minify)
103
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> List[str]: UpperCamelCase : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'tf_padding' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'depth_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=8, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_="relu6", SCREAMING_SNAKE_CASE_=1280, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, ) -> List[Any]: UpperCamelCase : str = parent UpperCamelCase : str = batch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : Any = image_size UpperCamelCase : Union[str, Any] = depth_multiplier UpperCamelCase : Optional[int] = depth_divisible_by UpperCamelCase : Dict = min_depth UpperCamelCase : Dict = expand_ratio UpperCamelCase : Optional[Any] = tf_padding UpperCamelCase : str = output_stride UpperCamelCase : Union[str, Any] = first_layer_is_expansion UpperCamelCase : Optional[Any] = finegrained_output UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Tuple = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) UpperCamelCase : Dict = classifier_dropout_prob UpperCamelCase : Tuple = use_labels UpperCamelCase : Optional[int] = is_training UpperCamelCase : List[Any] = num_labels UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = scope def snake_case_ ( self ) -> Any: UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Optional[int] = None UpperCamelCase : List[Any] = None if self.use_labels: UpperCamelCase : Dict = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : str = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> List[str]: return MobileNetVaConfig( num_channels=self.num_channels, image_size=self.image_size, depth_multiplier=self.depth_multiplier, depth_divisible_by=self.depth_divisible_by, min_depth=self.min_depth, expand_ratio=self.expand_ratio, output_stride=self.output_stride, first_layer_is_expansion=self.first_layer_is_expansion, finegrained_output=self.finegrained_output, hidden_act=self.hidden_act, tf_padding=self.tf_padding, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Tuple = MobileNetVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) self.parent.assertEqual( result.pooler_output.shape, (self.batch_size, self.last_hidden_size), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : Any = MobileNetVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[Any] = self.num_labels UpperCamelCase : Optional[int] = MobileNetVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Dict = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : int = ( { "feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification, "image-segmentation": MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Dict = False def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[Any] = MobileNetVaModelTester(self ) UpperCamelCase : str = MobileNetVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Tuple: pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> List[Any]: pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def snake_case_ ( self ) -> List[Any]: pass def snake_case_ ( self ) -> int: UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Any = [*signature.parameters.keys()] UpperCamelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Union[str, Any]: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : List[Any] = outputs.hidden_states UpperCamelCase : List[str] = 16 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : List[str] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> List[str]: for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = MobileNetVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Dict: UpperCamelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> int: return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Any = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : List[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase : Tuple = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) UpperCamelCase : Dict = prepare_img() UpperCamelCase : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = outputs.logits # verify the logits UpperCamelCase : Tuple = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = ShapEPipeline UpperCAmelCase__ : List[Any] = ["prompt"] UpperCAmelCase__ : List[str] = ["prompt"] UpperCAmelCase__ : int = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase__ : Union[str, Any] = False @property def snake_case_ ( self ) -> Union[str, Any]: return 32 @property def snake_case_ ( self ) -> List[str]: return 32 @property def snake_case_ ( self ) -> int: return self.time_input_dim * 4 @property def snake_case_ ( self ) -> Optional[int]: return 8 @property def snake_case_ ( self ) -> str: UpperCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def snake_case_ ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase : Dict = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, projection_dim=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) @property def snake_case_ ( self ) -> Dict: torch.manual_seed(0 ) UpperCamelCase : int = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCamelCase : Any = PriorTransformer(**SCREAMING_SNAKE_CASE_ ) return model @property def snake_case_ ( self ) -> Tuple: torch.manual_seed(0 ) UpperCamelCase : Any = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } UpperCamelCase : Dict = ShapERenderer(**SCREAMING_SNAKE_CASE_ ) return model def snake_case_ ( self ) -> Tuple: UpperCamelCase : List[Any] = self.dummy_prior UpperCamelCase : int = self.dummy_text_encoder UpperCamelCase : Dict = self.dummy_tokenizer UpperCamelCase : List[str] = self.dummy_renderer UpperCamelCase : str = HeunDiscreteScheduler( beta_schedule='exp', num_train_timesteps=1024, prediction_type='sample', use_karras_sigmas=SCREAMING_SNAKE_CASE_, clip_sample=SCREAMING_SNAKE_CASE_, clip_sample_range=1.0, ) UpperCamelCase : List[str] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Any: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def snake_case_ ( self ) -> int: UpperCamelCase : str = 'cpu' UpperCamelCase : Optional[int] = self.get_dummy_components() UpperCamelCase : int = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[int] = output.images[0] UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase : List[str] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ) -> int: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self ) -> str: UpperCamelCase : str = torch_device == 'cpu' UpperCamelCase : Optional[int] = True self._test_inference_batch_single_identical( batch_size=2, test_max_difference=SCREAMING_SNAKE_CASE_, relax_max_difference=SCREAMING_SNAKE_CASE_, ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : List[Any] = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 1 UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase : List[Any] = batch_size * [inputs[key]] UpperCamelCase : int = pipe(**SCREAMING_SNAKE_CASE_, num_images_per_prompt=SCREAMING_SNAKE_CASE_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) UpperCamelCase : Optional[int] = ShapEPipeline.from_pretrained('openai/shap-e' ) UpperCamelCase : Optional[int] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) UpperCamelCase : Dict = pipe( 'a shark', generator=SCREAMING_SNAKE_CASE_, guidance_scale=15.0, num_inference_steps=64, frame_size=64, output_type='np', ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
103
1
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} __lowerCamelCase = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } __lowerCamelCase = { "abeja/gpt-neox-japanese-2.7b": 20_48, } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: A__ = json.loads(f.read() ) A__ = collections.OrderedDict() A__ = collections.OrderedDict() A__ = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: A__ = f.readlines() A__ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(SCREAMING_SNAKE_CASE__ ): A__ = b A__ = idx for wd in b: A__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCamelCase__( UpperCamelCase_ ): lowerCAmelCase__ : Tuple = VOCAB_FILES_NAMES lowerCAmelCase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ : List[Any] = ['input_ids', 'attention_mask'] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="<|endoftext|>" ,__UpperCAmelCase="<|endoftext|>" ,__UpperCAmelCase="<|startoftext|>" ,__UpperCAmelCase="<|endoftext|>" ,__UpperCAmelCase=False ,**__UpperCAmelCase ,) -> Union[str, Any]: super().__init__( unk_token=lowercase_ ,pad_token=lowercase_ ,bos_token=lowercase_ ,eos_token=lowercase_ ,do_clean_text=lowercase_ ,**lowercase_ ,) if not os.path.isfile(lowercase_ ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(lowercase_ ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) A__ = do_clean_text A__ = load_vocab_and_emoji(lowercase_ ,lowercase_ ) A__ = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def snake_case__ ( self ) -> Optional[Any]: return len(self.raw_vocab ) def snake_case__ ( self ) -> Dict: return dict(self.raw_vocab ,**self.added_tokens_encoder ) def snake_case__ ( self ,__UpperCAmelCase ) -> str: return self.subword_tokenizer.tokenize(lowercase_ ,clean=self.do_clean_text ) def snake_case__ ( self ,__UpperCAmelCase ) -> Tuple: return self.vocab.get(lowercase_ ,self.vocab.get(self.unk_token ) ) def snake_case__ ( self ,__UpperCAmelCase ) -> Any: return self.subword_tokenizer.convert_id_to_token(lowercase_ ) def snake_case__ ( self ,__UpperCAmelCase ) -> int: A__ = ''.join(lowercase_ ).strip() return out_string def snake_case__ ( self ,__UpperCAmelCase ) -> List[int]: A__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ ,add_special_tokens=lowercase_ ) + [self.eos_token_id] ) if len(lowercase_ ) > self.model_max_length: A__ = input_ids[-self.model_max_length :] return input_ids def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: A__ = 0 if os.path.isdir(lowercase_ ): A__ = os.path.join( lowercase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join( lowercase_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: A__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) A__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(lowercase_ ,'w' ,encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) A__ = token_index writer.write(','.join(lowercase_ ) + '\n' ) index += 1 with open(lowercase_ ,'w' ,encoding='utf-8' ) as writer: json.dump(self.emoji ,lowercase_ ) return vocab_file, emoji_file class UpperCamelCase__( UpperCamelCase_ ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: A__ = vocab # same as swe A__ = ids_to_tokens # same as bpe A__ = emoji A__ = np.max([len(lowercase_ ) for w in self.vocab.keys()] ) A__ = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) A__ = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) A__ = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) A__ = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A__ = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A__ = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) A__ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' A__ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' A__ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ) -> str: return len(self.ids_to_tokens ) def snake_case__ ( self ,__UpperCAmelCase ) -> Union[str, Any]: A__ = self.content_repattera.sub('<URL>' ,lowercase_ ) A__ = self.content_repattera.sub('<EMAIL>' ,lowercase_ ) A__ = self.content_repattera.sub('<TEL>' ,lowercase_ ) A__ = self.content_repattera.sub('<DATE>' ,lowercase_ ) A__ = self.content_repattera.sub('<DATE>' ,lowercase_ ) A__ = self.content_repattera.sub('<PRICE>' ,lowercase_ ) A__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A__ = content.replace('<BLOCK><BLOCK>' ,'<BLOCK>' ) return content def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> Tuple: A__ = text.replace(' ' ,'<SP>' ) A__ = text.replace(' ' ,'<SP>' ) A__ = text.replace('\r\n' ,'<BR>' ) A__ = text.replace('\n' ,'<BR>' ) A__ = text.replace('\r' ,'<BR>' ) A__ = text.replace('\t' ,'<TAB>' ) A__ = text.replace('—' ,'ー' ) A__ = text.replace('−' ,'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: A__ = text.replace(lowercase_ ,lowercase_ ) if clean: A__ = self.clean_text(lowercase_ ) def check_simbol(__UpperCAmelCase ): A__ = x.encode() if len(lowercase_ ) == 1 and len(lowercase_ ) == 2: A__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2A1 and c <= 0XC_2BF) or (c >= 0XC_780 and c <= 0XC_783) or (c >= 0XC_AB9 and c <= 0XC_BBF) or (c >= 0XC_C80 and c <= 0XC_DA2) ): return True return False def checkuae(__UpperCAmelCase ): A__ = x.encode() if len(lowercase_ ) == 1 and len(lowercase_ ) == 3: A__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28_080 and c <= 0XE2B_07F: return True return False A__ = 0 A__ = [] while pos < len(lowercase_ ): A__ = min(len(lowercase_ ) ,pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 A__ = [] # (token_id, token, pos) for e in range(lowercase_ ,lowercase_ ,-1 ): A__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowercase_ ) > 2: A__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowercase_ ) > 0: # the smallest token_id is adopted A__ = sorted(lowercase_ ,key=lambda __UpperCAmelCase : x[0] )[0] result.append(lowercase_ ) A__ = e else: A__ = pos + 1 A__ = text[pos:end] if check_simbol(lowercase_ ): result.append('<KIGOU>' ) elif checkuae(lowercase_ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) A__ = end return result def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="\n" ) -> int: A__ = [] A__ = [] A__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowercase_ ) > 0: words.append(bytearray(lowercase_ ).decode('utf-8' ,errors='replace' ) ) A__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(lowercase_ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(lowercase_ ) if len(lowercase_ ) > 0: words.append(bytearray(lowercase_ ).decode('utf-8' ,errors='replace' ) ) A__ = ''.join(lowercase_ ) return text
221
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : Dict =[] for i in range(self.num_layers ): _lowerCamelCase : Union[str, Any] =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Dict =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Optional[int] =resnets _lowerCamelCase : Dict =attentions if self.add_downsample: _lowerCamelCase : Union[str, Any] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=True ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : Tuple =() for resnet, attn in zip(self.resnets , self.attentions ): _lowerCamelCase : Union[str, Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : Union[str, Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Optional[int] =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _lowerCamelCase : str =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if i == 0 else self.out_channels _lowerCamelCase : Any =FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Union[str, Any] =resnets if self.add_downsample: _lowerCamelCase : List[str] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Any , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=True ) -> Dict: """simple docstring""" _lowerCamelCase : Optional[int] =() for resnet in self.resnets: _lowerCamelCase : Tuple =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: _lowerCamelCase : Tuple =self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : Dict ) -> Tuple: """simple docstring""" _lowerCamelCase : str =[] _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : List[str] =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : Tuple =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : List[str] =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : int =resnets _lowerCamelCase : Dict =attentions if self.add_upsample: _lowerCamelCase : str =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Union[str, Any]=True ) -> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCamelCase : Optional[int] =res_hidden_states_tuple[-1] _lowerCamelCase : Union[str, Any] =res_hidden_states_tuple[:-1] _lowerCamelCase : Any =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[Any] =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Optional[Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =True UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _lowerCamelCase : List[str] =[] for i in range(self.num_layers ): _lowerCamelCase : Tuple =self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCamelCase : int =self.prev_output_channel if i == 0 else self.out_channels _lowerCamelCase : str =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : str =resnets if self.add_upsample: _lowerCamelCase : List[str] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowercase_ : str , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : Any=True ) -> int: """simple docstring""" for resnet in self.resnets: # pop res hidden states _lowerCamelCase : List[str] =res_hidden_states_tuple[-1] _lowerCamelCase : str =res_hidden_states_tuple[:-1] _lowerCamelCase : List[str] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCamelCase : Optional[Any] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: _lowerCamelCase : Union[str, Any] =self.upsamplers_a(lowercase_ ) return hidden_states class A ( nn.Module ): UpperCamelCase__ : int UpperCamelCase__ : float =0.0 UpperCamelCase__ : int =1 UpperCamelCase__ : int =1 UpperCamelCase__ : bool =False UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" _lowerCamelCase : Optional[Any] =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCamelCase : Any =[] for _ in range(self.num_layers ): _lowerCamelCase : Optional[int] =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) _lowerCamelCase : Tuple =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) _lowerCamelCase : List[Any] =resnets _lowerCamelCase : List[str] =attentions def __call__( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : List[str]=True ) -> int: """simple docstring""" _lowerCamelCase : Dict =self.resnets[0](lowercase_ , lowercase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCamelCase : Tuple =attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) _lowerCamelCase : List[str] =resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) return hidden_states
199
0
from collections import defaultdict def __magic_name__ ( __a : str , __a : str ): '''simple docstring''' UpperCamelCase__ = first_str.lower().strip() UpperCamelCase__ = second_str.lower().strip() # Remove whitespace UpperCamelCase__ = first_str.replace(""" """ , """""" ) UpperCamelCase__ = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 UpperCamelCase__ = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase_ = input('''Enter the first string ''').strip() lowerCamelCase_ = input('''Enter the second string ''').strip() lowerCamelCase_ = check_anagrams(input_a, input_b) print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
178
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self ): UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = BlipImageProcessor() UpperCamelCase__ = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) UpperCamelCase__ = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) UpperCamelCase__ = InstructBlipProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer def UpperCAmelCase_ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ (self ): UpperCamelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] UpperCamelCase__ = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ (self ): UpperCamelCase__ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase__ = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) UpperCamelCase__ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) UpperCamelCase__ = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = qformer_tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = self.get_qformer_tokenizer() UpperCamelCase__ = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = self.prepare_image_inputs() UpperCamelCase__ = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
178
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCAmelCase__ = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') lowerCAmelCase__ = f'https://www.google.com/search?q={query}&num=100' lowerCAmelCase__ = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: lowerCAmelCase__ = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: lowerCAmelCase__ = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
104
"""simple docstring""" import string def lowerCamelCase__ ( _lowerCamelCase : str ) -> None: for key in range(len(string.ascii_uppercase ) ): lowerCamelCase_ = '' for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase_ = string.ascii_uppercase.find(_lowerCamelCase ) lowerCamelCase_ = num - key if num < 0: lowerCamelCase_ = num + len(string.ascii_uppercase ) lowerCamelCase_ = translated + string.ascii_uppercase[num] else: lowerCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = input('Encrypted message: ' ) lowerCamelCase_ = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
183
0
"""simple docstring""" import argparse import copy def _snake_case ( lowercase__ ): _lowerCamelCase : Union[str, Any] = {} with open(lowerCamelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _lowerCamelCase : Dict = [] _list.append([line.split()[1], line.split()[2]] ) _lowerCamelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _lowerCamelCase : str = [] _list.append([line.split()[0], line.split()[2]] ) _lowerCamelCase : Union[str, Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _snake_case ( lowercase__ , lowercase__ ): with open(lowerCamelCase_ ) as f: _lowerCamelCase : Any = f.read(1 ) _lowerCamelCase : Dict = start_node _lowerCamelCase : Dict = [] _lowerCamelCase : List[Any] = start_node _lowerCamelCase : List[str] = 0 while visiting not in first_solution: _lowerCamelCase : Dict = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase_ ) and k[0] not in first_solution: _lowerCamelCase : int = k[1] _lowerCamelCase : Optional[int] = k[0] first_solution.append(lowerCamelCase_ ) _lowerCamelCase : Tuple = distance_of_first_solution + int(lowerCamelCase_ ) _lowerCamelCase : str = best_node first_solution.append(lowerCamelCase_ ) _lowerCamelCase : List[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _lowerCamelCase : Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Union[str, Any] = [] for n in solution[1:-1]: _lowerCamelCase : Optional[Any] = solution.index(lowerCamelCase_ ) for kn in solution[1:-1]: _lowerCamelCase : Any = solution.index(lowerCamelCase_ ) if n == kn: continue _lowerCamelCase : int = copy.deepcopy(lowerCamelCase_ ) _lowerCamelCase : List[Any] = kn _lowerCamelCase : Any = n _lowerCamelCase : List[Any] = 0 for k in _tmp[:-1]: _lowerCamelCase : str = _tmp[_tmp.index(lowerCamelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _lowerCamelCase : List[Any] = distance + int(i[1] ) _tmp.append(lowerCamelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _lowerCamelCase : List[Any] = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowercase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = 1 _lowerCamelCase : Tuple = first_solution _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : Optional[Any] = distance_of_first_solution _lowerCamelCase : Optional[Any] = solution while count <= iters: _lowerCamelCase : Union[str, Any] = find_neighborhood(lowerCamelCase_ , lowerCamelCase_ ) _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = neighborhood[index_of_best_solution] _lowerCamelCase : int = len(lowerCamelCase_ ) - 1 _lowerCamelCase : int = False while not found: _lowerCamelCase : Any = 0 while i < len(lowerCamelCase_ ): if best_solution[i] != solution[i]: _lowerCamelCase : List[str] = best_solution[i] _lowerCamelCase : List[Any] = solution[i] break _lowerCamelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _lowerCamelCase : Optional[int] = True _lowerCamelCase : Dict = best_solution[:-1] _lowerCamelCase : Optional[int] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _lowerCamelCase : List[str] = cost _lowerCamelCase : Union[str, Any] = solution else: _lowerCamelCase : Optional[Any] = index_of_best_solution + 1 _lowerCamelCase : Union[str, Any] = neighborhood[index_of_best_solution] if len(lowerCamelCase_ ) >= size: tabu_list.pop(0 ) _lowerCamelCase : Optional[int] = count + 1 return best_solution_ever, best_cost def _snake_case ( lowercase__=None ): _lowerCamelCase : Union[str, Any] = generate_neighbours(args.File ) _lowerCamelCase : List[str] = generate_first_solution( args.File , lowerCamelCase_ ) _lowerCamelCase : List[Any] = tabu_search( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
355
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ : Any = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Dict = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
63
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Dict: _lowerCAmelCase : List[Any] = torch.exp(_lowerCamelCase ) _lowerCAmelCase : List[Any] = torch.sum(_lowerCamelCase ,dim=1 ) # sum of exp(x_i) _lowerCAmelCase : Dict = torch.sum(x * exp_x ,dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowerCamelCase ) - B / A class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : int = config.output_attentions _lowerCAmelCase : Any = config.output_hidden_states _lowerCAmelCase : List[Any] = nn.ModuleList([BertLayer(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : Any = nn.ModuleList([BertHighway(a__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase : str = [-1 for _ in range(config.num_hidden_layers )] def __A ( self , a__ ): if (type(a__ ) is float) or (type(a__ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCAmelCase : Tuple = x else: _lowerCAmelCase : Optional[int] = x def __A ( self , a__ ): _lowerCAmelCase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __A ( self , a__ , a__=None , a__=None , a__=None , a__=None , ): _lowerCAmelCase : Any = () _lowerCAmelCase : Optional[int] = () _lowerCAmelCase : List[Any] = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCAmelCase : str = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[str] = layer_module( a__ , a__ , head_mask[i] , a__ , a__ ) _lowerCAmelCase : Union[str, Any] = layer_outputs[0] if self.output_attentions: _lowerCAmelCase : Dict = all_attentions + (layer_outputs[1],) _lowerCAmelCase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : Union[str, Any] = current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Optional[int] = current_outputs + (all_attentions,) _lowerCAmelCase : Optional[Any] = self.highway[i](a__ ) # logits, pooled_output if not self.training: _lowerCAmelCase : Tuple = highway_exit[0] _lowerCAmelCase : Any = entropy(a__ ) _lowerCAmelCase : Optional[Any] = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCAmelCase : Union[str, Any] = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCAmelCase : List[str] = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(a__ , i + 1 ) else: _lowerCAmelCase : Dict = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCAmelCase : List[Any] = all_hidden_states + (hidden_states,) _lowerCAmelCase : List[Any] = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase : List[str] = outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase : Any = outputs + (all_attentions,) _lowerCAmelCase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : Any = config _lowerCAmelCase : Tuple = BertEmbeddings(a__ ) _lowerCAmelCase : Tuple = DeeBertEncoder(a__ ) _lowerCAmelCase : List[str] = BertPooler(a__ ) self.init_weights() def __A ( self ): self.encoder.init_highway_pooler(self.pooler ) def __A ( self ): return self.embeddings.word_embeddings def __A ( self , a__ ): _lowerCAmelCase : Dict = value def __A ( self , a__ ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(a__ ) @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _lowerCAmelCase : Any = input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase : List[str] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _lowerCAmelCase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase : List[Any] = torch.ones(a__ , device=a__ ) if encoder_attention_mask is None: _lowerCAmelCase : Optional[Any] = torch.ones(a__ , device=a__ ) if token_type_ids is None: _lowerCAmelCase : Dict = torch.zeros(a__ , dtype=torch.long , device=a__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase : torch.Tensor = self.get_extended_attention_mask(a__ , a__ , a__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCAmelCase : Dict = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCAmelCase : Tuple = encoder_attention_mask[:, None, None, :] _lowerCAmelCase : Union[str, Any] = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCAmelCase : Optional[Any] = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase : Optional[int] = self.get_head_mask(a__ , self.config.num_hidden_layers ) _lowerCAmelCase : Dict = self.embeddings( input_ids=a__ , position_ids=a__ , token_type_ids=a__ , inputs_embeds=a__ ) _lowerCAmelCase : Union[str, Any] = self.encoder( a__ , attention_mask=a__ , head_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Dict = encoder_outputs[0] _lowerCAmelCase : Union[str, Any] = self.pooler(a__ ) _lowerCAmelCase : Dict = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__ ): _lowerCAmelCase : str = message _lowerCAmelCase : str = exit_layer # start from 1! class __A ( nn.Module ): def __init__( self , a__ ): super().__init__() _lowerCAmelCase : Any = BertPooler(a__ ) _lowerCAmelCase : str = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.num_labels ) def __A ( self , a__ ): # Pooler _lowerCAmelCase : Tuple = encoder_outputs[0] _lowerCAmelCase : int = self.pooler(a__ ) # "return" pooler_output # BertModel _lowerCAmelCase : Union[str, Any] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCAmelCase : Optional[int] = bmodel_output[1] _lowerCAmelCase : Tuple = self.dropout(a__ ) _lowerCAmelCase : Dict = self.classifier(a__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " , SCREAMING_SNAKE_CASE_ , ) class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ ): super().__init__(a__ ) _lowerCAmelCase : List[str] = config.num_labels _lowerCAmelCase : Optional[Any] = config.num_hidden_layers _lowerCAmelCase : str = DeeBertModel(a__ ) _lowerCAmelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase : List[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(a__ ) def __A ( self , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=None , a__=-1 , a__=False , ): _lowerCAmelCase : Dict = self.num_layers try: _lowerCAmelCase : str = self.bert( a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCAmelCase : Any = outputs[1] _lowerCAmelCase : Optional[int] = self.dropout(a__ ) _lowerCAmelCase : List[str] = self.classifier(a__ ) _lowerCAmelCase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase : Tuple = e.message _lowerCAmelCase : int = e.exit_layer _lowerCAmelCase : Union[str, Any] = outputs[0] if not self.training: _lowerCAmelCase : Tuple = entropy(a__ ) _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Optional[Any] = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase : Tuple = MSELoss() _lowerCAmelCase : int = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Any = CrossEntropyLoss() _lowerCAmelCase : Optional[int] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowerCAmelCase : Dict = highway_exit[0] if not self.training: highway_logits_all.append(a__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase : List[Any] = MSELoss() _lowerCAmelCase : int = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase : Optional[int] = CrossEntropyLoss() _lowerCAmelCase : List[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(a__ ) if train_highway: _lowerCAmelCase : List[Any] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase : Any = (loss,) + outputs if not self.training: _lowerCAmelCase : Dict = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
44
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Dict = """roc_bert""" def __init__( self : int , lowercase_ : int=30522 , lowercase_ : Optional[int]=768 , lowercase_ : str=12 , lowercase_ : str=12 , lowercase_ : List[str]=3072 , lowercase_ : Tuple="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Dict=512 , lowercase_ : Optional[Any]=2 , lowercase_ : Tuple=0.02 , lowercase_ : Optional[int]=1E-12 , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=0 , lowercase_ : Optional[int]="absolute" , lowercase_ : Optional[Any]=None , lowercase_ : Optional[Any]=True , lowercase_ : List[str]=True , lowercase_ : List[Any]=768 , lowercase_ : List[str]=910 , lowercase_ : Union[str, Any]=512 , lowercase_ : int=24858 , lowercase_ : int=True , **lowercase_ : List[Any] , ): snake_case_ : Tuple = vocab_size snake_case_ : List[Any] = max_position_embeddings snake_case_ : Optional[int] = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : str = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = initializer_range snake_case_ : Tuple = type_vocab_size snake_case_ : List[str] = layer_norm_eps snake_case_ : str = use_cache snake_case_ : Dict = enable_pronunciation snake_case_ : Tuple = enable_shape snake_case_ : Dict = pronunciation_embed_dim snake_case_ : Tuple = pronunciation_vocab_size snake_case_ : Dict = shape_embed_dim snake_case_ : int = shape_vocab_size snake_case_ : Dict = concat_input snake_case_ : List[Any] = position_embedding_type snake_case_ : Optional[Any] = classifier_dropout super().__init__(pad_token_id=lowercase_ , **lowercase_ )
155
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ : Union[str, Any] = get_tests_dir('''fixtures''') class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): # A mock response for an HTTP head request to emulate server down snake_case_ : Any = mock.Mock() snake_case_ : Tuple = 500 snake_case_ : Dict = {} snake_case_ : Optional[Any] = HTTPError snake_case_ : Optional[int] = {} # Download this model to make sure it's in the cache. snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowercase_ ) as mock_head: snake_case_ : Any = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def _snake_case ( self : Optional[int] ): # This test is for deprecated behavior and can be removed in v5 snake_case_ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase): @classmethod def _snake_case ( cls : List[Any] ): snake_case_ : Dict = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def _snake_case ( cls : int ): try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def _snake_case ( self : Any ): snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''test-feature-extractor''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) snake_case_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowercase_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=lowercase_ , use_auth_token=self._token ) snake_case_ : str = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_ ) ) def _snake_case ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case_ : int = CustomFeatureExtractor.from_pretrained(lowercase_ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) snake_case_ : List[str] = AutoFeatureExtractor.from_pretrained( f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
155
1
__lowerCamelCase = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.35_5818, } def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: snake_case : List[Any] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {', '.join(__lowerCamelCase )}""" ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
59
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Dict , snake_case__ : Any=13 , snake_case__ : Any=32 , snake_case__ : Optional[Any]=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : List[Any]=16 , snake_case__ : int=[1, 2, 1] , snake_case__ : Dict=[2, 2, 4] , snake_case__ : Dict=2 , snake_case__ : Tuple=2.0 , snake_case__ : Optional[int]=True , snake_case__ : Union[str, Any]=0.0 , snake_case__ : Any=0.0 , snake_case__ : Union[str, Any]=0.1 , snake_case__ : int="gelu" , snake_case__ : Optional[int]=False , snake_case__ : List[Any]=True , snake_case__ : List[str]=0.02 , snake_case__ : int=1e-5 , snake_case__ : List[str]=True , snake_case__ : Union[str, Any]=None , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=10 , snake_case__ : Optional[Any]=8 , snake_case__ : Any=["stage1", "stage2", "stage3"] , snake_case__ : Tuple=[1, 2, 3] , ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = parent snake_case : Optional[int] = batch_size snake_case : Union[str, Any] = image_size snake_case : Dict = patch_size snake_case : Optional[Any] = num_channels snake_case : Union[str, Any] = embed_dim snake_case : int = depths snake_case : List[str] = num_heads snake_case : Union[str, Any] = window_size snake_case : Union[str, Any] = mlp_ratio snake_case : List[Any] = qkv_bias snake_case : List[Any] = hidden_dropout_prob snake_case : Union[str, Any] = attention_probs_dropout_prob snake_case : Union[str, Any] = drop_path_rate snake_case : int = hidden_act snake_case : Optional[int] = use_absolute_embeddings snake_case : int = patch_norm snake_case : Union[str, Any] = layer_norm_eps snake_case : Any = initializer_range snake_case : Optional[Any] = is_training snake_case : Tuple = scope snake_case : Optional[int] = use_labels snake_case : Optional[Any] = type_sequence_label_size snake_case : Union[str, Any] = encoder_stride snake_case : Any = out_features snake_case : Tuple = out_indices def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : int = None if self.use_labels: snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE (self : List[str] ) -> int: '''simple docstring''' return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case : Union[str, Any] = MaskFormerSwinModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : List[Any] = model(snake_case__ ) snake_case : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case : int = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Union[str, Any] ) -> str: '''simple docstring''' snake_case : Optional[int] = MaskFormerSwinBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : List[Any] = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(snake_case__ ): snake_case : Tuple = ["stem"] snake_case : List[Any] = MaskFormerSwinBackbone(config=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : List[Any] = config_and_inputs snake_case : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : List[str] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) A__ : str = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} A__ : Optional[Any] = False A__ : List[Any] = False A__ : List[str] = False A__ : List[str] = False A__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' snake_case : str = MaskFormerSwinModelTester(self ) snake_case : Optional[int] = ConfigTester(self , config_class=snake_case__ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def _SCREAMING_SNAKE_CASE (self : str ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' return def _SCREAMING_SNAKE_CASE (self : Dict ) -> str: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case__ ) @unittest.skip("Swin does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' pass @unittest.skip("Swin does not support feedforward chunking" ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Dict: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case , snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Dict: '''simple docstring''' snake_case , snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : str = model_class(snake_case__ ) snake_case : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[Any] = [*signature.parameters.keys()] snake_case : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> str: '''simple docstring''' pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : List[Any] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Tuple ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : Any = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : int = outputs.hidden_states snake_case : Union[str, Any] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) # Swin has a different seq_length snake_case : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Union[str, Any]: '''simple docstring''' snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case : int = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Dict = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Any: '''simple docstring''' snake_case , snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Any = 3 snake_case : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case : str = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : Optional[Any] = True self.check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def _SCREAMING_SNAKE_CASE (self : str ) -> int: '''simple docstring''' pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def _SCREAMING_SNAKE_CASE (self : int ) -> str: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' snake_case , snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case__ : Union[str, Any] ): snake_case : Any = 0 return t def check_equivalence(snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : List[str] , snake_case__ : Optional[int]={} ): with torch.no_grad(): snake_case : Optional[Any] = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ) snake_case : Tuple = model(**snake_case__ , return_dict=snake_case__ , **snake_case__ ).to_tuple() def recursive_check(snake_case__ : List[str] , snake_case__ : Optional[Any] ): if isinstance(snake_case__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case__ , snake_case__ ): recursive_check(snake_case__ , snake_case__ ) elif isinstance(snake_case__ , snake_case__ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case__ , snake_case__ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case__ ) , set_nan_tensor_to_zero(snake_case__ ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}. Dict has""" f""" `nan`: {torch.isnan(snake_case__ ).any()} and `inf`: {torch.isinf(snake_case__ )}.""" ) , ) recursive_check(snake_case__ , snake_case__ ) for model_class in self.all_model_classes: snake_case : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Union[str, Any] = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Tuple = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ ) snake_case : Dict = self._prepare_for_class(snake_case__ , snake_case__ ) snake_case : List[Any] = self._prepare_for_class(snake_case__ , snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) snake_case : Any = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : List[str] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) check_equivalence(snake_case__ , snake_case__ , snake_case__ , {"output_hidden_states": True} ) @require_torch class UpperCAmelCase ( unittest.TestCase ,A_ ): A__ : int = (MaskFormerSwinBackbone,) if is_torch_available() else () A__ : int = MaskFormerSwinConfig def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = MaskFormerSwinModelTester(self ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[int] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: snake_case : Optional[int] = backbone_class(snake_case__ ) backbone.to(snake_case__ ) backbone.eval() snake_case : Union[str, Any] = backbone(**snake_case__ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case__ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True snake_case : Optional[int] = backbone(**snake_case__ , output_hidden_states=snake_case__ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) snake_case , snake_case , snake_case : Dict = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: snake_case : Optional[Any] = backbone(**snake_case__ , output_attentions=snake_case__ ) self.assertIsNotNone(outputs.attentions )
59
1
def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> float: a = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: a = 1 - (matter_density + radiation_density + dark_energy) a = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) a = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __UpperCamelCase : Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
347
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __A ( __lowerCamelCase ) -> bool: a = int(number**0.5 ) return number == sq * sq def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[int, int]: a = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den a = x_den * y_den * z_den a = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __A ( __lowerCamelCase = 35 ) -> int: a = set() a = 42 a = Fraction(0 ) a = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 a = x_num * y_den + x_den * y_num a = x_den * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) a = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 a = x_num * y_num a = x_den * y_num + x_num * y_den a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 a = x_num * x_num * y_num * y_num a = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): a = int(sqrt(__lowerCamelCase ) ) a = int(sqrt(__lowerCamelCase ) ) a = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: a = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F'{solution() = }')
347
1
"""simple docstring""" def _lowerCAmelCase ( ): UpperCAmelCase = [] UpperCAmelCase = 1 while len(lowercase_ ) < 1e6: constant.append(str(lowercase_ ) ) i += 1 UpperCAmelCase = ''.join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
78
def A__ ( __lowerCamelCase = 10_00 ): SCREAMING_SNAKE_CASE_ = 2**power SCREAMING_SNAKE_CASE_ = 0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
299
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example __a = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __a = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __snake_case( _lowerCAmelCase ) -> list[list[int]]: snake_case__ : Optional[int] = [] for i in range(len(_lowerCAmelCase ) ): snake_case__ : Any = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours snake_case__ : int = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(_lowerCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(_lowerCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(_lowerCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. snake_case__ : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(_lowerCAmelCase ) return next_generation def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> list[Image.Image]: snake_case__ : Optional[Any] = [] for _ in range(_lowerCAmelCase ): # Create output image snake_case__ : List[str] = Image.new("""RGB""" , (len(cells[0] ), len(_lowerCAmelCase )) ) snake_case__ : Dict = img.load() # Save cells to image for x in range(len(_lowerCAmelCase ) ): for y in range(len(cells[0] ) ): snake_case__ : Dict = 255 - cells[y][x] * 255 snake_case__ : Union[str, Any] = (colour, colour, colour) # Save image images.append(_lowerCAmelCase ) snake_case__ : Optional[Any] = new_generation(_lowerCAmelCase ) return images if __name__ == "__main__": __a = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
363
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): """simple docstring""" lowercase = CycleDiffusionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } lowercase = PipelineTesterMixin.required_optional_params - {"latents"} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"} ) lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self : Dict ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case__ : Any = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_000 , clip_sample=snake_case_ , set_alpha_to_one=snake_case_ , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case__ : Union[str, Any] = CLIPTextModel(snake_case_ ) snake_case__ : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case__ : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase ( self : Optional[int] , snake_case_ : Any , snake_case_ : str=0 ): snake_case__ : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) snake_case__ : List[str] = image / 2 + 0.5 if str(snake_case_ ).startswith("""mps""" ): snake_case__ : Tuple = torch.manual_seed(snake_case_ ) else: snake_case__ : Union[str, Any] = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) snake_case__ : str = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCamelCase ( self : Tuple ): snake_case__ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) snake_case__ : List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = self.get_dummy_inputs(snake_case_ ) snake_case__ : Any = pipe(**snake_case_ ) snake_case__ : Tuple = output.images snake_case__ : Optional[int] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = self.get_dummy_components() for name, module in components.items(): if hasattr(snake_case_ , """half""" ): snake_case__ : Optional[int] = module.half() snake_case__ : List[Any] = CycleDiffusionPipeline(**snake_case_ ) snake_case__ : Union[str, Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : int = self.get_dummy_inputs(snake_case_ ) snake_case__ : List[Any] = pipe(**snake_case_ ) snake_case__ : Any = output.images snake_case__ : Optional[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase ( self : List[Any] ): return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCamelCase ( self : int ): return super().test_inference_batch_single_identical() @skip_mps def lowerCamelCase ( self : Dict ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase ( self : int ): return super().test_save_load_optional_components() @skip_mps def lowerCamelCase ( self : Optional[int] ): return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str ): snake_case__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case__ : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) snake_case__ : Tuple = init_image.resize((512, 512) ) snake_case__ : List[Any] = """CompVis/stable-diffusion-v1-4""" snake_case__ : Tuple = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) snake_case__ : Optional[int] = CycleDiffusionPipeline.from_pretrained( snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() snake_case__ : int = """A black colored car""" snake_case__ : int = """A blue colored car""" snake_case__ : Dict = torch.manual_seed(0 ) snake_case__ : Dict = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Union[str, Any] = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def lowerCamelCase ( self : int ): snake_case__ : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) snake_case__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) snake_case__ : Dict = init_image.resize((512, 512) ) snake_case__ : Tuple = """CompVis/stable-diffusion-v1-4""" snake_case__ : List[Any] = DDIMScheduler.from_pretrained(snake_case_ , subfolder="""scheduler""" ) snake_case__ : str = CycleDiffusionPipeline.from_pretrained(snake_case_ , scheduler=snake_case_ , safety_checker=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) pipe.enable_attention_slicing() snake_case__ : Tuple = """A black colored car""" snake_case__ : List[Any] = """A blue colored car""" snake_case__ : Optional[Any] = torch.manual_seed(0 ) snake_case__ : Any = pipe( prompt=snake_case_ , source_prompt=snake_case_ , image=snake_case_ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : List[Any] = output.images assert np.abs(image - expected_image ).max() < 2E-2
43
0
"""simple docstring""" from math import factorial def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(A_ ) // (factorial(A_ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', F"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
72
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class _A ( _lowerCamelCase ): def __init__( self : Tuple , _A : Dict , _A : Tuple , _A : List[Any]=1_024 , _A : str=1_024 , _A : str=3.6 ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = tokenizer lowercase : List[Any] = tokenizer.bos_token_id lowercase : Union[str, Any] = dataset lowercase : Union[str, Any] = seq_length lowercase : Optional[int] = seq_length * chars_per_token * num_of_sequences def __iter__( self : int ) -> int: """simple docstring""" lowercase : Dict = iter(self.dataset ) lowercase : Union[str, Any] = True while more_examples: lowercase , lowercase : Tuple = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(_A )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: lowercase : List[str] = False break lowercase : str = tokenizer(_A , truncation=_A )['''input_ids'''] lowercase : List[str] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(_A ) , self.seq_length ): lowercase : int = all_token_ids[i : i + self.seq_length] if len(_A ) == self.seq_length: yield torch.tensor(_A ) def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] = {'''streaming''': True} lowercase : Dict = load_dataset(args.dataset_name , split='''train''' , **__magic_name__ ) lowercase : int = ConstantLengthDataset(__magic_name__ , __magic_name__ , seq_length=args.seq_length ) lowercase : Tuple = DataLoader(__magic_name__ , batch_size=args.batch_size ) return eval_dataloader def snake_case( __magic_name__ ) -> str: '''simple docstring''' model.eval() lowercase : str = [] for step, batch in enumerate(__magic_name__ ): with torch.no_grad(): lowercase : List[Any] = model(__magic_name__ , labels=__magic_name__ ) lowercase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__magic_name__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break lowercase : Union[str, Any] = torch.mean(torch.cat(__magic_name__ ) ) try: lowercase : Tuple = torch.exp(__magic_name__ ) except OverflowError: lowercase : List[str] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator lowerCAmelCase_ = Accelerator() # Parse configuration lowerCAmelCase_ = HfArgumentParser(EvaluationArguments) lowerCAmelCase_ = parser.parse_args() set_seed(args.seed) # Logging lowerCAmelCase_ = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer lowerCAmelCase_ = AutoModelForCausalLM.from_pretrained(args.model_ckpt) lowerCAmelCase_ = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader lowerCAmelCase_ = create_dataloader(args) # Prepare everything with our `accelerator`. lowerCAmelCase_ , lowerCAmelCase_ = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') lowerCAmelCase_ , lowerCAmelCase_ = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
308
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A: str = None A: List[Any] = logging.get_logger(__name__) A: int = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} A: Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } A: List[Any] = { "google/rembert": 2_5_6, } A: Any = "▁" class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : str = VOCAB_FILES_NAMES __lowerCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = RemBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[str] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Dict = do_lower_case UpperCAmelCase : Dict = remove_space UpperCAmelCase : Any = keep_accents UpperCAmelCase : Optional[Any] = vocab_file UpperCAmelCase : List[str] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : List[str] = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error("""Vocabulary path ({}) should be a directory""".format(_SCREAMING_SNAKE_CASE ) ) return UpperCAmelCase : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
76
"""simple docstring""" import math import sys def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Dict = """""" try: with open(UpperCamelCase , """rb""" ) as binary_file: UpperCAmelCase : str = binary_file.read() for dat in data: UpperCAmelCase : List[Any] = F"{dat:08b}" result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Optional[int] = {"""0""": """0""", """1""": """1"""} UpperCAmelCase , UpperCAmelCase : Optional[int] = """""", """""" UpperCAmelCase : int = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase : Any = lexicon[curr_string] result += last_match_id UpperCAmelCase : Any = last_match_id + """0""" if math.loga(UpperCamelCase ).is_integer(): UpperCAmelCase : Optional[Any] = {} for curr_key in list(UpperCamelCase ): UpperCAmelCase : Dict = lexicon.pop(UpperCamelCase ) UpperCAmelCase : int = new_lex UpperCAmelCase : int = last_match_id + """1""" index += 1 UpperCAmelCase : List[str] = """""" return result def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : Dict = 8 try: with open(UpperCamelCase , """wb""" ) as opened_file: UpperCAmelCase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _snake_case ( UpperCamelCase : str ): UpperCAmelCase : Any = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase : List[str] = data_bits[counter:] UpperCAmelCase : Tuple = data_bits[counter + 1 :] return data_bits def _snake_case ( UpperCamelCase : str , UpperCamelCase : str ): UpperCAmelCase : int = read_file_binary(UpperCamelCase ) UpperCAmelCase : str = remove_prefix(UpperCamelCase ) UpperCAmelCase : Any = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
76
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A_ : int = logging.get_logger(__name__) A_ : Tuple = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A_ : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field( default=A__ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(A__ )} ) UpperCAmelCase = field( default=A__ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} ) UpperCAmelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCAmelCase = field( default=128 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , ) UpperCAmelCase = field( default=64 , metadata={ """help""": ( """The maximum number of tokens for the question. Questions longer than this will """ """be truncated to this length.""" ) } , ) UpperCAmelCase = field( default=30 , metadata={ """help""": ( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ) } , ) UpperCAmelCase = field( default=A__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCAmelCase = field( default=A__ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} ) UpperCAmelCase = field( default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) UpperCAmelCase = field( default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} ) UpperCAmelCase = field( default=0 , metadata={ """help""": ( """language id of input for language-specific xlm models (see""" """ tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)""" ) } , ) UpperCAmelCase = field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} ) class lowercase ( A__ ): """simple docstring""" UpperCAmelCase = 'train' UpperCAmelCase = 'dev' class lowercase ( A__ ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 def __init__( self ,a_ ,a_ ,a_ = None ,a_ = Split.train ,a_ = False ,a_ = None ,a_ = "pt" ,) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = args _UpperCAmelCase : str = is_language_sensitive _UpperCAmelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): try: _UpperCAmelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _UpperCAmelCase : Union[str, Any] = mode # Load data features from cache or dataset file _UpperCAmelCase : Any = """v2""" if args.version_2_with_negative else """v1""" _UpperCAmelCase : Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _UpperCAmelCase : int = cached_features_file + """.lock""" with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache: _UpperCAmelCase : List[str] = time.time() _UpperCAmelCase : int = torch.load(__UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _UpperCAmelCase : Optional[int] = self.old_features["""features"""] _UpperCAmelCase : Optional[int] = self.old_features.get("""dataset""" ,__UpperCAmelCase ) _UpperCAmelCase : Dict = self.old_features.get("""examples""" ,__UpperCAmelCase ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' ,time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' """ future run""" ) else: if mode == Split.dev: _UpperCAmelCase : Tuple = self.processor.get_dev_examples(args.data_dir ) else: _UpperCAmelCase : Tuple = self.processor.get_train_examples(args.data_dir ) _UpperCAmelCase ,_UpperCAmelCase : str = squad_convert_examples_to_features( examples=self.examples ,tokenizer=__UpperCAmelCase ,max_seq_length=args.max_seq_length ,doc_stride=args.doc_stride ,max_query_length=args.max_query_length ,is_training=mode == Split.train ,threads=args.threads ,return_dataset=__UpperCAmelCase ,) _UpperCAmelCase : Tuple = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} ,__UpperCAmelCase ,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ) -> Any: return len(self.features ) def __getitem__( self ,a_ ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset _UpperCAmelCase : Dict = self.features[i] _UpperCAmelCase : Tuple = torch.tensor(feature.input_ids ,dtype=torch.long ) _UpperCAmelCase : List[str] = torch.tensor(feature.attention_mask ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor(feature.token_type_ids ,dtype=torch.long ) _UpperCAmelCase : Any = torch.tensor(feature.cls_index ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor(feature.p_mask ,dtype=torch.float ) _UpperCAmelCase : Optional[int] = torch.tensor(feature.is_impossible ,dtype=torch.float ) _UpperCAmelCase : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape ,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _UpperCAmelCase : Optional[int] = torch.tensor(feature.start_position ,dtype=torch.long ) _UpperCAmelCase : Dict = torch.tensor(feature.end_position ,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
215
"""simple docstring""" from typing import Any class lowerCamelCase : def __init__( self : Tuple , __UpperCAmelCase : Any ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = data SCREAMING_SNAKE_CASE__ = None def __repr__( self : int ) -> str: return F"""Node({self.data})""" class lowerCamelCase : def __init__( self : str ) -> int: SCREAMING_SNAKE_CASE__ = None def __iter__( self : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE__ = self.head while node: yield node.data SCREAMING_SNAKE_CASE__ = node.next def __len__( self : int ) -> int: return sum(1 for _ in self ) def __repr__( self : int ) -> str: return "->".join([str(__UpperCAmelCase ) for item in self] ) def __getitem__( self : Tuple , __UpperCAmelCase : int ) -> Any: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> None: if not 0 <= index < len(self ): raise ValueError("""list index out of range.""" ) SCREAMING_SNAKE_CASE__ = self.head for _ in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = current.next SCREAMING_SNAKE_CASE__ = data def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Any ) -> None: self.insert_nth(len(self ) , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Any ) -> None: self.insert_nth(0 , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> None: if not 0 <= index <= len(self ): raise IndexError("""list index out of range""" ) SCREAMING_SNAKE_CASE__ = Node(__UpperCAmelCase ) if self.head is None: SCREAMING_SNAKE_CASE__ = new_node elif index == 0: SCREAMING_SNAKE_CASE__ = self.head # link new_node to head SCREAMING_SNAKE_CASE__ = new_node else: SCREAMING_SNAKE_CASE__ = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = new_node def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> None: # print every node data print(self ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: return self.delete_nth(0 ) def SCREAMING_SNAKE_CASE ( self : str ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : int = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("""List index out of range.""" ) SCREAMING_SNAKE_CASE__ = self.head # default first node if index == 0: SCREAMING_SNAKE_CASE__ = self.head.next else: SCREAMING_SNAKE_CASE__ = self.head for _ in range(index - 1 ): SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next SCREAMING_SNAKE_CASE__ = temp.next.next return delete_node.data def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> bool: return self.head is None def SCREAMING_SNAKE_CASE ( self : int ) -> None: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = self.head while current: # Store the current node's next node. SCREAMING_SNAKE_CASE__ = current.next # Make the current node's next point backwards SCREAMING_SNAKE_CASE__ = prev # Make the previous node be the current node SCREAMING_SNAKE_CASE__ = current # Make the current node the next node (to progress iteration) SCREAMING_SNAKE_CASE__ = next_node # Return prev in order to put the head at the end SCREAMING_SNAKE_CASE__ = prev def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = LinkedList() assert linked_list.is_empty() is True assert str(snake_case__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(snake_case__ ) == i linked_list.insert_nth(snake_case__ , i + 1 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(snake_case__ ) == 9 assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): SCREAMING_SNAKE_CASE__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(snake_case__ ) == "->".join(str(snake_case__ ) for i in range(-8 , 1 ) ) def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [ -9, 1_00, Node(77_34_51_12 ), """dlrow olleH""", 7, 55_55, 0, -1_92.5_55_55, """Hello, world!""", 77.9, Node(10 ), None, None, 12.20, ] SCREAMING_SNAKE_CASE__ = LinkedList() for i in test_input: linked_list.insert_tail(snake_case__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(snake_case__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head SCREAMING_SNAKE_CASE__ = linked_list.delete_head() assert result == -9 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail SCREAMING_SNAKE_CASE__ = linked_list.delete_tail() assert result == 12.2 assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list SCREAMING_SNAKE_CASE__ = linked_list.delete_nth(10 ) assert result is None assert ( str(snake_case__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("""Hello again, world!""" ) ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(snake_case__ ) assert ( str(snake_case__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(snake_case__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def A ( ): '''simple docstring''' from doctest import testmod testmod() SCREAMING_SNAKE_CASE__ = LinkedList() linked_list.insert_head(input("""Inserting 1st at head """ ).strip() ) linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() ) linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() ) print("""\nPrint list:""" ) linked_list.print_list() print("""\nDelete head""" ) linked_list.delete_head() print("""Delete tail""" ) linked_list.delete_tail() print("""\nPrint list:""" ) linked_list.print_list() print("""\nReverse linked list""" ) linked_list.reverse() print("""\nPrint list:""" ) linked_list.print_list() print("""\nString representation of linked list:""" ) print(snake_case__ ) print("""\nReading/changing Node data using indexing:""" ) print(f"""Element at Position 1: {linked_list[1]}""" ) SCREAMING_SNAKE_CASE__ = input("""Enter New Value: """ ).strip() print("""New list:""" ) print(snake_case__ ) print(f"""length of linked_list is : {len(snake_case__ )}""" ) if __name__ == "__main__": main()
165
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :list[int] ) -> float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowercase = sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
32
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __lowerCAmelCase : List[Any] =numpy.array([0, 0]) __lowerCAmelCase : List[str] =numpy.array([0.5, 0.866_0254]) __lowerCAmelCase : List[Any] =numpy.array([1, 0]) __lowerCAmelCase : int =[VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] , lowerCAmelCase__ :int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = initial_vectors for _ in range(lowerCAmelCase__ ): lowercase = iteration_step(lowerCAmelCase__ ) return vectors def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase = vectors[i + 1] new_vectors.append(lowerCAmelCase__ ) lowercase = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def UpperCAmelCase__ ( lowerCAmelCase__ :numpy.ndarray , lowerCAmelCase__ :float ) -> numpy.ndarray: '''simple docstring''' lowercase = numpy.radians(lowerCAmelCase__ ) lowercase , lowercase = numpy.cos(lowerCAmelCase__ ), numpy.sin(lowerCAmelCase__ ) lowercase = numpy.array(((c, -s), (s, c)) ) return numpy.dot(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase , lowercase = zip(*lowerCAmelCase__ ) plt.plot(lowerCAmelCase__ , lowerCAmelCase__ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Optional[int] =iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
32
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : str = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "roberta-prelayernorm" def __init__( self : Optional[Any] , lowercase_ : List[str]=50265 , lowercase_ : Union[str, Any]=768 , lowercase_ : List[str]=12 , lowercase_ : List[Any]=12 , lowercase_ : List[str]=3072 , lowercase_ : List[Any]="gelu" , lowercase_ : Any=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : List[str]=2 , lowercase_ : Optional[int]=0.02 , lowercase_ : Tuple=1e-12 , lowercase_ : List[str]=1 , lowercase_ : Optional[int]=0 , lowercase_ : List[str]=2 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : int=True , lowercase_ : int=None , **lowercase_ : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : int = vocab_size SCREAMING_SNAKE_CASE_ : Any = hidden_size SCREAMING_SNAKE_CASE_ : int = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings SCREAMING_SNAKE_CASE_ : Any = type_vocab_size SCREAMING_SNAKE_CASE_ : Dict = initializer_range SCREAMING_SNAKE_CASE_ : Any = layer_norm_eps SCREAMING_SNAKE_CASE_ : Any = position_embedding_type SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE_ : List[str] = classifier_dropout class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
91
"""simple docstring""" from math import factorial def _A (__a = 20 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... SCREAMING_SNAKE_CASE_ : List[str] = n // 2 return int(factorial(__a ) / (factorial(__a ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase_ : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
91
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any ) -> int: _UpperCamelCase : int = "" _UpperCamelCase : Tuple = "" _UpperCamelCase : int = [] _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Dict = 256 _UpperCamelCase : str = 0 _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : str = 0 def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : List[Any] ) -> Optional[Any]: _UpperCamelCase : Any = cva.imread(__a , 0 ) _UpperCamelCase : Union[str, Any] = copy.deepcopy(self.img ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) _UpperCamelCase : Dict = np.sum(__a ) for i in range(len(__a ) ): _UpperCamelCase : Optional[int] = x[i] / self.k self.sk += prk _UpperCamelCase : int = (self.L - 1) * self.sk if self.rem != 0: _UpperCamelCase : Union[str, Any] = int(last % last ) _UpperCamelCase : Dict = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) _UpperCamelCase : List[Any] = int(np.ma.count(self.img ) / self.img[1].size ) _UpperCamelCase : Optional[Any] = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _UpperCamelCase : Any = self.img[j][i] if num != self.last_list[num]: _UpperCamelCase : Dict = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: plt.hist(self.img.ravel() , 256 , [0, 256] ) def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCamelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCamelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
310
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
1
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __magic_name__ : def __init__( self : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : str=13 ,_UpperCAmelCase : Dict=10 ,_UpperCAmelCase : str=3 ,_UpperCAmelCase : Optional[Any]=2 ,_UpperCAmelCase : Optional[Any]=2 ,_UpperCAmelCase : List[str]=2 ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Optional[int]=32 ,_UpperCAmelCase : Dict=5 ,_UpperCAmelCase : Tuple=4 ,_UpperCAmelCase : Any=37 ,_UpperCAmelCase : List[Any]="gelu" ,_UpperCAmelCase : List[Any]=0.1 ,_UpperCAmelCase : Optional[int]=0.1 ,_UpperCAmelCase : List[Any]=10 ,_UpperCAmelCase : Any=0.02 ,_UpperCAmelCase : Any=0.9 ,_UpperCAmelCase : Optional[int]=None ,): _a : List[Any] = parent _a : str = batch_size _a : List[Any] = image_size _a : Optional[Any] = num_channels _a : Union[str, Any] = patch_size _a : Dict = tubelet_size _a : Tuple = num_frames _a : List[Any] = is_training _a : Union[str, Any] = use_labels _a : List[Any] = hidden_size _a : str = num_hidden_layers _a : str = num_attention_heads _a : str = intermediate_size _a : Tuple = hidden_act _a : Optional[int] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Optional[int] = type_sequence_label_size _a : List[str] = initializer_range _a : Dict = mask_ratio _a : str = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _a : Tuple = (image_size // patch_size) ** 2 _a : int = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _a : Optional[int] = int(mask_ratio * self.seq_length ) def __lowercase ( self : List[Any] ): _a : Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _a : Tuple = None if self.use_labels: _a : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Optional[int] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Union[str, Any] ): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,) def __lowercase ( self : Tuple ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : List[Any] ): _a : int = VideoMAEModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ,_UpperCAmelCase : str ): _a : Optional[int] = VideoMAEForPreTraining(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a : Dict = torch.ones((self.num_masks,) ) _a : Union[str, Any] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _a : Tuple = mask.expand(self.batch_size ,-1 ).bool() _a : Any = model(_UpperCAmelCase ,_UpperCAmelCase ) # model only returns predictions for masked patches _a : Any = mask.sum().item() _a : str = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels) ) def __lowercase ( self : Union[str, Any] ): _a : Tuple = self.prepare_config_and_inputs() _a , _a , _a : List[str] = config_and_inputs _a : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Tuple = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCAmelCase : List[Any] = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : Any = False lowerCAmelCase : List[Any] = False lowerCAmelCase : Dict = False def __lowercase ( self : Dict ): _a : Dict = VideoMAEModelTester(self ) _a : List[str] = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple=False ): _a : Union[str, Any] = copy.deepcopy(_UpperCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _a : Optional[Any] = torch.ones((self.model_tester.num_masks,) ) _a : str = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _a : Optional[Any] = mask.expand(self.model_tester.batch_size ,-1 ).bool() _a : List[str] = bool_masked_pos.to(_UpperCAmelCase ) if return_labels: if model_class in [ *get_values(_UpperCAmelCase ), ]: _a : Dict = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=_UpperCAmelCase ) return inputs_dict def __lowercase ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def __lowercase ( self : List[str] ): pass def __lowercase ( self : List[str] ): _a , _a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : int = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase ,nn.Linear ) ) def __lowercase ( self : str ): _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_UpperCAmelCase ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Union[str, Any] = [*signature.parameters.keys()] _a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : int ): _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : Any ): _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) @slow def __lowercase ( self : Optional[int] ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = VideoMAEModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ): if not self.has_attentions: pass else: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : List[Any] = True for model_class in self.all_model_classes: _a : Dict = self.model_tester.seq_length - self.model_tester.num_masks _a : Optional[int] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _a : Union[str, Any] = True _a : str = False _a : Optional[int] = True _a : Optional[int] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) ,self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a : Tuple = True _a : Optional[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : Dict = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) _a : List[str] = len(_UpperCAmelCase ) # Check attention is always last and order is fine _a : Dict = True _a : Tuple = True _a : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : Dict = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) self.assertEqual(out_len + 1 ,len(_UpperCAmelCase ) ) _a : int = outputs.attentions self.assertEqual(len(_UpperCAmelCase ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def __lowercase ( self : List[Any] ): def check_hidden_states_output(_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : str ): _a : int = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _a : Any = model(**self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ) ) _a : Union[str, Any] = outputs.hidden_states _a : Tuple = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(_UpperCAmelCase ) ,_UpperCAmelCase ) _a : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks _a : Tuple = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) _a , _a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Dict = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : str = True check_hidden_states_output(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : Optional[int] ): pass def __lowerCamelCase ( ) -> List[Any]: _a : Optional[int] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _a : Dict = np.load(lowerCAmelCase_ ) return list(lowerCAmelCase_ ) @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __lowercase ( self : List[Any] ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __lowercase ( self : int ): _a : List[str] = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( _UpperCAmelCase ) _a : List[str] = self.default_image_processor _a : List[str] = prepare_video() _a : List[str] = image_processor(_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : List[Any] = model(**_UpperCAmelCase ) # verify the logits _a : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape ,_UpperCAmelCase ) _a : Dict = torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_UpperCAmelCase ,atol=1E-4 ) ) @slow def __lowercase ( self : Dict ): _a : int = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(_UpperCAmelCase ) _a : int = self.default_image_processor _a : str = prepare_video() _a : str = image_processor(_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # add boolean mask, indicating which patches to mask _a : Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' ,filename='bool_masked_pos.pt' ) _a : Optional[int] = torch.load(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : Optional[Any] = model(**_UpperCAmelCase ) # verify the logits _a : Any = torch.Size([1, 1408, 1536] ) _a : Optional[Any] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ,device=_UpperCAmelCase ) self.assertEqual(outputs.logits.shape ,_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,_UpperCAmelCase ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _a : List[Any] = torch.tensor([0.51_42] ,device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.loss ,_UpperCAmelCase ,atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _a : Union[str, Any] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ,norm_pix_loss=_UpperCAmelCase ).to( _UpperCAmelCase ) with torch.no_grad(): _a : List[str] = model(**_UpperCAmelCase ) _a : int = torch.tensor(torch.tensor([0.64_69] ) ,device=_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.loss ,_UpperCAmelCase ,atol=1E-4 ) )
89
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '<<<<<<< This should probably be modified because it mentions: ' lowerCAmelCase = '=======\n>>>>>>>\n' lowerCAmelCase = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _a ( UpperCamelCase__ ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> int: """simple docstring""" lowercase__ = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self: int , UpperCamelCase_: str , UpperCamelCase_: str , *UpperCamelCase_: Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase__ = get_logger('''datasets-cli/converting''' ) lowercase__ = tfds_path lowercase__ = datasets_directory def lowerCamelCase_ ( self: int ) -> Optional[int]: """simple docstring""" if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(UpperCamelCase_ ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__ = '''''' continue elif "from absl import logging" in out_line: lowercase__ = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__ = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__ = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace('''.py''' , '''''' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(UpperCamelCase_ ) lowercase__ = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
110
0
from __future__ import annotations def __lowerCamelCase (UpperCAmelCase__ : list , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) SCREAMING_SNAKE_CASE = result + left + right return input_list def __lowerCamelCase (UpperCAmelCase__ : list ): if len(UpperCAmelCase__ ) <= 1: return input_list SCREAMING_SNAKE_CASE = list(UpperCAmelCase__ ) # iteration for two-way merging SCREAMING_SNAKE_CASE = 2 while p <= len(UpperCAmelCase__ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(UpperCAmelCase__ ) , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = i + p - 1 SCREAMING_SNAKE_CASE = (low + high + 1) // 2 SCREAMING_SNAKE_CASE = merge(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # final merge of last two parts if p * 2 >= len(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = merge(UpperCAmelCase__ , 0 , UpperCAmelCase__ , len(UpperCAmelCase__ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowerCamelCase : str = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": _lowerCamelCase : Optional[Any] = [] else: _lowerCamelCase : Any = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
206
import argparse import collections import json import os import re import string import sys import numpy as np _lowerCamelCase : Dict = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowerCamelCase : Optional[int] = None def __lowerCamelCase (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=UpperCAmelCase__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=UpperCAmelCase__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase (UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE = bool(qa["answers"]["text"] ) return qid_to_has_ans def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] ): def remove_articles(UpperCAmelCase__ : List[str] ): return ARTICLES_REGEX.sub(" " , UpperCAmelCase__ ) def white_space_fix(UpperCAmelCase__ : Dict ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase__ : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def __lowerCamelCase (UpperCAmelCase__ : List[str] ): if not s: return [] return normalize_answer(UpperCAmelCase__ ).split() def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ): return int(normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = get_tokens(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = get_tokens(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = collections.Counter(UpperCAmelCase__ ) & collections.Counter(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = sum(common.values() ) if len(UpperCAmelCase__ ) == 0 or len(UpperCAmelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE = qa["id"] SCREAMING_SNAKE_CASE = [t for t in qa["answers"]["text"] if normalize_answer(UpperCAmelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string SCREAMING_SNAKE_CASE = [""] if qid not in preds: print(F"Missing prediction for {qid}" ) continue SCREAMING_SNAKE_CASE = preds[qid] # Take max over all gold answers SCREAMING_SNAKE_CASE = max(compute_exact(UpperCAmelCase__ , UpperCAmelCase__ ) for a in gold_answers ) SCREAMING_SNAKE_CASE = max(compute_fa(UpperCAmelCase__ , UpperCAmelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = {} for qid, s in scores.items(): SCREAMING_SNAKE_CASE = na_probs[qid] > na_prob_thresh if pred_na: SCREAMING_SNAKE_CASE = float(not qid_to_has_ans[qid] ) else: SCREAMING_SNAKE_CASE = s return new_scores def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=None ): if not qid_list: SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): for k in new_eval: SCREAMING_SNAKE_CASE = new_eval[k] def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): plt.step(UpperCAmelCase__ , UpperCAmelCase__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(UpperCAmelCase__ , UpperCAmelCase__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCAmelCase__ ) plt.savefig(UpperCAmelCase__ ) plt.clf() def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : str=None ): SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : na_probs[k] ) SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = [1.0] SCREAMING_SNAKE_CASE = [0.0] SCREAMING_SNAKE_CASE = 0.0 for i, qid in enumerate(UpperCAmelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] SCREAMING_SNAKE_CASE = true_pos / float(i + 1 ) SCREAMING_SNAKE_CASE = true_pos / float(UpperCAmelCase__ ) if i == len(UpperCAmelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCAmelCase__ ) recalls.append(UpperCAmelCase__ ) if out_image: plot_pr_curve(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ): if out_image_dir and not os.path.exists(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) SCREAMING_SNAKE_CASE = {k: float(UpperCAmelCase__ ) for k, v in qid_to_has_ans.items()} SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_exact" ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_f1" ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_oracle" ) def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ): if not qid_list: return SCREAMING_SNAKE_CASE = [na_probs[k] for k in qid_list] SCREAMING_SNAKE_CASE = np.ones_like(UpperCAmelCase__ ) / float(len(UpperCAmelCase__ ) ) plt.hist(UpperCAmelCase__ , weights=UpperCAmelCase__ , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(UpperCAmelCase__ , F"na_prob_hist_{name}.png" ) ) plt.clf() def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) SCREAMING_SNAKE_CASE = num_no_ans SCREAMING_SNAKE_CASE = cur_score SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : na_probs[k] ) for i, qid in enumerate(UpperCAmelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: SCREAMING_SNAKE_CASE = scores[qid] else: if preds[qid]: SCREAMING_SNAKE_CASE = -1 else: SCREAMING_SNAKE_CASE = 0 cur_score += diff if cur_score > best_score: SCREAMING_SNAKE_CASE = cur_score SCREAMING_SNAKE_CASE = na_probs[qid] return 100.0 * best_score / len(UpperCAmelCase__ ), best_thresh def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = best_exact SCREAMING_SNAKE_CASE = exact_thresh SCREAMING_SNAKE_CASE = best_fa SCREAMING_SNAKE_CASE = fa_thresh def __lowerCamelCase (): with open(OPTS.data_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = dataset_json["data"] with open(OPTS.pred_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = {k: 0.0 for k in preds} SCREAMING_SNAKE_CASE = make_qid_to_has_ans(UpperCAmelCase__ ) # maps qid to True/False SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if v] SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if not v] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_raw_scores(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = apply_no_ans_threshold(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE = apply_no_ans_threshold(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ ) if has_ans_qids: SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ , qid_list=UpperCAmelCase__ ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "HasAns" ) if no_ans_qids: SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ , qid_list=UpperCAmelCase__ ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir ) histogram_na_prob(UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) else: print(json.dumps(UpperCAmelCase__ , indent=2 ) ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
206
1
def __lowerCamelCase ( UpperCAmelCase_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a :Any = set() # Replace all the whitespace in our sentence a :str = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCAmelCase_ ) == 26 def __lowerCamelCase ( UpperCAmelCase_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a :str = [False] * 26 for char in input_str: if char.islower(): a :int = True elif char.isupper(): a :List[str] = True return all(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def __lowerCamelCase ( ): """simple docstring""" from timeit import timeit a :str = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=UpperCAmelCase_ ) ) print(timeit('''is_pangram_faster()''' , setup=UpperCAmelCase_ ) ) print(timeit('''is_pangram_fastest()''' , setup=UpperCAmelCase_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
94
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase_ = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[str] = '''albert''' def __init__( self ,SCREAMING_SNAKE_CASE__=3_00_00 ,SCREAMING_SNAKE_CASE__=1_28 ,SCREAMING_SNAKE_CASE__=40_96 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=64 ,SCREAMING_SNAKE_CASE__=1_63_84 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__="gelu_new" ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-12 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__="absolute" ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=3 ,**SCREAMING_SNAKE_CASE__ ,) -> Any: """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = vocab_size __SCREAMING_SNAKE_CASE :Optional[int] = embedding_size __SCREAMING_SNAKE_CASE :Any = hidden_size __SCREAMING_SNAKE_CASE :Dict = num_hidden_layers __SCREAMING_SNAKE_CASE :str = num_hidden_groups __SCREAMING_SNAKE_CASE :Dict = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = inner_group_num __SCREAMING_SNAKE_CASE :Any = hidden_act __SCREAMING_SNAKE_CASE :Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE :int = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE :Dict = initializer_range __SCREAMING_SNAKE_CASE :Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE :Optional[Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE :Union[str, Any] = position_embedding_type class _SCREAMING_SNAKE_CASE( A ): @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE :List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE :List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
361
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=99 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=None ,) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = parent __SCREAMING_SNAKE_CASE :Tuple = batch_size __SCREAMING_SNAKE_CASE :Tuple = seq_length __SCREAMING_SNAKE_CASE :Any = is_training __SCREAMING_SNAKE_CASE :Tuple = use_input_mask __SCREAMING_SNAKE_CASE :List[Any] = use_token_type_ids __SCREAMING_SNAKE_CASE :int = use_labels __SCREAMING_SNAKE_CASE :Dict = vocab_size __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :int = num_hidden_layers __SCREAMING_SNAKE_CASE :Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE :Any = intermediate_size __SCREAMING_SNAKE_CASE :Any = hidden_act __SCREAMING_SNAKE_CASE :str = hidden_dropout_prob __SCREAMING_SNAKE_CASE :List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :int = max_position_embeddings __SCREAMING_SNAKE_CASE :Any = type_vocab_size __SCREAMING_SNAKE_CASE :Optional[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE :Optional[int] = initializer_range __SCREAMING_SNAKE_CASE :Union[str, Any] = num_labels __SCREAMING_SNAKE_CASE :Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE :str = scope def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __SCREAMING_SNAKE_CASE :Union[str, Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE :List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE :Union[str, Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE :Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE :Dict = None __SCREAMING_SNAKE_CASE :Dict = None __SCREAMING_SNAKE_CASE :Dict = None if self.use_labels: __SCREAMING_SNAKE_CASE :List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE :Dict = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE :Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=SCREAMING_SNAKE_CASE__ ,initializer_range=self.initializer_range ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = NystromformerModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __SCREAMING_SNAKE_CASE :Any = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :List[str] = model(SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = NystromformerForMaskedLM(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __SCREAMING_SNAKE_CASE :Tuple = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = NystromformerForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,start_positions=SCREAMING_SNAKE_CASE__ ,end_positions=SCREAMING_SNAKE_CASE__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.num_labels __SCREAMING_SNAKE_CASE :Any = NystromformerForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __SCREAMING_SNAKE_CASE :Dict = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE :Tuple = NystromformerForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __SCREAMING_SNAKE_CASE :Any = model(SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.num_choices __SCREAMING_SNAKE_CASE :Dict = NystromformerForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __SCREAMING_SNAKE_CASE :List[str] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __SCREAMING_SNAKE_CASE :Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __SCREAMING_SNAKE_CASE :List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() __SCREAMING_SNAKE_CASE :Dict = model( SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__ ,token_type_ids=SCREAMING_SNAKE_CASE__ ,labels=SCREAMING_SNAKE_CASE__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) ,( __SCREAMING_SNAKE_CASE ) , ) :Dict = config_and_inputs __SCREAMING_SNAKE_CASE :str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( A , A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Tuple = False def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = NystromformerModelTester(self ) __SCREAMING_SNAKE_CASE :Optional[Any] = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE__ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE :Any = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :Tuple = NystromformerModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_torch class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) __SCREAMING_SNAKE_CASE :Dict = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE :str = model(SCREAMING_SNAKE_CASE__ )[0] __SCREAMING_SNAKE_CASE :Optional[int] = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :int = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] ,SCREAMING_SNAKE_CASE__ ,atol=1E-4 ) ) @slow def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = '''the [MASK] of Belgium is Brussels''' __SCREAMING_SNAKE_CASE :Optional[Any] = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) __SCREAMING_SNAKE_CASE :str = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ ,return_tensors='''pt''' ) with torch.no_grad(): __SCREAMING_SNAKE_CASE :Union[str, Any] = model(encoding.input_ids ).logits __SCREAMING_SNAKE_CASE :List[str] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE__ ) ,'''capital''' )
239
0
"""simple docstring""" from math import ceil def lowercase (snake_case__ : List[Any] , snake_case__ : int ) -> Tuple: '''simple docstring''' lowerCAmelCase = list(range(0 , snake_case__ ) ) lowerCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowerCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(snake_case__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(snake_case__ ) # Missing blocks lowerCAmelCase = [i for i in blocks if i not in device_map_blocks] lowerCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(snake_case__ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(snake_case__ ) ) if len(snake_case__ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(snake_case__ ) ) def lowercase (snake_case__ : int , snake_case__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = list(range(snake_case__ ) ) lowerCAmelCase = int(ceil(n_layers / len(snake_case__ ) ) ) lowerCAmelCase = [layers[i : i + n_blocks] for i in range(0 , snake_case__ , snake_case__ )] return dict(zip(snake_case__ , snake_case__ ) )
155
"""simple docstring""" def lowercase (snake_case__ : list[int] , snake_case__ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(snake_case__ ) == len(snake_case__ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = equationa lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = equationa # Calculate the determinants of the matrices lowerCAmelCase = aa * ba - aa * ba lowerCAmelCase = ca * ba - ca * ba lowerCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowerCAmelCase = determinant_x / determinant lowerCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
155
1
"""simple docstring""" import os import numpy import onnx def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Dict = a.name _lowerCamelCase : Optional[int] = b.name _lowerCamelCase : Union[str, Any] = "" _lowerCamelCase : Dict = "" _lowerCamelCase : str = a == b _lowerCamelCase : str = name_a _lowerCamelCase : List[str] = name_b return res def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase__ , lowercase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase__ , lowercase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): for n in graph_proto.node: _node_replace_input_with(lowercase__ , lowercase__ , lowercase__ ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : Dict = list(model.graph.initializer ) _lowerCamelCase : Optional[int] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowerCamelCase : List[str] = inits[i].name _lowerCamelCase : str = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase__ , lowercase__ ) def _snake_case ( lowercase__ ): _lowerCamelCase : Any = os.path.dirname(lowercase__ ) _lowerCamelCase : Optional[int] = os.path.basename(lowercase__ ) _lowerCamelCase : List[Any] = onnx.load(os.path.join(lowercase__ , lowercase__ ) ) _lowerCamelCase : Optional[Any] = list(model.graph.initializer ) _lowerCamelCase : str = set() _lowerCamelCase : List[str] = {} _lowerCamelCase : Tuple = [] _lowerCamelCase : str = 0 for i in range(len(lowercase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase__ ) dup_set.add(lowercase__ ) _lowerCamelCase : Union[str, Any] = inits[j].data_type _lowerCamelCase : Tuple = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowercase__ ) total_reduced_size += mem_size _lowerCamelCase : str = inits[i].name _lowerCamelCase : List[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase__ ) else: _lowerCamelCase : Any = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1024 / 1024 / 1024 , 'GB' ) _lowerCamelCase : List[Any] = sorted(lowercase__ ) _remove_dup_initializers_from_model(lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : Optional[int] = "optimized_" + model_file_name _lowerCamelCase : List[Any] = os.path.join(lowercase__ , lowercase__ ) onnx.save(lowercase__ , lowercase__ ) return new_model
369
"""simple docstring""" def _snake_case ( lowercase__ = 10 ): if not isinstance(lowercase__ , lowercase__ ) or n < 0: raise ValueError('Invalid input' ) _lowerCamelCase : str = 10**n _lowerCamelCase : Union[str, Any] = 28433 * (pow(2 , 7830457 , lowercase__ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"{solution(10) = }")
12
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Optional[int] = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class a ( _lowerCamelCase ): snake_case_ = "unispeech" def __init__( self : int , lowercase_ : Any=32 , lowercase_ : Optional[int]=768 , lowercase_ : Union[str, Any]=12 , lowercase_ : Optional[int]=12 , lowercase_ : List[Any]=3072 , lowercase_ : Tuple="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[str]=0.0 , lowercase_ : List[str]=0.0 , lowercase_ : Tuple=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : List[str]=0.02 , lowercase_ : str=1e-5 , lowercase_ : Optional[int]="group" , lowercase_ : Union[str, Any]="gelu" , lowercase_ : List[Any]=(512, 512, 512, 512, 512, 512, 512) , lowercase_ : List[str]=(5, 2, 2, 2, 2, 2, 2) , lowercase_ : Dict=(10, 3, 3, 3, 3, 2, 2) , lowercase_ : Optional[Any]=False , lowercase_ : Optional[Any]=128 , lowercase_ : Any=16 , lowercase_ : Optional[int]=False , lowercase_ : List[str]=True , lowercase_ : Optional[int]=0.05 , lowercase_ : Dict=10 , lowercase_ : int=2 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[Any]=10 , lowercase_ : Dict=0 , lowercase_ : str=320 , lowercase_ : Dict=2 , lowercase_ : Tuple=0.1 , lowercase_ : Tuple=100 , lowercase_ : Tuple=256 , lowercase_ : str=256 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Any="mean" , lowercase_ : Union[str, Any]=False , lowercase_ : Tuple=False , lowercase_ : Tuple=256 , lowercase_ : Tuple=80 , lowercase_ : int=0 , lowercase_ : List[str]=1 , lowercase_ : Optional[int]=2 , lowercase_ : Optional[Any]=0.5 , **lowercase_ : Dict , ): super().__init__(**lowercase_ , pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(lowercase_ ) snake_case_ = list(lowercase_ ) snake_case_ = list(lowercase_ ) snake_case_ = conv_bias snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = num_ctc_classes snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length snake_case_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = feat_quantizer_dropout snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # pretraining loss snake_case_ = replace_prob @property def A_ ( self : str ): return functools.reduce(operator.mul , self.conv_stride , 1 )
56
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=_lowerCamelCase ): snake_case_ = ["transformers", "torch", "note_seq"] def __init__( self : Union[str, Any] , *lowercase_ : Optional[int] , **lowercase_ : int ): requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A_ ( cls : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : str ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def A_ ( cls : Tuple , *lowercase_ : Union[str, Any] , **lowercase_ : List[Any] ): requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
56
1
'''simple docstring''' from __future__ import annotations class a__ : """simple docstring""" def __init__(self , __lowercase ): __lowerCAmelCase = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(__lowercase ) != 0: __lowerCAmelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__lowercase ) != cols: raise error for value in row: if not isinstance(__lowercase , (int, float) ): raise error __lowerCAmelCase = rows else: __lowerCAmelCase = [] def _snake_case (self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _snake_case (self ): return len(self.rows ) @property def _snake_case (self ): return len(self.rows[0] ) @property def _snake_case (self ): return (self.num_rows, self.num_columns) @property def _snake_case (self ): return self.order[0] == self.order[1] def _snake_case (self ): __lowerCAmelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__lowercase ) def _snake_case (self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _snake_case (self ): return bool(self.determinant() ) def _snake_case (self , __lowercase , __lowercase ): __lowerCAmelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__lowercase ).determinant() def _snake_case (self , __lowercase , __lowercase ): if (row + column) % 2 == 0: return self.get_minor(__lowercase , __lowercase ) return -1 * self.get_minor(__lowercase , __lowercase ) def _snake_case (self ): return Matrix( [ [self.get_minor(__lowercase , __lowercase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _snake_case (self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _snake_case (self ): __lowerCAmelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__lowercase ) def _snake_case (self ): __lowerCAmelCase = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__(self ): return str(self.rows ) def __str__(self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(__lowercase ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(__lowercase , __lowercase ): raise type_error for value in row: if not isinstance(__lowercase , (int, float) ): raise type_error if len(__lowercase ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(__lowercase ) else: __lowerCAmelCase = self.rows[0:position] + [row] + self.rows[position:] def _snake_case (self , __lowercase , __lowercase = None ): __lowerCAmelCase = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(__lowercase , __lowercase ): raise type_error for value in column: if not isinstance(__lowercase , (int, float) ): raise type_error if len(__lowercase ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: __lowerCAmelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __lowerCAmelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__(self , __lowercase ): if not isinstance(__lowercase , __lowercase ): return NotImplemented return self.rows == other.rows def __ne__(self , __lowercase ): return not self == other def __neg__(self ): return self * -1 def __add__(self , __lowercase ): if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__(self , __lowercase ): if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__(self , __lowercase ): if isinstance(__lowercase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__lowercase , __lowercase ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(__lowercase , __lowercase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__(self , __lowercase ): if not isinstance(__lowercase , __lowercase ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) __lowerCAmelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _snake_case (cls , __lowercase , __lowercase ): return sum(row[i] * column[i] for i in range(len(__lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a__ ( __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ConsistencyModelPipeline __UpperCamelCase : Optional[int] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCamelCase : int = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __UpperCamelCase : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def _snake_case (self , __lowercase=False ): if class_cond: __lowerCAmelCase = self.dummy_cond_unet else: __lowerCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _snake_case (self ): __lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components(class_cond=__lowercase ) __lowerCAmelCase = ConsistencyModelPipeline(**__lowercase ) __lowerCAmelCase = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = 0 __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 32, 32, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self , __lowercase=0 , __lowercase=False , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): __lowerCAmelCase = torch.manual_seed(__lowercase ) __lowerCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __lowerCAmelCase = self.get_fixed_latents(seed=__lowercase , device=__lowercase , dtype=__lowercase , shape=__lowercase ) __lowerCAmelCase = latents return inputs def _snake_case (self , __lowercase=0 , __lowercase="cpu" , __lowercase=torch.floataa , __lowercase=(1, 3, 64, 64) ): if type(__lowercase ) == str: __lowerCAmelCase = torch.device(__lowercase ) __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = randn_tensor(__lowercase , generator=__lowercase , device=__lowercase , dtype=__lowercase ) return latents def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs() __lowerCAmelCase = 1 __lowerCAmelCase = None __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def _snake_case (self ): __lowerCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __lowerCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) __lowerCAmelCase = ConsistencyModelPipeline(unet=__lowercase , scheduler=__lowercase ) pipe.to(torch_device=__lowercase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_inputs(get_fixed_latents=__lowercase , device=__lowercase ) __lowerCAmelCase = 1 __lowerCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__lowercase , enable_math=__lowercase , enable_mem_efficient=__lowercase ): __lowerCAmelCase = pipe(**__lowercase ).images assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
9
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class A_ : """simple docstring""" __UpperCamelCase = BlenderbotConfig __UpperCamelCase = {} __UpperCamelCase = """gelu""" def __init__( self :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :Any=13 , lowercase_ :Optional[int]=7 , lowercase_ :Union[str, Any]=True , lowercase_ :Union[str, Any]=False , lowercase_ :List[Any]=99 , lowercase_ :str=32 , lowercase_ :Union[str, Any]=2 , lowercase_ :Optional[Any]=4 , lowercase_ :Any=37 , lowercase_ :Optional[Any]=0.1 , lowercase_ :Any=0.1 , lowercase_ :Optional[Any]=20 , lowercase_ :Dict=2 , lowercase_ :Optional[int]=1 , lowercase_ :Dict=0 , ) -> Dict: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = bos_token_id def UpperCAmelCase__ ( self :str ) -> List[Any]: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def UpperCAmelCase__ ( self :str , lowercase_ :str , lowercase_ :List[str] ) -> Optional[int]: UpperCAmelCase = TFBlenderbotModel(config=lowercase_ ).get_decoder() UpperCAmelCase = inputs_dict['input_ids'] UpperCAmelCase = input_ids[:1, :] UpperCAmelCase = inputs_dict['attention_mask'][:1, :] UpperCAmelCase = inputs_dict['head_mask'] UpperCAmelCase = 1 # first forward pass UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , head_mask=lowercase_ , use_cache=lowercase_ ) UpperCAmelCase , UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ )[0] UpperCAmelCase = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1E-3 ) def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , ): if attention_mask is None: UpperCAmelCase = tf.cast(tf.math.not_equal(lowercase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __UpperCamelCase = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase__ ( self :int ) -> List[Any]: UpperCAmelCase = TFBlenderbotModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ ) def UpperCAmelCase__ ( self :Tuple ) -> Any: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :List[Any] ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) @require_tokenizers @require_tf class A_ ( unittest.TestCase ): """simple docstring""" __UpperCamelCase = ["""My friends are cool but they eat too many carbs."""] __UpperCamelCase = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase__ ( self :Tuple ) -> Optional[Any]: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase__ ( self :Optional[int] ) -> Dict: UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase__ ( self :int ) -> Optional[int]: UpperCAmelCase = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCAmelCase = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowercase_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
78
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """transfo-xl""" __UpperCamelCase = ["""mems"""] __UpperCamelCase = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :List[Any] , lowercase_ :Optional[int]=26_77_35 , lowercase_ :Union[str, Any]=[2_00_00, 4_00_00, 20_00_00] , lowercase_ :List[Any]=10_24 , lowercase_ :Optional[Any]=10_24 , lowercase_ :Tuple=16 , lowercase_ :Tuple=64 , lowercase_ :Any=40_96 , lowercase_ :int=4 , lowercase_ :List[str]=False , lowercase_ :Union[str, Any]=18 , lowercase_ :Optional[Any]=16_00 , lowercase_ :Dict=10_00 , lowercase_ :Optional[int]=True , lowercase_ :Tuple=True , lowercase_ :Dict=0 , lowercase_ :Tuple=-1 , lowercase_ :Optional[int]=True , lowercase_ :Optional[int]=0.1 , lowercase_ :str=0.0 , lowercase_ :List[str]=True , lowercase_ :int="normal" , lowercase_ :Dict=0.01 , lowercase_ :Optional[Any]=0.01 , lowercase_ :Dict=0.02 , lowercase_ :Tuple=1E-5 , lowercase_ :str=0 , **lowercase_ :Tuple , ) -> List[str]: UpperCAmelCase = vocab_size UpperCAmelCase = [] self.cutoffs.extend(lowercase_ ) if proj_share_all_but_first: UpperCAmelCase = [False] + [True] * len(self.cutoffs ) else: UpperCAmelCase = [False] + [False] * len(self.cutoffs ) UpperCAmelCase = d_model UpperCAmelCase = d_embed UpperCAmelCase = d_head UpperCAmelCase = d_inner UpperCAmelCase = div_val UpperCAmelCase = pre_lnorm UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = mem_len UpperCAmelCase = same_length UpperCAmelCase = attn_type UpperCAmelCase = clamp_len UpperCAmelCase = sample_softmax UpperCAmelCase = adaptive UpperCAmelCase = dropout UpperCAmelCase = dropatt UpperCAmelCase = untie_r UpperCAmelCase = init UpperCAmelCase = init_range UpperCAmelCase = proj_init_std UpperCAmelCase = init_std UpperCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=lowercase_ , **lowercase_ ) @property def UpperCAmelCase__ ( self :Union[str, Any] ) -> Any: # Message copied from Transformer-XL documentation logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def UpperCAmelCase__ ( self :Union[str, Any] , lowercase_ :Any ) -> Tuple: # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
78
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __a: Dict = logging.get_logger(__name__) @dataclass class UpperCAmelCase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **__lowerCAmelCase ) -> Union[str, Any]: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase__ : int = deprecated_arg[3:] setattr(self , __A , not kwargs.pop(__A ) ) logger.warning( F"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" F""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase__ : Optional[int] = kwargs.pop('''torchscript''' , self.torchscript ) lowercase__ : List[str] = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) lowercase__ : Tuple = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**__A ) SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"help": "Trace the models using torchscript"} ) SCREAMING_SNAKE_CASE = field(default=A__ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) SCREAMING_SNAKE_CASE = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def _lowerCAmelCase( self ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowercase__ : str = torch.device('''cpu''' ) lowercase__ : Tuple = 0 elif is_torch_tpu_available(): lowercase__ : int = xm.xla_device() lowercase__ : Optional[Any] = 0 else: lowercase__ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowercase__ : List[str] = torch.cuda.device_count() return device, n_gpu @property def _lowerCAmelCase( self ) -> int: return is_torch_tpu_available() and self.tpu @property def _lowerCAmelCase( self ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowerCAmelCase( self ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def _lowerCAmelCase( self ) -> Union[str, Any]: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def _lowerCAmelCase( self ) -> Union[str, Any]: return self.n_gpu > 0
351
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a: Union[str, Any] = logging.get_logger(__name__) __a: Tuple = {"""tokenizer_file""": """tokenizer.json"""} __a: Union[str, Any] = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE = None def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase=False , __lowerCAmelCase=False , **__lowerCAmelCase , ) -> Union[str, Any]: super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase__ : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: lowercase__ : int = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) lowercase__ : Tuple = add_prefix_space lowercase__ : List[str] = pre_tok_class(**__lowerCAmelCase ) lowercase__ : Union[str, Any] = add_prefix_space def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : Dict = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , *__lowerCAmelCase , **__lowerCAmelCase ) -> BatchEncoding: lowercase__ : str = kwargs.get('''is_split_into_words''' , __lowerCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Tuple[str]: lowercase__ : List[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[int]: lowercase__ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] ) if len(__lowerCAmelCase ) > self.model_max_length: lowercase__ : Optional[Any] = input_ids[-self.model_max_length :] return input_ids
214
0
from math import sqrt def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ = 1_0001 ) -> int: '''simple docstring''' UpperCAmelCase = 0 UpperCAmelCase = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F'{solution() = }')
273
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , ) def _lowercase ( self , _A , _A , _A ): '''simple docstring''' UpperCAmelCase = TFViTModel(config=_A ) UpperCAmelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase = self.image_size // 2 UpperCAmelCase = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase = model(_A , interpolate_pos_encoding=_A , training=_A ) UpperCAmelCase = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowercase ( self , _A , _A , _A ): '''simple docstring''' UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = TFViTForImageClassification(_A ) UpperCAmelCase = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCAmelCase = self.image_size // 2 UpperCAmelCase = pixel_values[:, :, :image_size, :image_size] UpperCAmelCase = model(_A , interpolate_pos_encoding=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFViTForImageClassification(_A ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A_ (a_ , a_ , unittest.TestCase ): UpperCAmelCase__ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFViTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def _lowercase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowercase ( self ): '''simple docstring''' pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , tf.keras.layers.Layer ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(_A ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(_A ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A_ (unittest.TestCase ): @cached_property def _lowercase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_A , return_tensors='''tf''' ) # forward pass UpperCAmelCase = model(**_A ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) UpperCAmelCase = tf.constant([-0.27_44, 0.82_15, -0.08_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1E-4 )
273
1
"""simple docstring""" def lowercase__ ( _UpperCAmelCase = 10**9 ) -> int: '''simple docstring''' lowercase : Optional[int] = 1 lowercase : Optional[Any] = 2 lowercase : str = 0 lowercase : int = 0 lowercase : List[Any] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value lowercase : str = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
53
"""simple docstring""" _UpperCamelCase: Dict = 2_5_6 # Modulus to hash a string _UpperCamelCase: Union[str, Any] = 1_0_0_0_0_0_3 def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: '''simple docstring''' lowercase : Dict = len(_UpperCAmelCase ) lowercase : Union[str, Any] = len(_UpperCAmelCase ) if p_len > t_len: return False lowercase : Union[str, Any] = 0 lowercase : Dict = 0 lowercase : Any = 1 # Calculating the hash of pattern and substring of text for i in range(_UpperCAmelCase ): lowercase : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowercase : Tuple = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowercase : Tuple = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowercase : str = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase__ ( ) -> None: '''simple docstring''' lowercase : Any = 'abc1abc12' lowercase : int = 'alskfjaldsabc1abc1abc12k23adsfabcabc' lowercase : Optional[int] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) and not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 2) lowercase : str = 'ABABX' lowercase : Tuple = 'ABABZABABYABABX' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 3) lowercase : int = 'AAAB' lowercase : Union[str, Any] = 'ABAAAAAB' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 4) lowercase : Union[str, Any] = 'abcdabcy' lowercase : List[str] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) # Test 5) lowercase : Dict = 'Lü' lowercase : Dict = 'Lüsai' assert rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) lowercase : List[Any] = 'Lue' assert not rabin_karp(_UpperCAmelCase , _UpperCAmelCase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
53
1
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int ) -> list[list[int]]: """simple docstring""" a_ : list[list[int]] = [] a_ : list[int] = [] a_ : Dict = 0 a_ : Optional[int] = sum(__A ) create_state_space_tree(__A , __A , __A , __A , __A , __A ) return result def SCREAMING_SNAKE_CASE_ ( __A : list[int] , __A : int , __A : int , __A : list[int] , __A : list[list[int]] , __A : int , ) -> None: """simple docstring""" if sum(__A ) > max_sum or (remaining_nums_sum + sum(__A )) < max_sum: return if sum(__A ) == max_sum: result.append(__A ) return for index in range(__A , len(__A ) ): create_state_space_tree( __A , __A , index + 1 , [*path, nums[index]] , __A , remaining_nums_sum - nums[index] , ) UpperCAmelCase_ : str = [3, 34, 4, 12, 5, 2] UpperCAmelCase_ : Optional[Any] = 9 UpperCAmelCase_ : str = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
32
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" a_ : Optional[Any] = HfArgumentParser(__A ) a_ : Optional[int] = parser.parse_args_into_dataclasses()[0] a_ : List[Any] = TensorFlowBenchmark(args=__A ) try: a_ : List[str] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a_ : Dict = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' a_ : Dict = ' '.join(str(__A ).split(' ' )[:-1] ) a_ : int = '' a_ : int = eval(str(__A ).split(' ' )[-1] ) a_ : Any = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__A ) if len(__A ) > 0: a_ : str = full_error_msg + begin_error_msg + str(__A ) raise ValueError(__A ) benchmark.run() if __name__ == "__main__": main()
32
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
334
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
334
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase : def __init__( self, lowerCAmelCase__, lowerCAmelCase__=13, lowerCAmelCase__=32, lowerCAmelCase__=3, lowerCAmelCase__=4, lowerCAmelCase__=[10, 20, 30, 40], lowerCAmelCase__=[2, 2, 3, 2], lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__=37, lowerCAmelCase__="gelu", lowerCAmelCase__=10, lowerCAmelCase__=0.02, lowerCAmelCase__=["stage2", "stage3", "stage4"], lowerCAmelCase__=3, lowerCAmelCase__=None, ) -> str: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = num_stages snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = out_features snake_case_ = num_labels snake_case_ = scope snake_case_ = num_stages def a_ ( self) -> List[Any]: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size], self.type_sequence_label_size) snake_case_ = self.get_config() return config, pixel_values, labels def a_ ( self) -> Dict: return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def a_ ( self) -> Dict: return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=lowerCAmelCase__, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=lowerCAmelCase__, loss_ignore_index=255, num_labels=self.num_labels, ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> Tuple: snake_case_ = UperNetForSemanticSegmentation(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() snake_case_ = model(lowerCAmelCase__) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)) def a_ ( self) -> List[str]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def a_ ( self) -> List[str]: snake_case_ = UperNetModelTester(self) snake_case_ = ConfigTester(self, config_class=lowerCAmelCase__, has_text_modality=lowerCAmelCase__, hidden_size=37) def a_ ( self) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self) -> Optional[Any]: return def a_ ( self) -> Tuple: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCAmelCase__) snake_case_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCAmelCase__) def a_ ( self) -> Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__) @unittest.skip(reason='UperNet does not use inputs_embeds') def a_ ( self) -> List[str]: pass @unittest.skip(reason='UperNet does not support input and output embeddings') def a_ ( self) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model') def a_ ( self) -> List[Any]: pass @unittest.skip(reason='UperNet does not have a base model') def a_ ( self) -> Any: pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def a_ ( self) -> Tuple: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def a_ ( self) -> Optional[Any]: pass def a_ ( self) -> Any: def check_hidden_states_output(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__): snake_case_ = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(lowerCAmelCase__, lowerCAmelCase__)) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__), expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def a_ ( self) -> Dict: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(lowerCAmelCase__) snake_case_ = _config_zero_init(configs_no_init.backbone_config) for model_class in self.all_model_classes: snake_case_ = model_class(config=lowerCAmelCase__) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f'Parameter {name} of model {model_class} seems not properly initialized', ) @unittest.skip(reason='UperNet does not have tied weights') def a_ ( self) -> Any: pass @slow def a_ ( self) -> List[str]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def UpperCAmelCase ( ) -> str: snake_case_ = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) snake_case_ = Image.open(UpperCAmelCase ).convert('RGB' ) return image @require_torch @require_vision @slow class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> int: snake_case_ = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny') snake_case_ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny').to(lowerCAmelCase__) snake_case_ = prepare_img() snake_case_ = processor(images=lowerCAmelCase__, return_tensors='pt').to(lowerCAmelCase__) with torch.no_grad(): snake_case_ = model(**lowerCAmelCase__) snake_case_ = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, lowerCAmelCase__) snake_case_ = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowerCAmelCase__, atol=1e-4)) def a_ ( self) -> List[str]: snake_case_ = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny') snake_case_ = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny').to(lowerCAmelCase__) snake_case_ = prepare_img() snake_case_ = processor(images=lowerCAmelCase__, return_tensors='pt').to(lowerCAmelCase__) with torch.no_grad(): snake_case_ = model(**lowerCAmelCase__) snake_case_ = torch.Size((1, model.config.num_labels, 512, 512)) self.assertEqual(outputs.logits.shape, lowerCAmelCase__) snake_case_ = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowerCAmelCase__, atol=1e-4))
69
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def A_ ( *snake_case , **snake_case ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A_ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Union[str, Any] = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def A_ ( self , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = object_detector(examples[0] , threshold=0.0 ) UpperCAmelCase : Dict = len(snake_case ) self.assertGreater(snake_case , 0 ) self.assertEqual( snake_case , [ { "score": ANY(snake_case ), "label": ANY(snake_case ), "box": {"xmin": ANY(snake_case ), "ymin": ANY(snake_case ), "xmax": ANY(snake_case ), "ymax": ANY(snake_case )}, } for i in range(snake_case ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) UpperCAmelCase : Optional[Any] = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] , ) UpperCAmelCase : Tuple = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 2_0_4, "ymin": 1_6_7, "xmax": 2_3_2, "ymax": 1_9_0}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 5_7_1, "ymin": 8_3, "xmax": 5_9_8, "ymax": 1_0_3}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, {"score": 0.642, "label": "remote", "box": {"xmin": 6_7, "ymin": 2_7_4, "xmax": 9_3, "ymax": 2_9_7}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 4_9_4, "ymin": 1_0_5, "xmax": 5_2_1, "ymax": 1_2_7}}, ] ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = pipeline("zero-shot-object-detection" ) UpperCAmelCase : Optional[int] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ] , ) UpperCAmelCase : Union[str, Any] = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 3_3_5, "ymin": 7_4, "xmax": 3_7_1, "ymax": 1_8_7}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 6_4_2, "ymax": 4_7_6}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A_ ( self ): '''simple docstring''' pass @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = 0.2 UpperCAmelCase : Union[str, Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : str = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 5_5, "xmax": 3_1_5, "ymax": 4_7_2}}, ] , ) @require_torch @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = 2 UpperCAmelCase : Optional[Any] = pipeline("zero-shot-object-detection" ) UpperCAmelCase : List[str] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 3_2_4, "ymin": 2_0, "xmax": 6_4_0, "ymax": 3_7_3}}, {"score": 0.277, "label": "remote", "box": {"xmin": 4_0, "ymin": 7_2, "xmax": 1_7_7, "ymax": 1_1_5}}, ] , )
311
0
import math import sys def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = "" try: with open(__lowerCamelCase, "rb" ) as binary_file: UpperCAmelCase_ : Union[str, Any] = binary_file.read() for dat in data: UpperCAmelCase_ : List[str] = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = {"0": "0", "1": "1"} UpperCAmelCase_ : Optional[int] = "", "" UpperCAmelCase_ : str = len(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ : Optional[Any] = lexicon[curr_string] result += last_match_id UpperCAmelCase_ : Union[str, Any] = last_match_id + "0" if math.loga(__lowerCamelCase ).is_integer(): UpperCAmelCase_ : Optional[int] = {} for curr_key in list(__lowerCamelCase ): UpperCAmelCase_ : Dict = lexicon.pop(__lowerCamelCase ) UpperCAmelCase_ : int = new_lex UpperCAmelCase_ : List[str] = last_match_id + "1" index += 1 UpperCAmelCase_ : str = "" return result def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Optional[Any] = 8 try: with open(__lowerCamelCase, "wb" ) as opened_file: UpperCAmelCase_ : Optional[Any] = [ to_write[i : i + byte_length] for i in range(0, len(__lowerCamelCase ), __lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowerCamelCase, 2 ).to_bytes(1, byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def __a ( __lowerCamelCase ): UpperCAmelCase_ : Tuple = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCAmelCase_ : int = data_bits[counter:] UpperCAmelCase_ : Optional[int] = data_bits[counter + 1 :] return data_bits def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : List[Any] = read_file_binary(__lowerCamelCase ) UpperCAmelCase_ : str = remove_prefix(__lowerCamelCase ) UpperCAmelCase_ : Any = decompress_data(__lowerCamelCase ) write_file_binary(__lowerCamelCase, __lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
362
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class A_ (lowercase__ ,lowercase__ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = IFImgaImgSuperResolutionPipeline SCREAMING_SNAKE_CASE__ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""width""", """height"""} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""original_image"""} ) SCREAMING_SNAKE_CASE__ : List[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ ( self , lowercase_ , lowercase_=0 ): """simple docstring""" if str(lowercase_ ).startswith("mps" ): UpperCAmelCase_ : Optional[Any] = torch.manual_seed(lowercase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) UpperCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase_ ) ).to(lowercase_ ) UpperCAmelCase_ : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self ): """simple docstring""" # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
23
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any=13 , lowerCAmelCase__ :Tuple=30 , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :List[str]=3 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Tuple=32 , lowerCAmelCase__ :Optional[Any]=5 , lowerCAmelCase__ :List[Any]=4 , lowerCAmelCase__ :Union[str, Any]=37 , lowerCAmelCase__ :Any="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Dict=10 , lowerCAmelCase__ :Tuple=0.02 , ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : List[str] = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : List[str] = patch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : Optional[int] = is_training __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE : Any = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE : List[str] = num_patches + 1 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Dict = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, pixel_values def __magic_name__( self :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : List[str] = FlaxViTModel(config=lowercase_ ) __SCREAMING_SNAKE_CASE : int = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE : Optional[Any] = (self.image_size, self.image_size) __SCREAMING_SNAKE_CASE : List[Any] = (self.patch_size, self.patch_size) __SCREAMING_SNAKE_CASE : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = self.type_sequence_label_size __SCREAMING_SNAKE_CASE : Tuple = FlaxViTForImageClassification(config=lowercase_ ) __SCREAMING_SNAKE_CASE : str = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE : Any = 1 __SCREAMING_SNAKE_CASE : Optional[int] = FlaxViTForImageClassification(lowercase_ ) __SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : List[Any] = model(lowercase_ ) def __magic_name__( self :List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) : Tuple = config_and_inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowercase ( lowercase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __magic_name__( self :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = FlaxViTModelTester(self ) __SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def __magic_name__( self :List[Any] ) -> Tuple: self.config_tester.run_common_tests() def __magic_name__( self :List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __magic_name__( self :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __magic_name__( self :List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_ ) __SCREAMING_SNAKE_CASE : Tuple = model_class(lowercase_ ) @jax.jit def model_jitted(lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :Optional[int] ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest('''JIT Enabled''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_jitted(**lowercase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __SCREAMING_SNAKE_CASE : Tuple = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __magic_name__( self :Any ) -> Dict: for model_class_name in self.all_model_classes: __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) __SCREAMING_SNAKE_CASE : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowercase_ )
9
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _a = { 'google/fnet-base': 512, 'google/fnet-large': 512, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""input_ids""", """token_type_ids"""] SCREAMING_SNAKE_CASE__ : Tuple = FNetTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : int = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = do_lower_case UpperCAmelCase_ : Tuple = remove_space UpperCAmelCase_ : str = keep_accents UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[str] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
61
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase : def __init__( self :Optional[Any] , _lowercase :int , _lowercase :Union[str, Any]=13 , _lowercase :Dict=7 , _lowercase :List[Any]=True , _lowercase :Union[str, Any]=True , _lowercase :Optional[Any]=True , _lowercase :Optional[Any]=True , _lowercase :Dict=99 , _lowercase :Optional[int]=32 , _lowercase :str=5 , _lowercase :str=4 , _lowercase :Dict=37 , _lowercase :str="gelu" , _lowercase :Optional[Any]=0.1 , _lowercase :List[str]=0.1 , _lowercase :List[str]=5_12 , _lowercase :List[str]=16 , _lowercase :Optional[Any]=2 , _lowercase :Union[str, Any]=0.02 , _lowercase :Any=3 , _lowercase :Optional[Any]=4 , _lowercase :List[str]=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = ids_tensor([self.batch_size] , self.num_choices ) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self :List[str] ): '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self :int , _lowercase :str , _lowercase :Optional[int] , _lowercase :str , _lowercase :int , _lowercase :Tuple , _lowercase :Union[str, Any] , _lowercase :int ): '''simple docstring''' lowercase__ = NystromformerModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) lowercase__ = model(_lowercase , token_type_ids=_lowercase ) lowercase__ = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self :List[str] , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :Tuple , _lowercase :int , _lowercase :str , _lowercase :Union[str, Any] , _lowercase :Tuple ): '''simple docstring''' lowercase__ = NystromformerForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self :List[str] , _lowercase :List[str] , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :Optional[int] , _lowercase :List[str] , _lowercase :int , _lowercase :List[Any] ): '''simple docstring''' lowercase__ = NystromformerForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self :int , _lowercase :Tuple , _lowercase :str , _lowercase :Optional[Any] , _lowercase :int , _lowercase :int , _lowercase :Any , _lowercase :Tuple ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = NystromformerForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self :int , _lowercase :str , _lowercase :int , _lowercase :Tuple , _lowercase :Dict , _lowercase :int , _lowercase :Dict , _lowercase :str ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = NystromformerForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self :Union[str, Any] , _lowercase :Optional[Any] , _lowercase :str , _lowercase :Optional[Any] , _lowercase :Tuple , _lowercase :Any , _lowercase :int , _lowercase :str ): '''simple docstring''' lowercase__ = self.num_choices lowercase__ = NystromformerForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowercase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase__ = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = NystromformerModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self :Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase ) @slow def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = NystromformerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) lowercase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): lowercase__ = model(_lowercase )[0] lowercase__ = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , _lowercase ) lowercase__ = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) ) @slow def UpperCAmelCase ( self :int ): '''simple docstring''' lowercase__ = "the [MASK] of Belgium is Brussels" lowercase__ = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) lowercase__ = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) lowercase__ = tokenizer(_lowercase , return_tensors="pt" ) with torch.no_grad(): lowercase__ = model(encoding.input_ids ).logits lowercase__ = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_lowercase ) , "capital" )
357
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def _A ( __magic_name__ ): lowercase__ = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __lowerCamelCase = StableDiffusionLatentUpscalePipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCamelCase = frozenset([] ) __lowerCamelCase = True @property def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = 1 lowercase__ = 4 lowercase__ = (16, 16) lowercase__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image def UpperCAmelCase ( self :Dict ): '''simple docstring''' torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( act_fn="gelu" , attention_head_dim=8 , norm_num_groups=_lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( "KDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", "KCrossAttnDownBlock2D", ) , in_channels=8 , mid_block_type=_lowercase , only_cross_attention=_lowercase , out_channels=5 , resnet_time_scale_shift="scale_shift" , time_embedding_type="fourier" , timestep_post_act="gelu" , up_block_types=("KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KCrossAttnUpBlock2D", "KUpBlock2D") , ) lowercase__ = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) lowercase__ = EulerDiscreteScheduler(prediction_type="sample" ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="quick_gelu" , projection_dim=5_12 , ) lowercase__ = CLIPTextModel(_lowercase ) lowercase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase__ = { "unet": model.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def UpperCAmelCase ( self :Dict , _lowercase :Union[str, Any] , _lowercase :int=0 ): '''simple docstring''' if str(_lowercase ).startswith("mps" ): lowercase__ = torch.manual_seed(_lowercase ) else: lowercase__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase__ = { "prompt": "A painting of a squirrel eating a burger", "image": self.dummy_image.cpu(), "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "cpu" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = pipe(**_lowercase ).images lowercase__ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) lowercase__ = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) lowercase__ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def UpperCAmelCase ( self :Any ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :int ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Tuple ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase ( self :Dict ): '''simple docstring''' lowercase__ = [ "DDIMScheduler", "DDPMScheduler", "PNDMScheduler", "HeunDiscreteScheduler", "EulerAncestralDiscreteScheduler", "KDPM2DiscreteScheduler", "KDPM2AncestralDiscreteScheduler", "DPMSolverSDEScheduler", ] lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = self.get_dummy_inputs(_lowercase ) lowercase__ = 2 lowercase__ = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue lowercase__ = getattr(_lowercase , scheduler_enum.name ) lowercase__ = scheduler_cls.from_config(pipe.scheduler.config ) lowercase__ = pipe(**_lowercase )[0] outputs.append(_lowercase ) assert check_same_shape(_lowercase ) @require_torch_gpu @slow class lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self :str ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" , torch_dtype=torch.floataa ) pipe.to("cuda" ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "a photo of an astronaut high resolution, unreal engine, ultra realistic" lowercase__ = pipe(_lowercase , generator=_lowercase , output_type="latent" ).images lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCAmelCase ( self :Optional[Any] ): '''simple docstring''' lowercase__ = torch.manual_seed(33 ) lowercase__ = StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler" , torch_dtype=torch.floataa ) upscaler.to("cuda" ) lowercase__ = "the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas" lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png" ) lowercase__ = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type="np" , ).images[0] lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy" ) assert np.abs((expected_image - image).max() ) < 5e-2
201
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _UpperCAmelCase : Tuple = { "169M": 12, "430M": 24, "1B5": 24, "3B": 32, "7B": 32, "14B": 40, } _UpperCAmelCase : Any = { "169M": 768, "430M": 1024, "1B5": 2048, "3B": 2560, "7B": 4096, "14B": 5120, } def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Optional[Any] = list(state_dict.keys() ) for name in state_dict_keys: lowercase :str = state_dict.pop(lowerCamelCase ) # emb -> embedding if name.startswith("emb." ): lowercase :int = name.replace("emb.", "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): lowercase :int = name.replace("blocks.0.ln0", "blocks.0.pre_ln" ) # att -> attention lowercase :int = re.sub(r"blocks\.(\d+)\.att", r"blocks.\1.attention", lowerCamelCase ) # ffn -> feed_forward lowercase :Union[str, Any] = re.sub(r"blocks\.(\d+)\.ffn", r"blocks.\1.feed_forward", lowerCamelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): lowercase :Union[str, Any] = name.replace(".time_mix_k", ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): lowercase :Any = name.replace(".time_mix_v", ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): lowercase :List[str] = name.replace(".time_mix_r", ".time_mix_receptance" ) if name != "head.weight": lowercase :int = "rwkv." + name lowercase :Optional[Any] = weight return state_dict def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) lowercase :Optional[int] = 50277 lowercase :Any = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: lowercase :List[str] = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase ) lowercase :Tuple = len(lowerCamelCase ) tokenizer.save_pretrained(lowerCamelCase ) # 2. Build the config lowercase :int = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowercase :str = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) lowercase :Dict = RwkvConfig( vocab_size=lowerCamelCase, num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size], hidden_size=HIDEN_SIZE_MAPPING[size], ) config.save_pretrained(lowerCamelCase ) # 3. Download model file then convert state_dict lowercase :Optional[Any] = hf_hub_download(lowerCamelCase, lowerCamelCase ) lowercase :List[Any] = torch.load(lowerCamelCase, map_location="cpu" ) lowercase :Optional[Any] = convert_state_dict(lowerCamelCase ) # 4. Split in shards and save lowercase , lowercase :Optional[int] = shard_checkpoint(lowerCamelCase ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase, os.path.join(lowerCamelCase, lowerCamelCase ) ) if index is not None: lowercase :List[Any] = os.path.join(lowerCamelCase, lowerCamelCase ) # Save the index as well with open(lowerCamelCase, "w", encoding="utf-8" ) as f: lowercase :Tuple = json.dumps(lowerCamelCase, indent=2, sort_keys=lowerCamelCase ) + "\n" f.write(lowerCamelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) lowercase :Optional[int] = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowercase :List[Any] = torch.load(os.path.join(lowerCamelCase, lowerCamelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()}, os.path.join(lowerCamelCase, lowerCamelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) lowercase :str = AutoModelForCausalLM.from_pretrained(lowerCamelCase ) model.push_to_hub(lowerCamelCase, max_shard_size="2GB" ) tokenizer.push_to_hub(lowerCamelCase ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint." ) parser.add_argument( "--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo." ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="Where to save the converted model." ) parser.add_argument( "--tokenizer_file", default=None, type=str, help="Path to the tokenizer file to use (if not provided, only the model is converted).", ) parser.add_argument( "--size", default=None, type=str, help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Push to the Hub the converted model.", ) parser.add_argument( "--model_name", default=None, type=str, help="Name of the pushed model on the Hub, including the username / organization.", ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
236
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase : int = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
236
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> Optional[Any]: '''simple docstring''' __a =() for resnet, attn in zip(self.resnets , self.attentions ): __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> int: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=__snake_case , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_downsample: __a =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case=True ) -> Optional[int]: '''simple docstring''' __a =() for resnet in self.resnets: __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: __a =self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' __a =[] __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =resnets __a =attentions if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> Union[str, Any]: '''simple docstring''' __a =[] for i in range(self.num_layers ): __a =self.in_channels if (i == self.num_layers - 1) else self.out_channels __a =self.prev_output_channel if i == 0 else self.out_channels __a =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets if self.add_upsample: __a =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[Any]: '''simple docstring''' for resnet in self.resnets: # pop res hidden states __a =res_hidden_states_tuple[-1] __a =res_hidden_states_tuple[:-1] __a =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) if self.add_upsample: __a =self.upsamplers_a(__snake_case ) return hidden_states class __magic_name__ ( nn.Module ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = jnp.floataa def __magic_name__ ( self ) -> List[Any]: '''simple docstring''' # there is always at least one resnet __a =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __a =[] for _ in range(self.num_layers ): __a =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__snake_case ) __a =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__snake_case ) __a =resnets __a =attentions def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case=True ) -> List[str]: '''simple docstring''' __a =self.resnets[0](__snake_case , __snake_case ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __a =attn(__snake_case , __snake_case , deterministic=__snake_case ) __a =resnet(__snake_case , __snake_case , deterministic=__snake_case ) return hidden_states
308
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) _lowerCAmelCase : List[Any] = logging.getLogger(__name__) _lowerCAmelCase : Optional[Any] = "Hello world! cécé herlolip" _lowerCAmelCase : str = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def UpperCamelCase_( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" __a =BertAbsConfig( temp_dir='.' , finetune_bert=_snake_case , large=_snake_case , share_emb=_snake_case , use_bert_emb=_snake_case , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) __a =torch.load(_snake_case , lambda _snake_case , _snake_case : storage ) __a =AbsSummarizer(_snake_case , torch.device('cpu' ) , _snake_case ) original.eval() __a =BertAbsSummarizer(_snake_case , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) __a =BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs __a =tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) __a =tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_snake_case )) ) __a =torch.tensor(_snake_case ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass __a =encoder_input_ids __a =decoder_input_ids __a =__a =None __a =None __a =__a =None __a =__a =None __a =None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical __a =original(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =original.generator(_snake_case ) __a =new_model( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )[0] __a =new_model.generator(_snake_case ) __a =torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(_snake_case ) ) __a =torch.allclose(_snake_case , _snake_case , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) _lowerCAmelCase : Optional[Any] = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
308
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: _snake_case = tau * frequency / samplerate _snake_case = sin(__A ) _snake_case = cos(__A ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 - _cos) / 2 _snake_case = 1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: _snake_case = tau * frequency / samplerate _snake_case = sin(__A ) _snake_case = cos(__A ) _snake_case = _sin / (2 * q_factor) _snake_case = (1 + _cos) / 2 _snake_case = -1 - _cos _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: _snake_case = tau * frequency / samplerate _snake_case = sin(__A ) _snake_case = cos(__A ) _snake_case = _sin / (2 * q_factor) _snake_case = _sin / 2 _snake_case = 0 _snake_case = -ba _snake_case = 1 + alpha _snake_case = -2 * _cos _snake_case = 1 - alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: _snake_case = tau * frequency / samplerate _snake_case = sin(__A ) _snake_case = cos(__A ) _snake_case = _sin / (2 * q_factor) _snake_case = 1 - alpha _snake_case = -2 * _cos _snake_case = 1 + alpha _snake_case = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A = 1 / sqrt(2 ) , ) -> IIRFilter: _snake_case = tau * frequency / samplerate _snake_case = sin(__A ) _snake_case = cos(__A ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = 1 + alpha * big_a _snake_case = -2 * _cos _snake_case = 1 - alpha * big_a _snake_case = 1 + alpha / big_a _snake_case = -2 * _cos _snake_case = 1 - alpha / big_a _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A = 1 / sqrt(2 ) , ) -> IIRFilter: _snake_case = tau * frequency / samplerate _snake_case = sin(__A ) _snake_case = cos(__A ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(__A ) * alpha _snake_case = big_a * (pmc + aaa) _snake_case = 2 * big_a * mpc _snake_case = big_a * (pmc - aaa) _snake_case = ppmc + aaa _snake_case = -2 * pmpc _snake_case = ppmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A = 1 / sqrt(2 ) , ) -> IIRFilter: _snake_case = tau * frequency / samplerate _snake_case = sin(__A ) _snake_case = cos(__A ) _snake_case = _sin / (2 * q_factor) _snake_case = 10 ** (gain_db / 40) _snake_case = (big_a + 1) - (big_a - 1) * _cos _snake_case = (big_a + 1) + (big_a - 1) * _cos _snake_case = (big_a - 1) - (big_a + 1) * _cos _snake_case = (big_a - 1) + (big_a + 1) * _cos _snake_case = 2 * sqrt(__A ) * alpha _snake_case = big_a * (ppmc + aaa) _snake_case = -2 * big_a * pmpc _snake_case = big_a * (ppmc - aaa) _snake_case = pmc + aaa _snake_case = 2 * mpc _snake_case = pmc - aaa _snake_case = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
42
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int | float] , A__ : int , A__ : int ): '''simple docstring''' if len(A__ ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(A__ ) or left < -len(A__ ) or right >= len(A__ ) or right < -len(A__ ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] __lowerCamelCase = (left + right) >> 1 # the middle __lowerCamelCase = find_max(A__ , A__ , A__ ) # find max in range[left, mid] __lowerCamelCase = find_max(A__ , mid + 1 , A__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
12
0
"""simple docstring""" from manim import * class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Rectangle(height=0.5 , width=0.5 ) __snake_case : int = Rectangle(height=0.25 , width=0.25 ) __snake_case : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __snake_case : Optional[int] = [mem.copy() for i in range(6 )] __snake_case : str = [mem.copy() for i in range(6 )] __snake_case : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Union[str, Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __snake_case : Tuple = Text('''CPU''' , font_size=24 ) __snake_case : Tuple = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) __snake_case : int = [mem.copy() for i in range(4 )] __snake_case : List[str] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : List[Any] = Text('''GPU''' , font_size=24 ) __snake_case : Any = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) __snake_case : List[str] = [mem.copy() for i in range(6 )] __snake_case : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Dict = Text('''Model''' , font_size=24 ) __snake_case : int = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) __snake_case : List[str] = [] __snake_case : str = [] __snake_case : str = [] for i, rect in enumerate(a_ ): rect.set_stroke(a_ ) __snake_case : str = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a_ , buff=0.0 ) self.add(a_ ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ , *a_ ) __snake_case : str = [mem.copy() for i in range(6 )] __snake_case : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Optional[Any] = Text('''Loaded Checkpoint''' , font_size=24 ) __snake_case : Optional[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a_ ) __snake_case : Tuple = [] __snake_case : Optional[int] = [] for i, rect in enumerate(a_ ): __snake_case : int = fill.copy().set_fill(a_ , opacity=0.7 ) target.move_to(a_ ) ckpt_arr.append(a_ ) __snake_case : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) __snake_case : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case : Optional[int] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) __snake_case : List[str] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) __snake_case : Tuple = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __snake_case : Dict = [meta_mem.copy() for i in range(6 )] __snake_case : Optional[int] = [meta_mem.copy() for i in range(6 )] __snake_case : Any = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Optional[Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __snake_case : List[Any] = Text('''Disk''' , font_size=24 ) __snake_case : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a_ , run_time=3 ) , Write(a_ , run_time=1 ) , Create(a_ , run_time=1 ) ) __snake_case : int = [] for i, rect in enumerate(a_ ): __snake_case : Optional[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(FadeOut(a_ ) ) __snake_case : List[str] = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) self.play( FadeOut(a_ , a_ , *a_ , *a_ ) , ) self.wait()
368
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
0
from __future__ import annotations class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :list[list[int]] ) -> str: __SCREAMING_SNAKE_CASE : Optional[Any] = TypeError( '''Matrices must be formed from a list of zero or more lists containing at ''' '''least one and the same number of values, each of which must be of type ''' '''int or float.''' ) if len(lowerCAmelCase__ ) != 0: __SCREAMING_SNAKE_CASE : Tuple = len(rows[0] ) if cols == 0: raise error for row in rows: if len(lowerCAmelCase__ ) != cols: raise error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise error __SCREAMING_SNAKE_CASE : Optional[Any] = rows else: __SCREAMING_SNAKE_CASE : Tuple = [] def __magic_name__( self :Dict ) -> list[list[int]]: return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __magic_name__( self :Any ) -> int: return len(self.rows ) @property def __magic_name__( self :List[Any] ) -> int: return len(self.rows[0] ) @property def __magic_name__( self :int ) -> tuple[int, int]: return (self.num_rows, self.num_columns) @property def __magic_name__( self :List[Any] ) -> bool: return self.order[0] == self.order[1] def __magic_name__( self :Optional[Any] ) -> Matrix: __SCREAMING_SNAKE_CASE : Dict = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __magic_name__( self :List[Any] ) -> bool: return bool(self.determinant() ) def __magic_name__( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: __SCREAMING_SNAKE_CASE : Any = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(lowerCAmelCase__ ).determinant() def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> int: if (row + column) % 2 == 0: return self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) return -1 * self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Matrix: return Matrix( [ [self.get_minor(lowerCAmelCase__ , lowerCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __magic_name__( self :List[str] ) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __magic_name__( self :str ) -> Matrix: __SCREAMING_SNAKE_CASE : List[str] = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> Matrix: __SCREAMING_SNAKE_CASE : Dict = self.determinant() if not determinant: raise TypeError('''Only matrices with a non-zero determinant have an inverse''' ) return self.adjugate() * (1 / determinant) def __repr__( self :Any ) -> str: return str(self.rows ) def __str__( self :List[Any] ) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ '''[''' + '''. '''.join([str(lowerCAmelCase__ ) for value in row] ) + '''.]''' for row in self.rows ] ) + "]" ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int | None = None ) -> None: __SCREAMING_SNAKE_CASE : Optional[Any] = TypeError('''Row must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in row: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_columns: raise ValueError( '''Row must be equal in length to the other rows in the matrix''' ) if position is None: self.rows.append(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = self.rows[0:position] + [row] + self.rows[position:] def __magic_name__( self :Tuple , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :int | None = None ) -> None: __SCREAMING_SNAKE_CASE : List[str] = TypeError( '''Column must be a list containing all ints and/or floats''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise type_error for value in column: if not isinstance(lowerCAmelCase__ , (int, float) ): raise type_error if len(lowerCAmelCase__ ) != self.num_rows: raise ValueError( '''Column must be equal in length to the other columns in the matrix''' ) if position is None: __SCREAMING_SNAKE_CASE : str = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: __SCREAMING_SNAKE_CASE : Optional[int] = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self :Optional[Any] , lowerCAmelCase__ :object ) -> bool: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self :Any , lowerCAmelCase__ :object ) -> bool: return not self == other def __neg__( self :Any ) -> Matrix: return self * -1 def __add__( self :List[Any] , lowerCAmelCase__ :Matrix ) -> Matrix: if self.order != other.order: raise ValueError('''Addition requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self :Dict , lowerCAmelCase__ :Matrix ) -> Matrix: if self.order != other.order: raise ValueError('''Subtraction requires matrices of the same order''' ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self :Optional[int] , lowerCAmelCase__ :Matrix | int | float ) -> Matrix: if isinstance(lowerCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( '''The number of columns in the first matrix must ''' '''be equal to the number of rows in the second''' ) return Matrix( [ [Matrix.dot_product(lowerCAmelCase__ , lowerCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( '''A Matrix can only be multiplied by an int, float, or another matrix''' ) def __pow__( self :Union[str, Any] , lowerCAmelCase__ :int ) -> Matrix: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''A Matrix can only be raised to the power of an int''' ) if not self.is_square: raise ValueError('''Only square matrices can be raised to a power''' ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( '''Only invertable matrices can be raised to a negative power''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = self for _ in range(other - 1 ): result *= self return result @classmethod def __magic_name__( cls :Optional[int] , lowerCAmelCase__ :list[int] , lowerCAmelCase__ :list[int] ) -> int: return sum(row[i] * column[i] for i in range(len(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
9
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Dict = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' __SCREAMING_SNAKE_CASE : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert('''RGB''' ) return image def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) __SCREAMING_SNAKE_CASE : int = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict __SCREAMING_SNAKE_CASE : Optional[int] = torch.cat((q_bias, torch.zeros_like(lowercase__ , requires_grad=lowercase__ ), v_bias) ) __SCREAMING_SNAKE_CASE : Optional[Any] = qkv_bias def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = 364 if '''coco''' in model_name else 224 __SCREAMING_SNAKE_CASE : List[str] = BlipaVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=lowercase__ ).to_dict() elif "opt-6.7b" in model_name: __SCREAMING_SNAKE_CASE : List[Any] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=lowercase__ ).to_dict() elif "t5-xl" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __SCREAMING_SNAKE_CASE : Union[str, Any] = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() __SCREAMING_SNAKE_CASE : Optional[int] = BlipaConfig(vision_config=lowercase__ , text_config=lowercase__ ) return config, image_size @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__=None , lowercase__=False ): __SCREAMING_SNAKE_CASE : Any = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) __SCREAMING_SNAKE_CASE : str = tokenizer('''\n''' , add_special_tokens=lowercase__ ).input_ids[0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = get_blipa_config(lowercase__ , eos_token_id=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaForConditionalGeneration(lowercase__ ).eval() __SCREAMING_SNAKE_CASE : int = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) __SCREAMING_SNAKE_CASE : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = load_model_and_preprocess( name=lowercase__ , model_type=lowercase__ , is_eval=lowercase__ , device=lowercase__ ) original_model.eval() print('''Done!''' ) # update state dict keys __SCREAMING_SNAKE_CASE : List[str] = original_model.state_dict() __SCREAMING_SNAKE_CASE : Optional[int] = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(lowercase__ ) if key.startswith('''Qformer.bert''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: __SCREAMING_SNAKE_CASE : Dict = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): __SCREAMING_SNAKE_CASE : List[str] = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): __SCREAMING_SNAKE_CASE : Tuple = key.replace('''t5''' , '''language''' ) __SCREAMING_SNAKE_CASE : Tuple = val # read in qv biases read_in_q_v_bias(lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = hf_model.load_state_dict(lowercase__ , strict=lowercase__ ) assert len(lowercase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __SCREAMING_SNAKE_CASE : List[str] = load_demo_image() __SCREAMING_SNAKE_CASE : Any = vis_processors['''eval'''](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) __SCREAMING_SNAKE_CASE : str = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(lowercase__ ) # create processor __SCREAMING_SNAKE_CASE : List[Any] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=lowercase__ , image_std=lowercase__ ) __SCREAMING_SNAKE_CASE : int = BlipaProcessor(image_processor=lowercase__ , tokenizer=lowercase__ ) __SCREAMING_SNAKE_CASE : Any = processor(images=lowercase__ , return_tensors='''pt''' ).pixel_values.to(lowercase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase__ , lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "opt" in model_name: __SCREAMING_SNAKE_CASE : Dict = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits __SCREAMING_SNAKE_CASE : Dict = hf_model(lowercase__ , lowercase__ ).logits else: __SCREAMING_SNAKE_CASE : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits __SCREAMING_SNAKE_CASE : List[Any] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) __SCREAMING_SNAKE_CASE : Optional[int] = hf_model(lowercase__ , lowercase__ , labels=lowercase__ ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=lowercase__ ) assert torch.allclose(logits[0, :3, :3] , lowercase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=lowercase__ ) else: # cast to same type __SCREAMING_SNAKE_CASE : Optional[Any] = logits.dtype assert torch.allclose(original_logits.to(lowercase__ ) , lowercase__ , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) __SCREAMING_SNAKE_CASE : Any = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowercase__ , return_tensors='''pt''' ).input_ids.to(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = original_model.generate({'''image''': original_pixel_values} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hf_model.generate( lowercase__ , lowercase__ , do_sample=lowercase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.shape[1] __SCREAMING_SNAKE_CASE : Any = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = [text.strip() for text in output_text] print('''HF generation:''' , lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() __lowerCAmelCase : Tuple =[ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
9
1
from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' def decorator(SCREAMING_SNAKE_CASE : Tuple ): __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , '''handle_key''' , [] ) handle += [key] setattr(SCREAMING_SNAKE_CASE , '''handle_key''' , SCREAMING_SNAKE_CASE ) return func return decorator def lowerCamelCase ( *SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' def decorator(SCREAMING_SNAKE_CASE : int ): __UpperCamelCase :Optional[Any] = getattr(SCREAMING_SNAKE_CASE , '''handle_key''' , [] ) handle += keys setattr(SCREAMING_SNAKE_CASE , '''handle_key''' , SCREAMING_SNAKE_CASE ) return func return decorator class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __new__( cls , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :List[str] = super().__new__(cls , __lowercase , __lowercase , __lowercase) if not hasattr(__lowercase , '''key_handler'''): setattr(__lowercase , '''key_handler''' , {}) setattr(__lowercase , '''handle_input''' , KeyHandler.handle_input) for value in attrs.values(): __UpperCamelCase :Union[str, Any] = getattr(__lowercase , '''handle_key''' , []) for key in handled_keys: __UpperCamelCase :Union[str, Any] = value return new_cls @staticmethod def UpperCamelCase__ ( cls) -> Optional[int]: __UpperCamelCase :Union[str, Any] = get_character() if char != KEYMAP["undefined"]: __UpperCamelCase :Dict = ord(__lowercase) __UpperCamelCase :int = cls.key_handler.get(__lowercase) if handler: __UpperCamelCase :int = char return handler(cls) else: return None def lowerCamelCase ( cls : List[str] ): '''simple docstring''' return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
359
import os import pytest from transformers.dynamic_module_utils import get_imports __lowercase = ''' import os ''' __lowercase = ''' def foo(): import os return False ''' __lowercase = ''' def foo(): def bar(): if True: import os return False return bar() ''' __lowercase = ''' import os try: import bar except ImportError: raise ValueError() ''' __lowercase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' __lowercase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' __lowercase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' __lowercase = ''' import os try: import bar except: raise ValueError() ''' __lowercase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' __lowercase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' __lowercase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = os.path.join(SCREAMING_SNAKE_CASE , '''test_file.py''' ) with open(SCREAMING_SNAKE_CASE , '''w''' ) as _tmp_file: _tmp_file.write(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = get_imports(SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
105
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''') UpperCamelCase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def SCREAMING_SNAKE_CASE( __lowercase ) -> List[str]: with open(__lowercase , '''rb''' ) as f: A: int = Image.open(__lowercase ) return im.convert('''RGB''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """A folder containing the training data."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """A folder containing the validation data."""} ) UpperCamelCase_ : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : str = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : str = field(default=UpperCAmelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: A: str = torch.stack([example['''pixel_values'''] for example in examples] ) A: int = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def SCREAMING_SNAKE_CASE( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A: Tuple = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. A: Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A: List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: A: List[Any] = {} if data_args.train_dir is not None: A: List[str] = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: A: Any = os.path.join(data_args.validation_dir , '''**''' ) A: Dict = load_dataset( '''imagefolder''' , data_files=__lowercase , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. A: Tuple = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0: A: Optional[Any] = dataset['''train'''].train_test_split(data_args.train_val_split ) A: List[Any] = split['''train'''] A: str = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A: Optional[int] = dataset['''train'''].features['''labels'''].names A , A: List[str] = {}, {} for i, label in enumerate(__lowercase ): A: List[str] = str(__lowercase ) A: int = label # Load the accuracy metric from the datasets package A: Dict = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__lowercase ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) A: List[str] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A: int = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) A: Union[str, Any] = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A: str = image_processor.size['''shortest_edge'''] else: A: Any = (image_processor.size['''height'''], image_processor.size['''width''']) A: str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) A: Tuple = Compose( [ RandomResizedCrop(__lowercase ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A: Union[str, Any] = Compose( [ Resize(__lowercase ), CenterCrop(__lowercase ), ToTensor(), normalize, ] ) def train_transforms(__lowercase ): A: Union[str, Any] = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(__lowercase ): A: List[str] = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: A: List[Any] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(__lowercase ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: A: Tuple = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(__lowercase ) # Initalize our trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: A: Optional[Any] = None if training_args.resume_from_checkpoint is not None: A: Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: A: List[str] = last_checkpoint A: Optional[Any] = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A: Dict = trainer.evaluate() trainer.log_metrics('''eval''' , __lowercase ) trainer.save_metrics('''eval''' , __lowercase ) # Write model card and (optionally) push to hub A: int = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
319
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __A ( unittest.TestCase ): def lowercase__ ( self : Any ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = -1 lowerCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ ) lowerCAmelCase : Any = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Any = TextStreamer(UpperCAmelCase_ ) model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ , streamer=UpperCAmelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : str = cs.out[:-1] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : Optional[Any] = -1 lowerCAmelCase : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : Any = model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ ) lowerCAmelCase : int = tokenizer.decode(greedy_ids[0] ) lowerCAmelCase : List[str] = TextIteratorStreamer(UpperCAmelCase_ ) lowerCAmelCase : Any = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} lowerCAmelCase : Dict = Thread(target=model.generate , kwargs=UpperCAmelCase_ ) thread.start() lowerCAmelCase : Any = '' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Dict ): lowerCAmelCase : int = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Optional[Any] = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ ) lowerCAmelCase : int = greedy_ids[:, input_ids.shape[1] :] lowerCAmelCase : str = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: lowerCAmelCase : Union[str, Any] = TextStreamer(UpperCAmelCase_ , skip_prompt=UpperCAmelCase_ ) model.generate(UpperCAmelCase_ , max_new_tokens=10 , do_sample=UpperCAmelCase_ , streamer=UpperCAmelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer lowerCAmelCase : Any = cs.out[:-1] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowercase__ ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them lowerCAmelCase : str = AutoTokenizer.from_pretrained('distilgpt2' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : str = -1 lowerCAmelCase : List[Any] = torch.ones((1, 5) , device=UpperCAmelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: lowerCAmelCase : Union[str, Any] = TextStreamer(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) model.generate(UpperCAmelCase_ , max_new_tokens=1 , do_sample=UpperCAmelCase_ , streamer=UpperCAmelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token lowerCAmelCase : Optional[Any] = cs.out[:-1] # Remove the final "\n" lowerCAmelCase : Any = tokenizer(UpperCAmelCase_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def lowercase__ ( self : Any ): lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) lowerCAmelCase : Any = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(UpperCAmelCase_ ) lowerCAmelCase : Dict = -1 lowerCAmelCase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase_ ) lowerCAmelCase : Tuple = TextIteratorStreamer(UpperCAmelCase_ , timeout=0.0_01 ) lowerCAmelCase : Tuple = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} lowerCAmelCase : Dict = Thread(target=model.generate , kwargs=UpperCAmelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase_ ): lowerCAmelCase : Union[str, Any] = '' for new_text in streamer: streamer_text += new_text
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
201
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ : str = """\ @inproceedings{lin-2004-rouge, title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\", author = \"Lin, Chin-Yew\", booktitle = \"Text Summarization Branches Out\", month = jul, year = \"2004\", address = \"Barcelona, Spain\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W04-1013\", pages = \"74--81\", } """ a_ : int = """\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge """ a_ : Tuple = """ Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring, `\"rougeL\"`: Longest common subsequence based scoring. `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric('rouge') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] >>> print(results[\"rouge1\"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results[\"rouge1\"].mid.fmeasure) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=False ): """simple docstring""" if rouge_types is None: lowerCamelCase_ = ["rouge1", "rouge2", "rougeL", "rougeLsum"] lowerCamelCase_ = rouge_scorer.RougeScorer(rouge_types=UpperCamelCase , use_stemmer=UpperCamelCase ) if use_aggregator: lowerCamelCase_ = scoring.BootstrapAggregator() else: lowerCamelCase_ = [] for ref, pred in zip(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = scorer.score(UpperCamelCase , UpperCamelCase ) if use_aggregator: aggregator.add_scores(UpperCamelCase ) else: scores.append(UpperCamelCase ) if use_aggregator: lowerCamelCase_ = aggregator.aggregate() else: lowerCamelCase_ = {} for key in scores[0]: lowerCamelCase_ = [score[key] for score in scores] return result
55
0
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE_: List[str] =3_00 # TEMPERATURE (unit = K) def lowerCAmelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) SCREAMING_SNAKE_CASE_: str =OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) SCREAMING_SNAKE_CASE_: Any =OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) SCREAMING_SNAKE_CASE_: Optional[Any] =OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) SCREAMING_SNAKE_CASE_: int =OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) SCREAMING_SNAKE_CASE_: List[Any] =OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) SCREAMING_SNAKE_CASE_: Optional[int] =OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: str =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: List[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: List[str] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Any =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Dict =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_: Optional[Any] =_LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModel) class __A ( _BaseAutoModelClass ): a__ : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Tuple =auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __A ( _BaseAutoModelClass ): a__ : Optional[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_: Optional[Any] =auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __A ( _BaseAutoModelClass ): a__ : Optional[int] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __A ( _BaseAutoModelClass ): a__ : Tuple = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: List[Any] =auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __A ( _BaseAutoModelClass ): a__ : Dict = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_: Any =auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __A ( _BaseAutoModelClass ): a__ : Union[str, Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_: int =auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __A ( _BaseAutoModelClass ): a__ : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Dict =auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __A ( _BaseAutoModelClass ): a__ : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Optional[int] =auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __A ( _BaseAutoModelClass ): a__ : List[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_: Union[str, Any] =auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
106
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Optional[Any] = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowercase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowercase : str = logging.get_logger(__name__) lowercase : Union[str, Any] = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Dict: for attribute in key.split('.' ): _snake_case = getattr(__A , __A ) if weight_type is not None: _snake_case = getattr(__A , __A ).shape else: _snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value else: _snake_case = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Any: _snake_case = [] _snake_case = fairseq_model.state_dict() _snake_case = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _snake_case = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) _snake_case = True else: for key, mapped_key in MAPPING.items(): _snake_case = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__A )[0].split('.' )[-2] _snake_case = mapped_key.replace('*' , __A ) if "weight_g" in name: _snake_case = 'weight_g' elif "weight_v" in name: _snake_case = 'weight_v' elif "weight" in name: _snake_case = 'weight' elif "bias" in name: _snake_case = 'bias' else: _snake_case = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> int: _snake_case = full_name.split('conv_layers.' )[-1] _snake_case = name.split('.' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _snake_case = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str: _snake_case = SEWConfig() if is_finetuned: _snake_case = model.wav_encoder.wav_model.cfg else: _snake_case = model.cfg _snake_case = fs_config.conv_bias _snake_case = eval(fs_config.conv_feature_layers ) _snake_case = [x[0] for x in conv_layers] _snake_case = [x[1] for x in conv_layers] _snake_case = [x[2] for x in conv_layers] _snake_case = 'gelu' _snake_case = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' _snake_case = 0.0 _snake_case = fs_config.activation_fn.name _snake_case = fs_config.encoder_embed_dim _snake_case = 0.0_2 _snake_case = fs_config.encoder_ffn_embed_dim _snake_case = 1e-5 _snake_case = fs_config.encoder_layerdrop _snake_case = fs_config.encoder_attention_heads _snake_case = fs_config.conv_pos_groups _snake_case = fs_config.conv_pos _snake_case = len(__A ) _snake_case = fs_config.encoder_layers _snake_case = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _snake_case = model.cfg _snake_case = fs_config.final_dropout _snake_case = fs_config.layerdrop _snake_case = fs_config.activation_dropout _snake_case = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _snake_case = fs_config.attention_dropout _snake_case = fs_config.dropout_input _snake_case = fs_config.dropout _snake_case = fs_config.mask_channel_length _snake_case = fs_config.mask_channel_prob _snake_case = fs_config.mask_length _snake_case = fs_config.mask_prob _snake_case = 'Wav2Vec2FeatureExtractor' _snake_case = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=None , __A=None , __A=True ) -> List[str]: if is_finetuned: _snake_case , _snake_case , _snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _snake_case , _snake_case , _snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _snake_case = SEWConfig.from_pretrained(__A ) else: _snake_case = convert_config(model[0] , __A ) _snake_case = model[0].eval() _snake_case = True if config.feat_extract_norm == 'layer' else False _snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) if is_finetuned: if dict_path: _snake_case = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case = target_dict.pad_index _snake_case = target_dict.bos_index _snake_case = target_dict.pad_index _snake_case = target_dict.bos_index _snake_case = target_dict.eos_index _snake_case = len(target_dict.symbols ) _snake_case = os.path.join(__A , 'vocab.json' ) if not os.path.isdir(__A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__A ) ) return os.makedirs(__A , exist_ok=__A ) with open(__A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , __A ) _snake_case = WavaVecaCTCTokenizer( __A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__A , ) _snake_case = WavaVecaProcessor(feature_extractor=__A , tokenizer=__A ) processor.save_pretrained(__A ) _snake_case = SEWForCTC(__A ) else: _snake_case = SEWModel(__A ) feature_extractor.save_pretrained(__A ) recursively_load_weights(__A , __A , __A ) hf_model.save_pretrained(__A ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) lowercase : Union[str, Any] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
42
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''gptsan-japanese''' snake_case_ = [ '''past_key_values''', ] snake_case_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , lowerCamelCase__=36_000 , lowerCamelCase__=1_280 , lowerCamelCase__=1_024 , lowerCamelCase__=8_192 , lowerCamelCase__=4_096 , lowerCamelCase__=128 , lowerCamelCase__=10 , lowerCamelCase__=0 , lowerCamelCase__=16 , lowerCamelCase__=16 , lowerCamelCase__=128 , lowerCamelCase__=0.0 , lowerCamelCase__=1e-5 , lowerCamelCase__=False , lowerCamelCase__=0.0 , lowerCamelCase__="float32" , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.0_02 , lowerCamelCase__=False , lowerCamelCase__=True , lowerCamelCase__=35_998 , lowerCamelCase__=35_995 , lowerCamelCase__=35_999 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = vocab_size __lowerCamelCase = max_position_embeddings __lowerCamelCase = d_model __lowerCamelCase = d_ff __lowerCamelCase = d_ext __lowerCamelCase = d_spout __lowerCamelCase = num_switch_layers __lowerCamelCase = num_ext_layers __lowerCamelCase = num_switch_layers + num_ext_layers __lowerCamelCase = num_heads __lowerCamelCase = num_experts __lowerCamelCase = expert_capacity __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = router_bias __lowerCamelCase = router_jitter_noise __lowerCamelCase = router_dtype __lowerCamelCase = router_ignore_padding_tokens __lowerCamelCase = output_hidden_states __lowerCamelCase = output_attentions __lowerCamelCase = initializer_factor __lowerCamelCase = output_router_logits __lowerCamelCase = use_cache super().__init__( separator_token_id=lowerCamelCase__ , pad_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ , )
348
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = [] def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' return self.node_position[vertex] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = pos def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase = 2 * start + 1 else: __lowerCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase = temp, tempa __lowerCamelCase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase__ ) self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = position[index] while index != 0: __lowerCamelCase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase = heap[parent] __lowerCamelCase = position[parent] self.set_position(position[parent] , lowerCamelCase__ ) else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , lowerCamelCase__ ) break __lowerCamelCase = parent else: __lowerCamelCase = val __lowerCamelCase = temp self.set_position(lowerCamelCase__ , 0 ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = len(lowerCamelCase__ ) // 2 - 1 for i in range(lowerCamelCase__ , -1 , -1 ): self.top_to_bottom(lowerCamelCase__ , lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = positions[0] __lowerCamelCase = sys.maxsize self.top_to_bottom(lowerCamelCase__ , 0 , len(lowerCamelCase__ ) , lowerCamelCase__ ) return temp def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowerCamelCase = Heap() __lowerCamelCase = [0] * len(UpperCamelCase__ ) __lowerCamelCase = [-1] * len(UpperCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase = [] for vertex in range(len(UpperCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase__ ) heap.node_position.append(UpperCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = 1 __lowerCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase = 0 __lowerCamelCase = distance heap.heapify(UpperCamelCase__ , UpperCamelCase__ ) for _ in range(1 , len(UpperCamelCase__ ) ): __lowerCamelCase = heap.delete_minimum(UpperCamelCase__ , UpperCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase__ )] ): __lowerCamelCase = distance heap.bottom_to_top( UpperCamelCase__ , heap.get_position(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
348
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCamelCase__: Tuple = numpy.array([0, 0]) UpperCamelCase__: Union[str, Any] = numpy.array([0.5, 0.8660254]) UpperCamelCase__: Dict = numpy.array([1, 0]) UpperCamelCase__: int = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] , _lowerCAmelCase : int ) -> list[numpy.ndarray]: UpperCAmelCase : Union[str, Any] = initial_vectors for _ in range(_lowerCAmelCase ): UpperCAmelCase : Union[str, Any] = iteration_step(_lowerCAmelCase ) return vectors def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: UpperCAmelCase : Tuple = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase : List[str] = vectors[i + 1] new_vectors.append(_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( _lowerCAmelCase : numpy.ndarray , _lowerCAmelCase : float ) -> numpy.ndarray: UpperCAmelCase : List[str] = numpy.radians(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = numpy.cos(_lowerCAmelCase ), numpy.sin(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_lowerCAmelCase , _lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : list[numpy.ndarray] ) -> None: UpperCAmelCase : List[Any] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase , UpperCAmelCase : str = zip(*_lowerCAmelCase ) plt.plot(_lowerCAmelCase , _lowerCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__: List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
23
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase ( lowercase_ ): '''simple docstring''' def lowercase__ ( self : Any ) -> int: '''simple docstring''' A__ : Union[str, Any] =SMALL_MODEL_IDENTIFIER A__ : Union[str, Any] ="""pt""" A__ : Optional[Any] ="""tf""" def lowercase__ ( self : int , lowerCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' A__ : str =AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : Dict , lowerCAmelCase_ : str ) -> List[str]: '''simple docstring''' A__ : Tuple =TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase_ ) model_tf.save_pretrained(lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' A__ : int ="""mock_framework""" # Framework provided - return whatever the user provides A__ : Optional[int] =FeaturesManager.determine_framework(self.test_model , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase_ ) A__ : List[Any] =FeaturesManager.determine_framework(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase_ ) A__ : Tuple =FeaturesManager.determine_framework(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase_ ) A__ : Any =FeaturesManager.determine_framework(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase_ ) A__ : int =FeaturesManager.determine_framework(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCAmelCase_ ): A__ : List[Any] =FeaturesManager.determine_framework(lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ : List[Any] =MagicMock(return_value=lowerCAmelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase_ ): A__ : Union[str, Any] =FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase_ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow A__ : List[Any] =MagicMock(return_value=lowerCAmelCase_ ) with patch("""transformers.onnx.features.is_torch_available""" , lowerCAmelCase_ ): A__ : List[Any] =FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase_ , self.framework_tf ) # Both in environment -> use PyTorch A__ : Tuple =MagicMock(return_value=lowerCAmelCase_ ) A__ : str =MagicMock(return_value=lowerCAmelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase_ ): A__ : Optional[Any] =FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowerCAmelCase_ , self.framework_pt ) # Both not in environment -> raise error A__ : Optional[int] =MagicMock(return_value=lowerCAmelCase_ ) A__ : List[str] =MagicMock(return_value=lowerCAmelCase_ ) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase_ ), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase_ ): with self.assertRaises(lowerCAmelCase_ ): A__ : Tuple =FeaturesManager.determine_framework(self.test_model )
136
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = StableDiffusionInstructPixaPixPipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} __snake_case = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS __snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Dict ) -> str: '''simple docstring''' torch.manual_seed(0 ) A__ : int =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) A__ : str =PNDMScheduler(skip_prk_steps=lowerCAmelCase_ ) torch.manual_seed(0 ) A__ : Dict =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) A__ : List[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) A__ : Tuple =CLIPTextModel(lowerCAmelCase_ ) A__ : int =CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A__ : Union[str, Any] ={ """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict=0 ) -> str: '''simple docstring''' A__ : Optional[Any] =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) A__ : str =image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ : List[str] =Image.fromarray(np.uinta(lowerCAmelCase_ ) ).convert("""RGB""" ) if str(lowerCAmelCase_ ).startswith("""mps""" ): A__ : Any =torch.manual_seed(lowerCAmelCase_ ) else: A__ : int =torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : Any =self.get_dummy_components() A__ : List[str] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Dict =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : List[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : List[Any] =sd_pipe(**lowerCAmelCase_ ).images A__ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Tuple =np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[str] =self.get_dummy_components() A__ : Union[str, Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Union[str, Any] =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Optional[Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Optional[int] ="""french fries""" A__ : Tuple =sd_pipe(**lowerCAmelCase_ , negative_prompt=lowerCAmelCase_ ) A__ : Union[str, Any] =output.images A__ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A__ : Tuple =np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' A__ : str ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : str =self.get_dummy_components() A__ : List[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Union[str, Any] =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Tuple =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Dict =[inputs["""prompt"""]] * 2 A__ : Optional[int] =np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 A__ : List[str] =torch.from_numpy(lowerCAmelCase_ ).unsqueeze(0 ).to(lowerCAmelCase_ ) A__ : Union[str, Any] =image / 2 + 0.5 A__ : Optional[int] =image.permute(0 , 3 , 1 , 2 ) A__ : Dict =image.repeat(2 , 1 , 1 , 1 ) A__ : int =sd_pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) A__ : List[Any] =np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' A__ : Optional[Any] ="""cpu""" # ensure determinism for the device-dependent torch.Generator A__ : List[str] =self.get_dummy_components() A__ : List[str] =EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) A__ : str =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : int =sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : Union[str, Any] =self.get_dummy_inputs(lowerCAmelCase_ ) A__ : Optional[Any] =sd_pipe(**lowerCAmelCase_ ).images A__ : Tuple =image[0, -3:, -3:, -1] A__ : List[str] =[round(lowerCAmelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(lowerCAmelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) A__ : Any =np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self : List[Any] ) -> int: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' A__ : Union[str, Any] =self.get_dummy_components() A__ : Optional[Any] =StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase_ ) A__ : Any =VaeImageProcessor(do_resize=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) A__ : Dict =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) A__ : str =pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type="""pt""" ) )[0] A__ : List[Any] =components["""vae"""] A__ : Dict =self.get_dummy_inputs_by_type(lowerCAmelCase_ , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): A__ : List[Any] =vae.encode(inputs[image_param] ).latent_dist.mode() A__ : Optional[Any] =pipe(**lowerCAmelCase_ )[0] A__ : Dict =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase_ , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int , lowerCAmelCase_ : int=0 ) -> List[str]: '''simple docstring''' A__ : List[Any] =torch.manual_seed(lowerCAmelCase_ ) A__ : Optional[Any] =load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) A__ : List[Any] ={ """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() A__ : Optional[Any] =pipe(**lowerCAmelCase_ ).images A__ : Tuple =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : Dict =np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : str ) -> Optional[int]: '''simple docstring''' A__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) A__ : str =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Union[str, Any] =self.get_inputs() A__ : Tuple =pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : List[Any] =np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' A__ : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ ) A__ : str =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() A__ : List[str] =pipe(**lowerCAmelCase_ ).images A__ : List[Any] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) A__ : Any =np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' A__ : int =0 def callback_fn(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor ) -> None: A__ : Any =True nonlocal number_of_steps number_of_steps += 1 if step == 1: A__ : List[str] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : Optional[Any] =latents[0, -3:, -3:, -1] A__ : Tuple =np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A__ : List[Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) A__ : Dict =latents[0, -3:, -3:, -1] A__ : List[Any] =np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A__ : List[str] =False A__ : Optional[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) A__ : int =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Optional[Any] =self.get_inputs() pipe(**lowerCAmelCase_ , callback=lowerCAmelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ : Dict =StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=lowerCAmelCase_ , torch_dtype=torch.floataa ) A__ : Union[str, Any] =pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ : List[str] =self.get_inputs() A__ : Dict =pipe(**lowerCAmelCase_ ) A__ : List[str] =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' A__ : Tuple =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 A__ : int =inputs["""image"""].resize((5_04, 5_04) ) A__ : Optional[int] ="""timbrooks/instruct-pix2pix""" A__ : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() A__ : Dict =pipe(**lowerCAmelCase_ ) A__ : Dict =output.images[0] A__ : int =image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) A__ : Dict =np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
136
1
'''simple docstring''' from jiwer import compute_measures import datasets _lowercase : List[Any] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _lowercase : Optional[int] = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" _lowercase : str = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def _snake_case ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def _snake_case ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if concatenate_texts: return compute_measures(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )["wer"] else: lowercase_ : Any = 0 lowercase_ : Any = 0 for prediction, reference in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : List[Any] = compute_measures(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
93
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = "▁" _lowercase : List[Any] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Optional[int] = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } _lowercase : str = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off _lowercase : List[Any] = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = [] lowerCAmelCase_ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token lowercase_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : str = 1 lowercase_ : str = len(self.sp_model ) lowercase_ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } lowercase_ : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : List[Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : Optional[Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : Optional[Any] = src_lang if src_lang is not None else '''en_XX''' lowercase_ : str = self.lang_code_to_id[self._src_lang] lowercase_ : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" lowercase_ : Optional[int] = self.__dict__.copy() lowercase_ : Dict = None lowercase_ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Dict = {} lowercase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _snake_case ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [1] * len(self.prefix_tokens ) lowercase_ : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : Optional[int] = [self.sep_token_id] lowercase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase_ : Optional[Any] = src_lang lowercase_ : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = tgt_lang_id return inputs def _snake_case ( self ): """simple docstring""" lowercase_ : str = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Any = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Tuple = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : List[str] = src_lang lowercase_ : int = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = self.lang_code_to_id[src_lang] lowercase_ : Optional[Any] = [] lowercase_ : List[str] = [self.eos_token_id, self.cur_lang_code] def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.lang_code_to_id[lang] lowercase_ : Dict = [] lowercase_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
93
1
import argparse import os import re _UpperCAmelCase = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _UpperCAmelCase = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings _UpperCAmelCase = re.compile(r'\s*\(\s*\"(\S[^\"]+)\"') def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = False ) -> int: with open(UpperCamelCase_ , "r" , encoding="utf-8" ) as f: UpperCamelCase_ = f.read() UpperCamelCase_ = content.split("\n" ) UpperCamelCase_ = [] UpperCamelCase_ = 0 while line_idx < len(UpperCamelCase_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: UpperCamelCase_ = len(re.search(r"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 UpperCamelCase_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": UpperCamelCase_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers UpperCamelCase_ = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : _re_identifier.search(UpperCamelCase_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write("\n".join(UpperCamelCase_ ) ) elif "\n".join(UpperCamelCase_ ) != content: return True def lowerCAmelCase_ ( UpperCamelCase_ = False ) -> Dict: UpperCamelCase_ = [os.path.join(UpperCamelCase_ , UpperCamelCase_ ) for f in os.listdir(UpperCamelCase_ ) if f.endswith(".py" )] UpperCamelCase_ = [sort_auto_mapping(UpperCamelCase_ , overwrite=UpperCamelCase_ ) for fname in fnames] if not overwrite and any(UpperCamelCase_ ): UpperCamelCase_ = [f for f, d in zip(UpperCamelCase_ , UpperCamelCase_ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {", ".join(UpperCamelCase_ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _UpperCAmelCase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
364
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
0
'''simple docstring''' _UpperCamelCase : Tuple = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _UpperCamelCase : Tuple = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _UpperCamelCase : Dict = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _UpperCamelCase : int = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _UpperCamelCase : List[str] = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _UpperCamelCase : Optional[int] = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _UpperCamelCase : List[Any] = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _UpperCamelCase : int = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
304
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class A_ ( lowerCamelCase__ ): lowerCAmelCase__ = 'gpt_neo' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self: Tuple ,__lowerCAmelCase: List[Any]=50_257 ,__lowerCAmelCase: Optional[Any]=2_048 ,__lowerCAmelCase: List[str]=2_048 ,__lowerCAmelCase: Any=24 ,__lowerCAmelCase: Tuple=[[["global", "local"], 12]] ,__lowerCAmelCase: Union[str, Any]=16 ,__lowerCAmelCase: Optional[int]=None ,__lowerCAmelCase: int=256 ,__lowerCAmelCase: List[Any]="gelu_new" ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: Any=0.0 ,__lowerCAmelCase: Tuple=0.0 ,__lowerCAmelCase: Any=0.1 ,__lowerCAmelCase: List[str]=1e-5 ,__lowerCAmelCase: Any=0.02 ,__lowerCAmelCase: Union[str, Any]=True ,__lowerCAmelCase: int=50_256 ,__lowerCAmelCase: Optional[Any]=50_256 ,**__lowerCAmelCase: int ,): '''simple docstring''' _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : str = hidden_size _lowerCamelCase : Optional[int] = num_layers _lowerCamelCase : Any = num_heads _lowerCamelCase : Union[str, Any] = intermediate_size _lowerCamelCase : Dict = window_size _lowerCamelCase : Union[str, Any] = activation_function _lowerCamelCase : Dict = resid_dropout _lowerCamelCase : int = embed_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : str = classifier_dropout _lowerCamelCase : List[str] = layer_norm_epsilon _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Dict = use_cache _lowerCamelCase : str = bos_token_id _lowerCamelCase : Optional[int] = eos_token_id _lowerCamelCase : Dict = attention_types _lowerCamelCase : int = self.expand_attention_types_params(__lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) @staticmethod def _lowercase ( __lowerCAmelCase: Dict ): '''simple docstring''' _lowerCamelCase : Any = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[str]: '''simple docstring''' import torch _lowerCamelCase : Optional[int] = input.size() _lowerCamelCase : List[Any] = len(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = shape[dimension] _lowerCamelCase : Tuple = torch.arange(0 , _lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : str = torch.div(sizedim - size , _lowerCAmelCase , rounding_mode="floor" ) + 1 _lowerCamelCase : int = torch.arange(_lowerCAmelCase ) + low_indices[:min_length][:, None] _lowerCamelCase : str = [slice(_lowerCAmelCase )] * rank _lowerCamelCase : Union[str, Any] = indices _lowerCamelCase : Tuple = input[s] _lowerCamelCase : int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_lowerCAmelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' import torch _lowerCamelCase : Dict = torch.arange(1 , _lowerCAmelCase ) _lowerCamelCase : int = torch.remainder(_lowerCAmelCase , _lowerCAmelCase ) _lowerCamelCase : Optional[Any] = remainders == 0 _lowerCamelCase : Dict = candidates[divisor_indices] _lowerCamelCase : Optional[Any] = torch.max(_lowerCAmelCase ) return largest_divisor, torch.div(_lowerCAmelCase , _lowerCAmelCase , rounding_mode="floor" ) class A_ ( lowerCamelCase__ ): @property def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : List[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase ,direction="inputs" ) _lowerCamelCase : int = {0: "batch", 1: "past_sequence + sequence"} else: _lowerCamelCase : str = {0: "batch", 1: "sequence"} return common_inputs @property def _lowercase ( self: Tuple ): '''simple docstring''' return self._config.num_heads def _lowercase ( self: List[str] ,__lowerCAmelCase: PreTrainedTokenizer ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: int = -1 ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[TensorType] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = super(__lowerCAmelCase ,self ).generate_dummy_inputs( __lowerCAmelCase ,batch_size=__lowerCAmelCase ,seq_length=__lowerCAmelCase ,is_pair=__lowerCAmelCase ,framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() _lowerCamelCase : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCamelCase : Union[str, Any] = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCamelCase : Tuple = seqlen + 2 _lowerCamelCase : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCamelCase : Union[str, Any] = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] _lowerCamelCase : Optional[Any] = common_inputs["attention_mask"] if self.use_past: _lowerCamelCase : Optional[Any] = ordered_inputs["attention_mask"].dtype _lowerCamelCase : str = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCAmelCase ,__lowerCAmelCase ,dtype=__lowerCAmelCase )] ,dim=1 ) return ordered_inputs @property def _lowercase ( self: Dict ): '''simple docstring''' return 13
354
"""simple docstring""" _lowerCAmelCase : dict[tuple[int, int, int], int] = {} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowerCamelCase : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowerCamelCase : int = _calculate(days - 1 , _lowerCamelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowerCamelCase : Tuple = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowerCamelCase : str = _calculate(days - 1 , _lowerCamelCase , 0 ) _lowerCamelCase : List[Any] = state_late + state_absent + state_ontime _lowerCamelCase : int = prizestrings return prizestrings def lowerCamelCase_( _lowerCamelCase = 30 ) -> int: '''simple docstring''' return _calculate(_lowerCamelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
340
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
36
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : def __init__(self : str , a__ : Dict , a__ : Tuple=None , a__ : List[Any]=None , a__ : Dict=None , a__ : Union[str, Any]="resnet50" , a__ : Dict=3 , a__ : str=32 , a__ : int=3 , a__ : Dict=True , a__ : Any=True , ): """simple docstring""" __snake_case = parent __snake_case = out_indices if out_indices is not None else [4] __snake_case = stage_names __snake_case = out_features __snake_case = backbone __snake_case = batch_size __snake_case = image_size __snake_case = num_channels __snake_case = use_pretrained_backbone __snake_case = is_training def a (self : Union[str, Any] ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = self.get_config() return config, pixel_values def a (self : Any ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def a (self : List[Any] , a__ : int , a__ : int ): """simple docstring""" __snake_case = TimmBackbone(config=a__ ) model.to(a__ ) model.eval() with torch.no_grad(): __snake_case = model(a__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def a (self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () A_ : Optional[Any] = {'feature-extraction': TimmBackbone} if is_torch_available() else {} A_ : List[Any] = False A_ : Dict = False A_ : Any = False A_ : List[Any] = False def a (self : Tuple ): """simple docstring""" __snake_case = TimmBackboneModelTester(self ) __snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def a (self : Any ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a (self : int ): """simple docstring""" __snake_case = '''resnet18''' __snake_case = '''microsoft/resnet-18''' __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ ) __snake_case = AutoBackbone.from_pretrained(a__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case = AutoBackbone.from_pretrained(a__ , use_timm_backbone=a__ , out_indices=[1, 2, 3] ) __snake_case = AutoBackbone.from_pretrained(a__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def a (self : str ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def a (self : Union[str, Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : Optional[int] ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : int ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : Dict ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def a (self : Optional[Any] ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def a (self : List[Any] ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def a (self : Tuple ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a (self : Tuple ): """simple docstring""" pass def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True __snake_case = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case = self.all_model_classes[0] __snake_case = model_class(a__ ) model.to(a__ ) __snake_case = self._prepare_for_class(a__ , a__ ) __snake_case = model(**a__ ) __snake_case = outputs[0][-1] # Encoder-/Decoder-only models __snake_case = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def a (self : Optional[int] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case = copy.deepcopy(a__ ) __snake_case = None __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case = copy.deepcopy(a__ ) __snake_case = False __snake_case = model_class(a__ ) model.to(a__ ) model.eval() __snake_case = model(**a__ )
24
0
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : list ) -> list: def merge(_UpperCamelCase : list, _UpperCamelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_UpperCamelCase ) <= 1: return collection A_ = len(_UpperCamelCase ) // 2 return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() __snake_case : int = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
369
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> int: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class __UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: super().__init__() A_ = module A_ = nn.Sequential( nn.Linear(module.in_features , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) , nn.Linear(_SCREAMING_SNAKE_CASE , module.out_features , bias=_SCREAMING_SNAKE_CASE ) , ) A_ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_SCREAMING_SNAKE_CASE ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __A ( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return self.module(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) + self.adapter(_SCREAMING_SNAKE_CASE ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __lowercase : Dict = 'bigscience/bloom-1b7' # Constant values __lowercase : str = 2.109659552692574 __lowercase : int = 'Hello my name is' __lowercase : Optional[Any] = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) __lowercase : Optional[Any] = 10 def __A ( self ) -> List[str]: # Models and tokenizer A_ = AutoTokenizer.from_pretrained(self.model_name ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[Any]: super().setUp() # Models and tokenizer A_ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: A_ = self.model_abit.config self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , '''quantization_config''' ) ) A_ = config.to_dict() A_ = config.to_diff_dict() A_ = config.to_json_string() def __A ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit A_ = self.model_fpaa.get_memory_footprint() A_ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) A_ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __A ( self ) -> Union[str, Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __A ( self ) -> Optional[int]: A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Optional[int]: A_ = BitsAndBytesConfig() A_ = True A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) def __A ( self ) -> Tuple: with self.assertRaises(_SCREAMING_SNAKE_CASE ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Tuple: A_ = BitsAndBytesConfig() with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_SCREAMING_SNAKE_CASE , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __A ( self ) -> Dict: with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_SCREAMING_SNAKE_CASE ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) A_ = self.model_fpaa.to(torch.floataa ) A_ = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error A_ = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error A_ = self.model_fpaa.half() # Check this does not throw an error A_ = self.model_fpaa.float() def __A ( self ) -> Optional[int]: A_ = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __A ( cls ) -> Optional[Any]: A_ = '''t5-small''' A_ = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense A_ = AutoTokenizer.from_pretrained(cls.model_name ) A_ = '''Translate in German: Hello, my dog is cute''' def __A ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Tuple: from transformers import TaForConditionalGeneration A_ = TaForConditionalGeneration._keep_in_fpaa_modules A_ = None # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) A_ = modules def __A ( self ) -> Dict: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` A_ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) # test with `flan-t5-small` A_ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) A_ = model.generate(**_SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> int: super().setUp() # model_name A_ = '''bigscience/bloom-560m''' A_ = '''t5-small''' # Different types of model A_ = AutoModel.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Sequence classification model A_ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # CausalLM model A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) # Seq2seq model A_ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''auto''' ) def __A ( self ) -> Union[str, Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __A ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> Tuple: super().setUp() def __A ( self ) -> List[Any]: del self.pipe gc.collect() torch.cuda.empty_cache() def __A ( self ) -> Optional[Any]: A_ = pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass A_ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> List[str]: super().setUp() def __A ( self ) -> Optional[int]: A_ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model A_ = self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch A_ = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) , self.EXPECTED_OUTPUTS ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' def __A ( self ) -> str: A_ = '''facebook/opt-350m''' super().setUp() def __A ( self ) -> Optional[int]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters A_ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_SCREAMING_SNAKE_CASE ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): A_ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability A_ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_SCREAMING_SNAKE_CASE ) ): A_ = LoRALayer(module.q_proj , rank=16 ) A_ = LoRALayer(module.k_proj , rank=16 ) A_ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch A_ = self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): A_ = model.forward(**_SCREAMING_SNAKE_CASE ) out.logits.norm().backward() for module in model.modules(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_SCREAMING_SNAKE_CASE , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : int = 'gpt2-xl' __lowercase : List[Any] = 3.3191854854152187
18
0
from __future__ import annotations _a = 1_0 def _a ( SCREAMING_SNAKE_CASE : list[int] ) -> Any: """simple docstring""" __lowerCAmelCase: Any = 1 __lowerCAmelCase: Optional[int] = max(SCREAMING_SNAKE_CASE ) while placement <= max_digit: # declare and initialize empty buckets __lowerCAmelCase: list[list] = [[] for _ in range(SCREAMING_SNAKE_CASE )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCAmelCase: Dict = int((i / placement) % RADIX ) buckets[tmp].append(SCREAMING_SNAKE_CASE ) # put each buckets' contents into list_of_ints __lowerCAmelCase: str = 0 for b in range(SCREAMING_SNAKE_CASE ): for i in buckets[b]: __lowerCAmelCase: str = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
322
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class snake_case__ : """simple docstring""" def __init__( self : List[str], _snake_case : Any, _snake_case : int=1_3, _snake_case : Optional[int]=7, _snake_case : int=True, _snake_case : Optional[Any]=True, _snake_case : Optional[Any]=True, _snake_case : Union[str, Any]=9_9, _snake_case : Optional[Any]=3_2, _snake_case : Tuple=5, _snake_case : str=4, _snake_case : Any=3_7, _snake_case : int="gelu", _snake_case : Optional[Any]=0.1, _snake_case : str=0.1, _snake_case : str=5_1_2, _snake_case : Dict=1_6, _snake_case : str=2, _snake_case : Union[str, Any]=0.0_2, _snake_case : Optional[int]=3, _snake_case : Union[str, Any]=4, _snake_case : Tuple=None, ) ->Optional[Any]: snake_case__ : Optional[int] = parent snake_case__ : List[Any] = batch_size snake_case__ : Tuple = seq_length snake_case__ : str = is_training snake_case__ : Optional[int] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Dict = vocab_size snake_case__ : str = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[str] = num_attention_heads snake_case__ : Union[str, Any] = intermediate_size snake_case__ : List[Any] = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = num_choices snake_case__ : int = scope snake_case__ : List[str] = self.vocab_size - 1 def lowercase_ ( self : Union[str, Any] ) ->Tuple: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : Tuple = None snake_case__ : str = None snake_case__ : List[Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size], self.num_choices ) snake_case__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) snake_case__ : List[str] = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase_ ( self : Any, _snake_case : List[str], _snake_case : Any, _snake_case : List[Any], _snake_case : Tuple, *_snake_case : Optional[Any] ) ->Tuple: snake_case__ : Union[str, Any] = OpenAIGPTModel(config=_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, head_mask=_snake_case ) snake_case__ : Union[str, Any] = model(_snake_case, token_type_ids=_snake_case ) snake_case__ : Optional[Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : Union[str, Any], _snake_case : Optional[int], _snake_case : List[Any], *_snake_case : Dict ) ->Optional[int]: snake_case__ : Optional[Any] = OpenAIGPTLMHeadModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Tuple = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : int, _snake_case : Tuple, _snake_case : List[str], _snake_case : List[Any], _snake_case : List[Any], *_snake_case : List[Any] ) ->Optional[int]: snake_case__ : List[str] = OpenAIGPTDoubleHeadsModel(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : Optional[Any] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : Optional[int], _snake_case : Tuple, _snake_case : Dict, _snake_case : List[str], _snake_case : Optional[Any], *_snake_case : Union[str, Any] ) ->str: snake_case__ : List[str] = self.num_labels snake_case__ : Dict = OpenAIGPTForSequenceClassification(_snake_case ) model.to(_snake_case ) model.eval() snake_case__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) snake_case__ : List[str] = model(_snake_case, token_type_ids=_snake_case, labels=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase_ ( self : Dict ) ->int: snake_case__ : List[Any] = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[Any] = config_and_inputs snake_case__ : str = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class snake_case__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _SCREAMING_SNAKE_CASE = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self : Optional[int], _snake_case : Union[str, Any], _snake_case : int, _snake_case : Tuple, _snake_case : Tuple, _snake_case : List[str] ) ->Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase_ ( self : Optional[Any], _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : Any=False ) ->Tuple: snake_case__ : Optional[int] = super()._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": snake_case__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length), dtype=torch.long, device=_snake_case, ) snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : List[Any] = inputs_dict['labels'] snake_case__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices), dtype=torch.long, device=_snake_case, ) snake_case__ : Tuple = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=_snake_case ) return inputs_dict def lowercase_ ( self : Union[str, Any] ) ->List[str]: snake_case__ : List[str] = OpenAIGPTModelTester(self ) snake_case__ : Any = ConfigTester(self, config_class=_snake_case, n_embd=3_7 ) def lowercase_ ( self : Optional[int] ) ->str: self.config_tester.run_common_tests() def lowercase_ ( self : int ) ->Tuple: snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_snake_case ) def lowercase_ ( self : Tuple ) ->List[str]: snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_snake_case ) def lowercase_ ( self : Dict ) ->int: snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_snake_case ) def lowercase_ ( self : int ) ->str: snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_snake_case ) @slow def lowercase_ ( self : Optional[Any] ) ->str: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = OpenAIGPTModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Tuple ) ->Optional[int]: snake_case__ : Union[str, Any] = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' ) model.to(_snake_case ) snake_case__ : Tuple = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]], dtype=torch.long, device=_snake_case ) # the president is snake_case__ : int = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the snake_case__ : Optional[int] = model.generate(_snake_case, do_sample=_snake_case ) self.assertListEqual(output_ids[0].tolist(), _snake_case )
277
0
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = len(a__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(len(a__ ) - pat_len + 1 ): SCREAMING_SNAKE_CASE : Dict = True for j in range(a__ ): if s[i + j] != pattern[j]: SCREAMING_SNAKE_CASE : Any = False break if match_found: position.append(a__ ) return position if __name__ == "__main__": assert naive_pattern_search('''ABCDEFG''', '''DE''') == [3] print(naive_pattern_search('''ABAAABCDBBABCDDEBCABC''', '''ABC'''))
357
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''DeiTFeatureExtractor'''] a__ : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _UpperCAmelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = config_class __lowerCAmelCase = has_text_modality __lowerCAmelCase = kwargs __lowerCAmelCase = common_properties def lowercase ( self : int ) -> List[Any]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(SCREAMING_SNAKE_CASE_ ): try: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , msg=f"""`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(SCREAMING_SNAKE_CASE_ ): try: __lowerCAmelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , msg=f"""`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , SCREAMING_SNAKE_CASE_ ) def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , 'config.json' ) config_first.to_json_file(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = self.config_class.from_json_file(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = self.config_class(**self.inputs_dict ) __lowerCAmelCase = 'test' with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) config_first.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __lowerCAmelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def lowercase ( self : Dict ) -> Any: if self.config_class.is_composition: return __lowerCAmelCase = self.config_class() self.parent.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = copy.deepcopy(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = self.config_class(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) != value: wrong_values.append((key, getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ), value) ) if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCAmelCase = '\n'.join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def lowercase ( self : int ) -> Optional[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
284
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
185
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'mgp-str' def __init__( self , __a=[32, 1_28] , __a=4 , __a=3 , __a=27 , __a=38 , __a=5_02_57 , __a=3_05_22 , __a=7_68 , __a=12 , __a=12 , __a=4.0 , __a=True , __a=False , __a=1e-5 , __a=0.0 , __a=0.0 , __a=0.0 , __a=False , __a=0.02 , **__a , ) -> Optional[int]: '''simple docstring''' super().__init__(**__a) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = max_token_length _UpperCamelCase = num_character_labels _UpperCamelCase = num_bpe_labels _UpperCamelCase = num_wordpiece_labels _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = mlp_ratio _UpperCamelCase = distilled _UpperCamelCase = layer_norm_eps _UpperCamelCase = drop_rate _UpperCamelCase = qkv_bias _UpperCamelCase = attn_drop_rate _UpperCamelCase = drop_path_rate _UpperCamelCase = output_aa_attentions _UpperCamelCase = initializer_range
100
"""simple docstring""" import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _a = get_logger(__name__) class _UpperCAmelCase: def __init__( self , __a = None) -> List[str]: '''simple docstring''' _UpperCamelCase = ( os.path.join(__a , config.EXTRACTED_DATASETS_DIR) if cache_dir else config.EXTRACTED_DATASETS_PATH ) _UpperCamelCase = Extractor def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" _UpperCamelCase = os.path.abspath(__a) return os.path.join(self.extract_dir , hash_url_to_filename(__a)) def UpperCAmelCase ( self , __a , __a) -> bool: '''simple docstring''' return force_extract or ( not os.path.isfile(__a) and not (os.path.isdir(__a) and os.listdir(__a)) ) def UpperCAmelCase ( self , __a , __a = False) -> str: '''simple docstring''' _UpperCamelCase = self.extractor.infer_extractor_format(__a) if not extractor_format: return input_path _UpperCamelCase = self._get_output_path(__a) if self._do_extract(__a , __a): self.extractor.extract(__a , __a , __a) return output_path class _UpperCAmelCase( lowerCamelCase ): @classmethod @abstractmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' ... @staticmethod @abstractmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' ... class _UpperCAmelCase( lowerCamelCase , lowerCamelCase ): lowercase__ = [] @staticmethod def UpperCAmelCase ( __a , __a) -> Any: '''simple docstring''' with open(__a , '''rb''') as f: return f.read(__a) @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if not magic_number: _UpperCamelCase = max(len(__a) for cls_magic_number in cls.magic_numbers) try: _UpperCamelCase = cls.read_magic_number(__a , __a) except OSError: return False return any(magic_number.startswith(__a) for cls_magic_number in cls.magic_numbers) class _UpperCAmelCase( lowerCamelCase ): @classmethod def UpperCAmelCase ( cls , __a , **__a) -> bool: '''simple docstring''' return tarfile.is_tarfile(__a) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' def resolved(__a) -> str: return os.path.realpath(os.path.abspath(__a)) def badpath(__a , __a) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__a , __a)).startswith(__a) def badlink(__a , __a) -> bool: # Links are interpreted relative to the directory containing the link _UpperCamelCase = resolved(os.path.join(__a , os.path.dirname(info.name))) return badpath(info.linkname , base=__a) _UpperCamelCase = resolved(__a) for finfo in members: if badpath(finfo.name , __a): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''') elif finfo.issym() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''') elif finfo.islnk() and badlink(__a , __a): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''') else: yield finfo @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) _UpperCamelCase = tarfile.open(__a) tar_file.extractall(__a , members=TarExtractor.safemembers(__a , __a)) tar_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x1F\x8B'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with gzip.open(__a , '''rb''') as gzip_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [ b'PK\x03\x04', b'PK\x05\x06', # empty archive b'PK\x07\x08', # spanned archive ] @classmethod def UpperCAmelCase ( cls , __a , __a = b"") -> bool: '''simple docstring''' if super().is_extractable(__a , magic_number=__a): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__a , '''rb''') as fp: _UpperCamelCase = _EndRecData(__a) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET]) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: _UpperCamelCase = fp.read(__a) # CD is where we expect it to be if len(__a) == sizeCentralDir: _UpperCamelCase = struct.unpack(__a , __a) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' os.makedirs(__a , exist_ok=__a) with zipfile.ZipFile(__a , '''r''') as zip_file: zip_file.extractall(__a) zip_file.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with lzma.open(__a) as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.RARFILE_AVAILABLE: raise ImportError('''Please pip install rarfile''') import rarfile os.makedirs(__a , exist_ok=__a) _UpperCamelCase = rarfile.RarFile(__a) rf.extractall(__a) rf.close() class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x28\xb5\x2F\xFD'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.ZSTANDARD_AVAILABLE: raise ImportError('''Please pip install zstandard''') import zstandard as zstd _UpperCamelCase = zstd.ZstdDecompressor() with open(__a , '''rb''') as ifh, open(__a , '''wb''') as ofh: dctx.copy_stream(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x42\x5A\x68'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' with bza.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.PY7ZR_AVAILABLE: raise ImportError('''Please pip install py7zr''') import pyazr os.makedirs(__a , exist_ok=__a) with pyazr.SevenZipFile(__a , '''r''') as archive: archive.extractall(__a) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = [b'\x04\x22\x4D\x18'] @staticmethod def UpperCAmelCase ( __a , __a) -> None: '''simple docstring''' if not config.LZ4_AVAILABLE: raise ImportError('''Please pip install lz4''') import lza.frame with lza.frame.open(__a , '''rb''') as compressed_file: with open(__a , '''wb''') as extracted_file: shutil.copyfileobj(__a , __a) class _UpperCAmelCase: # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) lowercase__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCAmelCase ( cls) -> Any: '''simple docstring''' return max( len(__a) for extractor in cls.extractors.values() if issubclass(__a , __a) for extractor_magic_number in extractor.magic_numbers) @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' try: return MagicNumberBaseExtractor.read_magic_number(__a , magic_number_length=__a) except OSError: return b"" @classmethod def UpperCAmelCase ( cls , __a , __a = False) -> bool: '''simple docstring''' warnings.warn( '''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'infer_extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = cls.infer_extractor_format(__a) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCAmelCase ( cls , __a) -> str: # <Added version="2.4.0"/> '''simple docstring''' _UpperCamelCase = cls._get_magic_number_max_length() _UpperCamelCase = cls._read_magic_number(__a , __a) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__a , magic_number=__a): return extractor_format @classmethod def UpperCAmelCase ( cls , __a , __a , __a = None , __a = "deprecated" , ) -> None: '''simple docstring''' os.makedirs(os.path.dirname(__a) , exist_ok=__a) # Prevent parallel extractions _UpperCamelCase = str(Path(__a).with_suffix('''.lock''')) with FileLock(__a): shutil.rmtree(__a , ignore_errors=__a) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__a , __a): # passed as positional arg warnings.warn( '''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ''' '''Use \'extractor_format\' instead.''' , category=__a , ) _UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format else: _UpperCamelCase = cls.extractors[extractor_format] return extractor.extract(__a , __a) else: warnings.warn( '''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ''' '''exception in 3.0.0.''' , category=__a , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__a): return extractor.extract(__a , __a)
100
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __a ( A__ ): _lowerCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
189
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __a ( A__ , A__ ): @register_to_config def __init__( self : str , SCREAMING_SNAKE_CASE : int = 1_28 , SCREAMING_SNAKE_CASE : int = 2_56 , SCREAMING_SNAKE_CASE : float = 2_0_0_0.0 , SCREAMING_SNAKE_CASE : int = 7_68 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 12 , SCREAMING_SNAKE_CASE : int = 64 , SCREAMING_SNAKE_CASE : int = 20_48 , SCREAMING_SNAKE_CASE : float = 0.1 , ): '''simple docstring''' super().__init__() UpperCamelCase__ : Optional[Any] = nn.Sequential( nn.Linear(SCREAMING_SNAKE_CASE , d_model * 4 , bias=SCREAMING_SNAKE_CASE ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=SCREAMING_SNAKE_CASE ) , nn.SiLU() , ) UpperCamelCase__ : Optional[int] = nn.Embedding(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nn.Dropout(p=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.ModuleList() for lyr_num in range(SCREAMING_SNAKE_CASE ): # FiLM conditional T5 decoder UpperCamelCase__ : Optional[int] = DecoderLayer(d_model=SCREAMING_SNAKE_CASE , d_kv=SCREAMING_SNAKE_CASE , num_heads=SCREAMING_SNAKE_CASE , d_ff=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE ) self.decoders.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = TaLayerNorm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nn.Dropout(p=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Tuple = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCamelCase__ : List[str] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCamelCase__ : Any = self.conditioning_emb(SCREAMING_SNAKE_CASE ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCamelCase__ : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCamelCase__ : Optional[int] = torch.broadcast_to( torch.arange(SCREAMING_SNAKE_CASE , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCamelCase__ : Dict = self.position_encoding(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = self.continuous_inputs_projection(SCREAMING_SNAKE_CASE ) inputs += position_encodings UpperCamelCase__ : Optional[Any] = self.dropout(SCREAMING_SNAKE_CASE ) # decoder: No padding present. UpperCamelCase__ : Dict = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCamelCase__ : Optional[int] = [(x, self.encoder_decoder_mask(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCamelCase__ : int = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCamelCase__ : List[Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCamelCase__ : int = lyr( SCREAMING_SNAKE_CASE , conditioning_emb=SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , encoder_attention_mask=SCREAMING_SNAKE_CASE , )[0] UpperCamelCase__ : Tuple = self.decoder_norm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = self.post_dropout(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.spec_out(SCREAMING_SNAKE_CASE ) return spec_out class __a ( nn.Module ): def __init__( self : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=1e-6 ): '''simple docstring''' super().__init__() UpperCamelCase__ : List[str] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=SCREAMING_SNAKE_CASE , d_kv=SCREAMING_SNAKE_CASE , num_heads=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=SCREAMING_SNAKE_CASE , d_kv=SCREAMING_SNAKE_CASE , num_heads=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE , layer_norm_epsilon=SCREAMING_SNAKE_CASE , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=SCREAMING_SNAKE_CASE , d_ff=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE , layer_norm_epsilon=SCREAMING_SNAKE_CASE ) ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): '''simple docstring''' UpperCamelCase__ : List[Any] = self.layer[0]( SCREAMING_SNAKE_CASE , conditioning_emb=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , ) if encoder_hidden_states is not None: UpperCamelCase__ : int = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) UpperCamelCase__ : Tuple = self.layer[1]( SCREAMING_SNAKE_CASE , key_value_states=SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , ) # Apply Film Conditional Feed Forward layer UpperCamelCase__ : Any = self.layer[-1](SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return (hidden_states,) class __a ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' super().__init__() UpperCamelCase__ : Union[str, Any] = TaLayerNorm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = Attention(query_dim=SCREAMING_SNAKE_CASE , heads=SCREAMING_SNAKE_CASE , dim_head=SCREAMING_SNAKE_CASE , out_bias=SCREAMING_SNAKE_CASE , scale_qk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Any = nn.Dropout(SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : List[Any]=None , ): '''simple docstring''' UpperCamelCase__ : str = self.layer_norm(SCREAMING_SNAKE_CASE ) if conditioning_emb is not None: UpperCamelCase__ : List[Any] = self.FiLMLayer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Self-attention block UpperCamelCase__ : Optional[Any] = self.attention(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = hidden_states + self.dropout(SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' super().__init__() UpperCamelCase__ : str = Attention(query_dim=SCREAMING_SNAKE_CASE , heads=SCREAMING_SNAKE_CASE , dim_head=SCREAMING_SNAKE_CASE , out_bias=SCREAMING_SNAKE_CASE , scale_qk=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = TaLayerNorm(SCREAMING_SNAKE_CASE , eps=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = nn.Dropout(SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ): '''simple docstring''' UpperCamelCase__ : str = self.layer_norm(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = self.attention( SCREAMING_SNAKE_CASE , encoder_hidden_states=SCREAMING_SNAKE_CASE , attention_mask=attention_mask.squeeze(1 ) , ) UpperCamelCase__ : Optional[Any] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE ) return layer_output class __a ( nn.Module ): def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' super().__init__() UpperCamelCase__ : Any = TaDenseGatedActDense(d_model=SCREAMING_SNAKE_CASE , d_ff=SCREAMING_SNAKE_CASE , dropout_rate=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = TaLayerNorm(SCREAMING_SNAKE_CASE , eps=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = nn.Dropout(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' UpperCamelCase__ : List[str] = self.layer_norm(SCREAMING_SNAKE_CASE ) if conditioning_emb is not None: UpperCamelCase__ : Optional[int] = self.film(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = self.DenseReluDense(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = hidden_states + self.dropout(SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' super().__init__() UpperCamelCase__ : Tuple = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = nn.Dropout(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = NewGELUActivation() def __lowercase ( self : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.act(self.wi_a(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Dict = self.wi_a(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = hidden_gelu * hidden_linear UpperCamelCase__ : int = self.dropout(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.wo(SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str=1e-6 ): '''simple docstring''' super().__init__() UpperCamelCase__ : List[str] = nn.Parameter(torch.ones(SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : Any = eps def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' UpperCamelCase__ : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCamelCase__ : Any = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __a ( nn.Module ): def __lowercase ( self : int , SCREAMING_SNAKE_CASE : torch.Tensor ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(SCREAMING_SNAKE_CASE , 3.0 )) )) class __a ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' super().__init__() UpperCamelCase__ : int = nn.Linear(SCREAMING_SNAKE_CASE , out_features * 2 , bias=SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ : str = self.scale_bias(SCREAMING_SNAKE_CASE ) UpperCamelCase__ , UpperCamelCase__ : List[str] = torch.chunk(SCREAMING_SNAKE_CASE , 2 , -1 ) UpperCamelCase__ : Dict = x * (1 + scale) + shift return x
189
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : str =logging.get_logger(__name__) _A : List[Any] ={'''vocab_file''': '''spiece.model'''} _A : Union[str, Any] ={ '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } _A : int ={ '''AI-Sweden/gpt-sw3-126m''': 2_048, '''AI-Sweden/gpt-sw3-350m''': 2_048, '''AI-Sweden/gpt-sw3-1.6b''': 2_048, '''AI-Sweden/gpt-sw3-6.7b''': 2_048, '''AI-Sweden/gpt-sw3-20b''': 2_048, } class _lowercase ( _lowercase ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["""input_ids""", """attention_mask"""] def __init__( self: int , UpperCamelCase__: str , UpperCamelCase__: Dict=False , UpperCamelCase__: List[str]=False , UpperCamelCase__: str=False , UpperCamelCase__: Dict=None , UpperCamelCase__: int=None , UpperCamelCase__: str=None , UpperCamelCase__: Any=None , UpperCamelCase__: Optional[Dict[str, Any]] = None , **UpperCamelCase__: Optional[int] , ): lowerCamelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase__ : Dict = kwargs.get("""name_or_path""" ) if name_or_path is None: logger.warning( """name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,""" """ you are testing the model, this can safely be ignored""" ) lowerCamelCase__ : str = """None""" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase__ : Any = """<|endoftext|>""" if eos_token is None else eos_token lowerCamelCase__ : Any = """<unk>""" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase__ : Optional[Any] = unk_token if pad_token is None else pad_token lowerCamelCase__ : Any = eos_token if bos_token is None else bos_token else: lowerCamelCase__ : Any = """<pad>""" if pad_token is None else pad_token lowerCamelCase__ : List[str] = """<s>""" if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowerCamelCase__ : Any = do_lower_case lowerCamelCase__ : List[Any] = remove_space lowerCamelCase__ : List[str] = keep_accents lowerCamelCase__ : Tuple = vocab_file lowerCamelCase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase__ : Optional[int] = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """„"""} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase__ : Dict = re.compile( F'''[{''.join(map(UpperCamelCase__ , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]''' ) def __getstate__( self: Tuple ): lowerCamelCase__ : List[str] = self.__dict__.copy() lowerCamelCase__ : Dict = None return state def __setstate__( self: Tuple , UpperCamelCase__: Any ): lowerCamelCase__ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase__ : int = {} lowerCamelCase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self: List[Any] ): return len(self.sp_model ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str ): lowerCamelCase__ : int = self.non_printing_characters_re.sub("""""" , UpperCamelCase__ ) # Normalize whitespaces lowerCamelCase__ : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] ) # NFC Unicode normalization lowerCamelCase__ : Dict = unicodedata.normalize("""NFC""" , UpperCamelCase__ ) return text def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , **UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : List[str] = self.preprocess_text(UpperCamelCase__ ) return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: str ): return self.sp_model.PieceToId(UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: int ): return self.sp_model.IdToPiece(UpperCamelCase__ ) @staticmethod def lowerCamelCase_ ( UpperCamelCase__: str ): return out_string def lowerCamelCase_ ( self: str , UpperCamelCase__: List[str] ): lowerCamelCase__ : List[Any] = [] lowerCamelCase__ : Union[str, Any] = """""" lowerCamelCase__ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowerCamelCase__ : Tuple = True lowerCamelCase__ : str = [] else: current_sub_tokens.append(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Tuple = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase__ : Optional[int] = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , """wb""" ) as fi: lowerCamelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: Union[str, List[str]] , UpperCamelCase__: Union[str, bool] = False ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : int = self.preprocess_text(UpperCamelCase__ ) lowerCamelCase__ : int = self.sp_model.encode(UpperCamelCase__ ) else: lowerCamelCase__ : Dict = [self.preprocess_text(UpperCamelCase__ ) for t in text] lowerCamelCase__ : str = self.sp_model.encode(UpperCamelCase__ ) if return_tensors is True or return_tensors == "pt": lowerCamelCase__ : Tuple = torch.tensor(UpperCamelCase__ ) return token_ids def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Union[int, List[int]] ): return self.sp_model.decode(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase__: "Conversation" ): lowerCamelCase__ : List[str] = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()] lowerCamelCase__ : Optional[int] = ( F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(UpperCamelCase__ ) + F'''{self.bos_token}Bot:''' ) return self.encode(text=UpperCamelCase__ )
129
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient _A : str =WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: lowerCamelCase__ : int = test_results.split(""" """ ) lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : Any = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase__ : Union[str, Any] = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCamelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Tuple: lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : int = None lowerCamelCase__ : Optional[int] = False for line in failures_short_lines.split("""\n""" ): if re.search(r"""_ \[doctest\]""" , UpperCamelCase ): lowerCamelCase__ : Dict = True lowerCamelCase__ : Optional[int] = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): lowerCamelCase__ : List[str] = line lowerCamelCase__ : int = False return failures class _lowercase : def __init__( self: Tuple , UpperCamelCase__: str , UpperCamelCase__: Dict ): lowerCamelCase__ : Union[str, Any] = title lowerCamelCase__ : Tuple = doc_test_results["""time_spent"""].split(""",""" )[0] lowerCamelCase__ : Union[str, Any] = doc_test_results["""success"""] lowerCamelCase__ : List[Any] = doc_test_results["""failures"""] lowerCamelCase__ : List[str] = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase__ : str = doc_test_results @property def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Union[str, Any] = [self._time_spent] lowerCamelCase__ : Tuple = 0 for time in time_spent: lowerCamelCase__ : Tuple = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase__ ) == 1: lowerCamelCase__ : Tuple = [0, 0, time_parts[0]] lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return F'''{int(UpperCamelCase__ )}h{int(UpperCamelCase__ )}m{int(UpperCamelCase__ )}s''' @property def lowerCamelCase_ ( self: Dict ): return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowerCamelCase_ ( self: Any ): return { "type": "section", "text": { "type": "plain_text", "text": F'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def lowerCamelCase_ ( self: Any ): return { "type": "section", "text": { "type": "plain_text", "text": ( F'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' F''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Any = 40 lowerCamelCase__ : List[str] = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(UpperCamelCase__ , UpperCamelCase__ )} lowerCamelCase__ : List[Any] = """""" for category, failures in category_failures.items(): if len(UpperCamelCase__ ) == 0: continue if report != "": report += "\n\n" report += F'''*{category} failures*:'''.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase__ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'''The following examples had failures:\n\n\n{report}\n''', }, } @property def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Union[str, Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase__ ) @staticmethod def lowerCamelCase_ ( ): lowerCamelCase__ : List[Any] = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": F'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(UpperCamelCase__ )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=UpperCamelCase__ , ) def lowerCamelCase_ ( self: Any ): print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) lowerCamelCase__ : Any = F'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else """All tests passed.""" lowerCamelCase__ : List[str] = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=UpperCamelCase__ , ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: str , UpperCamelCase__: Dict , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : Optional[Any] = """""" for key, value in failures.items(): lowerCamelCase__ : int = value[:200] + """ [Truncated]""" if len(UpperCamelCase__ ) > 250 else value failures_text += F'''*{key}*\n_{value}_\n\n''' lowerCamelCase__ : Tuple = job_name lowerCamelCase__ : Union[str, Any] = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: lowerCamelCase__ : Union[str, Any] = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowerCamelCase_ ( self: Tuple ): if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) lowerCamelCase__ : int = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) lowerCamelCase__ : List[Any] = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase__ : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): lowerCamelCase__ : Union[str, Any] = F'''*Num failures* :{len(job_result['failed'] )} \n''' lowerCamelCase__ : Union[str, Any] = job_result["""failures"""] lowerCamelCase__ : int = self.get_reply_blocks(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , text=UpperCamelCase__ ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=F'''Results for {job}''' , blocks=UpperCamelCase__ , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def SCREAMING_SNAKE_CASE_ () -> Tuple: lowerCamelCase__ : Any = os.environ["""GITHUB_RUN_ID"""] lowerCamelCase__ : List[Any] = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' lowerCamelCase__ : Optional[int] = requests.get(UpperCamelCase ).json() lowerCamelCase__ : List[Any] = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) lowerCamelCase__ : Any = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCamelCase ): lowerCamelCase__ : List[Any] = requests.get(url + f'''&page={i + 2}''' ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , UpperCamelCase ) return {} def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: lowerCamelCase__ : int = {} if os.path.exists(UpperCamelCase ): lowerCamelCase__ : List[str] = os.listdir(UpperCamelCase ) for file in files: try: with open(os.path.join(UpperCamelCase , UpperCamelCase ) , encoding="""utf-8""" ) as f: lowerCamelCase__ : List[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(f'''Could not open {os.path.join(UpperCamelCase , UpperCamelCase )}.''' ) from e return _artifact def SCREAMING_SNAKE_CASE_ () -> Optional[Any]: class _lowercase : def __init__( self: Tuple , UpperCamelCase__: str ): lowerCamelCase__ : Any = name lowerCamelCase__ : Union[str, Any] = [] def __str__( self: int ): return self.name def lowerCamelCase_ ( self: Tuple , UpperCamelCase__: str ): self.paths.append({"""name""": self.name, """path""": path} ) lowerCamelCase__ : Dict[str, Artifact] = {} lowerCamelCase__ : List[str] = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase__ : Union[str, Any] = directory if artifact_name not in _available_artifacts: lowerCamelCase__ : Optional[int] = Artifact(UpperCamelCase ) _available_artifacts[artifact_name].add_path(UpperCamelCase ) return _available_artifacts if __name__ == "__main__": _A : Any =get_job_links() _A : str =retrieve_available_artifacts() _A : int =collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' _A : Union[str, Any] ={ v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job _A : Union[str, Any] =github_actions_job_links.get('''run_doctests''') _A : Any =available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] _A : Dict =retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: _A , _A , _A : Optional[int] =handle_test_results(artifact['''stats''']) _A : Union[str, Any] =failed _A : int =success _A : Optional[int] =time_spent[1:-1] + ''', ''' _A : Any =extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): _A : List[Any] =line.replace('''FAILED ''', '''''') _A : Any =line.split()[0].replace('''\n''', '''''') if "::" in line: _A , _A : Any =line.split('''::''') else: _A , _A : Tuple =line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): _A : str =docs[file_regex] doc_test_results[category]["failed"].append(test) _A : str =all_failures[test] if test in all_failures else '''N/A''' _A : Tuple =failure break _A : Union[str, Any] =Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
129
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowerCAmelCase ( lowerCAmelCase__ ): @slow @require_torch def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) __lowerCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __lowerCamelCase = bertabert.config.encoder.vocab_size __lowerCamelCase = tokenizer.sep_token_id __lowerCamelCase = tokenizer.cls_token_id __lowerCamelCase = 128 __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) __lowerCamelCase = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) __lowerCamelCase = train_dataset.select(range(32 ) ) __lowerCamelCase = val_dataset.select(range(16 ) ) __lowerCamelCase = 4 def _map_to_encoder_decoder_inputs(__UpperCAmelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=512 ) __lowerCamelCase = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__UpperCAmelCase , max_length=128 ) __lowerCamelCase = inputs.input_ids __lowerCamelCase = inputs.attention_mask __lowerCamelCase = outputs.input_ids __lowerCamelCase = outputs.input_ids.copy() __lowerCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowerCamelCase = outputs.attention_mask assert all(len(__UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__UpperCAmelCase ): __lowerCamelCase = pred.label_ids __lowerCamelCase = pred.predictions # all unnecessary tokens are removed __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __lowerCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__UpperCAmelCase ) )] ) / len(__UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset __lowerCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__UpperCAmelCase , batch_size=__UpperCAmelCase , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) __lowerCamelCase = self.get_auto_remove_tmp_dir() __lowerCamelCase = SeqaSeqTrainingArguments( output_dir=__UpperCAmelCase , per_device_train_batch_size=__UpperCAmelCase , per_device_eval_batch_size=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , evaluation_strategy='''steps''' , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase = SeqaSeqTrainer( model=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=__UpperCAmelCase , eval_dataset=__UpperCAmelCase , tokenizer=__UpperCAmelCase , ) # start training trainer.train()
330
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _A ( __lowercase ): def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__magic_name__ , """num_attention_heads""" ) ) class _A : def __init__( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=13 , __magic_name__ : List[str]=32 , __magic_name__ : Optional[int]=2 , __magic_name__ : List[str]=3 , __magic_name__ : Optional[int]=6_40 , __magic_name__ : Dict=4 , __magic_name__ : Tuple="silu" , __magic_name__ : Optional[int]=3 , __magic_name__ : Any=32 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : int=0.1 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : Any=True , __magic_name__ : str=10 , __magic_name__ : Tuple=None , ) -> Optional[int]: """simple docstring""" __snake_case : Dict = parent __snake_case : List[str] = batch_size __snake_case : Any = image_size __snake_case : List[Any] = patch_size __snake_case : Union[str, Any] = num_channels __snake_case : Dict = last_hidden_size __snake_case : Dict = num_attention_heads __snake_case : Any = hidden_act __snake_case : int = conv_kernel_size __snake_case : Tuple = output_stride __snake_case : str = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : Any = use_labels __snake_case : str = is_training __snake_case : int = num_labels __snake_case : int = initializer_range __snake_case : int = scope def lowercase__ ( self : str ) -> Tuple: """simple docstring""" __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Dict ) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase__ ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[Any] , __magic_name__ : List[str] , __magic_name__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = MobileViTModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any ) -> Optional[int]: """simple docstring""" __snake_case : str = self.num_labels __snake_case : Optional[Any] = MobileViTForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Optional[int] = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> str: """simple docstring""" __snake_case : Tuple = self.num_labels __snake_case : str = MobileViTForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() __snake_case : Any = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : Tuple = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Any = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : List[str] = config_and_inputs __snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: Dict = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowercase__: Optional[int] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__: Union[str, Any] = False lowercase__: Optional[int] = False lowercase__: int = False lowercase__: int = False def lowercase__ ( self : List[Any] ) -> List[str]: """simple docstring""" __snake_case : Dict = MobileViTModelTester(self ) __snake_case : Union[str, Any] = MobileViTConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def lowercase__ ( self : str ) -> Any: """simple docstring""" pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(__magic_name__ ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[Any] = [*signature.parameters.keys()] __snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase__ ( self : int ) -> Optional[int]: """simple docstring""" __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(__magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Optional[int] ): __snake_case : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) __snake_case : List[str] = outputs.hidden_states __snake_case : Union[str, Any] = 5 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Union[str, Any] = 2 for i in range(len(__magic_name__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : int = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Optional[int] = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @slow def lowercase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = MobileViTModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _a ( ) -> Any: """simple docstring""" __snake_case : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ) -> Any: """simple docstring""" return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(__magic_name__ ) __snake_case : Tuple = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : Any = model(**__magic_name__ ) # verify the logits __snake_case : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) __snake_case : Optional[int] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: """simple docstring""" __snake_case : Dict = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : int = model.to(__magic_name__ ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : Union[str, Any] = prepare_img() __snake_case : int = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : str = model(**__magic_name__ ) __snake_case : Optional[int] = outputs.logits # verify the logits __snake_case : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __magic_name__ ) __snake_case : Union[str, Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : Tuple = model.to(__magic_name__ ) __snake_case : Any = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case : List[str] = prepare_img() __snake_case : List[str] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): __snake_case : int = model(**__magic_name__ ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : int = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(50, 60)] ) __snake_case : Tuple = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) __snake_case : str = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) __snake_case : Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
13
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
1
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] SCREAMING_SNAKE_CASE__ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ : ClassVar[Any] = None SCREAMING_SNAKE_CASE__ : str = field(default="""Translation""" ,init=lowercase__ ,repr=lowercase__ ) def __call__( self ): """simple docstring""" return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def UpperCamelCase__ ( self ): """simple docstring""" from .features import Value return {k: Value("string" ) for k in sorted(self.languages )} @dataclass class A_ : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[List] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE__ : ClassVar[str] = "dict" SCREAMING_SNAKE_CASE__ : ClassVar[Any] = None SCREAMING_SNAKE_CASE__ : str = field(default="""TranslationVariableLanguages""" ,init=lowercase__ ,repr=lowercase__ ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = sorted(set(self.languages ) ) if self.languages else None UpperCAmelCase_ : List[str] = len(self.languages ) if self.languages else None def __call__( self ): """simple docstring""" return pa.struct({"language": pa.list_(pa.string() ), "translation": pa.list_(pa.string() )} ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = set(self.languages ) if self.languages and set(lowercase_ ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(lowercase_ ) - lang_set ) )}) are not in valid set ({", ".join(lowercase_ )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. UpperCAmelCase_ : Tuple = [] for lang, text in translation_dict.items(): if isinstance(lowercase_ , lowercase_ ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = zip(*sorted(lowercase_ ) ) return {"language": languages, "translation": translations} def UpperCamelCase__ ( self ): """simple docstring""" from .features import Sequence, Value return { "language": Sequence(Value("string" ) ), "translation": Sequence(Value("string" ) ), }
61
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ = '''src/transformers''' a_ = '''docs/source/en/tasks''' def _a ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase__ = f.readlines() # Find the start prompt. lowerCAmelCase__ = 0 while not lines[start_index].startswith(UpperCamelCase_ ): start_index += 1 start_index += 1 lowerCAmelCase__ = start_index while not lines[end_index].startswith(UpperCamelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(TRANSFORMERS_PATH) a_ = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _a ( UpperCamelCase_ : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = TASK_GUIDE_TO_MODELS[task_guide] lowerCAmelCase__ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase_ , set() ) lowerCAmelCase__ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"[{name}](../model_doc/{code})" for code, name in model_names.items()] ) + "\n" def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=False ) -> List[str]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = _find_text_in_file( filename=os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCAmelCase__ = get_model_list_for_task(UpperCamelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`" " to fix this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a_ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
340
0
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None: lowerCamelCase__ : Optional[Any] = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: lowerCamelCase__ : list[list[str]] = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print('' ) print(len(_UpperCAmelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
45
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : List[str] = logging.getLogger() _UpperCAmelCase : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Optional[int] , UpperCAmelCase : Optional[int] ) -> List[Any]: os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) lowerCamelCase__ : Tuple = {'source': 'What is love ?', 'target': 'life'} lowerCamelCase__ : str = {'train': 12, 'val': 2, 'test': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: lowerCamelCase__ : Optional[int] = '\n'.join([contents[field]] * n_lines[split] ) with open(os.path.join(UpperCAmelCase , F"""{split}.{field}""" ) , 'w' ) as f: f.write(UpperCAmelCase ) def A_ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str = "pytorch" ) -> str: lowerCamelCase__ : Union[str, Any] = self.get_auto_remove_tmp_dir() lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'output' ) lowerCamelCase__ : int = os.path.join(UpperCAmelCase , 'data' ) self._create_dummy_data(data_dir=UpperCAmelCase ) lowerCamelCase__ : Dict = F""" --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ """.split() if gpus > 0: testargs.append(F"""--gpus={gpus}""" ) if is_apex_available(): testargs.append('--fp16' ) else: testargs.append('--gpus=0' ) testargs.append('--distributed_backend=ddp_cpu' ) testargs.append('--num_processes=2' ) lowerCamelCase__ : Optional[Any] = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) lowerCamelCase__ : Dict = os.path.join(UpperCAmelCase , 'metrics.json' ) with open(UpperCAmelCase ) as f: lowerCamelCase__ : Dict = json.load(UpperCAmelCase ) return result @require_torch_gpu def A_ ( self : Optional[Any] ) -> Optional[int]: lowerCamelCase__ : List[str] = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu def A_ ( self : Any ) -> List[Any]: lowerCamelCase__ : str = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_gpu @require_ray def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : Union[str, Any] = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 ) @require_torch_multi_gpu @require_ray def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : Tuple = self._run_finetune(gpus=1 , distributed_retriever='ray' ) self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
45
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowercase_ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[str]: '''simple docstring''' A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) A__ = val def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' A__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) A__ = value else: A__ = value return new_state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: '''simple docstring''' A__ = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A__ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A__ = in_proj_weight_cross_attn[:256, :] A__ = in_proj_bias_cross_attn[:256] A__ = in_proj_weight_cross_attn[256:512, :] A__ = in_proj_bias_cross_attn[256:512] A__ = in_proj_weight_cross_attn[-256:, :] A__ = in_proj_bias_cross_attn[-256:] def _snake_case( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: '''simple docstring''' A__ , A__ = image.size A__ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = 800 if 'detection' in checkpoint_url else 1000 A__ = target_max_size / current_max_size A__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' A__ = F.to_tensor(SCREAMING_SNAKE_CASE__ ) A__ = F.normalize(SCREAMING_SNAKE_CASE__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Dict: '''simple docstring''' logger.info('Converting model...' ) # load original state dict A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = rename_backbone_keys(SCREAMING_SNAKE_CASE__ ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A__ = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): A__ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) A__ = val # create HuggingFace model and load state dict A__ = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A__ = 15 A__ = 2 A__ = {0: 'table', 1: 'table rotated'} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} else: A__ = 125 A__ = 6 A__ = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1000 ) A__ = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # verify our conversion A__ = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' A__ = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=SCREAMING_SNAKE_CASE__ ) A__ = Image.open(SCREAMING_SNAKE_CASE__ ).convert('RGB' ) A__ = normalize(resize(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ).unsqueeze(0 ) A__ = model(SCREAMING_SNAKE_CASE__ ) if "detection" in checkpoint_url: A__ = (1, 15, 3) A__ = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A__ = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A__ = (1, 125, 7) A__ = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A__ = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) A__ = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowercase_ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
7
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): def __init__( self :Union[str, Any] , _A :List[Any]=0.01 , _A :Optional[Any]=1_000 ) -> Tuple: '''simple docstring''' __A = p_stop __A = max_length def __iter__( self :List[Any] ) -> Optional[Any]: '''simple docstring''' __A = 0 __A = False while not stop and count < self.max_length: yield count count += 1 __A = random.random() < self.p_stop class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :List[Any] , _A :Tuple , _A :int , _A :Tuple=False , _A :str=True ) -> Optional[int]: '''simple docstring''' __A = [ BatchSamplerShard(_A , 2 , _A , split_batches=_A , even_batches=_A ) for i in range(2 ) ] __A = [list(_A ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_A ) for shard in batch_sampler_shards] , [len(_A ) for e in expected] ) self.assertListEqual(_A , _A ) def lowercase_ ( self :Any ) -> int: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_A , _A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A ) def lowercase_ ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A ) def lowercase_ ( self :Tuple ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_A ) __A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , even_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> Tuple: '''simple docstring''' __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_A ) # Expected shouldn't change self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size. __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_A ) __A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) # Check the shards when the dataset is very small. __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[[0, 1]], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) __A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_A ) __A = [[], []] self.check_batch_sampler_shards(_A , _A , split_batches=_A , even_batches=_A ) def lowercase_ ( self :Tuple ) -> Dict: '''simple docstring''' __A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __A = [BatchSamplerShard(_A , 2 , _A , even_batches=_A ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self :int , _A :Optional[Any] , _A :List[str] , _A :Dict , _A :Any=False , _A :str=2 , _A :Any=False ) -> Dict: '''simple docstring''' random.seed(_A ) __A = list(_A ) __A = [ IterableDatasetShard( _A , batch_size=_A , drop_last=_A , num_processes=_A , process_index=_A , split_batches=_A , ) for i in range(_A ) ] __A = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_A ) iterable_dataset_lists.append(list(_A ) ) __A = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __A = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_A ) , len(_A ) ) self.assertTrue(len(_A ) % shard_batch_size == 0 ) __A = [] for idx in range(0 , len(_A ) , _A ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_A ) < len(_A ): reference += reference self.assertListEqual(_A , reference[: len(_A )] ) def lowercase_ ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' __A = 42 __A = RandomIterableDataset() self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) # Edge case with a very small dataset __A = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) self.check_iterable_dataset_shards(_A , _A , batch_size=4 , drop_last=_A , split_batches=_A ) def lowercase_ ( self :Optional[Any] ) -> List[str]: '''simple docstring''' __A = BatchSampler(range(16 ) , batch_size=4 , drop_last=_A ) __A = SkipBatchSampler(_A , 2 ) self.assertListEqual(list(_A ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :List[str] ) -> Any: '''simple docstring''' __A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Any ) -> Dict: '''simple docstring''' __A = DataLoader(list(range(16 ) ) , batch_size=4 ) __A = skip_first_batches(_A , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self :Tuple ) -> Optional[Any]: '''simple docstring''' __A = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self :Dict ) -> Any: '''simple docstring''' Accelerator() __A = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_A ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
161
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _UpperCamelCase (a__ :str , a__ :str , **a__ :List[str] ): """simple docstring""" UpperCamelCase__ = AutoConfig.from_pretrained(a__ , **a__ ) UpperCamelCase__ = AutoModelForSeqaSeqLM.from_config(a__ ) model.save_pretrained(a__ ) AutoTokenizer.from_pretrained(a__ ).save_pretrained(a__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
87
import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """masked_bert""" def __init__( self , __lowerCAmelCase=30522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0 , __lowerCAmelCase="topK" , __lowerCAmelCase="constant" , __lowerCAmelCase=0.0 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = hidden_act UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = pruning_method UpperCamelCase__ = mask_init UpperCamelCase__ = mask_scale
87
1
from __future__ import annotations def lowerCamelCase__ ( snake_case_ : list[int] , snake_case_ : int ) -> bool: if len(snake_case_ ) == 0: return False __snake_case = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case_ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case_ ) if __name__ == "__main__": snake_case_ = input('Enter numbers separated by comma:\n').strip() snake_case_ = [int(item.strip()) for item in user_input.split(',')] snake_case_ = int(input('Enter the number to be found in the list:\n').strip()) snake_case_ = '' if binary_search(sequence, target) else 'not ' print(F'{target} was {not_str}found in {sequence}')
24
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : List[Any] = 16 __lowerCAmelCase : Any = 32 def a__ ( A_, A_, A_, A_, A_ = 16 ): '''simple docstring''' __magic_name__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __magic_name__ = DatasetDict( { """train""": dataset["""train"""].select(A_ ), """validation""": dataset["""train"""].select(A_ ), """test""": dataset["""validation"""], } ) def tokenize_function(A_ ): # max_length=None => use the model max length (it's actually the default) __magic_name__ = tokenizer(examples["""sentence1"""], examples["""sentence2"""], truncation=A_, max_length=A_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __magic_name__ = datasets.map( A_, batched=A_, remove_columns=["""idx""", """sentence1""", """sentence2"""], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __magic_name__ = tokenized_datasets.rename_column("""label""", """labels""" ) def collate_fn(A_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __magic_name__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __magic_name__ = 16 elif accelerator.mixed_precision != "no": __magic_name__ = 8 else: __magic_name__ = None return tokenizer.pad( A_, padding="""longest""", max_length=A_, pad_to_multiple_of=A_, return_tensors="""pt""", ) # Instantiate dataloaders. __magic_name__ = DataLoader( tokenized_datasets["""train"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""validation"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) __magic_name__ = DataLoader( tokenized_datasets["""test"""], shuffle=A_, collate_fn=A_, batch_size=A_ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] # Download the dataset __magic_name__ = load_dataset("""glue""", """mrpc""" ) # Create our splits __magic_name__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __magic_name__ = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __magic_name__ = config["""lr"""] __magic_name__ = int(config["""num_epochs"""] ) __magic_name__ = int(config["""seed"""] ) __magic_name__ = int(config["""batch_size"""] ) __magic_name__ = evaluate.load("""glue""", """mrpc""" ) # If the batch size is too big we use gradient accumulation __magic_name__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __magic_name__ = batch_size // MAX_GPU_BATCH_SIZE __magic_name__ = MAX_GPU_BATCH_SIZE set_seed(A_ ) # New Code # # Create our folds: __magic_name__ = kfold.split(np.zeros(datasets["""train"""].num_rows ), datasets["""train"""]["""label"""] ) __magic_name__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A_ ): __magic_name__ , __magic_name__ , __magic_name__ = get_fold_dataloaders( A_, A_, A_, A_, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __magic_name__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""", return_dict=A_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __magic_name__ = model.to(accelerator.device ) # Instantiate optimizer __magic_name__ = AdamW(params=model.parameters(), lr=A_ ) # Instantiate scheduler __magic_name__ = get_linear_schedule_with_warmup( optimizer=A_, num_warmup_steps=100, num_training_steps=(len(A_ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = accelerator.prepare( A_, A_, A_, A_, A_ ) # Now we train the model for epoch in range(A_ ): model.train() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __magic_name__ = model(**A_ ) __magic_name__ = outputs.loss __magic_name__ = loss / gradient_accumulation_steps accelerator.backward(A_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits.argmax(dim=-1 ) __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=A_, references=A_, ) __magic_name__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''', A_ ) # New Code # # We also run predictions on the test set at the very end __magic_name__ = [] for step, batch in enumerate(A_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits __magic_name__ , __magic_name__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A_, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __magic_name__ = torch.cat(A_, dim=0 ) __magic_name__ = torch.stack(A_, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __magic_name__ = metric.compute(predictions=A_, references=A_ ) accelerator.print("""Average test metrics from all folds:""", A_ ) def a__ ( ): '''simple docstring''' __magic_name__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""", type=A_, default=A_, choices=["""no""", """fp16""", """bf16""", """fp8"""], help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""", ) parser.add_argument("""--cpu""", action="""store_true""", help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""", type=A_, default=3, help="""The number of splits to perform across the dataset""" ) __magic_name__ = parser.parse_args() __magic_name__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(A_, A_ ) if __name__ == "__main__": main()
88
0
from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" return "".join(sorted(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> list[str]: """simple docstring""" return word_by_signature[signature(SCREAMING_SNAKE_CASE )] UpperCAmelCase = Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") UpperCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) UpperCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": UpperCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
267
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu UpperCAmelCase = False class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self ): return 12 @property def UpperCamelCase__ ( self ): return 12 @property def UpperCamelCase__ ( self ): return 32 @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def UpperCamelCase__ ( self ): snake_case_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(_UpperCAmelCase ) @property def UpperCamelCase__ ( self ): torch.manual_seed(0 ) snake_case_ = 12 snake_case_ = 12 snake_case_ = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } snake_case_ = TransformeraDModel(**_UpperCAmelCase ) return model def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings(learnable=_UpperCAmelCase ) snake_case_ = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''teddy bear playing in the pool''' snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' ) snake_case_ = output.images snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=_UpperCAmelCase , output_type='''np''' , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): snake_case_ = '''cpu''' snake_case_ = self.dummy_vqvae snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_transformer snake_case_ = VQDiffusionScheduler(self.num_embed ) snake_case_ = LearnedClassifierFreeSamplingEmbeddings( learnable=_UpperCAmelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case_ = VQDiffusionPipeline( vqvae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , transformer=_UpperCAmelCase , scheduler=_UpperCAmelCase , learned_classifier_free_sampling_embeddings=_UpperCAmelCase , ) snake_case_ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) snake_case_ = '''teddy bear playing in the pool''' snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe([prompt] , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='''np''' ) snake_case_ = output.images snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipe( [prompt] , generator=_UpperCAmelCase , output_type='''np''' , return_dict=_UpperCAmelCase , num_inference_steps=2 )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case_ = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): snake_case_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) snake_case_ = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) snake_case_ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) snake_case_ = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_UpperCAmelCase , output_type='''np''' , ) snake_case_ = output.images[0] assert image.shape == (2_56, 2_56, 3) assert np.abs(expected_image - image ).max() < 2.0
267
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration SCREAMING_SNAKE_CASE_:int = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" A : str = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_:List[Any] = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[Any]: """simple docstring""" A : Optional[int] = list(s_dict.keys() ) for key in keys: A : str = key for k, v in WHISPER_MAPPING.items(): if k in key: A : List[Any] = new_key.replace(_lowerCAmelCase , _lowerCAmelCase ) print(f'''{key} -> {new_key}''' ) A : List[str] = s_dict.pop(_lowerCAmelCase ) return s_dict def __UpperCamelCase ( _lowerCAmelCase ) -> Tuple: """simple docstring""" A : int = emb.weight.shape A : Optional[Any] = nn.Linear(_lowerCAmelCase , _lowerCAmelCase , bias=_lowerCAmelCase ) A : Optional[Any] = emb.weight.data return lin_layer def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) A : List[Any] = os.path.basename(_lowerCAmelCase ) A : List[str] = url.split("""/""" )[-2] A : str = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ) and not os.path.isfile(_lowerCAmelCase ): raise RuntimeError(f'''{download_target} exists and is not a regular file''' ) if os.path.isfile(_lowerCAmelCase ): A : Dict = open(_lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(_lowerCAmelCase ) as source, open(_lowerCAmelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=_lowerCAmelCase , unit_divisor=1024 ) as loop: while True: A : int = source.read(8192 ) if not buffer: break output.write(_lowerCAmelCase ) loop.update(len(_lowerCAmelCase ) ) A : Any = open(_lowerCAmelCase , """rb""" ).read() if hashlib.shaaaa(_lowerCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: """simple docstring""" if ".pt" not in checkpoint_path: A : Dict = _download(_MODELS[checkpoint_path] ) else: A : Any = torch.load(_lowerCAmelCase , map_location="""cpu""" ) A : List[str] = original_checkpoint["dims"] A : Any = original_checkpoint["model_state_dict"] A : Optional[Any] = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(_lowerCAmelCase ) rename_keys(_lowerCAmelCase ) A : int = True A : Union[str, Any] = state_dict["decoder.layers.0.fc1.weight"].shape[0] A : Optional[int] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=_lowerCAmelCase , decoder_ffn_dim=_lowerCAmelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) A : Tuple = WhisperForConditionalGeneration(_lowerCAmelCase ) A : List[str] = model.model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0 and not set(_lowerCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f''' but all the following weights are missing {missing}''' ) if tie_embeds: A : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A : Optional[int] = proj_out_weights model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Optional[int] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE_:str = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
116
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } SCREAMING_SNAKE_CASE_ : Any = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(_A ),_A ) def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4 ) self.assertTrue(np.allclose(transpose(_A ),x.transpose() ) ) SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),x.transpose((1, 2, 0) ) ) ) @require_torch def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = torch.tensor(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A ),transpose(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),transpose(_A,axes=(1, 2, 0) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A ),np.asarray(transpose(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.array(_A ) self.assertTrue(np.allclose(transpose(_A,axes=(1, 2, 0) ),np.asarray(transpose(_A,axes=(1, 2, 0) ) ) ) ) def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.reshape(_A,(4, 3) ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(3,4,5 ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.reshape(_A,(12, 5) ) ) ) @require_torch def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Dict = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : int = torch.tensor(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),reshape(_A,(4, 3) ).numpy() ) ) SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Any = tf.constant(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),reshape(_A,(12, 5) ).numpy() ) ) @require_flax def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : int = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(4, 3) ),np.asarray(reshape(_A,(4, 3) ) ) ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.random.randn(3,4,5 ) SCREAMING_SNAKE_CASE_ : Tuple = jnp.array(_A ) self.assertTrue(np.allclose(reshape(_A,(12, 5) ),np.asarray(reshape(_A,(12, 5) ) ) ) ) def __UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(1,3,4 ) self.assertTrue(np.allclose(squeeze(_A ),np.squeeze(_A ) ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.squeeze(_A,axis=2 ) ) ) @require_torch def __UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Any = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A ),squeeze(_A ).numpy() ) ) SCREAMING_SNAKE_CASE_ : Any = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),squeeze(_A,axis=2 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(1,3,4 ) SCREAMING_SNAKE_CASE_ : List[str] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A ),np.asarray(squeeze(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : str = np.random.randn(1,4,1,5 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(squeeze(_A,axis=2 ),np.asarray(squeeze(_A,axis=2 ) ) ) ) def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.expand_dims(_A,axis=1 ) ) ) @require_torch def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.tensor(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_tf def __UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.constant(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),expand_dims(_A,axis=1 ).numpy() ) ) @require_flax def __UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = np.random.randn(3,4 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = jnp.array(_A ) self.assertTrue(np.allclose(expand_dims(_A,axis=1 ),np.asarray(expand_dims(_A,axis=1 ) ) ) )
18
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase_ = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def lowerCamelCase__ ( A__ : str , A__ : int=None , A__ : Union[str, Any]=None , A__ : Tuple=None ): '''simple docstring''' __lowerCamelCase = True while ask_again: __lowerCamelCase = input(A__ ) try: if default is not None and len(A__ ) == 0: return default return convert_value(A__ ) if convert_value is not None else result except Exception: if error_message is not None: print(A__ ) def lowerCamelCase__ ( A__ : Dict , A__ : Optional[int]=[] , A__ : int=None , A__ : Tuple=0 ): '''simple docstring''' __lowerCamelCase = BulletMenu(A__ , A__ ) __lowerCamelCase = menu.run(default_choice=A__ ) return convert_value(A__ ) if convert_value is not None else result def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' __lowerCamelCase = int(A__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def lowerCamelCase__ ( A__ : List[Any] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def lowerCamelCase__ ( A__ : List[str] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def lowerCamelCase__ ( A__ : Optional[int] ): '''simple docstring''' __lowerCamelCase = int(A__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def lowerCamelCase__ ( A__ : Tuple ): '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class lowerCamelCase__( argparse.RawDescriptionHelpFormatter): def lowerCAmelCase__ ( self: str , UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[int] ): __lowerCamelCase = super()._format_usage(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = usage.replace("""<command> [<args>] """ , """""" ) return usage
29
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Any] )->int: '''simple docstring''' return (data["data"], data["target"]) def _lowerCAmelCase ( lowerCAmelCase_ :List[Any] , lowerCAmelCase_ :Dict , lowerCAmelCase_ :Dict )->Optional[Any]: '''simple docstring''' snake_case_ = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(lowerCamelCase__ , lowerCamelCase__ ) # Predict target for test data snake_case_ = xgb.predict(lowerCamelCase__ ) snake_case_ = predictions.reshape(len(lowerCamelCase__ ) , 1 ) return predictions def _lowerCAmelCase ( )->List[str]: '''simple docstring''' snake_case_ = fetch_california_housing() snake_case_ , snake_case_ = data_handling(lowerCamelCase__ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split( lowerCamelCase__ , lowerCamelCase__ , test_size=0.2_5 , random_state=1 ) snake_case_ = xgboost(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(lowerCamelCase__ , lowerCamelCase__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(lowerCamelCase__ , lowerCamelCase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
159
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __A =logging.get_logger(__name__) __A =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Model type selected in the list: ' + ', '.join(snake_case_ )} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCAmelCase__ = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCAmelCase__ = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCAmelCase__ = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCAmelCase__ = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'train' lowerCAmelCase__ = 'dev' class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , lowercase , lowercase , lowercase = None , lowercase = Split.train , lowercase = False , lowercase = None , lowercase = "pt" , ) -> List[str]: lowerCamelCase_ = args lowerCamelCase_ = is_language_sensitive lowerCamelCase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase , lowercase ): try: lowerCamelCase_ = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase_ = mode # Load data features from cache or dataset file lowerCamelCase_ = "v2" if args.version_2_with_negative else "v1" lowerCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase_ = cached_features_file + ".lock" with FileLock(lowercase ): if os.path.exists(lowercase ) and not args.overwrite_cache: lowerCamelCase_ = time.time() lowerCamelCase_ = torch.load(lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase_ = self.old_features["features"] lowerCamelCase_ = self.old_features.get("dataset" , lowercase ) lowerCamelCase_ = self.old_features.get("examples" , lowercase ) logger.info( f'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' " future run" ) else: if mode == Split.dev: lowerCamelCase_ = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase_ = self.processor.get_train_examples(args.data_dir ) lowerCamelCase_ , lowerCamelCase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase , ) lowerCamelCase_ = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Tuple: return len(self.features ) def __getitem__( self , lowercase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset lowerCamelCase_ = self.features[i] lowerCamelCase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase_ = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
19
0
import functools from typing import Any def a( A : str , A : List[Any] ) -> Any: """simple docstring""" if not isinstance(A , A ) or len(A ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(A , A ) or not all( isinstance(A , A ) and len(A ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie a = {} a = '''WORD_KEEPER''' for word in words: a = trie for c in word: if c not in trie_node: a = {} a = trie_node[c] a = True a = len(A ) # Dynamic programming method @functools.cache def is_breakable(A : str ) -> bool: if index == len_string: return True a = trie for i in range(A , A ): a = trie_node.get(string[i] , A ) if trie_node is None: return False if trie_node.get(A , A ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
371
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def a( A : List[str] , A : int=0.999 , A : Union[str, Any]="cosine" , ) -> Optional[int]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(A : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) a = [] for i in range(A ): a = i / num_diffusion_timesteps a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A ) / alpha_bar_fn(A ) , A ) ) return torch.tensor(A , dtype=torch.floataa ) class _lowercase ( lowerCAmelCase, lowerCAmelCase ): """simple docstring""" __A = [e.name for e in KarrasDiffusionSchedulers] __A = 2 @register_to_config def __init__(self , lowerCamelCase_ = 1000 , lowerCamelCase_ = 0.0_0085 , lowerCamelCase_ = 0.012 , lowerCamelCase_ = "linear" , lowerCamelCase_ = None , lowerCamelCase_ = "epsilon" , lowerCamelCase_ = "linspace" , lowerCamelCase_ = 0 , ): """simple docstring""" if trained_betas is not None: a = torch.tensor(lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": a = torch.linspace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a = betas_for_alpha_bar(lowerCamelCase_ ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) a = 1.0 - self.betas a = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ): """simple docstring""" if schedule_timesteps is None: a = self.timesteps a = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: a = 1 if len(lowerCamelCase_ ) > 1 else 0 else: a = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep a = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase_ (self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = self.index_for_timestep(lowerCamelCase_ ) if self.state_in_first_order: a = self.sigmas[step_index] else: a = self.sigmas_interpol[step_index] a = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ): """simple docstring""" a = num_inference_steps a = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a = np.linspace(0 , num_train_timesteps - 1 , lowerCamelCase_ , dtype=lowerCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": a = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(0 , lowerCamelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a = (np.arange(lowerCamelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCamelCase_ ) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) a = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) a = torch.from_numpy(np.log(lowerCamelCase_ ) ).to(lowerCamelCase_ ) a = np.interp(lowerCamelCase_ , np.arange(0 , len(lowerCamelCase_ ) ) , lowerCamelCase_ ) a = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) a = torch.from_numpy(lowerCamelCase_ ).to(device=lowerCamelCase_ ) # interpolate sigmas a = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() a = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) a = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCamelCase_ ).startswith("mps" ): # mps does not support float64 a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ , dtype=torch.floataa ) else: a = torch.from_numpy(lowerCamelCase_ ).to(lowerCamelCase_ ) # interpolate timesteps a = self.sigma_to_t(lowerCamelCase_ ).to(lowerCamelCase_ , dtype=timesteps.dtype ) a = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() a = torch.cat([timesteps[:1], interleaved_timesteps] ) a = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a = defaultdict(lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = sigma.log() # get distribution a = log_sigma - self.log_sigmas[:, None] # get sigmas range a = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) a = low_idx + 1 a = self.log_sigmas[low_idx] a = self.log_sigmas[high_idx] # interpolate sigmas a = (low - log_sigma) / (low - high) a = w.clamp(0 , 1 ) # transform interpolation to time range a = (1 - w) * low_idx + w * high_idx a = t.view(sigma.shape ) return t @property def UpperCamelCase_ (self ): """simple docstring""" return self.sample is None def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True , ): """simple docstring""" a = self.index_for_timestep(lowerCamelCase_ ) # advance index counter by 1 a = timestep.cpu().item() if torch.is_tensor(lowerCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a = self.sigmas[step_index] a = self.sigmas_interpol[step_index + 1] a = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a = self.sigmas[step_index - 1] a = self.sigmas_interpol[step_index] a = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a = 0 a = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a = sigma_hat if self.state_in_first_order else sigma_interpol a = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a = sigma_hat if self.state_in_first_order else sigma_interpol a = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a = sigma_interpol - sigma_hat # store for 2nd order step a = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a = sigma_next - sigma_hat a = self.sample a = None a = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCamelCase_ ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ): """simple docstring""" a = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCamelCase_ ): # mps does not support float64 a = self.timesteps.to(original_samples.device , dtype=torch.floataa ) a = timesteps.to(original_samples.device , dtype=torch.floataa ) else: a = self.timesteps.to(original_samples.device ) a = timesteps.to(original_samples.device ) a = [self.index_for_timestep(lowerCamelCase_ , lowerCamelCase_ ) for t in timesteps] a = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): a = sigma.unsqueeze(-1 ) a = original_samples + noise * sigma return noisy_samples def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
71
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _UpperCamelCase = 8 def lowerCAmelCase__( lowercase : Any , lowercase : Tuple=BITS ) -> Tuple: __snake_case : int = x.device __snake_case : List[Any] = (x * 255).int().clamp(0 , 255 ) __snake_case : str = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase ) __snake_case : Tuple = rearrange(lowercase , "d -> d 1 1" ) __snake_case : Any = rearrange(lowercase , "b c h w -> b c 1 h w" ) __snake_case : str = ((x & mask) != 0).float() __snake_case : Optional[int] = rearrange(lowercase , "b c d h w -> b (c d) h w" ) __snake_case : Optional[Any] = bits * 2 - 1 return bits def lowerCAmelCase__( lowercase : List[str] , lowercase : Optional[Any]=BITS ) -> str: __snake_case : str = x.device __snake_case : Any = (x > 0).int() __snake_case : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase , dtype=torch.intaa ) __snake_case : Optional[int] = rearrange(lowercase , "d -> d 1 1" ) __snake_case : Optional[Any] = rearrange(lowercase , "b (c d) h w -> b c d h w" , d=8 ) __snake_case : Tuple = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 255).clamp(0.0 , 1.0 ) def lowerCAmelCase__( self : Union[str, Any] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : float = 0.0 , lowercase : bool = True , lowercase : Tuple=None , lowercase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case : Union[str, Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case : Any = self.alphas_cumprod[timestep] __snake_case : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case : Optional[int] = self.bit_scale if self.config.clip_sample: __snake_case : Union[str, Any] = torch.clamp(lowercase , -scale , lowercase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case : List[str] = self._get_variance(lowercase , lowercase ) __snake_case : Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : Dict = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case : List[Any] = model_output.device if torch.is_tensor(lowercase ) else "cpu" __snake_case : List[str] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase ).to(lowercase ) __snake_case : Tuple = self._get_variance(lowercase , lowercase ) ** 0.5 * eta * noise __snake_case : str = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) def lowerCAmelCase__( self : List[str] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : Optional[Any]="epsilon" , lowercase : Optional[int]=None , lowercase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: __snake_case : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case : Any = torch.split(lowercase , sample.shape[1] , dim=1 ) else: __snake_case : Any = None # 1. compute alphas, betas __snake_case : str = self.alphas_cumprod[t] __snake_case : int = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case : str = 1 - alpha_prod_t __snake_case : Tuple = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case : List[Any] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __snake_case : int = self.bit_scale if self.config.clip_sample: __snake_case : Optional[int] = torch.clamp(lowercase , -scale , lowercase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Dict = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case : Union[str, Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case : int = 0 if t > 0: __snake_case : Dict = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase ).to(model_output.device ) __snake_case : Optional[int] = (self._get_variance(lowercase , predicted_variance=lowercase ) ** 0.5) * noise __snake_case : Tuple = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) class _lowerCamelCase ( a ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> List[str]: '''simple docstring''' super().__init__() __snake_case : Optional[int] = bit_scale __snake_case : Tuple = ( ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' __snake_case : Optional[int] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , ) __snake_case : List[Any] = decimal_to_bits(UpperCAmelCase ) * self.bit_scale __snake_case : Dict = latents.to(self.device ) self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __snake_case : Optional[Any] = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case : Any = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __snake_case : List[str] = bits_to_decimal(UpperCAmelCase ) if output_type == "pil": __snake_case : Optional[Any] = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
326
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowerCAmelCase__( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] , lowercase : List[Any] ) -> Tuple: # Load configuration defined in the metadata file with open(lowercase ) as metadata_file: __snake_case : int = json.load(lowercase ) __snake_case : Optional[int] = LukeConfig(use_entity_aware_attention=lowercase , **metadata["model_config"] ) # Load in the weights from the checkpoint_path __snake_case : List[Any] = torch.load(lowercase , map_location="cpu" )["module"] # Load the entity vocab file __snake_case : Tuple = load_original_entity_vocab(lowercase ) # add an entry for [MASK2] __snake_case : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 __snake_case : Union[str, Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks __snake_case : Optional[int] = AddedToken("<ent>" , lstrip=lowercase , rstrip=lowercase ) __snake_case : Any = AddedToken("<ent2>" , lstrip=lowercase , rstrip=lowercase ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase ) with open(os.path.join(lowercase , "tokenizer_config.json" ) , "r" ) as f: __snake_case : Tuple = json.load(lowercase ) __snake_case : List[Any] = "MLukeTokenizer" with open(os.path.join(lowercase , "tokenizer_config.json" ) , "w" ) as f: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase , lowercase ) __snake_case : Any = MLukeTokenizer.from_pretrained(lowercase ) # Initialize the embeddings of the special tokens __snake_case : str = tokenizer.convert_tokens_to_ids(["@"] )[0] __snake_case : List[str] = tokenizer.convert_tokens_to_ids(["#"] )[0] __snake_case : List[Any] = state_dict["embeddings.word_embeddings.weight"] __snake_case : Union[str, Any] = word_emb[ent_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: __snake_case : List[Any] = state_dict[bias_name] __snake_case : Optional[int] = decoder_bias[ent_init_index].unsqueeze(0 ) __snake_case : int = decoder_bias[enta_init_index].unsqueeze(0 ) __snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __snake_case : Dict = f"""encoder.layer.{layer_index}.attention.self.""" __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] __snake_case : str = state_dict[prefix + matrix_name] __snake_case : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __snake_case : Any = state_dict["entity_embeddings.entity_embeddings.weight"] __snake_case : List[str] = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' __snake_case : List[Any] = state_dict["entity_predictions.bias"] __snake_case : List[Any] = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) __snake_case : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) __snake_case : Any = LukeForMaskedLM(config=lowercase ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) __snake_case : int = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): __snake_case : str = state_dict[key] else: __snake_case : str = state_dict[key] __snake_case , __snake_case : Union[str, Any] = model.load_state_dict(lowercase , strict=lowercase ) if set(lowercase ) != {"luke.embeddings.position_ids"}: raise ValueError(f"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs __snake_case : int = MLukeTokenizer.from_pretrained(lowercase , task="entity_classification" ) __snake_case : Tuple = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." __snake_case : Union[str, Any] = (0, 9) __snake_case : Optional[int] = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : Any = model(**lowercase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : Optional[Any] = torch.Size((1, 33, 768) ) __snake_case : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base __snake_case : str = torch.Size((1, 1, 768) ) __snake_case : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction __snake_case : str = MLukeTokenizer.from_pretrained(lowercase ) __snake_case : Dict = "Tokyo is the capital of <mask>." __snake_case : Union[str, Any] = (24, 30) __snake_case : int = tokenizer(lowercase , entity_spans=[span] , return_tensors="pt" ) __snake_case : int = model(**lowercase ) __snake_case : Dict = encoding["input_ids"][0].tolist() __snake_case : Dict = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) __snake_case : Optional[int] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase ) __snake_case : Optional[Any] = outputs.entity_logits[0][0].argmax().item() __snake_case : Optional[int] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase ) ) model.save_pretrained(lowercase ) def lowerCAmelCase__( lowercase : Optional[int] ) -> List[Any]: __snake_case : Any = ["[MASK]", "[PAD]", "[UNK]"] __snake_case : Any = [json.loads(lowercase ) for line in open(lowercase )] __snake_case : Any = {} for entry in data: __snake_case : Any = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: __snake_case : Optional[int] = entity_id break __snake_case : Union[str, Any] = f"""{language}:{entity_name}""" __snake_case : Any = entity_id return new_mapping if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) _UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
326
1
def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = abs(lowercase__ ) lowerCAmelCase_ : int = 0 while n > 0: res += n % 10 n //= 10 return res def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = abs(lowercase__ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __UpperCamelCase ( lowercase__ : int ) -> int: '''simple docstring''' return sum(int(lowercase__ ) for c in str(abs(lowercase__ ) ) ) def __UpperCamelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase__ : Callable , lowercase__ : int ) -> None: lowerCAmelCase_ : Union[str, Any] = f'{func.__name__}({value})' lowerCAmelCase_ : Any = timeit(f'__main__.{call}' , setup="""import __main__""" ) print(f'{call:56} = {func(lowercase__ )} -- {timing:.4f} seconds' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase__ , lowercase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
def lowercase_ ( _A : int = 600851475143 ): """simple docstring""" try: lowerCamelCase__ : Tuple = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) lowerCamelCase__ : Tuple = 2 lowerCamelCase__ : List[str] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowerCamelCase__ : int = i while n % i == 0: lowerCamelCase__ : Union[str, Any] = n // i i += 1 return int(__lowerCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
184
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[Any] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
270
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , ): '''simple docstring''' _UpperCAmelCase : Dict = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : Tuple = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Optional[Any] = is_training _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : str = hidden_act _UpperCAmelCase : Union[str, Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Dict = scope _UpperCAmelCase : List[str] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Dict = (image_size // patch_size) ** 2 _UpperCAmelCase : Tuple = num_patches + 1 def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Dict = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : str = ViTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : List[str] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = ViTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : Any = ViTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : str = self.type_sequence_label_size _UpperCAmelCase : List[Any] = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : Optional[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[int] = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _UpperCAmelCase : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Union[str, Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Dict = config_and_inputs _UpperCAmelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a ( _snake_case , _snake_case , unittest.TestCase ): _lowercase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _lowercase = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) _lowercase = True _lowercase = False _lowercase = False _lowercase = False def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = ViTModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = model_class(UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Union[str, Any] = [*signature.parameters.keys()] _UpperCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : str = ViTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: _UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(UpperCamelCase__ ) _UpperCAmelCase : Union[str, Any] = self.default_image_processor _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**UpperCamelCase__ ) # verify the logits _UpperCAmelCase : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _UpperCAmelCase : List[str] = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = ViTModel.from_pretrained("facebook/dino-vits8" ).to(UpperCamelCase__ ) _UpperCAmelCase : Any = ViTImageProcessor.from_pretrained("facebook/dino-vits8" , size=480 ) _UpperCAmelCase : str = prepare_img() _UpperCAmelCase : List[str] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) _UpperCAmelCase : Optional[int] = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _UpperCAmelCase : Dict = model(UpperCamelCase__ , interpolate_pos_encoding=UpperCamelCase__ ) # verify the logits _UpperCAmelCase : Tuple = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) _UpperCAmelCase : Optional[Any] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = ViTModel.from_pretrained("facebook/dino-vits8" , torch_dtype=torch.floataa , device_map="auto" ) _UpperCAmelCase : int = self.default_image_processor _UpperCAmelCase : Dict = prepare_img() _UpperCAmelCase : Dict = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) _UpperCAmelCase : List[str] = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCAmelCase : str = model(UpperCamelCase__ )
363
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a ( UpperCAmelCase ): def __get__( self , A_ , A_=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) _UpperCAmelCase : Optional[int] = "__cached_" + self.fget.__name__ _UpperCAmelCase : Union[str, Any] = getattr(A_ , A_ , A_ ) if cached is None: _UpperCAmelCase : Dict = self.fget(A_ ) setattr(A_ , A_ , A_ ) return cached def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> int: _UpperCAmelCase : str = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> int: if is_torch_fx_proxy(lowerCAmelCase ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase , np.ndarray ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Dict: return isinstance(lowerCAmelCase , np.ndarray ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> Any: return _is_numpy(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Optional[int]: import torch return isinstance(lowerCAmelCase , torch.Tensor ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: return False if not is_torch_available() else _is_torch(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> List[Any]: import torch return isinstance(lowerCAmelCase , torch.device ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Tuple: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Tuple: import torch if isinstance(lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , lowerCAmelCase ): _UpperCAmelCase : Any = getattr(lowerCAmelCase , lowerCAmelCase ) else: return False return isinstance(lowerCAmelCase , torch.dtype ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> int: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> Optional[Any]: import tensorflow as tf return isinstance(lowerCAmelCase , tf.Tensor ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Optional[Any]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowerCAmelCase ) return type(lowerCAmelCase ) == tf.Tensor def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Optional[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[str]: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase , jnp.ndarray ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> str: return False if not is_flax_available() else _is_jax(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Tuple: if isinstance(lowerCAmelCase , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase ) for k, v in obj.items()} elif isinstance(lowerCAmelCase , (list, tuple) ): return [to_py_obj(lowerCAmelCase ) for o in obj] elif is_tf_tensor(lowerCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase ): return np.asarray(lowerCAmelCase ).tolist() elif isinstance(lowerCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[Any]: if isinstance(lowerCAmelCase , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase ) for k, v in obj.items()} elif isinstance(lowerCAmelCase , (list, tuple) ): return np.array(lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase ): return np.asarray(lowerCAmelCase ) else: return obj class a ( UpperCAmelCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(A_ ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) _UpperCAmelCase : Any = getattr(self , class_fields[0].name ) _UpperCAmelCase : List[str] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(A_ ): if isinstance(A_ , A_ ): _UpperCAmelCase : Union[str, Any] = first_field.items() _UpperCAmelCase : Optional[int] = True else: try: _UpperCAmelCase : Tuple = iter(A_ ) _UpperCAmelCase : Any = True except TypeError: _UpperCAmelCase : str = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(A_ ): if ( not isinstance(A_ , (list, tuple) ) or not len(A_ ) == 2 or not isinstance(element[0] , A_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _UpperCAmelCase : List[str] = element[1] elif first_field is not None: _UpperCAmelCase : Tuple = first_field else: for field in class_fields: _UpperCAmelCase : int = getattr(self , field.name ) if v is not None: _UpperCAmelCase : Union[str, Any] = v def __delitem__( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ): _UpperCAmelCase : Optional[int] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , A_ , A_ ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(A_ , A_ ) super().__setattr__(A_ , A_ ) def __setitem__( self , A_ , A_ ): '''simple docstring''' super().__setitem__(A_ , A_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class a ( UpperCAmelCase , UpperCAmelCase ): @classmethod def _UpperCAmelCase ( cls , A_ ): '''simple docstring''' raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class a ( UpperCAmelCase ): _lowercase = "longest" _lowercase = "max_length" _lowercase = "do_not_pad" class a ( UpperCAmelCase ): _lowercase = "pt" _lowercase = "tf" _lowercase = "np" _lowercase = "jax" class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = context_managers _UpperCAmelCase : Dict = ExitStack() def __enter__( self ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(A_ ) def __exit__( self , *A_ , **A_ ): '''simple docstring''' self.stack.__exit__(*A_ , **A_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = infer_framework(lowerCAmelCase ) if framework == "tf": _UpperCAmelCase : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> List[str]: _UpperCAmelCase : List[Any] = model_class.__name__ _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase ) if framework == "tf": _UpperCAmelCase : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: MutableMapping , lowerCAmelCase: str = "" , lowerCAmelCase: str = "." ) -> List[Any]: def _flatten_dict(lowerCAmelCase: int , lowerCAmelCase: Tuple="" , lowerCAmelCase: List[str]="." ): for k, v in d.items(): _UpperCAmelCase : Optional[int] = str(lowerCAmelCase ) + delimiter + str(lowerCAmelCase ) if parent_key else k if v and isinstance(lowerCAmelCase , lowerCAmelCase ): yield from flatten_dict(lowerCAmelCase , lowerCAmelCase , delimiter=lowerCAmelCase ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ) @contextmanager def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: bool = False ) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Tuple=None ) -> List[str]: if is_numpy_array(lowerCAmelCase ): return np.transpose(lowerCAmelCase , axes=lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.T if axes is None else array.permute(*lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.transpose(lowerCAmelCase , perm=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.transpose(lowerCAmelCase , axes=lowerCAmelCase ) else: raise ValueError(F'Type not supported for transpose: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any ) -> int: if is_numpy_array(lowerCAmelCase ): return np.reshape(lowerCAmelCase , lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.reshape(*lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.reshape(lowerCAmelCase , lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.reshape(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(F'Type not supported for reshape: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Union[str, Any]=None ) -> Union[str, Any]: if is_numpy_array(lowerCAmelCase ): return np.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) else: raise ValueError(F'Type not supported for squeeze: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: List[str] ) -> Union[str, Any]: if is_numpy_array(lowerCAmelCase ): return np.expand_dims(lowerCAmelCase , lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.unsqueeze(dim=lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase , axis=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.expand_dims(lowerCAmelCase , axis=lowerCAmelCase ) else: raise ValueError(F'Type not supported for expand_dims: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> int: if is_numpy_array(lowerCAmelCase ): return np.size(lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.numel() elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.size(lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: List[Any] ) -> List[Any]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase , (tuple, list) ): _UpperCAmelCase : List[Any] = [F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : Tuple = F'{repo_id}--{value}' return auto_map def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> List[Any]: for base_class in inspect.getmro(lowerCAmelCase ): _UpperCAmelCase : int = base_class.__module__ _UpperCAmelCase : Dict = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
189
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "hidden_sizes")) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "neck_hidden_sizes")) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_attention_heads")) class __lowercase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any]=13 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : List[str]=640 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Optional[int]="silu" , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Union[str, Any]=32 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : Dict=None , ): SCREAMING_SNAKE_CASE_: Any = parent SCREAMING_SNAKE_CASE_: List[Any] = batch_size SCREAMING_SNAKE_CASE_: Tuple = image_size SCREAMING_SNAKE_CASE_: Tuple = patch_size SCREAMING_SNAKE_CASE_: List[Any] = num_channels SCREAMING_SNAKE_CASE_: str = last_hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_: Dict = hidden_act SCREAMING_SNAKE_CASE_: Optional[Any] = conv_kernel_size SCREAMING_SNAKE_CASE_: str = output_stride SCREAMING_SNAKE_CASE_: Any = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: int = classifier_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] = use_labels SCREAMING_SNAKE_CASE_: Union[str, Any] = is_training SCREAMING_SNAKE_CASE_: Any = num_labels SCREAMING_SNAKE_CASE_: Tuple = initializer_range SCREAMING_SNAKE_CASE_: List[str] = scope def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_: str = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE_: Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) SCREAMING_SNAKE_CASE_: List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = MobileViTModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Tuple = model(lowerCAmelCase__) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: List[Any] = self.num_labels SCREAMING_SNAKE_CASE_: str = MobileViTForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: Any = self.num_labels SCREAMING_SNAKE_CASE_: List[Any] = MobileViTForSemanticSegmentation(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() SCREAMING_SNAKE_CASE_: Union[str, Any] = model(lowerCAmelCase__) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE_: List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = config_and_inputs SCREAMING_SNAKE_CASE_: int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _UpperCAmelCase : str = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : int = False def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = MobileViTModelTester(self) SCREAMING_SNAKE_CASE_: Union[str, Any] = MobileViTConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : int): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds") def _SCREAMING_SNAKE_CASE ( self : str): pass @unittest.skip(reason="MobileViT does not support input and output embeddings") def _SCREAMING_SNAKE_CASE ( self : Dict): pass @unittest.skip(reason="MobileViT does not output attentions") def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: List[str] = model_class(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: List[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): def check_hidden_states_output(lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Dict = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) SCREAMING_SNAKE_CASE_: Optional[int] = outputs.hidden_states SCREAMING_SNAKE_CASE_: Any = 5 self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE_: Optional[Any] = 2 for i in range(len(lowerCAmelCase__)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_: Optional[int] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__) @slow def _SCREAMING_SNAKE_CASE ( self : Any): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: Optional[int] = MobileViTModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple): return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small") if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small").to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = self.default_image_processor SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: List[str] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: int = model(**lowerCAmelCase__) # verify the logits SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = torch.tensor([-1.9364, -1.2327, -0.4653]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Optional[Any] = model.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Union[str, Any] = prepare_img() SCREAMING_SNAKE_CASE_: Any = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[int] = model(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1E-4)) @slow def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: List[str] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Dict = model.to(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small") SCREAMING_SNAKE_CASE_: Dict = prepare_img() SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt").to(lowerCAmelCase__) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Union[str, Any] = model(**lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE_: Any = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(50, 60)]) SCREAMING_SNAKE_CASE_: Tuple = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , lowerCAmelCase__)
13
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _UpperCamelCase (a__ :Optional[Any] , a__ :Union[str, Any] , a__ :str , a__ :List[str] ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: UpperCamelCase__ = TOKENIZER_CLASSES else: UpperCamelCase__ = {tokenizer_name: getattr(a__ , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: UpperCamelCase__ = TOKENIZER_CLASSES[tokenizer_name] UpperCamelCase__ = True if checkpoint_name is None: UpperCamelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCamelCase__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer UpperCamelCase__ = tokenizer_class.from_pretrained(a__ , force_download=a__ ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: UpperCamelCase__ , UpperCamelCase__ = checkpoint.split("""/""" ) UpperCamelCase__ = os.path.join(a__ , a__ ) elif add_prefix: UpperCamelCase__ = checkpoint UpperCamelCase__ = dump_path else: UpperCamelCase__ = None UpperCamelCase__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCamelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCamelCase__ = file_path.split(a__ )[-1][0] if next_char == "/": UpperCamelCase__ = os.path.join(a__ , a__ ) UpperCamelCase__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) UpperCamelCase__ = tokenizer.save_pretrained( a__ , legacy_format=a__ , filename_prefix=a__ ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(a__ ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) UpperCamelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
87
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCamelCase__ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCamelCase__ = "UperNetConfig" class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1 , ): super().__init__() UpperCamelCase__ = nn.Convad( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , bias=__lowerCAmelCase , dilation=__lowerCAmelCase , ) UpperCamelCase__ = nn.BatchNormad(__lowerCAmelCase ) UpperCamelCase__ = nn.ReLU() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = self.conv(__lowerCAmelCase ) UpperCamelCase__ = self.batch_norm(__lowerCAmelCase ) UpperCamelCase__ = self.activation(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = [ nn.AdaptiveAvgPoolad(__lowerCAmelCase ), UperNetConvModule(__lowerCAmelCase , __lowerCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = input for layer in self.layers: UpperCamelCase__ = layer(__lowerCAmelCase ) return hidden_state class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = pool_scales UpperCamelCase__ = align_corners UpperCamelCase__ = in_channels UpperCamelCase__ = channels UpperCamelCase__ = [] for i, pool_scale in enumerate(__lowerCAmelCase ): UpperCamelCase__ = UperNetPyramidPoolingBlock(pool_scale=__lowerCAmelCase , in_channels=__lowerCAmelCase , channels=__lowerCAmelCase ) self.blocks.append(__lowerCAmelCase ) self.add_module(str(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = [] for ppm in self.blocks: UpperCamelCase__ = ppm(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(__lowerCAmelCase ) return ppm_outs class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase__ = in_channels UpperCamelCase__ = config.hidden_size UpperCamelCase__ = False UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase__ = nn.ModuleList() UpperCamelCase__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase__ = UperNetConvModule(__lowerCAmelCase , self.channels , kernel_size=1 ) UpperCamelCase__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__lowerCAmelCase ) self.fpn_convs.append(__lowerCAmelCase ) UpperCamelCase__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = inputs[-1] UpperCamelCase__ = [x] psp_outs.extend(self.psp_modules(__lowerCAmelCase ) ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.bottleneck(__lowerCAmelCase ) return output def _lowerCamelCase ( self , __lowerCAmelCase ): # build laterals UpperCamelCase__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__lowerCAmelCase ) ) # build top-down path UpperCamelCase__ = len(__lowerCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = laterals[i - 1].shape[2:] UpperCamelCase__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__lowerCAmelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs UpperCamelCase__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) UpperCamelCase__ = torch.cat(__lowerCAmelCase , dim=1 ) UpperCamelCase__ = self.fpn_bottleneck(__lowerCAmelCase ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 3 , __lowerCAmelCase = 1 ): super().__init__() UpperCamelCase__ = config UpperCamelCase__ = config.auxiliary_in_channels UpperCamelCase__ = config.auxiliary_channels UpperCamelCase__ = config.auxiliary_num_convs UpperCamelCase__ = config.auxiliary_concat_input UpperCamelCase__ = in_index UpperCamelCase__ = (kernel_size // 2) * dilation UpperCamelCase__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=__lowerCAmelCase , dilation=__lowerCAmelCase ) ) if self.num_convs == 0: UpperCamelCase__ = nn.Identity() else: UpperCamelCase__ = nn.Sequential(*__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__lowerCAmelCase , padding=kernel_size // 2 ) UpperCamelCase__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowerCamelCase ( self ): self.apply(self._init_weights ) def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowerCamelCase ( self , __lowerCAmelCase ): # just take the relevant feature maps UpperCamelCase__ = encoder_hidden_states[self.in_index] UpperCamelCase__ = self.convs(__lowerCAmelCase ) if self.concat_input: UpperCamelCase__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase__ = self.classifier(__lowerCAmelCase ) return output class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = UperNetConfig snake_case : List[Any] = """pixel_values""" snake_case : Optional[Any] = True def _lowerCamelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowerCamelCase ( self ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=False ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = value UpperCamelCase__ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , _a , ) class __SCREAMING_SNAKE_CASE ( _a ): def __init__( self , __lowerCAmelCase ): super().__init__(__lowerCAmelCase ) UpperCamelCase__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase__ = UperNetHead(__lowerCAmelCase , in_channels=self.backbone.channels ) UpperCamelCase__ = UperNetFCNHead(__lowerCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=__lowerCAmelCase , config_class=_CONFIG_FOR_DOC ) def _lowerCamelCase ( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , ): UpperCamelCase__ = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase__ = self.backbone.forward_with_filtered_kwargs( __lowerCAmelCase , output_hidden_states=__lowerCAmelCase , output_attentions=__lowerCAmelCase ) UpperCamelCase__ = outputs.feature_maps UpperCamelCase__ = self.decode_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate(__lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if self.auxiliary_head is not None: UpperCamelCase__ = self.auxiliary_head(__lowerCAmelCase ) UpperCamelCase__ = nn.functional.interpolate( __lowerCAmelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=__lowerCAmelCase ) UpperCamelCase__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss UpperCamelCase__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = loss_fct(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase__ = (logits,) + outputs[1:] else: UpperCamelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__lowerCAmelCase , logits=__lowerCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
87
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> str: """simple docstring""" super().tearDown() gc.collect() def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) _UpperCAmelCase = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase = images[0, 253:256, 253:256, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = 'stabilityai/stable-diffusion-2' _UpperCAmelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder='scheduler' ) _UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , revision='bf16' , dtype=jnp.bfloataa , ) _UpperCAmelCase = scheduler_params _UpperCAmelCase = 'A painting of a squirrel eating a burger' _UpperCAmelCase = jax.device_count() _UpperCAmelCase = num_samples * [prompt] _UpperCAmelCase = sd_pipe.prepare_inputs(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = shard(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = jax.random.PRNGKey(0 ) _UpperCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) _UpperCAmelCase = sd_pipe(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_inference_steps=25 , jit=_SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _UpperCAmelCase = images[0, 253:256, 253:256, -1] _UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _UpperCAmelCase = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
329
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __lowercase ( ): UpperCamelCase_ : Optional[Any] = HfArgumentParser(lowerCamelCase ) UpperCamelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] UpperCamelCase_ : Dict = TensorFlowBenchmark(args=lowerCamelCase ) try: UpperCamelCase_ : Any = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCamelCase_ : Any = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' UpperCamelCase_ : Optional[int] = ' '.join(str(lowerCamelCase ).split(' ' )[:-1] ) UpperCamelCase_ : Any = '' UpperCamelCase_ : Any = eval(str(lowerCamelCase ).split(' ' )[-1] ) UpperCamelCase_ : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: UpperCamelCase_ : List[str] = full_error_msg + begin_error_msg + str(lowerCamelCase ) raise ValueError(lowerCamelCase ) benchmark.run() if __name__ == "__main__": main()
175
0
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
363
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[Any] = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
48
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: def run_func(snake_case__ ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__, **snake_case__ ): return func(*snake_case__, **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__, **snake_case__ ): return func(*snake_case__, **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( "Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`." ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> ["tf.Tensor"]: __UpperCAmelCase : str = random.Random() __UpperCAmelCase : str = [rng.randint(0, vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__, shape=(batch_size, sequence_length), dtype=tf.intaa ) class _snake_case ( _lowercase ): lowerCamelCase__: TensorFlowBenchmarkArguments lowerCamelCase__: PretrainedConfig lowerCamelCase__: str = "TensorFlow" @property def _lowerCamelCase ( self: int ) -> Any: return tf.__version__ def _lowerCamelCase ( self: Dict , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: # initialize GPU on separate process __UpperCAmelCase : List[Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : int = self._prepare_inference_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_speed(_inference ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: __UpperCAmelCase : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : Dict = self._prepare_train_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_speed(_train ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> [Memory, Optional[MemorySummary]]: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : int = self._prepare_inference_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_memory(_inference ) def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> [Memory, Optional[MemorySummary]]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __lowerCamelCase ) __UpperCAmelCase : int = self.args.strategy if strategy is None: raise ValueError("A device strategy has to be initialized before using TensorFlow." ) __UpperCAmelCase : int = self._prepare_train_func(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return self._measure_memory(_train ) def _lowerCamelCase ( self: int , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> Callable[[], None]: __UpperCAmelCase : Union[str, Any] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __UpperCAmelCase : int = ( hasattr(__lowerCamelCase , "architectures" ) and isinstance(config.architectures , __lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase : int = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase : Dict = __import__("transformers" , fromlist=[model_class] ) __UpperCAmelCase : str = getattr(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = model_cls(__lowerCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __UpperCAmelCase : int = TF_MODEL_MAPPING[config.__class__](__lowerCamelCase ) # encoder-decoder has vocab size saved differently __UpperCAmelCase : List[str] = config.vocab_size if hasattr(__lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __UpperCAmelCase : Dict = random_input_ids(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase , training=__lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : int = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> Callable[[], None]: __UpperCAmelCase : Any = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`." ) if self.args.fpaa: raise NotImplementedError("Mixed precision is currently not supported." ) __UpperCAmelCase : Tuple = ( hasattr(__lowerCamelCase , "architectures" ) and isinstance(config.architectures , __lowerCamelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __UpperCAmelCase : Dict = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model __UpperCAmelCase : Optional[Any] = __import__("transformers" , fromlist=[model_class] ) __UpperCAmelCase : int = getattr(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = model_cls(__lowerCamelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: __UpperCAmelCase : Union[str, Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__lowerCamelCase ) # encoder-decoder has vocab size saved differently __UpperCAmelCase : List[Any] = config.vocab_size if hasattr(__lowerCamelCase , "vocab_size" ) else config.encoder.vocab_size __UpperCAmelCase : Dict = random_input_ids(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __UpperCAmelCase : List[Any] = model(__lowerCamelCase , decoder_input_ids=__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )[0] __UpperCAmelCase : Optional[Any] = tf.gradients(__lowerCamelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )[0] __UpperCAmelCase : List[Any] = tf.gradients(__lowerCamelCase , model.trainable_variables ) return gradients __UpperCAmelCase : Optional[int] = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> float: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("Do inference on TPU. Running model 5 times to stabilize compilation" ) timeit.repeat(__lowerCamelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __UpperCAmelCase : List[str] = timeit.repeat( __lowerCamelCase , repeat=self.args.repeat , number=10 , ) return min(__lowerCamelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Callable[[], None] ) -> [Memory, MemorySummary]: logger.info( "Note that TensorFlow allocates more memory than " "it might need to speed up computation. " "The memory reported here corresponds to the memory " "reported by `nvidia-smi`, which can vary depending " "on total available memory on the GPU that is used." ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( "`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory" " consumption line by line." ) __UpperCAmelCase : Union[str, Any] = start_memory_tracing("transformers" ) if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking" " with `args.memory=False`" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) __UpperCAmelCase : Union[str, Any] = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes" " running on the same GPU." ) # init nvml nvml.nvmlInit() func() __UpperCAmelCase : str = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __UpperCAmelCase : List[Any] = nvml.nvmlDeviceGetMemoryInfo(__lowerCamelCase ) __UpperCAmelCase : List[Any] = meminfo.used __UpperCAmelCase : List[Any] = Memory(__lowerCamelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( "When enabling line by line tracing, the max peak memory for CPU is inaccurate in" " TensorFlow." ) __UpperCAmelCase : Tuple = None else: __UpperCAmelCase : str = measure_peak_memory_cpu(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = Memory(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else memory_bytes if self.args.trace_memory_line_by_line: __UpperCAmelCase : str = stop_memory_tracing(__lowerCamelCase ) if memory is None: __UpperCAmelCase : Tuple = summary.total else: __UpperCAmelCase : Union[str, Any] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
157
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple: '''simple docstring''' return (data["data"], data["target"]) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> XGBClassifier: '''simple docstring''' lowercase_ = XGBClassifier() classifier.fit(__lowerCAmelCase , __lowerCAmelCase ) return classifier def _SCREAMING_SNAKE_CASE () -> None: '''simple docstring''' lowercase_ = load_iris() lowercase_ , lowercase_ = data_handling(__lowerCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = train_test_split( __lowerCAmelCase , __lowerCAmelCase , test_size=0.25 ) lowercase_ = iris["""target_names"""] # Create an XGBoost Classifier from the training data lowercase_ = xgboost(__lowerCAmelCase , __lowerCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , display_labels=__lowerCAmelCase , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
313
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''bert''' def __init__( self : Union[str, Any] , A_ : Any=30522 , A_ : List[str]=768 , A_ : Dict=12 , A_ : str=12 , A_ : List[str]=3072 , A_ : List[str]="gelu" , A_ : Any=0.1 , A_ : Union[str, Any]=0.1 , A_ : List[Any]=512 , A_ : Dict=2 , A_ : Optional[Any]=0.02 , A_ : Union[str, Any]=1E-12 , A_ : Optional[Any]=0 , A_ : int="absolute" , A_ : str=True , A_ : Union[str, Any]=None , **A_ : Dict , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = position_embedding_type lowerCamelCase_ = use_cache lowerCamelCase_ = classifier_dropout class A( UpperCamelCase ): '''simple docstring''' @property def a__ ( self : str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": lowerCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
204
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase : int = input("Enter image url: ").strip() print(F"""Downloading image from {url} ...""") lowerCamelCase : Tuple = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase : int = soup.find("meta", {"property": "og:image"})["content"] lowerCamelCase : Dict = requests.get(image_url).content lowerCamelCase : Optional[int] = F"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, "wb") as fp: fp.write(image_data) print(F"""Done. Image saved to disk as {file_name}.""")
204
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=True, _UpperCAmelCase="pt" ): __UpperCAmelCase : Union[str, Any] = {"add_prefix_space": True} if isinstance(_lowerCAmelCase, _lowerCAmelCase ) and not line.startswith(" " ) else {} __UpperCAmelCase : Dict = padding_side return tokenizer( [line], max_length=_lowerCAmelCase, padding="max_length" if pad_to_max_length else None, truncation=_lowerCAmelCase, return_tensors=_lowerCAmelCase, add_special_tokens=_lowerCAmelCase, **_lowerCAmelCase, ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, ): __UpperCAmelCase : Optional[Any] = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any="train" , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any="" , ): """simple docstring""" super().__init__() __UpperCAmelCase : List[str] = Path(UpperCAmelCase_ ).joinpath(type_path + ".source" ) __UpperCAmelCase : Any = Path(UpperCAmelCase_ ).joinpath(type_path + ".target" ) __UpperCAmelCase : str = self.get_char_lens(self.src_file ) __UpperCAmelCase : Tuple = max_source_length __UpperCAmelCase : int = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __UpperCAmelCase : str = tokenizer __UpperCAmelCase : List[Any] = prefix if n_obs is not None: __UpperCAmelCase : List[str] = self.src_lens[:n_obs] __UpperCAmelCase : Any = src_lang __UpperCAmelCase : Tuple = tgt_lang def __len__( self : Union[str, Any] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[str] , UpperCAmelCase_ : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[int] = index + 1 # linecache starts at 1 __UpperCAmelCase : Optional[int] = self.prefix + linecache.getline(str(self.src_file ) , UpperCAmelCase_ ).rstrip("\n" ) __UpperCAmelCase : Union[str, Any] = linecache.getline(str(self.tgt_file ) , UpperCAmelCase_ ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCAmelCase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCAmelCase : Tuple = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer ) __UpperCAmelCase : Union[str, Any] = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer __UpperCAmelCase : int = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_source_length , "right" ) __UpperCAmelCase : Optional[int] = encode_line(UpperCAmelCase_ , UpperCAmelCase_ , self.max_target_length , "right" ) __UpperCAmelCase : str = source_inputs["input_ids"].squeeze() __UpperCAmelCase : Union[str, Any] = target_inputs["input_ids"].squeeze() __UpperCAmelCase : Dict = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCamelCase_ ( UpperCAmelCase_ : Optional[int] ): """simple docstring""" return [len(UpperCAmelCase_ ) for x in Path(UpperCAmelCase_ ).open().readlines()] def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : List[Any] = torch.stack([x["input_ids"] for x in batch] ) __UpperCAmelCase : Tuple = torch.stack([x["attention_mask"] for x in batch] ) __UpperCAmelCase : int = torch.stack([x["decoder_input_ids"] for x in batch] ) __UpperCAmelCase : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer.pad_token_id ) __UpperCAmelCase : Union[str, Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase_ ) else self.tokenizer.pad_token_id ) __UpperCAmelCase : Optional[Any] = trim_batch(UpperCAmelCase_ , UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = trim_batch(UpperCAmelCase_ , UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) __UpperCAmelCase : str = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowerCAmelCase__ : Tuple = getLogger(__name__) def __UpperCamelCase ( _UpperCAmelCase ): return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : List[Any] = get_git_info() save_json(_lowerCAmelCase, os.path.join(_lowerCAmelCase, "git_log.json" ) ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=4, **_UpperCAmelCase ): with open(_lowerCAmelCase, "w" ) as f: json.dump(_lowerCAmelCase, _lowerCAmelCase, indent=_lowerCAmelCase, **_lowerCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase ): with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def __UpperCamelCase ( ): __UpperCAmelCase : Tuple = git.Repo(search_parent_directories=_lowerCAmelCase ) __UpperCAmelCase : List[str] = { "repo_id": str(_lowerCAmelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): return list(map(_lowerCAmelCase, _lowerCAmelCase ) ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): with open(_lowerCAmelCase, "wb" ) as f: return pickle.dump(_lowerCAmelCase, _lowerCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase ): def remove_articles(_UpperCAmelCase ): return re.sub(R"\b(a|an|the)\b", " ", _lowerCAmelCase ) def white_space_fix(_UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(_UpperCAmelCase ): __UpperCAmelCase : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[str] = normalize_answer(_lowerCAmelCase ).split() __UpperCAmelCase : Optional[Any] = normalize_answer(_lowerCAmelCase ).split() __UpperCAmelCase : Tuple = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) __UpperCAmelCase : List[Any] = sum(common.values() ) if num_same == 0: return 0 __UpperCAmelCase : List[str] = 1.0 * num_same / len(_lowerCAmelCase ) __UpperCAmelCase : Optional[int] = 1.0 * num_same / len(_lowerCAmelCase ) __UpperCAmelCase : Dict = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) __UpperCAmelCase : List[Any] = 0 for hypo, pred in zip(_lowerCAmelCase, _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase, _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def __UpperCamelCase ( _UpperCAmelCase ): return model_prefix.startswith("rag" ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Tuple = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCAmelCase : int = "dropout_rate" for p in extra_params: if getattr(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): if not hasattr(_lowerCAmelCase, _lowerCAmelCase ) and not hasattr(_lowerCAmelCase, equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase, _lowerCAmelCase ) continue __UpperCAmelCase : Union[str, Any] = p if hasattr(_lowerCAmelCase, _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase, _lowerCAmelCase, getattr(_lowerCAmelCase, _lowerCAmelCase ) ) delattr(_lowerCAmelCase, _lowerCAmelCase ) return hparams, config
353
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Any = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = PegasusTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowerCamelCase_ ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Tuple = PegasusTokenizer(UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def lowerCamelCase_ ( self : List[Any] , **UpperCAmelCase_ : List[str] ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : int ): """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : List[str] = "</s>" __UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(UpperCAmelCase_ ) , 1_103 ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_103 ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) __UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] __UpperCAmelCase : int = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Any = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCAmelCase : Tuple = "<mask_1> To ensure a <mask_2> flow of bank resolutions." __UpperCAmelCase : Optional[Any] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] __UpperCAmelCase : Optional[Any] = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( self : Any ): """simple docstring""" __UpperCAmelCase : Dict = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 __UpperCAmelCase : Tuple = "To ensure a smooth flow of bank resolutions." __UpperCAmelCase : str = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] __UpperCAmelCase : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : List[Any] = ["This is going to be way too long." * 150, "short example"] __UpperCAmelCase : Optional[int] = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : str = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) __UpperCAmelCase : Union[str, Any] = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_ ) == 2 # input_ids, attention_mask. @slow def lowerCamelCase_ ( self : Any ): """simple docstring""" # fmt: off __UpperCAmelCase : Tuple = {"input_ids": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( snake_case__ ,unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = PegasusTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[str] = PegasusTokenizer(UpperCAmelCase_ , offset=0 , mask_token_sent=UpperCAmelCase_ , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def lowerCamelCase_ ( self : Union[str, Any] , **UpperCAmelCase_ : int ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def lowerCamelCase_ ( self : str , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" return ("This is a test", "This is a test") def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : List[str] = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) __UpperCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] __UpperCAmelCase : int = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ).input_ids[0] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @require_torch def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Any = ["This is going to be way too long." * 1_000, "short example"] __UpperCAmelCase : List[Any] = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : int = self._large_tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) __UpperCAmelCase : List[Any] = self._large_tokenizer( text_target=UpperCAmelCase_ , max_length=5 , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCAmelCase_ ) == 2 # input_ids, attention_mask. def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[Any] = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) __UpperCAmelCase : int = self._large_tokenizer(UpperCAmelCase_ ).input_ids self.assertListEqual( UpperCAmelCase_ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
37
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate UpperCAmelCase__ : List[str] = trt.Logger(trt.Logger.WARNING) UpperCAmelCase__ : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) UpperCAmelCase__ : Optional[int] = logging.getLogger(__name__) UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) UpperCAmelCase__ : Dict = parser.parse_args() if args.tokenizer_name: UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) UpperCAmelCase__ : List[str] = args.per_device_eval_batch_size UpperCAmelCase__ : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : int = 'temp_engine/bert-fp32.engine' if args.fpaa: UpperCAmelCase__ : Optional[int] = 'temp_engine/bert-fp16.engine' if args.inta: UpperCAmelCase__ : Any = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') UpperCAmelCase__ : List[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network UpperCAmelCase__ : Dict = [network.get_input(i) for i in range(network.num_inputs)] UpperCAmelCase__ : Tuple = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: UpperCAmelCase__ : Optional[Any] = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) UpperCAmelCase__ : str = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) UpperCAmelCase__ : str = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : str = np.asarray(inputs["""input_ids"""] ,dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : Dict = np.asarray(inputs["""attention_mask"""] ,dtype=np.intaa ) SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(inputs["""token_type_ids"""] ,dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] ,input_ids.ravel() ,lowercase__ ) cuda.memcpy_htod_async(d_inputs[1] ,attention_mask.ravel() ,lowercase__ ) cuda.memcpy_htod_async(d_inputs[2] ,token_type_ids.ravel() ,lowercase__ ) # start time SCREAMING_SNAKE_CASE__ : Tuple = time.time() # Run inference context.execute_async( bindings=[int(lowercase__ ) for d_inp in d_inputs] + [int(lowercase__ ), int(lowercase__ )] ,stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowercase__ ,lowercase__ ,lowercase__ ) cuda.memcpy_dtoh_async(lowercase__ ,lowercase__ ,lowercase__ ) # Synchronize the stream and take time stream.synchronize() # end time SCREAMING_SNAKE_CASE__ : Dict = time.time() SCREAMING_SNAKE_CASE__ : Optional[Any] = end_time - start_time SCREAMING_SNAKE_CASE__ : str = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. UpperCAmelCase__ : str = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase__ : Optional[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. UpperCAmelCase__ : Union[str, Any] = raw_datasets['validation'].column_names UpperCAmelCase__ : str = 'question' if 'question' in column_names else column_names[0] UpperCAmelCase__ : Union[str, Any] = 'context' if 'context' in column_names else column_names[1] UpperCAmelCase__ : Dict = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). UpperCAmelCase__ : List[str] = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase__ : Optional[Any] = min(args.max_seq_length, tokenizer.model_max_length) def lowercase_ ( _snake_case ): SCREAMING_SNAKE_CASE__ : Optional[int] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer( examples[question_column_name if pad_on_right else context_column_name] ,examples[context_column_name if pad_on_right else question_column_name] ,truncation="""only_second""" if pad_on_right else """only_first""" ,max_length=lowercase__ ,stride=args.doc_stride ,return_overflowing_tokens=lowercase__ ,return_offsets_mapping=lowercase__ ,padding="""max_length""" ,) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. SCREAMING_SNAKE_CASE__ : List[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). SCREAMING_SNAKE_CASE__ : int = tokenized_examples.sequence_ids(lowercase__ ) SCREAMING_SNAKE_CASE__ : str = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. SCREAMING_SNAKE_CASE__ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. SCREAMING_SNAKE_CASE__ : Tuple = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples UpperCAmelCase__ : List[Any] = raw_datasets['validation'] # Validation Feature Creation UpperCAmelCase__ : int = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) UpperCAmelCase__ : List[Any] = default_data_collator UpperCAmelCase__ : Any = eval_dataset.remove_columns(['example_id', 'offset_mapping']) UpperCAmelCase__ : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case="eval" ): SCREAMING_SNAKE_CASE__ : Tuple = postprocess_qa_predictions( examples=lowercase__ ,features=lowercase__ ,predictions=lowercase__ ,version_2_with_negative=args.version_2_with_negative ,n_best_size=args.n_best_size ,max_answer_length=args.max_answer_length ,null_score_diff_threshold=args.null_score_diff_threshold ,output_dir=args.output_dir ,prefix=lowercase__ ,) # Format the result to the format the metric expects. if args.version_2_with_negative: SCREAMING_SNAKE_CASE__ : str = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: SCREAMING_SNAKE_CASE__ : Optional[int] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] SCREAMING_SNAKE_CASE__ : List[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowercase__ ,label_ids=lowercase__ ) UpperCAmelCase__ : int = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowercase_ ( _snake_case ): return trt.volume(engine.get_binding_shape(lowercase__ ) ) * engine.get_binding_dtype(lowercase__ ).itemsize # Allocate device memory for inputs and outputs. UpperCAmelCase__ : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer UpperCAmelCase__ : Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) UpperCAmelCase__ : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) UpperCAmelCase__ : List[str] = cuda.mem_alloc(h_outputa.nbytes) UpperCAmelCase__ : str = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. UpperCAmelCase__ : Tuple = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") UpperCAmelCase__ : Dict = 0.0 UpperCAmelCase__ : Tuple = 0 UpperCAmelCase__ : Union[str, Any] = timeit.default_timer() UpperCAmelCase__ : List[str] = None for step, batch in enumerate(eval_dataloader): UpperCAmelCase__ , UpperCAmelCase__ : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 UpperCAmelCase__ , UpperCAmelCase__ : Tuple = outputs UpperCAmelCase__ : Union[str, Any] = torch.tensor(start_logits) UpperCAmelCase__ : int = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered UpperCAmelCase__ : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) UpperCAmelCase__ : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) UpperCAmelCase__ : Optional[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) UpperCAmelCase__ : Union[str, Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: UpperCAmelCase__ : List[Any] = nested_truncate(all_preds, len(eval_dataset)) UpperCAmelCase__ : Union[str, Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) UpperCAmelCase__ : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) UpperCAmelCase__ : Any = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
25
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCAmelCase = '''\ Text data. Second line of data.''' UpperCAmelCase = '''file''' @pytest.fixture(scope='session' ) def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') __lowercase =bytes(lowercase__, 'utf-8' ) with zstd.open(lowercase__, 'wb' ) as f: f.write(lowercase__ ) return path @pytest.fixture def __UpperCamelCase ( lowercase__ : str ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir, lowercase__ ), 'w' ) as f: f.write(lowercase__ ) return FILE_PATH @pytest.mark.parametrize('compression_format', ['gzip', 'xz', 'zstd'] ) def __UpperCamelCase ( lowercase__ : Any, lowercase__ : List[str], lowercase__ : Optional[int], lowercase__ : str, lowercase__ : int, lowercase__ : Dict ): '''simple docstring''' __lowercase ={'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} __lowercase =input_paths[compression_format] __lowercase =tmp_path / 'cache' __lowercase =DownloadConfig(cache_dir=lowercase__, extract_compressed_file=lowercase__ ) __lowercase =cached_path(lowercase__, download_config=lowercase__ ) with open(lowercase__ ) as f: __lowercase =f.read() with open(lowercase__ ) as f: __lowercase =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted', [True, False] ) @pytest.mark.parametrize('default_cache_dir', [True, False] ) def __UpperCamelCase ( lowercase__ : Union[str, Any], lowercase__ : Tuple, lowercase__ : int, lowercase__ : int, lowercase__ : Optional[int] ): '''simple docstring''' __lowercase ='custom_cache' __lowercase ='custom_extracted_dir' __lowercase =tmp_path / 'custom_extracted_path' if default_extracted: __lowercase =('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR', lowercase__ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH', str(lowercase__ ) ) __lowercase =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __lowercase =xz_file __lowercase =( DownloadConfig(extract_compressed_file=lowercase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowercase__ ) ) __lowercase =cached_path(lowercase__, download_config=lowercase__ ) assert Path(lowercase__ ).parent.parts[-2:] == expected def __UpperCamelCase ( lowercase__ : List[Any] ): '''simple docstring''' __lowercase =str(Path(lowercase__ ).resolve() ) assert cached_path(lowercase__ ) == text_file # relative path __lowercase =str(Path(lowercase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase__ ) == text_file def __UpperCamelCase ( lowercase__ : Optional[Any] ): '''simple docstring''' __lowercase =str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(lowercase__ ): cached_path(lowercase__ ) # relative path __lowercase ='./__missing_file__.txt' with pytest.raises(lowercase__ ): cached_path(lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] ): '''simple docstring''' __lowercase =get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowercase__ ) as f: __lowercase =f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' with pytest.raises(lowercase__ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( lowercase__ : Any ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowercase__ ): http_get('https://huggingface.co', temp_file=lowercase__ ) with pytest.raises(lowercase__ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( lowercase__ : Optional[int] ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowercase__ ): ftp_get('ftp://huggingface.co', temp_file=lowercase__ ) with pytest.raises(lowercase__ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE', lowercase__ ) def __UpperCamelCase ( lowercase__ : Any ): '''simple docstring''' __lowercase =tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(lowercase__ ): fsspec_get('s3://huggingface.co', temp_file=lowercase__ ) with pytest.raises(lowercase__ ): fsspec_head('s3://huggingface.co' )
141
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets snake_case__ = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' snake_case__ = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' snake_case__ = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase_ (datasets.Metric ): """simple docstring""" def _a ( self : Optional[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def _a ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : str=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : Dict="auto" , _lowerCamelCase : List[Any]=-1 , _lowerCamelCase : Optional[Any]=0.9 , _lowerCamelCase : Any=5 , _lowerCamelCase : int=500 , _lowerCamelCase : Optional[int]="gpt2-large" , _lowerCamelCase : Optional[int]=-1 , _lowerCamelCase : Dict=1024 , _lowerCamelCase : Tuple=25 , _lowerCamelCase : str=5 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Union[str, Any]=25 , ): """simple docstring""" A_ : int = compute_mauve( p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , ) return out
357
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase_ (unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Any = tempfile.mkdtemp() A_ : List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) A_ : Tuple = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } A_ : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Dict , **_lowerCamelCase : Tuple ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[int] , **_lowerCamelCase : Optional[int] ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Optional[Any] , **_lowerCamelCase : Tuple ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _a ( self : int ): """simple docstring""" A_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ : Any = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self : int ): """simple docstring""" A_ : Tuple = self.get_tokenizer() A_ : Tuple = self.get_rust_tokenizer() A_ : Dict = self.get_image_processor() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ : List[Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def _a ( self : List[Any] ): """simple docstring""" A_ : List[str] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) A_ : Tuple = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) A_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _a ( self : Union[str, Any] ): """simple docstring""" A_ : Dict = self.get_image_processor() A_ : Any = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : Any = self.prepare_image_inputs() A_ : List[Any] = image_processor(_lowerCamelCase , return_tensors='''np''' ) A_ : str = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self : Dict ): """simple docstring""" A_ : str = self.get_image_processor() A_ : List[str] = self.get_tokenizer() A_ : Optional[int] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : int = '''lower newer''' A_ : str = processor(text=_lowerCamelCase ) A_ : Dict = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self : str ): """simple docstring""" A_ : Optional[int] = self.get_image_processor() A_ : Optional[Any] = self.get_tokenizer() A_ : List[str] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : List[Any] = '''lower newer''' A_ : Optional[int] = self.prepare_image_inputs() A_ : List[Any] = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def _a ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.get_image_processor() A_ : Optional[int] = self.get_tokenizer() A_ : List[Any] = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ : str = processor.batch_decode(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def _a ( self : Tuple ): """simple docstring""" A_ : str = self.get_image_processor() A_ : Tuple = self.get_tokenizer() A_ : Any = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) A_ : str = '''lower newer''' A_ : List[str] = self.prepare_image_inputs() A_ : Tuple = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase_ = 1_6 UpperCamelCase_ = 3_2 def lowercase__( __UpperCamelCase: Accelerator ,__UpperCamelCase: int = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE : str = load_dataset('glue' ,'mrpc' ) def tokenize_function(__UpperCamelCase: Optional[int] ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[str] = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : List[str] = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(__UpperCamelCase: str ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Dict = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : Optional[int] = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Dict = 8 else: SCREAMING_SNAKE_CASE : str = None return tokenizer.pad( __UpperCamelCase ,padding='longest' ,max_length=__UpperCamelCase ,pad_to_multiple_of=__UpperCamelCase ,return_tensors='pt' ,) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets['train'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets['validation'] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase_ = mocked_dataloaders # noqa: F811 def lowercase__( __UpperCamelCase: Tuple ,__UpperCamelCase: Union[str, Any] ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' ,__UpperCamelCase ) == "1": SCREAMING_SNAKE_CASE : Any = 2 # Initialize accelerator SCREAMING_SNAKE_CASE : str = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Tuple = config['lr'] SCREAMING_SNAKE_CASE : Tuple = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config['seed'] ) SCREAMING_SNAKE_CASE : Tuple = int(config['batch_size'] ) SCREAMING_SNAKE_CASE : int = evaluate.load('glue' ,'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__UpperCamelCase ) def inner_training_loop(__UpperCamelCase: Union[str, Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' ,return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : str = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : str = AdamW(params=model.parameters() ,lr=__UpperCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Any = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=1_00 ,num_training_steps=(len(__UpperCamelCase ) * num_epochs) ,) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE : str = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__UpperCamelCase ,references=__UpperCamelCase ,) SCREAMING_SNAKE_CASE : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" ,__UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' ,type=__UpperCamelCase ,default=__UpperCamelCase ,choices=['no', 'fp16', 'bf16', 'fp8'] ,help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' ,) parser.add_argument('--cpu' ,action='store_true' ,help='If passed, will train on the CPU.' ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() SCREAMING_SNAKE_CASE : Optional[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
251
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase_ = { "configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"], "configuration_maskformer_swin": ["MaskFormerSwinConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["MaskFormerFeatureExtractor"] UpperCamelCase_ = ["MaskFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", ] UpperCamelCase_ = [ "MaskFormerSwinBackbone", "MaskFormerSwinModel", "MaskFormerSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
251
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : Optional[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on _lowerCAmelCase : Optional[Any] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : int = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(__a) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(__a)) _lowerCAmelCase : List[str] = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname, __a) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(__a, __a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta)] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(__a, 0, -1)) for x in image_inputs] return image_inputs def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[int] = self.get_rust_tokenizer() _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_slow.save_pretrained(self.tmpdirname) _lowerCAmelCase : Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=__a) _lowerCAmelCase : str = CLIPSegProcessor(tokenizer=__a, image_processor=__a) processor_fast.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, __a) self.assertIsInstance(processor_fast.tokenizer, __a) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, __a) self.assertIsInstance(processor_fast.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) _lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") _lowerCAmelCase : Tuple = self.get_image_processor(do_normalize=__a, padding_value=1.0) _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=__a, padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, __a) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : List[str] = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(__a, return_tensors="np") _lowerCAmelCase : Optional[Any] = processor(images=__a, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = "lower newer" _lowerCAmelCase : List[str] = processor(text=__a) _lowerCAmelCase : List[Any] = tokenizer(__a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : int = "lower newer" _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=__a, images=__a) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(images=__a, visual_prompt=__a) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(__a): processor() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Any = CLIPSegProcessor(tokenizer=__a, image_processor=__a) _lowerCAmelCase : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(__a) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(__a) self.assertListEqual(__a, __a)
358
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _snake_case = True from torch.cuda.amp import autocast _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to log verbose messages or not.'} , ) lowerCamelCase__ = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'}) lowerCamelCase__ = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'}) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Optional[Any] = logging.WARNING if model_args.verbose_logging: _lowerCAmelCase : Dict = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): _lowerCAmelCase : str = logging.INFO logger.setLevel(_lowerCamelCase ) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default=a , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) lowerCamelCase__ = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) lowerCamelCase__ = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) lowerCamelCase__ = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'}) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self, __a): '''simple docstring''' _lowerCAmelCase : Any = self.feature_extractor.pad( __a, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) _lowerCAmelCase : Tuple = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) _lowerCAmelCase : Optional[Any] = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula _lowerCAmelCase : List[str] = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long) _lowerCAmelCase : Dict = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device) # these two operations makes sure that all values # before the output lengths indices are attended to _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Union[str, Any] = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices _lowerCAmelCase : Optional[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=__a, min_masks=2, ) return batch class UpperCAmelCase_ ( a): def __init__( self, *__a, __a=1, __a=0, __a=1.0, **__a): '''simple docstring''' super().__init__(*__a, **__a) _lowerCAmelCase : Dict = 0 _lowerCAmelCase : List[str] = max_gumbel_temp _lowerCAmelCase : List[Any] = min_gumbel_temp _lowerCAmelCase : int = gumbel_temp_decay def snake_case__ ( self, __a, __a): '''simple docstring''' model.train() _lowerCAmelCase : str = self._prepare_inputs(__a) if self.use_amp: with autocast(): _lowerCAmelCase : Any = self.compute_loss(__a, __a) else: _lowerCAmelCase : Dict = self.compute_loss(__a, __a) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": _lowerCAmelCase : List[str] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowerCAmelCase : Union[str, Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: _lowerCAmelCase : List[str] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a).backward() elif self.use_apex: with amp.scale_loss(__a, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp)) return loss.detach() def A ( ): '''simple docstring''' _lowerCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = parser.parse_args_into_dataclasses() configure_logger(_lowerCamelCase , _lowerCamelCase ) # Downloading and loading a dataset from the hub. _lowerCAmelCase : List[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" _lowerCAmelCase : int = DatasetDict() _lowerCAmelCase : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" _lowerCAmelCase : List[str] = DatasetDict() _lowerCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) _lowerCAmelCase : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported _lowerCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_lowerCamelCase ) def prepare_dataset(_lowerCamelCase ): # check that all files have the correct sampling rate _lowerCAmelCase , _lowerCAmelCase : Any = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays _lowerCAmelCase : Dict = datasets.map( _lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long _lowerCAmelCase : Tuple = vectorized_datasets.filter( lambda _lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_lowerCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` _lowerCAmelCase : Dict = vectorized_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 _lowerCAmelCase : Tuple = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) _lowerCAmelCase : Union[str, Any] = WavaVecaForPreTraining(_lowerCamelCase ) _lowerCAmelCase : int = DataCollatorForWavaVecaPretraining(model=_lowerCamelCase , feature_extractor=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = WavaVecaPreTrainer( model=_lowerCamelCase , data_collator=_lowerCamelCase , args=_lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
300
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase_ : Any = 16 UpperCAmelCase_ : List[str] = 32 def _A (__a , __a = 16 ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) SCREAMING_SNAKE_CASE_ : str = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_ : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_ : Dict = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_ : Tuple = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_ : Dict = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_ : Tuple = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_ : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE_ : Any = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) SCREAMING_SNAKE_CASE_ : List[Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase_ : Union[str, Any] = mocked_dataloaders # noqa: F811 def _A (__a , __a ) -> Union[str, Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __a ) == "1": SCREAMING_SNAKE_CASE_ : Optional[int] = 2 # Initialize accelerator SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_ : str = config['''lr'''] SCREAMING_SNAKE_CASE_ : Any = int(config['''num_epochs'''] ) SCREAMING_SNAKE_CASE_ : str = int(config['''seed'''] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(config['''batch_size'''] ) SCREAMING_SNAKE_CASE_ : List[str] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE_ : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE_ : Any = MAX_GPU_BATCH_SIZE set_seed(__a ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_ : Tuple = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler SCREAMING_SNAKE_CASE_ : Dict = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_00 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE_ : List[str] = model(**__a ) SCREAMING_SNAKE_CASE_ : str = outputs.loss SCREAMING_SNAKE_CASE_ : int = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() SCREAMING_SNAKE_CASE_ : Any = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(**__a ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__a ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples SCREAMING_SNAKE_CASE_ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] SCREAMING_SNAKE_CASE_ : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__a , references=__a , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __a ) def _A () -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) SCREAMING_SNAKE_CASE_ : int = parser.parse_args() SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
91
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = """▁""" UpperCAmelCase_ : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase_ : str = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } UpperCAmelCase_ : str = { """facebook/xglm-564M""": 2048, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self : List[Any] , lowercase_ : str , lowercase_ : Tuple="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[int]="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : Union[str, Any]="<unk>" , lowercase_ : Union[str, Any]="<pad>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE_ : List[str] = 7 SCREAMING_SNAKE_CASE_ : Tuple = [F'<madeupword{i}>' for i in range(self.num_madeup_words)] SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} SCREAMING_SNAKE_CASE_ : List[Any] = len(self.sp_model) SCREAMING_SNAKE_CASE_ : Optional[Any] = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words)} self.fairseq_tokens_to_ids.update(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_) if token_ids_a is None: return [1] + ([0] * len(lowercase_)) return [1] + ([0] * len(lowercase_)) + [1, 1] + ([0] * len(lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a) * [0] @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return len(self.sp_model) + self.fairseq_offset + self.num_madeup_words def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(lowercase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : str): '''simple docstring''' return self.sp_model.encode(lowercase_ , out_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Union[str, Any]): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.PieceToId(lowercase_) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Optional[Any]): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = ''''''.join(lowercase_).replace(lowercase_ , ''' ''').strip() return out_string def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(lowercase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowercase_) elif not os.path.isfile(self.vocab_file): with open(lowercase_ , '''wb''') as fi: SCREAMING_SNAKE_CASE_ : int = self.sp_model.serialized_model_proto() fi.write(lowercase_) return (out_vocab_file,)
91
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['''GLPNFeatureExtractor'''] __UpperCAmelCase = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from __future__ import annotations class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> None: lowerCAmelCase__ = order # a_{0} ... a_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCAmelCase__ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCAmelCase__ = [0.0] * self.order # y[n-1] ... y[n-k] lowerCAmelCase__ = [0.0] * self.order def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> None: if len(lowerCamelCase_ ) < self.order: lowerCAmelCase__ = [1.0, *a_coeffs] if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) if len(lowerCamelCase_ ) != self.order + 1: lowerCAmelCase__ = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(lowerCamelCase_ )}""" ) raise ValueError(lowerCamelCase_ ) lowerCAmelCase__ = a_coeffs lowerCAmelCase__ = b_coeffs def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> float: lowerCAmelCase__ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCAmelCase__ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCAmelCase__ = self.input_history[:-1] lowerCAmelCase__ = self.output_history[:-1] lowerCAmelCase__ = sample lowerCAmelCase__ = result return result
228
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A : Optional[int] = direct_transformers_import(PATH_TO_TRANSFORMERS) A : Tuple = transformers.models.auto.configuration_auto.CONFIG_MAPPING A : str = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def lowercase_ ( _A : int , _A : Any , _A : Optional[Any] , _A : Any ): """simple docstring""" lowerCamelCase__ : Optional[int] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): lowerCamelCase__ : List[str] = True # Deal with multi-line cases elif ( re.search( rF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , _A , ) is not None ): lowerCamelCase__ : int = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCamelCase__ : Any = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCamelCase__ : Union[str, Any] = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] lowerCamelCase__ : Dict = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed lowerCamelCase__ : Any = True if not attribute_used: lowerCamelCase__ : Union[str, Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCamelCase__ : int = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCamelCase__ : List[str] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCamelCase__ : Optional[int] = True elif attribute.endswith("_token_id" ): lowerCamelCase__ : List[Any] = True # configuration class specific cases if not case_allowed: lowerCamelCase__ : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCamelCase__ : List[str] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowercase_ ( _A : Dict ): """simple docstring""" lowerCamelCase__ : str = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCamelCase__ : Dict = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] lowerCamelCase__ : Dict = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCamelCase__ : int = {} if len(config_class.attribute_map ) > 0: lowerCamelCase__ : int = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCamelCase__ : Optional[int] = inspect.getsourcefile(_A ) lowerCamelCase__ : List[Any] = os.path.dirname(_A ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCamelCase__ : Tuple = [os.path.join(_A , _A ) for fn in os.listdir(_A ) if fn.startswith("modeling_" )] # Get the source code strings lowerCamelCase__ : str = [] for path in modeling_paths: if os.path.isfile(_A ): with open(_A ) as fp: modeling_sources.append(fp.read() ) lowerCamelCase__ : Any = [] for config_param, default_value in zip(_A , _A ): # `attributes` here is all the variant names for `config_param` lowerCamelCase__ : Union[str, Any] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_A , _A , _A , _A ): unused_attributes.append(attributes[0] ) return sorted(_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Tuple = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCamelCase__ : List[str] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _A : inspect.isclass(_A ) and issubclass(_A , _A ) and inspect.getmodule(_A ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCamelCase__ : int = check_config_attributes_being_used(_A ) if len(_A ) > 0: lowerCamelCase__ : Dict = unused_attributes if len(_A ) > 0: lowerCamelCase__ : int = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(_A ) if __name__ == "__main__": check_config_attributes()
184
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A : Optional[List[str]] = None A : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A : str = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class _lowercase : """simple docstring""" A__ = True A__ = None # Automatically constructed A__ = "PIL.Image.Image" A__ = pa.struct({"bytes": pa.binary(), "path": pa.string()}) A__ = field(default="Image" , init=lowercase__ , repr=lowercase__) def __call__( self : Any ): '''simple docstring''' return self.pa_type def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : str = np.array(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(__lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCamelCase ) elif isinstance(__lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCamelCase ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowerCAmelCase ( self : Any , __lowerCamelCase : dict , __lowerCamelCase : List[Any]=None ): '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ , lowerCamelCase__ : Optional[int] = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = PIL.Image.open(__lowerCamelCase ) else: lowerCamelCase__ : Tuple = path.split("::" )[-1] try: lowerCamelCase__ : str = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )["repo_id"] lowerCamelCase__ : Any = token_per_repo_id.get(__lowerCamelCase ) except ValueError: lowerCamelCase__ : int = None with xopen(__lowerCamelCase , "rb" , use_auth_token=__lowerCamelCase ) as f: lowerCamelCase__ : List[str] = BytesIO(f.read() ) lowerCamelCase__ : Optional[int] = PIL.Image.open(bytes_ ) else: lowerCamelCase__ : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase ( self : Dict ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) lowerCamelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase__ : List[Any] = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : Any = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowerCamelCase__ : Dict = storage.field("bytes" ) else: lowerCamelCase__ : Optional[int] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowerCamelCase__ : Dict = storage.field("path" ) else: lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCamelCase__ : Union[str, Any] = pa.array( [encode_np_array(np.array(__lowerCamelCase ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def lowerCAmelCase ( self : int , __lowerCamelCase : pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Union[str, Any] ): with xopen(__lowerCamelCase , "rb" ) as f: lowerCamelCase__ : str = f.read() return bytes_ lowerCamelCase__ : List[Any] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase__ : Optional[int] = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowerCamelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def lowercase_ ( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCamelCase__ : List[str] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowercase_ ( _A : "PIL.Image.Image" ): """simple docstring""" lowerCamelCase__ : Optional[Any] = BytesIO() if image.format in list_image_compression_formats(): lowerCamelCase__ : int = image.format else: lowerCamelCase__ : int = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_A , format=_A ) return buffer.getvalue() def lowercase_ ( _A : "PIL.Image.Image" ): """simple docstring""" if hasattr(_A , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_A )} def lowercase_ ( _A : np.ndarray ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) lowerCamelCase__ : int = array.dtype lowerCamelCase__ : List[str] = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowerCamelCase__ : List[str] = dtype.kind lowerCamelCase__ : Optional[Any] = dtype.itemsize lowerCamelCase__ : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCamelCase__ : List[Any] = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCamelCase__ : Any = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCamelCase__ : Optional[Any] = dtype_byteorder + dtype_kind + str(_A ) lowerCamelCase__ : int = np.dtype(_A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) lowerCamelCase__ : List[Any] = PIL.Image.fromarray(array.astype(_A ) ) return {"path": None, "bytes": image_to_bytes(_A )} def lowercase_ ( _A : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: lowerCamelCase__ , lowerCamelCase__ : int = first_non_null_value(_A ) if isinstance(_A , _A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_A , np.ndarray ): lowerCamelCase__ : Optional[Any] = no_op_if_value_is_null(_A ) return [obj_to_image_dict_func(_A ) for obj in objs] elif isinstance(_A , PIL.Image.Image ): lowerCamelCase__ : int = no_op_if_value_is_null(_A ) return [obj_to_image_dict_func(_A ) for obj in objs] else: return objs else: return objs
184
1
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCAmelCase__ ( a__: str , a__: List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) _UpperCAmelCase = transform(a__ ).unsqueeze(0 ).to(a__ ) return image def lowerCAmelCase__ ( a__: Optional[int] ) -> int: '''simple docstring''' if "visual_encoder" in key: _UpperCAmelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , a__ ) if "blocks" in key: _UpperCAmelCase = re.sub(R'blocks' , 'layers' , a__ ) if "attn" in key: _UpperCAmelCase = re.sub(R'attn' , 'self_attn' , a__ ) if "norm1" in key: _UpperCAmelCase = re.sub(R'norm1' , 'layer_norm1' , a__ ) if "norm2" in key: _UpperCAmelCase = re.sub(R'norm2' , 'layer_norm2' , a__ ) if "encoder.norm" in key: _UpperCAmelCase = re.sub(R'encoder.norm' , 'post_layernorm' , a__ ) if "encoder.patch_embed.proj" in key: _UpperCAmelCase = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , a__ ) if "encoder.pos_embed" in key: _UpperCAmelCase = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , a__ ) if "encoder.cls_token" in key: _UpperCAmelCase = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , a__ ) if "self_attn" in key: _UpperCAmelCase = re.sub(R'self_attn.proj' , 'self_attn.projection' , a__ ) return key @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[Any] , a__: List[str]=None ) -> Optional[Any]: '''simple docstring''' if config_path is not None: _UpperCAmelCase = BlipConfig.from_pretrained(a__ ) else: _UpperCAmelCase = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) _UpperCAmelCase = BlipForConditionalGeneration(a__ ).eval() _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCAmelCase = blip_decoder(pretrained=a__ , image_size=3_8_4 , vit='base' ) _UpperCAmelCase = pt_model.eval() _UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value hf_model.load_state_dict(a__ ) _UpperCAmelCase = 3_8_4 _UpperCAmelCase = load_demo_image(image_size=a__ , device='cpu' ) _UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCAmelCase = tokenizer(['a picture of'] ).input_ids _UpperCAmelCase = hf_model.generate(a__ , a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] _UpperCAmelCase = hf_model.generate(a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(a__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCAmelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCAmelCase = blip_vqa(pretrained=a__ , image_size=a__ , vit='base' ) vqa_model.eval() _UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForQuestionAnswering(a__ ) hf_vqa_model.load_state_dict(a__ ) _UpperCAmelCase = ['How many dogs are in this image?'] _UpperCAmelCase = tokenizer(a__ , return_tensors='pt' ).input_ids _UpperCAmelCase = hf_vqa_model.generate(a__ , a__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCAmelCase = blip_itm(pretrained=a__ , image_size=a__ , vit='base' ) itm_model.eval() _UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForImageTextRetrieval(a__ ) _UpperCAmelCase = ['A picture of a woman with a dog sitting in a beach'] _UpperCAmelCase = tokenizer( a__ , return_tensors='pt' , padding='max_length' , truncation=a__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(a__ ) hf_itm_model.eval() _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase__ :int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase__ :List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
185
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __a ( UpperCAmelCase ): _a : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
185
1
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants A_ : Optional[int] = 300 # TEMPERATURE (unit = K) def A ( snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
165
"""simple docstring""" def A ( snake_case__ ): '''simple docstring''' assert isinstance(snake_case__ , snake_case__ ), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE__ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(snake_case__ ) else: SCREAMING_SNAKE_CASE__ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE__ = num - 1 SCREAMING_SNAKE_CASE__ = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
165
1
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np _snake_case = re.compile(r'\b(a|an|the)\b', re.UNICODE) _snake_case = None def lowerCAmelCase__ ( ): '''simple docstring''' _a : int = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=UpperCamelCase__ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=UpperCamelCase__ , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : List[str] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _a : List[str] = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' def remove_articles(UpperCamelCase__ ): return ARTICLES_REGEX.sub(""" """ , UpperCamelCase__ ) def white_space_fix(UpperCamelCase__ ): return " ".join(text.split() ) def remove_punc(UpperCamelCase__ ): _a : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if not s: return [] return normalize_answer(UpperCamelCase__ ).split() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return int(normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = get_tokens(UpperCamelCase__ ) _a : str = get_tokens(UpperCamelCase__ ) _a : Optional[Any] = collections.Counter(UpperCamelCase__ ) & collections.Counter(UpperCamelCase__ ) _a : Optional[Any] = sum(common.values() ) if len(UpperCamelCase__ ) == 0 or len(UpperCamelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _a : Dict = 1.0 * num_same / len(UpperCamelCase__ ) _a : Optional[Any] = 1.0 * num_same / len(UpperCamelCase__ ) _a : str = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : int = {} _a : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _a : Union[str, Any] = qa["""id"""] _a : Tuple = [t for t in qa["""answers"""]["""text"""] if normalize_answer(UpperCamelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _a : int = [""""""] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue _a : Optional[Any] = preds[qid] # Take max over all gold answers _a : int = max(compute_exact(UpperCamelCase__ , UpperCamelCase__ ) for a in gold_answers ) _a : Dict = max(compute_fa(UpperCamelCase__ , UpperCamelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Union[str, Any] = {} for qid, s in scores.items(): _a : str = na_probs[qid] > na_prob_thresh if pred_na: _a : Dict = float(not qid_to_has_ans[qid] ) else: _a : List[str] = s return new_scores def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' if not qid_list: _a : Optional[int] = len(UpperCamelCase__ ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores.values() ) / total), ("""f1""", 100.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: _a : Dict = len(UpperCamelCase__ ) return collections.OrderedDict( [ ("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for k in new_eval: _a : Optional[Any] = new_eval[k] def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' plt.step(UpperCamelCase__ , UpperCamelCase__ , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(UpperCamelCase__ , UpperCamelCase__ , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCamelCase__ ) plt.savefig(UpperCamelCase__ ) plt.clf() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' _a : List[Any] = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : na_probs[k] ) _a : Dict = 0.0 _a : Dict = 1.0 _a : Any = 0.0 _a : Union[str, Any] = [1.0] _a : str = [0.0] _a : Union[str, Any] = 0.0 for i, qid in enumerate(UpperCamelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] _a : Any = true_pos / float(i + 1 ) _a : Optional[int] = true_pos / float(UpperCamelCase__ ) if i == len(UpperCamelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCamelCase__ ) recalls.append(UpperCamelCase__ ) if out_image: plot_pr_curve(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return {"ap": 100.0 * avg_prec} def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if out_image_dir and not os.path.exists(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) _a : Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _a : List[str] = make_precision_recall_eval( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) _a : Union[str, Any] = make_precision_recall_eval( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) _a : List[Any] = {k: float(UpperCamelCase__ ) for k, v in qid_to_has_ans.items()} _a : List[Any] = make_precision_recall_eval( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , out_image=os.path.join(UpperCamelCase__ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_exact""" ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_f1""" ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """pr_oracle""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if not qid_list: return _a : Union[str, Any] = [na_probs[k] for k in qid_list] _a : int = np.ones_like(UpperCamelCase__ ) / float(len(UpperCamelCase__ ) ) plt.hist(UpperCamelCase__ , weights=UpperCamelCase__ , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(UpperCamelCase__ , F"""na_prob_hist_{name}.png""" ) ) plt.clf() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : List[Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _a : Tuple = num_no_ans _a : int = cur_score _a : str = 0.0 _a : Dict = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : na_probs[k] ) for i, qid in enumerate(UpperCamelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: _a : List[Any] = scores[qid] else: if preds[qid]: _a : Optional[Any] = -1 else: _a : Optional[Any] = 0 cur_score += diff if cur_score > best_score: _a : List[str] = cur_score _a : Dict = na_probs[qid] return 100.0 * best_score / len(UpperCamelCase__ ), best_thresh def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a , _a : Optional[int] = find_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a , _a : List[str] = find_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) _a : Dict = best_exact _a : str = exact_thresh _a : Dict = best_fa _a : str = fa_thresh def lowerCAmelCase__ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: _a : str = json.load(UpperCamelCase__ ) _a : Tuple = dataset_json["""data"""] with open(OPTS.pred_file ) as f: _a : Union[str, Any] = json.load(UpperCamelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _a : Optional[int] = json.load(UpperCamelCase__ ) else: _a : int = {k: 0.0 for k in preds} _a : str = make_qid_to_has_ans(UpperCamelCase__ ) # maps qid to True/False _a : Dict = [k for k, v in qid_to_has_ans.items() if v] _a : List[str] = [k for k, v in qid_to_has_ans.items() if not v] _a , _a : int = get_raw_scores(UpperCamelCase__ , UpperCamelCase__ ) _a : List[str] = apply_no_ans_threshold(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.na_prob_thresh ) _a : List[str] = apply_no_ans_threshold(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.na_prob_thresh ) _a : str = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ ) if has_ans_qids: _a : Dict = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ , qid_list=UpperCamelCase__ ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """HasAns""" ) if no_ans_qids: _a : Any = make_eval_dict(UpperCamelCase__ , UpperCamelCase__ , qid_list=UpperCamelCase__ ) merge_eval(UpperCamelCase__ , UpperCamelCase__ , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir ) histogram_na_prob(UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(UpperCamelCase__ , UpperCamelCase__ , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) else: print(json.dumps(UpperCamelCase__ , indent=2 ) ) if __name__ == "__main__": _snake_case = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt main()
324
"""simple docstring""" import numpy as np def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
1
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase__ = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any=None ): '''simple docstring''' lowerCAmelCase : Optional[int] = XLNetConfig.from_json_file(__UpperCamelCase ) lowerCAmelCase : Optional[Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowerCAmelCase : Optional[Any] = finetuning_task lowerCAmelCase : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] lowerCAmelCase : List[Any] = XLNetForSequenceClassification(__UpperCamelCase ) elif "squad" in finetuning_task: lowerCAmelCase : List[str] = finetuning_task lowerCAmelCase : Optional[int] = XLNetForQuestionAnswering(__UpperCamelCase ) else: lowerCAmelCase : str = XLNetLMHeadModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model lowerCAmelCase : List[str] = os.path.join(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase : Any = os.path.join(__UpperCamelCase , __UpperCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__UpperCamelCase )}""" ) torch.save(model.state_dict() , __UpperCamelCase ) print(f"""Save configuration file to {os.path.abspath(__UpperCamelCase )}""" ) with open(__UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) lowerCAmelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
108
from numpy import exp, pi, sqrt def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Any , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
219
0
from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=__SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case__ = ["torch", "torchsde"] def __init__( self : Any , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(self , ["torch", "torchsde"] ) @classmethod def a ( cls : Optional[int] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(cls , ["torch", "torchsde"] ) @classmethod def a ( cls : Any , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : int ) -> Any: requires_backends(cls , ["torch", "torchsde"] )
366
from statistics import mean, stdev def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = min(lowerCAmelCase_ ) lowerCAmelCase__ = max(lowerCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase_ ) for x in data] def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int = 3 ): """simple docstring""" lowerCAmelCase__ = mean(lowerCAmelCase_ ) lowerCAmelCase__ = stdev(lowerCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase_ ) for x in data]
221
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCAmelCase_( a__ ): """simple docstring""" return (data["data"], data["target"]) def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = XGBClassifier() classifier.fit(a__ , a__ ) return classifier def UpperCAmelCase_( ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = load_iris() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = data_handling(a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = train_test_split( a__ , a__ , test_size=0.25 ) SCREAMING_SNAKE_CASE : int = iris['''target_names'''] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE : Dict = xgboost(a__ , a__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( a__ , a__ , a__ , display_labels=a__ , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
313
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
1
UpperCAmelCase_ : int = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
198
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = False , UpperCAmelCase__ = False , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): super().__init__( UpperCAmelCase__ , split=UpperCAmelCase__ , features=UpperCAmelCase__ , cache_dir=UpperCAmelCase__ , keep_in_memory=UpperCAmelCase__ , streaming=UpperCAmelCase__ , num_proc=UpperCAmelCase__ , **UpperCAmelCase__ , ) A__ = field A__ = path_or_paths if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else {self.split: path_or_paths} A__ = Json( cache_dir=UpperCAmelCase__ , data_files=UpperCAmelCase__ , features=UpperCAmelCase__ , field=UpperCAmelCase__ , **UpperCAmelCase__ , ) def __A ( self ): # Build iterable dataset if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=UpperCAmelCase__ , download_mode=UpperCAmelCase__ , verification_mode=UpperCAmelCase__ , base_path=UpperCAmelCase__ , num_proc=self.num_proc , ) A__ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase__ , in_memory=self.keep_in_memory ) return dataset class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = "utf-8" A__ = to_json_kwargs def __A ( self ): A__ = self.to_json_kwargs.pop("path_or_buf" , UpperCAmelCase__ ) A__ = self.to_json_kwargs.pop("orient" , "records" ) A__ = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) A__ = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) A__ = self.to_json_kwargs.pop("compression" , UpperCAmelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=UpperCAmelCase__ ) as buffer: A__ = self._write(file_obj=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) A__ = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **self.to_json_kwargs ) return written def __A ( self , UpperCAmelCase__ ): A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data , key=slice(UpperCAmelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) A__ = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase__ , orient=UpperCAmelCase__ , lines=UpperCAmelCase__ , index=UpperCAmelCase__ , **UpperCAmelCase__ ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ , ): A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase__ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase__ , UpperCAmelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(UpperCAmelCase__ ) return written
198
1