code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class _snake_case ( A__ ): lowerCAmelCase :Optional[int] = '''big_bird''' def __init__( self , _lowerCamelCase=5_0358 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu_new" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4096 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-1_2 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase=1 , _lowerCamelCase=2 , _lowerCamelCase=66 , _lowerCamelCase="block_sparse" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=64 , _lowerCamelCase=3 , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , sep_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Tuple = max_position_embeddings UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : Tuple = num_hidden_layers UpperCAmelCase__ : Any = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Any = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : int = attention_probs_dropout_prob UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Union[str, Any] = type_vocab_size UpperCAmelCase__ : Any = layer_norm_eps UpperCAmelCase__ : Optional[Any] = use_cache UpperCAmelCase__ : Optional[Any] = rescale_embeddings UpperCAmelCase__ : str = attention_type UpperCAmelCase__ : int = use_bias UpperCAmelCase__ : str = block_size UpperCAmelCase__ : str = num_random_blocks UpperCAmelCase__ : List[str] = classifier_dropout class _snake_case ( A__ ): @property def snake_case__ ( self): if self.task == "multiple-choice": UpperCAmelCase__ : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCAmelCase__ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
163
'''simple docstring''' import os import sys import unittest _lowerCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCamelCase : str = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') _lowerCamelCase : Tuple = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Any ): A = get_test_to_tester_mapping(_lowerCAmelCase ) A = get_test_to_tester_mapping(_lowerCAmelCase ) A = {"""BertModelTest""": """BertModelTester"""} A = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def A (self : str ): A = get_model_to_test_mapping(_lowerCAmelCase ) A = get_model_to_test_mapping(_lowerCAmelCase ) A = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } A = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) def A (self : Union[str, Any] ): A = get_model_to_tester_mapping(_lowerCAmelCase ) A = get_model_to_tester_mapping(_lowerCAmelCase ) A = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } A = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(get_test_info.to_json(_lowerCAmelCase ) , _lowerCAmelCase )
258
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : str ="""poolformer""" def __init__( self : List[str] , UpperCamelCase : Tuple=3 , UpperCamelCase : Optional[Any]=16 , UpperCamelCase : List[Any]=16 , UpperCamelCase : List[Any]=3 , UpperCamelCase : Optional[Any]=4.0 , UpperCamelCase : List[str]=[2, 2, 6, 2] , UpperCamelCase : Optional[int]=[64, 1_28, 3_20, 5_12] , UpperCamelCase : Tuple=[7, 3, 3, 3] , UpperCamelCase : Optional[Any]=[4, 2, 2, 2] , UpperCamelCase : Tuple=[2, 1, 1, 1] , UpperCamelCase : List[str]=4 , UpperCamelCase : List[str]=0.0 , UpperCamelCase : Optional[Any]="gelu" , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Dict=1e-5 , UpperCamelCase : Optional[int]=0.02 , **UpperCamelCase : Any , ): '''simple docstring''' _snake_case : Tuple = num_channels _snake_case : List[str] = patch_size _snake_case : str = stride _snake_case : List[str] = padding _snake_case : Tuple = pool_size _snake_case : List[Any] = hidden_sizes _snake_case : List[str] = mlp_ratio _snake_case : Optional[Any] = depths _snake_case : Any = patch_sizes _snake_case : int = strides _snake_case : Any = num_encoder_blocks _snake_case : Tuple = drop_path_rate _snake_case : str = hidden_act _snake_case : Dict = use_layer_scale _snake_case : Optional[int] = layer_scale_init_value _snake_case : List[str] = initializer_range super().__init__(**UpperCamelCase ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] =version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return 2e-3
260
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCamelCase_ ( lowerCAmelCase: str , lowerCAmelCase: complex , lowerCAmelCase: str = "x" , lowerCAmelCase: float = 10**-10 , lowerCAmelCase: int = 1 , )-> complex: _snake_case : Optional[int] = symbols(lowerCAmelCase ) _snake_case : Tuple = lambdify(lowerCAmelCase , lowerCAmelCase ) _snake_case : Union[str, Any] = lambdify(lowerCAmelCase , diff(lowerCAmelCase , lowerCAmelCase ) ) _snake_case : int = starting_point while True: if diff_function(lowerCAmelCase ) != 0: _snake_case : Optional[Any] = prev_guess - multiplicity * func(lowerCAmelCase ) / diff_function( lowerCAmelCase ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _snake_case : Dict = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( """The root of log(y) - 1 = 0 is """, F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
260
1
"""simple docstring""" import math def _snake_case ( _snake_case : int ): lowerCAmelCase : str = [True] * n lowerCAmelCase : List[str] = False lowerCAmelCase : Dict = False lowerCAmelCase : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowerCAmelCase : List[Any] = i * 2 while index < n: lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : List[str] = index + i lowerCAmelCase : int = [2] for i in range(3 , _snake_case , 2 ): if is_prime[i]: primes.append(_snake_case ) return primes def _snake_case ( _snake_case : int = 999966663333 ): lowerCAmelCase : Any = math.floor(math.sqrt(_snake_case ) ) + 100 lowerCAmelCase : str = prime_sieve(_snake_case ) lowerCAmelCase : List[str] = 0 lowerCAmelCase : str = 0 lowerCAmelCase : int = primes[prime_index] while (last_prime**2) <= limit: lowerCAmelCase : Optional[Any] = primes[prime_index + 1] lowerCAmelCase : int = last_prime**2 lowerCAmelCase : Any = next_prime**2 # Get numbers divisible by lps(current) lowerCAmelCase : Optional[Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowerCAmelCase : int = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowerCAmelCase : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowerCAmelCase : List[str] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
60
"""simple docstring""" def _snake_case ( _snake_case : int ): if not isinstance(_snake_case , _snake_case ): raise TypeError('''only integers accepted as input''' ) else: lowerCAmelCase : List[str] = str(abs(_snake_case ) ) lowerCAmelCase : Optional[Any] = [list(_snake_case ) for char in range(len(_snake_case ) )] for index in range(len(_snake_case ) ): num_transpositions[index].pop(_snake_case ) return max( int(''''''.join(list(_snake_case ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
60
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class a__ ( __UpperCamelCase ): @staticmethod @abstractmethod def __SCREAMING_SNAKE_CASE( _A ): """simple docstring""" raise NotImplementedError() @abstractmethod def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" raise NotImplementedError()
356
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 16 UpperCamelCase__ = 32 def _a ( SCREAMING_SNAKE_CASE_ : Accelerator , SCREAMING_SNAKE_CASE_ : int = 16 ): __lowerCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowerCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE_ : str ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE_ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="longest" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , SCREAMING_SNAKE_CASE_ ) == "1": __lowerCAmelCase = 2 # New Code # __lowerCAmelCase = int(args.gradient_accumulation_steps ) # Initialize accelerator __lowerCAmelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE_ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = evaluate.load("glue" , "mrpc" ) set_seed(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = output.loss accelerator.backward(SCREAMING_SNAKE_CASE_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE_ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
102
0
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json _snake_case : int = "sshleifer/mar_enro_6_3_student" class a (_lowerCAmelCase ): """simple docstring""" def __snake_case ( self : List[str] ) -> List[str]: super().setUp() __snake_case : Tuple = cached_path( "https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz" , extract_compressed_file=lowerCamelCase , ) __snake_case : Optional[int] = F'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def __snake_case ( self : Tuple ) -> Any: MarianMTModel.from_pretrained(lowerCamelCase ) @slow @require_torch_gpu def __snake_case ( self : str ) -> Optional[Any]: __snake_case : List[str] = { "$MAX_LEN": 64, "$BS": 64, "$GAS": 1, "$ENRO_DIR": self.data_dir, "facebook/mbart-large-cc25": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", "--learning_rate=3e-5": "--learning_rate 3e-4", "--num_train_epochs 6": "--num_train_epochs 1", } # Clean up bash script __snake_case : str = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py" )[1].strip() __snake_case : Optional[Any] = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) for k, v in env_vars_to_replace.items(): __snake_case : int = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) __snake_case : Any = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") __snake_case : List[str] = F'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future __snake_case : Tuple = ["finetune.py"] + bash_script.split() + args with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): __snake_case : Any = argparse.ArgumentParser() __snake_case : List[str] = pl.Trainer.add_argparse_args(lowerCamelCase ) __snake_case : Union[str, Any] = SummarizationModule.add_model_specific_args(lowerCamelCase , os.getcwd() ) __snake_case : Tuple = parser.parse_args() __snake_case : List[Any] = main(lowerCamelCase ) # Check metrics __snake_case : Union[str, Any] = load_json(model.metrics_save_path ) __snake_case : str = metrics["val"][0] __snake_case : Optional[int] = metrics["val"][-1] self.assertEqual(len(metrics["val"] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) self.assertGreater(last_step_stats["val_avg_gen_time"] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["val_avg_gen_time"] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["val_avg_bleu"] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict __snake_case : int = os.listdir(lowerCamelCase ) __snake_case : Tuple = [x for x in contents if x.endswith(".ckpt" )][0] __snake_case : int = os.path.join(args.output_dir , lowerCamelCase ) __snake_case : List[Any] = torch.load(lowerCamelCase , map_location="cpu" ) __snake_case : int = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __snake_case : Tuple = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1 class a (_lowerCAmelCase ): """simple docstring""" @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __snake_case ( self : Any ) -> Optional[Any]: __snake_case : Dict = F'{self.test_file_dir_str}/test_data/wmt_en_ro' __snake_case : Optional[int] = { "--fp16_opt_level=O1": "", "$MAX_LEN": 128, "$BS": 16, "$GAS": 1, "$ENRO_DIR": data_dir, "$m": "sshleifer/student_marian_en_ro_6_1", "val_check_interval=0.25": "val_check_interval=1.0", } # Clean up bash script __snake_case : str = ( (self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py" )[1].strip() ) __snake_case : List[Any] = bash_script.replace("\\\n" , "" ).strip().replace("\"$@\"" , "" ) __snake_case : Any = bash_script.replace("--fp16 " , " " ) for k, v in env_vars_to_replace.items(): __snake_case : Optional[Any] = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) __snake_case : str = self.get_auto_remove_tmp_dir() __snake_case : Optional[Any] = bash_script.replace("--fp16" , "" ) __snake_case : Any = 6 __snake_case : str = ( ["distillation.py"] + bash_script.split() + [ F'--output_dir={output_dir}', "--gpus=1", "--learning_rate=1e-3", F'--num_train_epochs={epochs}', "--warmup_steps=10", "--val_check_interval=1.0", "--do_predict", ] ) with patch.object(lowerCamelCase , "argv" , lowerCamelCase ): __snake_case : int = argparse.ArgumentParser() __snake_case : Tuple = pl.Trainer.add_argparse_args(lowerCamelCase ) __snake_case : Optional[int] = SummarizationDistiller.add_model_specific_args(lowerCamelCase , os.getcwd() ) __snake_case : Tuple = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu __snake_case : Dict = distill_main(lowerCamelCase ) # Check metrics __snake_case : Union[str, Any] = load_json(model.metrics_save_path ) __snake_case : List[Any] = metrics["val"][0] __snake_case : int = metrics["val"][-1] assert len(metrics["val"] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict __snake_case : Tuple = os.listdir(lowerCamelCase ) __snake_case : Tuple = [x for x in contents if x.endswith(".ckpt" )][0] __snake_case : Dict = os.path.join(args.output_dir , lowerCamelCase ) __snake_case : Optional[Any] = torch.load(lowerCamelCase , map_location="cpu" ) __snake_case : Optional[Any] = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: __snake_case : List[str] = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["test"] ) == 1
123
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : Union[str, Any] = "▁" _snake_case : Any = {"vocab_file": "prophetnet.tokenizer"} _snake_case : Tuple = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } _snake_case : Any = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } _snake_case : Any = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Union[str, Any] = collections.OrderedDict() with open(__lowerCamelCase , "r" , encoding="utf-8" ) as reader: __snake_case : Dict = reader.readlines() for index, token in enumerate(__lowerCamelCase ): __snake_case : Optional[int] = token.rstrip("\n" ) __snake_case : Union[str, Any] = index return vocab class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any = ["input_ids", "attention_mask"] def __init__( self : Any , lowerCamelCase : str , lowerCamelCase : Optional[Any]="[SEP]" , lowerCamelCase : List[str]="[SEP]" , lowerCamelCase : Dict="[SEP]" , lowerCamelCase : Optional[int]="[UNK]" , lowerCamelCase : Dict="[PAD]" , lowerCamelCase : str="[CLS]" , lowerCamelCase : str="[MASK]" , lowerCamelCase : Optional[Dict[str, Any]] = None , **lowerCamelCase : int , ) -> None: __snake_case : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , sep_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) __snake_case : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __snake_case : List[str] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): __snake_case : List[str] = F'[unused{i}]' __snake_case : int = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __snake_case : Any = 12 __snake_case : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCamelCase ) def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: __snake_case : Union[str, Any] = self.__dict__.copy() __snake_case : int = None return state def __setstate__( self : Tuple , lowerCamelCase : List[str] ) -> Tuple: __snake_case : Tuple = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : Tuple = {} __snake_case : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __snake_case ( self : Dict , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None , lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return ([0] * len(lowerCamelCase )) + [1] return ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def __snake_case ( self : Any , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: __snake_case : str = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __snake_case ( self : str ) -> str: return len(self.sp_model ) + self.fairseq_offset def __snake_case ( self : Any ) -> int: __snake_case : Dict = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case ( self : str , lowerCamelCase : str ) -> str: return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def __snake_case ( self : List[str] , lowerCamelCase : Dict ) -> Dict: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : List[Any] = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case ( self : Dict , lowerCamelCase : Optional[int] ) -> Optional[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case ( self : int , lowerCamelCase : Union[str, Any] ) -> Optional[Any]: __snake_case : str = "".join(lowerCamelCase ).replace(lowerCamelCase , " " ).strip() return out_string def __snake_case ( self : List[str] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __snake_case : List[str] = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , "wb" ) as fi: __snake_case : Any = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def __snake_case ( self : Union[str, Any] , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.sep_token_id] __snake_case : List[str] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
123
1
def lowerCAmelCase_ ( __a , __a ) -> float: """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) lowerCamelCase__: int =sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(__a ) ) return round(__a , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
273
from math import pow def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> tuple[int, int]: """simple docstring""" if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count lowerCamelCase__: Optional[Any] =int(pow(__a , __a ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n lowerCamelCase__ , lowerCamelCase__: int =backtrack( __a , __a , current_number + 1 , __a , __a ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. lowerCamelCase__ , lowerCamelCase__: Dict =backtrack( __a , __a , current_number + 1 , __a , __a ) return current_sum, solutions_count def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( "Invalid input\n" "needed_sum must be between 1 and 1000, power between 2 and 10." ) return backtrack(__a , __a , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
273
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __snake_case , unittest.TestCase ): __magic_name__ = CLIPTokenizer __magic_name__ = CLIPTokenizerFast __magic_name__ = True __magic_name__ = {} __magic_name__ = False def __lowerCAmelCase ( self ) -> Any: """simple docstring""" super().setUp() # fmt: off A : List[Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on A : Tuple = dict(zip(SCREAMING_SNAKE_CASE , range(len(SCREAMING_SNAKE_CASE ) ) ) ) A : Any = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] A : List[Any] = {'''unk_token''': '''<unk>'''} A : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" A : str = '''lower newer''' A : int = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A : Optional[Any] = '''lower newer''' A : int = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] A : List[str] = tokenizer.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : List[Any] = tokens + [tokenizer.unk_token] A : Any = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) @require_ftfy def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : int = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : List[str] = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' A : Any = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) A : List[Any] = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways A : List[Any] = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' A : Union[str, Any] = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) A : Dict = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on unicode of space type A : Tuple = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: A : List[str] = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) A : List[Any] = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test that the tokenization is identical on unicode of line break type A : int = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: A : List[str] = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE ) A : Tuple = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE ) self.assertListEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): A : int = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` A : List[Any] = F'{text_of_1_token} {text_of_1_token}' A : Optional[Any] = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , ) A : Optional[int] = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE ) + 1, len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) A : Any = F' {text}' A : Dict = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE , use_fast=SCREAMING_SNAKE_CASE , ) A : int = tokenizer_r(SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE ) + 1, 1 + len(SCREAMING_SNAKE_CASE ) + 1 + len(SCREAMING_SNAKE_CASE )) , ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" super().test_tokenization_python_rust_equals() def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass
3
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
29
0
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase="attention" ) ->List[Any]: """simple docstring""" a_ = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] a_ = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->List[str]: """simple docstring""" if split_mlp_wi: a_ = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] a_ = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] a_ = (wi_a, wi_a) else: a_ = params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] a_ = params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->List[Any]: """simple docstring""" return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def UpperCamelCase ( UpperCAmelCase , *, UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" a_ = traverse_util.flatten_dict(variables["target"] ) a_ = {"/".join(UpperCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi a_ = "encoder/layers_0/mlp/wi_0/kernel" in old print("Split MLP:" , UpperCAmelCase ) a_ = collections.OrderedDict() # Shared embeddings. a_ = old["token_embedder/embedding"] # Encoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 1 (MLP). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , "pre_mlp_layer_norm" ) a_ , a_ = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "encoder" , UpperCAmelCase ) a_ = layer_norm if split_mlp_wi: a_ = wi[0].T a_ = wi[1].T else: a_ = wi.T a_ = wo.T a_ = old[ "encoder/relpos_bias/rel_embedding" ].T a_ = old["encoder/encoder_norm/scale"] if not is_encoder_only: # Decoder. for i in range(UpperCAmelCase ): # Block i, layer 0 (Self Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "self_attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 1 (Cross Attention). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) a_ , a_ , a_ , a_ = tax_attention_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "encoder_decoder_attention" ) a_ = layer_norm a_ = k.T a_ = o.T a_ = q.T a_ = v.T # Block i, layer 2 (MLP). a_ = tax_layer_norm_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , "pre_mlp_layer_norm" ) a_ , a_ = tax_mlp_lookup(UpperCAmelCase , UpperCAmelCase , "decoder" , UpperCAmelCase ) a_ = layer_norm if split_mlp_wi: a_ = wi[0].T a_ = wi[1].T else: a_ = wi.T a_ = wo.T a_ = old["decoder/decoder_norm/scale"] a_ = old[ "decoder/relpos_bias/rel_embedding" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: a_ = old["decoder/logits_dense/kernel"].T return new def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" a_ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: a_ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: a_ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) a_ = state_dict["shared.weight"] return state_dict def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = checkpoints.load_tax_checkpoint(UpperCAmelCase ) a_ = convert_tax_to_pytorch(UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=UpperCAmelCase ) a_ = make_state_dict(UpperCAmelCase , UpperCAmelCase ) model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = False ) ->int: """simple docstring""" a_ = TaConfig.from_json_file(UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: a_ = TaEncoderModel(UpperCAmelCase ) else: a_ = TaForConditionalGeneration(UpperCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCAmelCase ) print("Done" ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) UpperCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
360
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2] a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False a_ = True if "large" in model_name or "huge" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: a_ = [3, 3, 3, 3] a_ = [5, 5, 5, 5] elif "fl4" in model_name: a_ = [4, 4, 4, 4] a_ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: a_ = [3, 3, 3, 3] if "lrf" in model_name: a_ = [3, 3, 3, 3] else: a_ = [2, 2, 2, 2] if "tiny" in model_name: a_ = 96 elif "small" in model_name: a_ = 96 elif "base" in model_name: a_ = 128 elif "large" in model_name: a_ = 192 elif "xlarge" in model_name: a_ = 256 elif "huge" in model_name: a_ = 352 # set label information a_ = "huggingface/label-files" if "large" in model_name or "huge" in model_name: a_ = "imagenet-22k-id2label.json" else: a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = {v: k for k, v in idalabel.items()} a_ = FocalNetConfig( embed_dim=UpperCAmelCase , depths=UpperCAmelCase , focal_levels=UpperCAmelCase , focal_windows=UpperCAmelCase , use_conv_embed=UpperCAmelCase , idalabel=UpperCAmelCase , labelaid=UpperCAmelCase , use_post_layernorm=UpperCAmelCase , use_layerscale=UpperCAmelCase , ) return config def UpperCamelCase ( UpperCAmelCase ) ->Any: """simple docstring""" if "patch_embed.proj" in name: a_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a_ = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: a_ = "encoder." + name if "encoder.layers" in name: a_ = name.replace("encoder.layers" , "encoder.stages" ) if "downsample.proj" in name: a_ = name.replace("downsample.proj" , "downsample.projection" ) if "blocks" in name: a_ = name.replace("blocks" , "layers" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: a_ = name.replace("modulation.f" , "modulation.projection_in" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: a_ = name.replace("modulation.h" , "modulation.projection_context" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: a_ = name.replace("modulation.proj" , "modulation.projection_out" ) if name == "norm.weight": a_ = "layernorm.weight" if name == "norm.bias": a_ = "layernorm.bias" if "head" in name: a_ = name.replace("head" , "classifier" ) else: a_ = "focalnet." + name return name def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Dict: """simple docstring""" a_ = { "focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth", "focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth", "focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth", "focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth", "focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth", "focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth", "focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", "focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", "focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", "focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", } # fmt: on a_ = model_name_to_url[model_name] print("Checkpoint URL: " , UpperCAmelCase ) a_ = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location="cpu" )["model"] # rename keys for key in state_dict.copy().keys(): a_ = state_dict.pop(UpperCAmelCase ) a_ = val a_ = get_focalnet_config(UpperCAmelCase ) a_ = FocalNetForImageClassification(UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(UpperCAmelCase ) # verify conversion a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = BitImageProcessor( do_resize=UpperCAmelCase , size={"shortest_edge": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase , crop_size=224 , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , ) a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) a_ = processor(images=UpperCAmelCase , return_tensors="pt" ) a_ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) a_ = image_transforms(UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , UpperCAmelCase , atol=1E-4 ) a_ = model(**UpperCAmelCase ) a_ = outputs.logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) print("First values of logits:" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": a_ = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": a_ = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": a_ = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": a_ = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": a_ = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": a_ = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCamelCase_ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
0
from __future__ import annotations def A (__A : str , __A : Optional[int] , __A : Any , __A : Union[str, Any] ) -> list: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ = result + left + right return input_list def A (__A : str ) -> list: """simple docstring""" if len(__snake_case ) <= 1: return input_list UpperCAmelCase_ = list(__snake_case ) # iteration for two-way merging UpperCAmelCase_ = 2 while p <= len(__snake_case ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__snake_case ) , __snake_case ): UpperCAmelCase_ = i UpperCAmelCase_ = i + p - 1 UpperCAmelCase_ = (low + high + 1) // 2 UpperCAmelCase_ = merge(__snake_case , __snake_case , __snake_case , __snake_case ) # final merge of last two parts if p * 2 >= len(__snake_case ): UpperCAmelCase_ = i UpperCAmelCase_ = merge(__snake_case , 0 , __snake_case , len(__snake_case ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": snake_case_ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() if user_input == "": snake_case_ : Optional[int] = [] else: snake_case_ : int = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
51
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class A__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env") def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Any=1) -> Dict: """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[Any]) -> Optional[Any]: """simple docstring""" TrainingJobAnalytics(_SCREAMING_SNAKE_CASE).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") def _SCREAMING_SNAKE_CASE ( self: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Tuple = self.create_estimator() # run training estimator.fit() # result dataframe __lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __lowerCAmelCase : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) __lowerCAmelCase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowerCAmelCase : Tuple = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _SCREAMING_SNAKE_CASE)
269
0
# flake8: noqa # Lint as: python3 __a = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
173
def __lowercase ( _UpperCamelCase = 50 ) ->int: """simple docstring""" lowercase : str = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
173
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = "▁" _snake_case = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _snake_case = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _snake_case = { "facebook/s2t-small-librispeech-asr": 1024, } _snake_case = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _snake_case = {"mustc": MUSTC_LANGS} class lowercase ( __lowerCAmelCase ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = MAX_MODEL_INPUT_SIZES _a = ['''input_ids''', '''attention_mask'''] _a = [] def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="<pad>" , _a="<unk>" , _a=False , _a=False , _a=None , _a=None , _a = None , **_a , ) -> str: _A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _A : Tuple = do_upper_case _A : Tuple = do_lower_case _A : int = load_json(_UpperCAmelCase ) _A : Any = {v: k for k, v in self.encoder.items()} _A : Optional[int] = spm_file _A : Optional[Any] = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: _A : List[str] = lang_codes _A : List[str] = LANGUAGES[lang_codes] _A : List[Any] = [F'''<lang:{lang}>''' for lang in self.langs] _A : int = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} _A : Optional[Any] = self.lang_tokens _A : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _A : Dict = {} @property def a__ ( self ) -> List[str]: return len(self.encoder ) @property def a__ ( self ) -> Dict: return self._tgt_lang @tgt_lang.setter def a__ ( self , _a ) -> str: _A : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def a__ ( self , _a ) -> List[str]: _A : Union[str, Any] = self.lang_code_to_id[tgt_lang] _A : List[str] = [lang_code_id] def a__ ( self , _a ) -> str: return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def a__ ( self , _a ) -> int: return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def a__ ( self , _a ) -> Dict: return self.decoder.get(_UpperCAmelCase , self.unk_token ) def a__ ( self , _a ) -> str: _A : List[str] = [] _A : List[str] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _A : Optional[int] = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _A : str = [] else: current_sub_tokens.append(_UpperCAmelCase ) _A : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def a__ ( self , _a , _a=None ) -> Any: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self , _a , _a = None , _a = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) _A : int = [1] * len(self.prefix_tokens ) _A : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def a__ ( self ) -> List[Any]: _A : List[str] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _A : Union[str, Any] = self.__dict__.copy() _A : Union[str, Any] = None return state def __setstate__( self , _a ) -> Union[str, Any]: _A : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : Dict = {} _A : List[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def a__ ( self , _a , _a = None ) -> List[str]: _A : Optional[int] = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' _A : Union[str, Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _A : List[str] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , """wb""" ) as fi: _A : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = sentencepiece.SentencePieceProcessor(**_snake_case ) spm.Load(str(_snake_case ) ) return spm def lowerCAmelCase_ ( snake_case_ ): with open(_snake_case,"""r""" ) as f: return json.load(_snake_case ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): with open(_snake_case,"""w""" ) as f: json.dump(_snake_case,_snake_case,indent=2 )
26
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
def UpperCAmelCase ( _lowerCamelCase = 50 ): A : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F"""{solution() = }""")
256
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } __SCREAMING_SNAKE_CASE = {"""bert_for_seq_generation""": 512} class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = [] a__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : Optional[int]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Tuple , ) -> None: A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) A : Union[str, Any] = vocab_file A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: A : str = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Tuple: A : Tuple = self.__dict__.copy() A : Optional[int] = None return state def __setstate__( self : Dict , __lowerCamelCase : Union[str, Any] ) -> Tuple: A : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A : int = {} A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[str, Any] ) -> Dict: return self.sp_model.piece_to_id(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple ) -> Optional[Any]: A : Optional[int] = self.sp_model.IdToPiece(__lowerCamelCase ) return token def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[int] ) -> List[str]: A : List[str] = [] A : List[str] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token A : Union[str, Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A : str = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: A : str = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
256
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self , a , a=12 , a=7 , a=True , a=True , a=True , a=99 , a=32 , a=32 , a=2 , a=4 , a=37 , a=0.1 , a=0.1 , a=512 , a=0.02 , a=0 , a=None , ) -> str: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = projection_dim SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = dropout SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = bos_token_id def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length]) if input_mask is not None: SCREAMING_SNAKE_CASE = input_mask.numpy() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = input_mask.shape SCREAMING_SNAKE_CASE = np.random.randint(1 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(a): SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, tf.convert_to_tensor(a) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> List[str]: SCREAMING_SNAKE_CASE = TFBlipTextModel(config=a) SCREAMING_SNAKE_CASE = model(a , attention_mask=a , training=a) SCREAMING_SNAKE_CASE = model(a , training=a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _snake_case ( A__ , unittest.TestCase ): _lowercase : Tuple = (TFBlipTextModel,) if is_tf_available() else () _lowercase : Tuple = False _lowercase : int = False _lowercase : Dict = False def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = BlipTextModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , hidden_size=37) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: pass def SCREAMING_SNAKE_CASE__ ( self) -> Dict: pass @unittest.skip(reason='Blip does not use inputs_embeds') def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING') def SCREAMING_SNAKE_CASE__ ( self) -> int: pass @unittest.skip(reason='BlipTextModel has no base class and is not available in MODEL_MAPPING') def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFBlipTextModel.from_pretrained(a) self.assertIsNotNone(a) def SCREAMING_SNAKE_CASE__ ( self , a=True) -> Optional[Any]: super().test_pt_tf_model_equivalence(allow_missing_keys=a)
137
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_file.split(os.path.sep) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'''{test_file} instead.''') SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith('py'): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''') if not test_fn.startswith('test_modeling_'): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''') SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace('.py' , '')] SCREAMING_SNAKE_CASE = '.'.join(_UpperCAmelCase) return test_module_path def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_module_path(_UpperCAmelCase) SCREAMING_SNAKE_CASE = importlib.import_module(_UpperCAmelCase) return test_module def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): if attr.endswith('ModelTester'): tester_classes.append(getattr(_UpperCAmelCase , _UpperCAmelCase)) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = get_test_module(_UpperCAmelCase) for attr in dir(_UpperCAmelCase): SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , _UpperCAmelCase) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , 'all_model_classes' , []) if len(_UpperCAmelCase) > 0: test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = test_class() if hasattr(_UpperCAmelCase , 'setUp'): test.setUp() SCREAMING_SNAKE_CASE = None if hasattr(_UpperCAmelCase , 'model_tester'): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for test_class in test_classes: SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(_UpperCAmelCase) if tester_class is not None: tester_classes.append(_UpperCAmelCase) # sort with class names return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x.__name__) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_test_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(_UpperCAmelCase) for test_class in test_classes} return test_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_test_mapping def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = get_model_classes(_UpperCAmelCase) SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(_UpperCAmelCase , _UpperCAmelCase) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase__ (_UpperCAmelCase): if isinstance(_UpperCAmelCase , _UpperCAmelCase): return o elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return o.__name__ elif isinstance(_UpperCAmelCase , (list, tuple)): return [to_json(_UpperCAmelCase) for x in o] elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return {to_json(_UpperCAmelCase): to_json(_UpperCAmelCase) for k, v in o.items()} else: return o
137
1
"""simple docstring""" lowerCAmelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = [False] * len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = [s] lowerCAmelCase : Optional[int] = True while queue: lowerCAmelCase : Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = True lowerCAmelCase : Any = u return visited[t] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Tuple = [-1] * (len(SCREAMING_SNAKE_CASE )) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[Any] = [] lowerCAmelCase : Dict = [i[:] for i in graph] # Record original cut, copy. while bfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = float("Inf" ) lowerCAmelCase : List[str] = sink while s != source: # Find the minimum value in select path lowerCAmelCase : int = min(SCREAMING_SNAKE_CASE , graph[parent[s]][s] ) lowerCAmelCase : Union[str, Any] = parent[s] max_flow += path_flow lowerCAmelCase : int = sink while v != source: lowerCAmelCase : str = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase : List[Any] = parent[v] for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
356
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any ="tapas" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_024 , snake_case__=[3, 256, 256, 2, 256, 256, 10] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=10.0 , snake_case__=0 , snake_case__=1.0 , snake_case__=None , snake_case__=1.0 , snake_case__=False , snake_case__=None , snake_case__=1.0 , snake_case__=1.0 , snake_case__=False , snake_case__=False , snake_case__="ratio" , snake_case__=None , snake_case__=None , snake_case__=64 , snake_case__=32 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase : List[Any] = vocab_size lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : List[Any] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : str = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : Dict = type_vocab_sizes lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : str = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase : Dict = positive_label_weight lowerCAmelCase : Union[str, Any] = num_aggregation_labels lowerCAmelCase : Optional[Any] = aggregation_loss_weight lowerCAmelCase : List[Any] = use_answer_as_supervision lowerCAmelCase : Dict = answer_loss_importance lowerCAmelCase : List[Any] = use_normalized_answer_loss lowerCAmelCase : List[str] = huber_loss_delta lowerCAmelCase : Optional[int] = temperature lowerCAmelCase : Optional[int] = aggregation_temperature lowerCAmelCase : Any = use_gumbel_for_cells lowerCAmelCase : Union[str, Any] = use_gumbel_for_aggregation lowerCAmelCase : Union[str, Any] = average_approximation_function lowerCAmelCase : int = cell_selection_preference lowerCAmelCase : Dict = answer_loss_cutoff lowerCAmelCase : Optional[int] = max_num_rows lowerCAmelCase : Union[str, Any] = max_num_columns lowerCAmelCase : Any = average_logits_per_cell lowerCAmelCase : List[Any] = select_one_column lowerCAmelCase : Tuple = allow_empty_column_selection lowerCAmelCase : str = init_cell_selection_weights_to_zero lowerCAmelCase : List[Any] = reset_position_index_per_cell lowerCAmelCase : Optional[Any] = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase : List[str] = aggregation_labels lowerCAmelCase : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case__ ): lowerCAmelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in aggregation_labels.items()}
133
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Optional[Any] ='▁' __lowerCAmelCase : Union[str, Any] ={'vocab_file': 'spiece.model'} __lowerCAmelCase : Optional[int] ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } __lowerCAmelCase : Optional[int] ={ 'google/pegasus-xsum': 5_1_2, } __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self :str , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict="<pad>" , lowerCAmelCase__ :List[Any]="</s>" , lowerCAmelCase__ :Tuple="<unk>" , lowerCAmelCase__ :str="<mask_2>" , lowerCAmelCase__ :Dict="<mask_1>" , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Union[str, Any]=103 , lowerCAmelCase__ :Optional[Dict[str, Any]] = None , **lowerCAmelCase__ :str , ) -> None: __SCREAMING_SNAKE_CASE : int = offset if additional_special_tokens is not None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError( f'''additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is''' f''' {type(lowerCAmelCase__ )}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(lowerCAmelCase__ ) , self.offset - 1 ) ] if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) __SCREAMING_SNAKE_CASE : List[str] = additional_special_tokens_extended else: __SCREAMING_SNAKE_CASE : List[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] __SCREAMING_SNAKE_CASE : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Dict = mask_token_sent __SCREAMING_SNAKE_CASE : Any = vocab_file __SCREAMING_SNAKE_CASE : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) # add special tokens to encoder dict __SCREAMING_SNAKE_CASE : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __SCREAMING_SNAKE_CASE : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def __magic_name__( self :Dict ) -> int: return len(self.sp_model ) + self.offset def __magic_name__( self :Dict ) -> Dict[str, int]: __SCREAMING_SNAKE_CASE : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : str = self.__dict__.copy() __SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self :Any , lowerCAmelCase__ :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __SCREAMING_SNAKE_CASE : Any = {} __SCREAMING_SNAKE_CASE : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :str ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :str ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.piece_to_id(lowerCAmelCase__ ) return sp_id + self.offset def __magic_name__( self :List[Any] , lowerCAmelCase__ :int ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.IdToPiece(index - self.offset ) return token def __magic_name__( self :Tuple , lowerCAmelCase__ :Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = [] __SCREAMING_SNAKE_CASE : Tuple = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCAmelCase__ ) + token __SCREAMING_SNAKE_CASE : int = [] else: current_sub_tokens.append(lowerCAmelCase__ ) out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def __magic_name__( self :Any , lowerCAmelCase__ :Optional[Any]=False ) -> Dict: return 1 def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __magic_name__( self :int , lowerCAmelCase__ :List , lowerCAmelCase__ :Optional[List] = None , lowerCAmelCase__ :bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowerCAmelCase__ ) elif token_ids_a is None: return self._special_token_mask(lowerCAmelCase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __magic_name__( self :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[Any]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: __SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,)
9
def __SCREAMING_SNAKE_CASE ( snake_case_ = 1000 ): '''simple docstring''' _UpperCAmelCase = 2**power _UpperCAmelCase = 0 while n: _UpperCAmelCase , _UpperCAmelCase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
133
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Any = logging.get_logger(__name__) def __lowercase ( _a , _a=False ): snake_case_ : Dict = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('''head''' ): snake_case_ : Dict = '''segformer.encoder.''' + key if key.startswith('''backbone''' ): snake_case_ : List[str] = key.replace('''backbone''' , '''segformer.encoder''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 snake_case_ : str = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] snake_case_ : Optional[Any] = key.replace(f"patch_embed{idx}" , f"patch_embeddings.{int(_a )-1}" ) if "norm" in key: snake_case_ : int = key.replace('''norm''' , '''layer_norm''' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 snake_case_ : Dict = key[key.find('''segformer.encoder.layer_norm''' ) + len('''segformer.encoder.layer_norm''' )] snake_case_ : str = key.replace(f"layer_norm{idx}" , f"layer_norm.{int(_a )-1}" ) if "layer_norm1" in key: snake_case_ : Union[str, Any] = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: snake_case_ : List[Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 snake_case_ : Union[str, Any] = key[key.find('''block''' ) + len('''block''' )] snake_case_ : Dict = key.replace(f"block{idx}" , f"block.{int(_a )-1}" ) if "attn.q" in key: snake_case_ : List[str] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: snake_case_ : int = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: snake_case_ : int = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: snake_case_ : Tuple = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: snake_case_ : List[Any] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: snake_case_ : Tuple = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: snake_case_ : Any = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) snake_case_ : List[str] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 snake_case_ : List[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] snake_case_ : str = key.replace(f"linear_c{idx}" , f"linear_c.{int(_a )-1}" ) if key.startswith('''head''' ): snake_case_ : List[str] = key.replace('''head''' , '''classifier''' ) snake_case_ : str = value return new_state_dict def __lowercase ( _a , _a ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) snake_case_ : Optional[int] = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.weight" ) snake_case_ : Tuple = state_dict.pop(f"segformer.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict snake_case_ : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] snake_case_ : List[Any] = kv_bias[: config.hidden_sizes[i]] snake_case_ : str = kv_weight[ config.hidden_sizes[i] :, : ] snake_case_ : Tuple = kv_bias[ config.hidden_sizes[i] : ] def __lowercase ( ): snake_case_ : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ : str = Image.open(requests.get(_a , stream=_a ).raw ) return image @torch.no_grad() def __lowercase ( _a , _a , _a ): snake_case_ : List[Any] = SegformerConfig() snake_case_ : Tuple = False # set attributes based on model_name snake_case_ : Dict = '''huggingface/label-files''' if "segformer" in model_name: snake_case_ : int = model_name[len('''segformer.''' ) : len('''segformer.''' ) + 2] if "ade" in model_name: snake_case_ : List[Any] = 150 snake_case_ : Union[str, Any] = '''ade20k-id2label.json''' snake_case_ : Any = (1, 150, 128, 128) elif "city" in model_name: snake_case_ : Union[str, Any] = 19 snake_case_ : str = '''cityscapes-id2label.json''' snake_case_ : Optional[int] = (1, 19, 128, 128) else: raise ValueError(f"Model {model_name} not supported" ) elif "mit" in model_name: snake_case_ : Union[str, Any] = True snake_case_ : Union[str, Any] = model_name[4:6] snake_case_ : str = 1_000 snake_case_ : Union[str, Any] = '''imagenet-1k-id2label.json''' snake_case_ : Optional[Any] = (1, 1_000) else: raise ValueError(f"Model {model_name} not supported" ) # set config attributes snake_case_ : Optional[int] = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) snake_case_ : int = {int(_a ): v for k, v in idalabel.items()} snake_case_ : Any = idalabel snake_case_ : Optional[int] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": snake_case_ : Union[str, Any] = [64, 128, 320, 512] snake_case_ : Union[str, Any] = 256 elif size == "b2": snake_case_ : Union[str, Any] = [64, 128, 320, 512] snake_case_ : Union[str, Any] = 768 snake_case_ : Union[str, Any] = [3, 4, 6, 3] elif size == "b3": snake_case_ : str = [64, 128, 320, 512] snake_case_ : Union[str, Any] = 768 snake_case_ : Optional[Any] = [3, 4, 18, 3] elif size == "b4": snake_case_ : int = [64, 128, 320, 512] snake_case_ : Optional[int] = 768 snake_case_ : Optional[Any] = [3, 8, 27, 3] elif size == "b5": snake_case_ : Dict = [64, 128, 320, 512] snake_case_ : Tuple = 768 snake_case_ : Optional[Any] = [3, 6, 40, 3] else: raise ValueError(f"Size {size} not supported" ) # load image processor (only resize + normalize) snake_case_ : Tuple = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_a , align=_a , do_random_crop=_a ) # prepare image snake_case_ : List[Any] = prepare_img() snake_case_ : Optional[int] = image_processor(images=_a , return_tensors='''pt''' ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict if encoder_only: snake_case_ : Optional[Any] = torch.load(_a , map_location=torch.device('''cpu''' ) ) else: snake_case_ : Optional[Any] = torch.load(_a , map_location=torch.device('''cpu''' ) )['''state_dict'''] # rename keys snake_case_ : Tuple = rename_keys(_a , encoder_only=_a ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_a , _a ) # create HuggingFace model and load state dict if encoder_only: snake_case_ : int = False snake_case_ : List[str] = SegformerForImageClassification(_a ) else: snake_case_ : List[Any] = SegformerForSemanticSegmentation(_a ) model.load_state_dict(_a ) model.eval() # forward pass snake_case_ : List[Any] = model(_a ) snake_case_ : Optional[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": snake_case_ : int = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": snake_case_ : Union[str, Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": snake_case_ : Any = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": snake_case_ : str = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": snake_case_ : Optional[Any] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": snake_case_ : Any = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": snake_case_ : Dict = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": snake_case_ : str = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": snake_case_ : Tuple = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": snake_case_ : Any = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": snake_case_ : Union[str, Any] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": snake_case_ : Optional[int] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": snake_case_ : Tuple = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": snake_case_ : List[str] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": snake_case_ : Optional[int] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: snake_case_ : int = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _a , atol=1E-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_a ).mkdir(exist_ok=_a ) model.save_pretrained(_a ) image_processor.save_pretrained(_a ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowercase__ : Dict = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
155
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _UpperCAmelCase ( unittest.TestCase): _lowerCAmelCase : Optional[int] = MODEL_FOR_CAUSAL_LM_MAPPING _lowerCAmelCase : Union[str, Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _snake_case ( self : Any ): snake_case_ : Dict = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[str] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) snake_case_ : int = text_generator('''This is a test''' , do_sample=lowercase_ , num_return_sequences=2 , return_tensors=lowercase_ ) self.assertEqual( lowercase_ , [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ] , ) snake_case_ : Tuple = text_generator.model.config.eos_token_id snake_case_ : Any = '''<pad>''' snake_case_ : Optional[Any] = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase_ , ) self.assertEqual( lowercase_ , [ [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], [ {'''generated_token_ids''': ANY(lowercase_ )}, {'''generated_token_ids''': ANY(lowercase_ )}, ], ] , ) @require_tf def _snake_case ( self : Any ): snake_case_ : List[str] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output snake_case_ : List[Any] = text_generator('''This is a test''' , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) snake_case_ : Tuple = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def _snake_case ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int ): snake_case_ : str = TextGenerationPipeline(model=lowercase_ , tokenizer=lowercase_ ) return text_generator, ["This is a test", "Another test"] def _snake_case ( self : Any ): snake_case_ : int = '''Hello I believe in''' snake_case_ : Dict = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ : Optional[Any] = text_generator(lowercase_ ) self.assertEqual( lowercase_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) snake_case_ : Any = text_generator(lowercase_ , stop_sequence=''' fe''' ) self.assertEqual(lowercase_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ): snake_case_ : Any = text_generator.model snake_case_ : str = text_generator.tokenizer snake_case_ : Tuple = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : Any = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : Optional[Any] = pipeline(task='''text-generation''' , model=lowercase_ , tokenizer=lowercase_ , return_full_text=lowercase_ ) snake_case_ : str = text_generator('''This is a test''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) snake_case_ : List[str] = text_generator('''This is a test''' , return_full_text=lowercase_ ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) snake_case_ : List[Any] = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case_ : List[Any] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase_ ) self.assertEqual( lowercase_ , [ [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], [{'''generated_text''': ANY(lowercase_ )}, {'''generated_text''': ANY(lowercase_ )}], ] , ) with self.assertRaises(lowercase_ ): snake_case_ : int = text_generator('''test''' , return_full_text=lowercase_ , return_text=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_full_text=lowercase_ , return_tensors=lowercase_ ) with self.assertRaises(lowercase_ ): snake_case_ : Dict = text_generator('''test''' , return_text=lowercase_ , return_tensors=lowercase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case_ : str = text_generator('''''' ) self.assertEqual(lowercase_ , [{'''generated_text''': ANY(lowercase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case_ : List[str] = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case_ : List[Any] = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) snake_case_ : Tuple = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowercase_ ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Optional[int] ): import torch # Classic `model_kwargs` snake_case_ : List[str] = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Tuple = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case_ : Optional[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ : Optional[Any] = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case_ : Tuple = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case_ : int = pipe('''This is a test''' ) self.assertEqual( lowercase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def _snake_case ( self : List[str] ): import torch snake_case_ : Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _snake_case ( self : Dict ): import torch snake_case_ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=lowercase_ , top_p=0.5 ) def _snake_case ( self : int ): snake_case_ : int = '''Hello world''' snake_case_ : List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": snake_case_ : Optional[Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: snake_case_ : Dict = logging.get_logger('''transformers.generation.utils''' ) snake_case_ : Tuple = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : List[Any] = text_generator(lowercase_ , max_length=10 , max_new_tokens=1 ) self.assertIn(lowercase_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowercase_ ) as cl: snake_case_ : int = text_generator(lowercase_ , max_new_tokens=1 ) self.assertNotIn(lowercase_ , cl.out ) with CaptureLogger(lowercase_ ) as cl: snake_case_ : Optional[Any] = text_generator(lowercase_ , max_length=10 ) self.assertNotIn(lowercase_ , cl.out )
155
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge a__ : Dict =[ """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the""" """ final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe""" """ depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.""", """The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal""" """ accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's""" """ founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the""" """ body.""", """Amnesty International releases its annual report on the death penalty. The report catalogs the use of""" """ state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the""" """ world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital""" """ punishment.""", ] a__ : Tuple =[ """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""" """ Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz""" """ had informed his Lufthansa training school of an episode of severe depression, airline says .""", """Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .""" """ Israel and the United States opposed the move, which could open the door to war crimes investigations against""" """ Israelis .""", """Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to""" """ death . Organization claims that governments around the world are using the threat of terrorism to advance""" """ executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death""" """ sentences up by 28% .""", ] def lowercase__ ( ) -> int: """simple docstring""" __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ , rouge_keys=['rouge2', 'rougeL'] ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ , rouge_keys=['rouge2'] ) assert ( pd.DataFrame(no_aggregation['rouge2'] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['rouge2'] ).fmeasure.mean() ) def lowercase__ ( ) -> Dict: """simple docstring""" __UpperCamelCase = """rougeLsum""" __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=[k] )[k] __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase__ ( ) -> Tuple: """simple docstring""" __UpperCamelCase = ["""rouge1""", """rouge2""", """rougeL"""] __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ , rouge_keys=SCREAMING_SNAKE_CASE__ ) assert score_sep == score_no_sep def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] __UpperCamelCase = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ ) == calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , newline_sep=SCREAMING_SNAKE_CASE__ ) def lowercase__ ( ) -> Any: """simple docstring""" __UpperCamelCase = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] __UpperCamelCase = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rouge_keys=['rougeLsum'] , newline_sep=SCREAMING_SNAKE_CASE__ )["""rougeLsum"""] __UpperCamelCase = calculate_rouge(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rouge_keys=['rougeLsum'] )["""rougeLsum"""] assert new_score > prev_score def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = Path('examples/seq2seq/test_data/wmt_en_ro' ) __UpperCamelCase = calculate_rouge_path(data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase = calculate_rouge_path( data_dir.joinpath('test.source' ) , data_dir.joinpath('test.target' ) , bootstrap_aggregation=SCREAMING_SNAKE_CASE__ ) assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
53
from math import sqrt def _snake_case( SCREAMING_SNAKE_CASE__ ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" lowercase : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: lowercase : str = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowercase : Any = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowercase : str = list(range(2 , n + 1 ) ) lowercase : Tuple = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowercase : Tuple = 0 # filters actual prime numbers. lowercase : int = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" lowercase : Dict = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" lowercase : Tuple = [] # this list will be returns of the function. # potential prime number factors. lowercase : Optional[Any] = 2 lowercase : Any = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Tuple = 0 # prime factorization of 'number' lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowercase : Union[str, Any] = 0 # prime factorization of 'number' lowercase : Tuple = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" lowercase : Union[str, Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowercase : str = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) lowercase : Any = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. lowercase : Optional[Any] = 0 lowercase : List[Any] = None # exit variable. for break up the loops lowercase : Any = True while i < len_pn and loop: lowercase : str = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowercase : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowercase : Union[str, Any] = 0 while numbera != 0: lowercase : Optional[int] = numbera % numbera lowercase : Optional[int] = numbera lowercase : Dict = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowercase : Dict = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowercase : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: lowercase : Union[str, Any] = [] lowercase : List[str] = [] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = 0 lowercase : Optional[Any] = 0 lowercase : List[str] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowercase : Dict = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: lowercase : List[Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowercase : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" lowercase : Dict = 0 lowercase : List[str] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowercase : List[str] = p_number_a + 1 # jump to the next number lowercase : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" lowercase : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" lowercase : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowercase : Tuple = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" lowercase : List[str] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" lowercase : int = 0 lowercase : Union[str, Any] = 1 lowercase : int = 1 # this will be return for _ in range(n - 1 ): lowercase : Optional[int] = ans ans += fiba lowercase : Optional[int] = tmp return ans
20
0
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = """hf-internal-testing/tiny-random-t5""" __UpperCamelCase = AutoTokenizer.from_pretrained(lowercase ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) __UpperCamelCase = tokenizer("""This is me""" , return_tensors="""pt""" ) __UpperCamelCase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __UpperCamelCase = model.generate(**lowercase ) __UpperCamelCase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __UpperCamelCase = model_reloaded.generate(**lowercase ) self.assertTrue(torch.allclose(lowercase , lowercase ) ) def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = """hf-internal-testing/tiny-random-t5""" __UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) __UpperCamelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowercase ): model.save_pretrained(lowercase ) __UpperCamelCase = model.reverse_bettertransformer() model.save_pretrained(lowercase )
243
'''simple docstring''' from PIL import Image def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = image.size __UpperCamelCase = 0 __UpperCamelCase = image.load() for i in range(__A ): for j in range(__A ): __UpperCamelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__A ): for i in range(__A ): __UpperCamelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": a__ : Optional[int] = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
243
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase :Any = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase :Union[str, Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : int=8 ): _UpperCAmelCase : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : str=512 , UpperCamelCase__ : int=512 ): _UpperCAmelCase : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _UpperCAmelCase : int = np.array(pil_image.convert('''RGB''' ) ) _UpperCAmelCase : int = arr.astype(np.floataa ) / 127.5 - 1 _UpperCAmelCase : List[Any] = np.transpose(_lowerCAmelCase , [2, 0, 1] ) _UpperCAmelCase : Dict = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( a__ ): '''simple docstring''' def __init__( self , A , A , A , ) -> Dict: super().__init__() self.register_modules( unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , movq=__UpperCAmelCase , ) _UpperCAmelCase : Tuple = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self , A , A , A ) -> Union[str, Any]: # get the original timestep using init_timestep _UpperCAmelCase : Dict = min(int(num_inference_steps * strength ) , __UpperCAmelCase ) _UpperCAmelCase : Optional[int] = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCAmelCase ( self , A , A , A , A , A , A , A=None ) -> int: if not isinstance(__UpperCAmelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__UpperCAmelCase )}' ) _UpperCAmelCase : int = image.to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) _UpperCAmelCase : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: _UpperCAmelCase : Union[str, Any] = image else: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase : Union[str, Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCAmelCase ) ] _UpperCAmelCase : Union[str, Any] = torch.cat(__UpperCAmelCase , dim=0 ) else: _UpperCAmelCase : Optional[Any] = self.movq.encode(__UpperCAmelCase ).latent_dist.sample(__UpperCAmelCase ) _UpperCAmelCase : str = self.movq.config.scaling_factor * init_latents _UpperCAmelCase : List[str] = torch.cat([init_latents] , dim=0 ) _UpperCAmelCase : int = init_latents.shape _UpperCAmelCase : List[Any] = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) # get latents _UpperCAmelCase : Optional[Any] = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = init_latents return latents def __lowerCAmelCase ( self , A=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _UpperCAmelCase : Dict = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCAmelCase , __UpperCAmelCase ) def __lowerCAmelCase ( self , A=0 ) -> str: if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _UpperCAmelCase : int = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Any = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Tuple = cpu_offload_with_hook(__UpperCAmelCase , __UpperCAmelCase , prev_module_hook=__UpperCAmelCase ) # We'll offload the last model manually. _UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self ) -> Union[str, Any]: if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCAmelCase ) def __call__( self , A , A , A , A = 5_1_2 , A = 5_1_2 , A = 1_0_0 , A = 4.0 , A = 0.3 , A = 1 , A = None , A = "pil" , A = True , ) -> str: _UpperCAmelCase : Union[str, Any] = self._execution_device _UpperCAmelCase : str = guidance_scale > 1.0 if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase : Any = torch.cat(__UpperCAmelCase , dim=0 ) _UpperCAmelCase : Tuple = image_embeds.shape[0] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase : Union[str, Any] = torch.cat(__UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: _UpperCAmelCase : Tuple = image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) _UpperCAmelCase : Dict = negative_image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 ) _UpperCAmelCase : Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCAmelCase ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): _UpperCAmelCase : Optional[Any] = [image] if not all(isinstance(__UpperCAmelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'Input is in incorrect format: {[type(__UpperCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor' ) _UpperCAmelCase : Union[str, Any] = torch.cat([prepare_image(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for i in image] , dim=0 ) _UpperCAmelCase : Tuple = image.to(dtype=image_embeds.dtype , device=__UpperCAmelCase ) _UpperCAmelCase : str = self.movq.encode(__UpperCAmelCase )['''latents'''] _UpperCAmelCase : int = latents.repeat_interleave(__UpperCAmelCase , dim=0 ) self.scheduler.set_timesteps(__UpperCAmelCase , device=__UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase : Dict = self.get_timesteps(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _UpperCAmelCase : List[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _UpperCAmelCase , _UpperCAmelCase : str = downscale_height_and_width(__UpperCAmelCase , __UpperCAmelCase , self.movq_scale_factor ) _UpperCAmelCase : Optional[Any] = self.prepare_latents( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , image_embeds.dtype , __UpperCAmelCase , __UpperCAmelCase ) for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Any = {'''image_embeds''': image_embeds} _UpperCAmelCase : Any = self.unet( sample=__UpperCAmelCase , timestep=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , added_cond_kwargs=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Dict = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : Any = variance_pred.chunk(2 ) _UpperCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : Any = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Any = self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase , )[0] # post-processing _UpperCAmelCase : Union[str, Any] = self.movq.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _UpperCAmelCase : Optional[Any] = image * 0.5 + 0.5 _UpperCAmelCase : int = image.clamp(0 , 1 ) _UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : Dict = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
263
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
0
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () lowerCAmelCase :Tuple = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). lowerCAmelCase :str = [0, 2_5, 5_0] lowerCAmelCase :Any = [2_5, 5_0, 7_5] lowerCAmelCase :Optional[Any] = fuzz.membership.trimf(X, abca) lowerCAmelCase :Union[str, Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. lowerCAmelCase :Optional[Any] = np.ones(7_5) lowerCAmelCase :List[Any] = np.zeros((7_5,)) # 1. Union = max(µA(x), µB(x)) lowerCAmelCase :Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) lowerCAmelCase :Any = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) lowerCAmelCase :List[str] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) lowerCAmelCase :List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] lowerCAmelCase :Union[str, Any] = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) lowerCAmelCase :Union[str, Any] = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] lowerCAmelCase :Optional[int] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] lowerCAmelCase :Optional[int] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('''Young''') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('''Middle aged''') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('''union''') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('''intersection''') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('''complement_a''') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('''difference a/b''') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('''alg_sum''') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('''alg_product''') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('''bdd_sum''') plt.grid(True) plt.subplot(4, 3, 1_0) plt.plot(X, bdd_difference) plt.title('''bdd_difference''') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
275
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowerCAmelCase :Optional[Any] = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" if isinstance(lowerCAmelCase , torch.Tensor ): return image elif isinstance(lowerCAmelCase , PIL.Image.Image ): __magic_name__ : List[Any] = [image] __magic_name__ : List[Any] = [trans(img.convert('RGB' ) ) for img in image] __magic_name__ : Dict = torch.stack(lowerCAmelCase ) return image class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __init__( self : Optional[Any] , _A : str , _A : int ) -> Dict: super().__init__() # make sure scheduler can always be converted to DDIM __magic_name__ : Optional[int] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_A , scheduler=_A ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Union[str, Any] ) -> Optional[int]: if strength < 0 or strength > 1: raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' ) def __lowerCAmelCase ( self : Any , _A : List[str] , _A : Optional[Any] , _A : int ) -> List[Any]: # get the original timestep using init_timestep __magic_name__ : Tuple = min(int(num_inference_steps * strength ) , _A ) __magic_name__ : Any = max(num_inference_steps - init_timestep , 0 ) __magic_name__ : List[str] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowerCAmelCase ( self : Any , _A : str , _A : Optional[int] , _A : Tuple , _A : List[str] , _A : str , _A : Optional[int]=None ) -> Dict: if not isinstance(_A , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_A )}' ) __magic_name__ : Union[str, Any] = image.to(device=_A , dtype=_A ) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_A )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __magic_name__ : Tuple = init_latents.shape __magic_name__ : Any = randn_tensor(_A , generator=_A , device=_A , dtype=_A ) # get latents print('add noise to latents at timestep' , _A ) __magic_name__ : List[str] = self.scheduler.add_noise(_A , _A , _A ) __magic_name__ : List[str] = init_latents return latents @torch.no_grad() def __call__( self : Tuple , _A : Union[torch.FloatTensor, PIL.Image.Image] = None , _A : float = 0.8 , _A : int = 1 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : float = 0.0 , _A : int = 50 , _A : Optional[bool] = None , _A : Optional[str] = "pil" , _A : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(_A ) # 2. Preprocess image __magic_name__ : int = preprocess(_A ) # 3. set timesteps self.scheduler.set_timesteps(_A , device=self.device ) __magic_name__ , __magic_name__ : Dict = self.get_timesteps(_A , _A , self.device ) __magic_name__ : Dict = timesteps[:1].repeat(_A ) # 4. Prepare latent variables __magic_name__ : Optional[Any] = self.prepare_latents(_A , _A , _A , self.unet.dtype , self.device , _A ) __magic_name__ : Optional[Any] = latents # 5. Denoising loop for t in self.progress_bar(_A ): # 1. predict noise model_output __magic_name__ : Dict = self.unet(_A , _A ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __magic_name__ : List[Any] = self.scheduler.step( _A , _A , _A , eta=_A , use_clipped_model_output=_A , generator=_A , ).prev_sample __magic_name__ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Dict = self.numpy_to_pil(_A ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_A )
275
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __a = logging.get_logger(__name__) def __UpperCAmelCase ( a_: str=None, a_: Dict=None ): return field(default_factory=lambda: default, metadata=a_ ) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : List[str] = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) UpperCamelCase_ : List[int] = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) UpperCamelCase_ : List[int] = list_field( default=[8, 32, 1_28, 5_12] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) UpperCamelCase_ : bool = field(default=UpperCamelCase , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) UpperCamelCase_ : bool = field(default=UpperCamelCase , metadata={'''help''': '''Benchmark training of model'''} ) UpperCamelCase_ : bool = field(default=UpperCamelCase , metadata={'''help''': '''Verbose memory tracing'''} ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) UpperCamelCase_ : bool = field(default=UpperCamelCase , metadata={'''help''': '''Trace memory line by line'''} ) UpperCamelCase_ : bool = field(default=UpperCamelCase , metadata={'''help''': '''Save result to a CSV file'''} ) UpperCamelCase_ : bool = field(default=UpperCamelCase , metadata={'''help''': '''Save all print statements in a log file'''} ) UpperCamelCase_ : bool = field(default=UpperCamelCase , metadata={'''help''': '''Whether to print environment information'''} ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) UpperCamelCase_ : str = field( default=f'''inference_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) UpperCamelCase_ : str = field( default=f'''inference_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) UpperCamelCase_ : str = field( default=f'''train_time_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) UpperCamelCase_ : str = field( default=f'''train_memory_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) UpperCamelCase_ : str = field( default=f'''env_info_{round(time() )}.csv''' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) UpperCamelCase_ : str = field( default=f'''log_{round(time() )}.csv''' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) UpperCamelCase_ : int = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) UpperCamelCase_ : bool = field( default=UpperCamelCase , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def _lowerCAmelCase ( self : List[Any] ) -> List[str]: """simple docstring""" warnings.warn( F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , lowerCAmelCase__ , ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
145
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __a = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : CLIPSegForImageSegmentation , lowerCAmelCase__ : CLIPSegProcessor , lowerCAmelCase__ : AutoencoderKL , lowerCAmelCase__ : CLIPTextModel , lowerCAmelCase__ : CLIPTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , lowerCAmelCase__ : StableDiffusionSafetyChecker , lowerCAmelCase__ : CLIPImageProcessor , ) -> Dict: """simple docstring""" super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: _UpperCAmelCase : str = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : Any = dict(scheduler.config ) _UpperCAmelCase : Tuple = 1 _UpperCAmelCase : Optional[Any] = FrozenDict(lowerCAmelCase__ ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: _UpperCAmelCase : Union[str, Any] = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) _UpperCAmelCase : List[str] = dict(scheduler.config ) _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Dict = FrozenDict(lowerCAmelCase__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=lowerCAmelCase__ , segmentation_processor=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" self.enable_attention_slicing(lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Dict = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCAmelCase ( self : Any ) -> int: """simple docstring""" if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_1_2 , lowerCAmelCase__ : int = 5_0 , lowerCAmelCase__ : float = 7.5 , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : Optional[int] = 1 , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : Optional[torch.Generator] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , lowerCAmelCase__ : int = 1 , **lowerCAmelCase__ : Any , ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) _UpperCAmelCase : List[Any] = self.segmentation_model(**lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _UpperCAmelCase : str = self.numpy_to_pil(lowerCAmelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , height=lowerCAmelCase__ , width=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , latents=lowerCAmelCase__ , output_type=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=lowerCAmelCase__ , )
145
1
'''simple docstring''' import qiskit def UpperCamelCase_ ( A__ : int , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register lowerCAmelCase_ : Dict = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowerCAmelCase_ : List[str] = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": __A : str = single_qubit_measure(2, 2) print(F'''Total count for various states are: {counts}''')
367
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __A : Any = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : int = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "unc-nlp/lxmert-base-uncased": 512, } __A : Optional[Any] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = LxmertTokenizer def __init__( self : Dict , lowerCamelCase : Tuple=None , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=True , lowerCamelCase : List[Any]="[UNK]" , lowerCamelCase : Tuple="[SEP]" , lowerCamelCase : str="[PAD]" , lowerCamelCase : Any="[CLS]" , lowerCamelCase : str="[MASK]" , lowerCamelCase : Dict=True , lowerCamelCase : Union[str, Any]=None , **lowerCamelCase : Optional[int] , ) -> Optional[Any]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Tuple = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : Optional[Any] = do_lower_case lowerCAmelCase_ : Dict = strip_accents lowerCAmelCase_ : List[Any] = tokenize_chinese_chars lowerCAmelCase_ : List[Any] = normalizer_class(**lowerCamelCase ) lowerCAmelCase_ : Tuple = do_lower_case def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None ) -> int: lowerCAmelCase_ : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowercase ( self : str , lowerCamelCase : List[int] , lowerCamelCase : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowercase ( self : Tuple , lowerCamelCase : str , lowerCamelCase : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase_ : int = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
89
0
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('repo_id' , ['canonical_dataset_name', 'org-name/dataset-name'] ) @pytest.mark.parametrize('path' , ['filename.csv', 'filename with blanks.csv'] ) @pytest.mark.parametrize('revision' , [None, 'v2'] ) def lowerCAmelCase__ ( a__: Any , a__: Tuple , a__: Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = hf_hub_url(repo_id=a__ , path=a__ , revision=a__ ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(a__ )}'''
329
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def lowerCAmelCase__ ( *a__: str , a__: Optional[Union[Dict, Any]] = None , a__: Dict=True , a__: Any=2 ) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _UpperCAmelCase = take_from _UpperCAmelCase = () if not isinstance(args[0] , a__ ): _UpperCAmelCase = (args,) for attribute, version_name, message in args: if version.parse(version.parse(a__ ).base_version ) >= version.parse(a__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) _UpperCAmelCase = None if isinstance(a__ , a__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(a__ ),) _UpperCAmelCase = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(a__ , a__ ): values += (getattr(a__ , a__ ),) _UpperCAmelCase = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _UpperCAmelCase = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _UpperCAmelCase = warning + ' ' if standard_warn else '' warnings.warn(warning + message , a__ , stacklevel=a__ ) if isinstance(a__ , a__ ) and len(a__ ) > 0: _UpperCAmelCase = inspect.getouterframes(inspect.currentframe() )[1] _UpperCAmelCase = call_frame.filename _UpperCAmelCase = call_frame.lineno _UpperCAmelCase = call_frame.function _UpperCAmelCase , _UpperCAmelCase = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(a__ ) == 0: return elif len(a__ ) == 1: return values[0] return values
329
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( snake_case : list , snake_case : int = 0 ) -> list: """simple docstring""" a : int = length or len(snake_case ) a : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: a : List[Any] = list_data[i + 1], list_data[i] a : Union[str, Any] = True return list_data if not swapped else bubble_sort(snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
361
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = {"""processing_layoutxlm""": ["""LayoutXLMProcessor"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = ["""LayoutXLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["""LayoutXLMTokenizerFast"""] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
345
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() __a : Any = logging.get_logger(__name__) def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = UniSpeechSatForSequenceClassification.from_pretrained(lowercase , config=lowercase ) __lowercase = downstream_dict['''projector.weight'''] __lowercase = downstream_dict['''projector.bias'''] __lowercase = downstream_dict['''model.post_net.linear.weight'''] __lowercase = downstream_dict['''model.post_net.linear.bias'''] return model def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase , config=lowercase ) __lowercase = downstream_dict['''model.linear.weight'''] __lowercase = downstream_dict['''model.linear.bias'''] return model def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = UniSpeechSatForXVector.from_pretrained(lowercase , config=lowercase ) __lowercase = downstream_dict['''connector.weight'''] __lowercase = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] __lowercase = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] __lowercase = downstream_dict['''objective.W'''] return model @torch.no_grad() def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = torch.load(lowercase , map_location='''cpu''' ) __lowercase = checkpoint['''Downstream'''] __lowercase = UniSpeechSatConfig.from_pretrained(lowercase ) __lowercase = WavaVecaFeatureExtractor.from_pretrained( lowercase , return_attention_mask=lowercase , do_normalize=lowercase ) __lowercase = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): __lowercase = convert_classification(lowercase , lowercase , lowercase ) elif arch.endswith('''ForAudioFrameClassification''' ): __lowercase = convert_diarization(lowercase , lowercase , lowercase ) elif arch.endswith('''ForXVector''' ): __lowercase = convert_xvector(lowercase , lowercase , lowercase ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if __name__ == "__main__": __a : Optional[int] = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") __a : List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
210
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None ): """simple docstring""" if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _UpperCamelCase : """simple docstring""" __a : Tuple = OPTConfig __a : int = {} __a : Dict = '''gelu''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=99 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=20 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=16 , lowerCAmelCase__=16 , ) -> Tuple: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = embed_dim __lowercase = word_embed_proj_dim __lowercase = False def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , ) __lowercase = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' __lowercase = TFOPTModel(config=lowerCAmelCase__ ) __lowercase = inputs_dict['''input_ids'''] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['''attention_mask'''][:1, :] __lowercase = 1 # first forward pass __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) @require_tf class _UpperCamelCase ( _UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : int = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a : Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a : Dict = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a : List[str] = False __a : Optional[Any] = False __a : Union[str, Any] = False __a : List[Any] = 10 def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = TFOPTModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ , lowerCAmelCase__ ): if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowercase = model_class(config=lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase__ ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__ ) # check that weights remain the same after resizing __lowercase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__ ) __lowercase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(lowerCAmelCase__ ) def UpperCAmelCase ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : List[str] = 99 def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowercase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowercase = input_ids.shape[0] __lowercase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __lowercase = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowercase = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id ) with tf.GradientTape(): __lowercase = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).last_hidden_state __lowercase = (1, 11, 5_12) self.assertEqual(output.shape , lowerCAmelCase__ ) __lowercase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = xla_generate(lowerCAmelCase__ , lowerCAmelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' super().setUp() __lowercase = '''facebook/opt-350m''' def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowercase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) __lowercase = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = '''facebook/opt-125m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) __lowercase = '''left''' # use different length sentences to test batching __lowercase = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ ) __lowercase = inputs['''input_ids'''] __lowercase = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''] ) __lowercase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ ) __lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __lowercase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __lowercase = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __lowercase = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = '''facebook/opt-350m''' __lowercase = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __lowercase = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __lowercase = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __lowercase = model.generate(lowerCAmelCase__ , max_length=10 ) __lowercase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
210
1
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets SCREAMING_SNAKE_CASE__ = datasets.logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = "{COMET}: A Neural Framework for {MT} Evaluation",\n author = "Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon",\n booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",\n month = nov,\n year = "2020",\n address = "Online",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/2020.emnlp-main.213",\n pages = "2685--2702",\n}\n' SCREAMING_SNAKE_CASE__ = '\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n' SCREAMING_SNAKE_CASE__ = '\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric(\'comet\')\n >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use\n >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."]\n >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"]\n >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results["scores"]])\n [0.19, 0.92]\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://unbabel.github.io/COMET/html/index.html""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """sources""": datasets.Value("""string""" , id="""sequence""" ), """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/Unbabel/COMET"""] , reference_urls=[ """https://github.com/Unbabel/COMET""", """https://www.aclweb.org/anthology/2020.emnlp-main.213/""", """http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6""", ] , ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if self.config_name == "default": UpperCamelCase = comet.load_from_checkpoint(comet.download_model("""wmt20-comet-da""" ) ) else: UpperCamelCase = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False ) -> Any: """simple docstring""" if gpus is None: UpperCamelCase = 1 if torch.cuda.is_available() else 0 UpperCamelCase = {"""src""": sources, """mt""": predictions, """ref""": references} UpperCamelCase = [dict(zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for t in zip(*data.values() )] UpperCamelCase ,UpperCamelCase = self.scorer.predict(_SCREAMING_SNAKE_CASE , gpus=_SCREAMING_SNAKE_CASE , progress_bar=_SCREAMING_SNAKE_CASE ) return {"mean_score": mean_score, "scores": scores}
359
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def lowercase__ ( __UpperCamelCase )-> str: return "".join(sorted(__UpperCamelCase ) ) def lowercase__ ( __UpperCamelCase )-> list[str]: return word_by_signature[signature(__UpperCamelCase )] SCREAMING_SNAKE_CASE__ = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') SCREAMING_SNAKE_CASE__ = sorted({word.strip().lower() for word in data.splitlines()}) SCREAMING_SNAKE_CASE__ = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
183
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
1
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __snake_case = { '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } __snake_case = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' __snake_case = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def A_ ( _lowerCAmelCase : tuple ): """simple docstring""" return x[0] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = get_letter_count(_lowerCAmelCase ) _a = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(_lowerCAmelCase ) _a = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find, reverse=_lowerCAmelCase ) _a = ''''''.join(freq_to_letter[freq] ) _a = list(freq_to_letter_str.items() ) freq_pairs.sort(key=_lowerCAmelCase, reverse=_lowerCAmelCase ) _a = [freq_pair[1] for freq_pair in freq_pairs] return "".join(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = get_frequency_order(_lowerCAmelCase ) _a = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
153
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __lowerCamelCase ( a__ ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Optional[Any]: _a = tempfile.mkdtemp() _a = 8 # DPR tok _a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _a = os.path.join(__UpperCAmelCase , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) _a = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(__UpperCAmelCase , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _UpperCAmelCase ( self ) -> DPRContextEncoderTokenizer: return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _UpperCAmelCase ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def _UpperCAmelCase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> str: _a = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.get_dummy_dataset() _a = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _a = dataset _a = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int: _a = self.get_dummy_dataset() _a = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _a = os.path.join(self.tmpdirname , '''dataset''' ) _a = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _a = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _a = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) , ) return retriever def _UpperCAmelCase ( self ) -> int: _a = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _a = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _a = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _a = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(__UpperCAmelCase , open(__UpperCAmelCase , '''wb''' ) ) _a = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _a = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _UpperCAmelCase ( self ) -> int: _a = 1 _a = self.get_dummy_canonical_hf_index_retriever() _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a , _a , _a = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _UpperCAmelCase ( self ) -> List[Any]: _a = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _a = self.get_dummy_dataset() retriever.save_pretrained(__UpperCAmelCase ) _a = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def _UpperCAmelCase ( self ) -> Dict: _a = 1 _a = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a , _a , _a = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _UpperCAmelCase ( self ) -> int: _a = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) _a = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def _UpperCAmelCase ( self ) -> Any: _a = 1 _a = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a , _a , _a = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) _a = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) def _UpperCAmelCase ( self ) -> List[str]: _a = 1 _a = self.get_dummy_legacy_index_retriever() _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a , _a , _a = retriever.retrieve(__UpperCAmelCase , n_docs=__UpperCAmelCase ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(__UpperCAmelCase ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , __UpperCAmelCase ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(__UpperCAmelCase ) _a = RagRetriever.from_pretrained(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a = retriever.retrieve(__UpperCAmelCase , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _UpperCAmelCase ( self ) -> Any: import torch _a = 1 _a = self.get_dummy_canonical_hf_index_retriever() _a = [[5, 7], [10, 11]] _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) _a , _a , _a = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , np.ndarray ) _a = retriever( __UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase , return_tensors='''pt''' , ) _a , _a , _a , _a = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _UpperCAmelCase ( self ) -> List[Any]: _a = self.get_dpr_ctx_encoder_tokenizer() _a = 1 _a = self.get_dummy_custom_hf_index_retriever(from_disk=__UpperCAmelCase ) retriever.set_ctx_encoder_tokenizer(__UpperCAmelCase ) _a = [[5, 7], [10, 11]] _a = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _a = retriever(__UpperCAmelCase , __UpperCAmelCase , prefix=retriever.config.generator.prefix , n_docs=__UpperCAmelCase ) self.assertEqual( len(__UpperCAmelCase ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , __UpperCAmelCase ) # check for doc token related keys in dictionary.
153
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _A (lowerCAmelCase__ :Any ) -> Optional[Any]: '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _A (lowerCAmelCase__ :List[Any] ) -> str: '''simple docstring''' _a = create_tensor(lowerCAmelCase__ ) _a = gather(lowerCAmelCase__ ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _A (lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' _a = [state.process_index] _a = gather_object(lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) == state.num_processes, f'{gathered_obj}, {len(lowerCAmelCase__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}' def _A (lowerCAmelCase__ :Tuple ) -> int: '''simple docstring''' _a = create_tensor(lowerCAmelCase__ ) _a = broadcast(lowerCAmelCase__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _A (lowerCAmelCase__ :List[str] ) -> Any: '''simple docstring''' if state.is_main_process: _a = torch.arange(state.num_processes + 1 ).to(state.device ) else: _a = torch.arange(state.num_processes ).to(state.device ) _a = pad_across_processes(lowerCAmelCase__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _A (lowerCAmelCase__ :int ) -> str: '''simple docstring''' if state.num_processes != 2: return _a = create_tensor(lowerCAmelCase__ ) _a = reduce(lowerCAmelCase__ , 'sum' ) _a = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), f'{reduced_tensor} != {truth_tensor}' def _A (lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' if state.num_processes != 2: return _a = create_tensor(lowerCAmelCase__ ) _a = reduce(lowerCAmelCase__ , 'mean' ) _a = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ ), f'{reduced_tensor} != {truth_tensor}' def _A (lowerCAmelCase__ :int ) -> Tuple: '''simple docstring''' main() def _A () -> List[str]: '''simple docstring''' _a = PartialState() state.print(f'State: {state}' ) state.print('testing gather' ) test_gather(lowerCAmelCase__ ) state.print('testing gather_object' ) test_gather_object(lowerCAmelCase__ ) state.print('testing broadcast' ) test_broadcast(lowerCAmelCase__ ) state.print('testing pad_across_processes' ) test_pad_across_processes(lowerCAmelCase__ ) state.print('testing reduce_sum' ) test_reduce_sum(lowerCAmelCase__ ) state.print('testing reduce_mean' ) test_reduce_mean(lowerCAmelCase__ ) if __name__ == "__main__": main()
168
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a_ : List[str] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } a_ : Any = { "yjernite/retribert-base-uncased": 5_1_2, } a_ : Tuple = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = RetriBertTokenizer _lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=True , __magic_name__="[UNK]" , __magic_name__="[SEP]" , __magic_name__="[PAD]" , __magic_name__="[CLS]" , __magic_name__="[MASK]" , __magic_name__=True , __magic_name__=None , **__magic_name__ , ) -> Tuple: super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __magic_name__ ) != do_lower_case or normalizer_state.get('strip_accents' , __magic_name__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __magic_name__ ) != tokenize_chinese_chars ): _a = getattr(__magic_name__ , normalizer_state.pop('type' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**__magic_name__ ) _a = do_lower_case def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=None ) -> Union[str, Any]: _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
168
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = (DDIMParallelScheduler,) _SCREAMING_SNAKE_CASE = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def A ( self : int , **UpperCamelCase__ : Tuple ): """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCamelCase__ ) return config def A ( self : int , **UpperCamelCase__ : Optional[int] ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**UpperCamelCase__ ) UpperCamelCase = scheduler_class(**UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = 1_0, 0.0 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__ ) for t in scheduler.timesteps: UpperCamelCase = model(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample return sample def A ( self : Any ): """simple docstring""" for timesteps in [1_0_0, 5_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase__ ) UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(steps_offset=1 ) UpperCamelCase = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_0_1, 6_0_1, 4_0_1, 2_0_1, 1] ) ) def A ( self : Union[str, Any] ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def A ( self : Optional[int] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCamelCase__ ) def A ( self : Union[str, Any] ): """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase__ ) def A ( self : Dict ): """simple docstring""" self.check_over_configs(thresholding=UpperCamelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase__ , prediction_type=UpperCamelCase__ , sample_max_value=UpperCamelCase__ , ) def A ( self : Optional[int] ): """simple docstring""" for t in [1, 1_0, 4_9]: self.check_over_forward(time_step=UpperCamelCase__ ) def A ( self : List[Any] ): """simple docstring""" for t, num_inference_steps in zip([1, 1_0, 5_0] , [1_0, 5_0, 5_0_0] ): self.check_over_forward(time_step=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ ) def A ( self : str ): """simple docstring""" for t, eta in zip([1, 1_0, 4_9] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCamelCase__ , eta=UpperCamelCase__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**UpperCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_2_0 , 4_0_0 ) - 0.1_4_7_7_1 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_8_0 , 9_6_0 ) - 0.3_2_4_6_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 , 4_8_6 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 , 9_9_8 ) - 0.0_2 ) ) < 1E-5 def A ( self : str ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = 1_0, 0.0 scheduler.set_timesteps(UpperCamelCase__ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = self.dummy_sample_deter + 0.1 UpperCamelCase = self.dummy_sample_deter - 0.1 UpperCamelCase = samplea.shape[0] UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) UpperCamelCase = torch.arange(UpperCamelCase__ )[0:3, None].repeat(1 , UpperCamelCase__ ) UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) UpperCamelCase = scheduler.batch_step_no_noise(UpperCamelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase__ ) UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3 def A ( self : Dict ): """simple docstring""" UpperCamelCase = self.full_loop() UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3 def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.full_loop(prediction_type='v_prediction' ) UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3 def A ( self : Tuple ): """simple docstring""" UpperCamelCase = self.full_loop(set_alpha_to_one=UpperCamelCase__ , beta_start=0.0_1 ) UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3 def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.full_loop(set_alpha_to_one=UpperCamelCase__ , beta_start=0.0_1 ) UpperCamelCase = torch.sum(torch.abs(UpperCamelCase__ ) ) UpperCamelCase = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3
369
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase , _a ): """simple docstring""" def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = load_tool('text-to-speech' ) self.tool.setup() def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def A ( self : Dict ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = self.tool('hey' ) UpperCamelCase = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
249
0
from maths.prime_check import is_prime def a__ ( A_ ): '''simple docstring''' if not isinstance(A_, A_ ): __magic_name__ = f'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if is_prime(A_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
88
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __lowerCAmelCase : Any = get_logger(__name__) class UpperCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Optional[str] = None ) -> Optional[Any]: """simple docstring""" __magic_name__ = ( os.path.join(UpperCamelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __magic_name__ = Extractor def _lowercase ( self : Optional[Any] , UpperCamelCase__ : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __magic_name__ = os.path.abspath(UpperCamelCase__ ) return os.path.join(self.extract_dir , hash_url_to_filename(UpperCamelCase__ ) ) def _lowercase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(UpperCamelCase__ ) and not (os.path.isdir(UpperCamelCase__ ) and os.listdir(UpperCamelCase__ )) ) def _lowercase ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : bool = False ) -> str: """simple docstring""" __magic_name__ = self.extractor.infer_extractor_format(UpperCamelCase__ ) if not extractor_format: return input_path __magic_name__ = self._get_output_path(UpperCamelCase__ ) if self._do_extract(UpperCamelCase__ , UpperCamelCase__ ): self.extractor.extract(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return output_path class UpperCAmelCase_ ( _A ): '''simple docstring''' @classmethod @abstractmethod def _lowercase ( cls : List[str] , UpperCamelCase__ : Union[Path, str] , **UpperCamelCase__ : Union[str, Any] ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" ... class UpperCAmelCase_ ( _A , _A ): '''simple docstring''' a__ = [] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" with open(UpperCamelCase__ , """rb""" ) as f: return f.read(UpperCamelCase__ ) @classmethod def _lowercase ( cls : List[Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: __magic_name__ = max(len(UpperCamelCase__ ) for cls_magic_number in cls.magic_numbers ) try: __magic_name__ = cls.read_magic_number(UpperCamelCase__ , UpperCamelCase__ ) except OSError: return False return any(magic_number.startswith(UpperCamelCase__ ) for cls_magic_number in cls.magic_numbers ) class UpperCAmelCase_ ( _A ): '''simple docstring''' @classmethod def _lowercase ( cls : Optional[Any] , UpperCamelCase__ : Union[Path, str] , **UpperCamelCase__ : int ) -> bool: """simple docstring""" return tarfile.is_tarfile(UpperCamelCase__ ) @staticmethod def _lowercase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" def resolved(UpperCamelCase__ : str ) -> str: return os.path.realpath(os.path.abspath(UpperCamelCase__ ) ) def badpath(UpperCamelCase__ : str , UpperCamelCase__ : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ).startswith(UpperCamelCase__ ) def badlink(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ) -> bool: # Links are interpreted relative to the directory containing the link __magic_name__ = resolved(os.path.join(UpperCamelCase__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=UpperCamelCase__ ) __magic_name__ = resolved(UpperCamelCase__ ) for finfo in members: if badpath(finfo.name , UpperCamelCase__ ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(UpperCamelCase__ , UpperCamelCase__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(UpperCamelCase__ , UpperCamelCase__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __magic_name__ = tarfile.open(UpperCamelCase__ ) tar_file.extractall(UpperCamelCase__ , members=TarExtractor.safemembers(UpperCamelCase__ , UpperCamelCase__ ) ) tar_file.close() class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x1F\x8B"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(UpperCamelCase__ , """rb""" ) as gzip_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def _lowercase ( cls : Union[str, Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(UpperCamelCase__ , magic_number=UpperCamelCase__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(UpperCamelCase__ , """rb""" ) as fp: __magic_name__ = _EndRecData(UpperCamelCase__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __magic_name__ = fp.read(UpperCamelCase__ ) # CD is where we expect it to be if len(UpperCamelCase__ ) == sizeCentralDir: __magic_name__ = struct.unpack(UpperCamelCase__ , UpperCamelCase__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with zipfile.ZipFile(UpperCamelCase__ , """r""" ) as zip_file: zip_file.extractall(UpperCamelCase__ ) zip_file.close() class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(UpperCamelCase__ ) as compressed_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) __magic_name__ = rarfile.RarFile(UpperCamelCase__ ) rf.extractall(UpperCamelCase__ ) rf.close() class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x28\xb5\x2F\xFD"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __magic_name__ = zstd.ZstdDecompressor() with open(UpperCamelCase__ , """rb""" ) as ifh, open(UpperCamelCase__ , """wb""" ) as ofh: dctx.copy_stream(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x42\x5A\x68"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" with bza.open(UpperCamelCase__ , """rb""" ) as compressed_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) with pyazr.SevenZipFile(UpperCamelCase__ , """r""" ) as archive: archive.extractall(UpperCamelCase__ ) class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = [B"""\x04\x22\x4D\x18"""] @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(UpperCamelCase__ , """rb""" ) as compressed_file: with open(UpperCamelCase__ , """wb""" ) as extracted_file: shutil.copyfileobj(UpperCamelCase__ , UpperCamelCase__ ) class UpperCAmelCase_ : '''simple docstring''' a__ = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _lowercase ( cls : Tuple ) -> Tuple: """simple docstring""" return max( len(UpperCamelCase__ ) for extractor in cls.extractors.values() if issubclass(UpperCamelCase__ , UpperCamelCase__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _lowercase ( UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(UpperCamelCase__ , magic_number_length=UpperCamelCase__ ) except OSError: return b"" @classmethod def _lowercase ( cls : List[Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : bool = False ) -> bool: """simple docstring""" warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=UpperCamelCase__ , ) __magic_name__ = cls.infer_extractor_format(UpperCamelCase__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _lowercase ( cls : Dict , UpperCamelCase__ : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" __magic_name__ = cls._get_magic_number_max_length() __magic_name__ = cls._read_magic_number(UpperCamelCase__ , UpperCamelCase__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(UpperCamelCase__ , magic_number=UpperCamelCase__ ): return extractor_format @classmethod def _lowercase ( cls : Union[str, Any] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Union[Path, str] , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(UpperCamelCase__ ) , exist_ok=UpperCamelCase__ ) # Prevent parallel extractions __magic_name__ = str(Path(UpperCamelCase__ ).with_suffix(""".lock""" ) ) with FileLock(UpperCamelCase__ ): shutil.rmtree(UpperCamelCase__ , ignore_errors=UpperCamelCase__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=UpperCamelCase__ , ) __magic_name__ = extractor if extractor != """deprecated""" else extractor_format else: __magic_name__ = cls.extractors[extractor_format] return extractor.extract(UpperCamelCase__ , UpperCamelCase__ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=UpperCamelCase__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(UpperCamelCase__ ): return extractor.extract(UpperCamelCase__ , UpperCamelCase__ )
88
1
'''simple docstring''' def lowerCAmelCase__ ( lowerCamelCase : list[int] ,lowerCamelCase : list[int] ): _A : List[str] = len(lowerCamelCase ) print('The following activities are selected:' ) # The first activity is always selected _A : Optional[Any] = 0 print(lowerCamelCase ,end=',' ) # Consider rest of the activities for j in range(lowerCamelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCamelCase ,end=',' ) _A : List[Any] = j if __name__ == "__main__": import doctest doctest.testmod() A : Dict = [1, 3, 0, 5, 8, 5] A : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
227
'''simple docstring''' # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class __lowerCamelCase ( a_ ): """simple docstring""" a = 42 a = None def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : Tuple=0.999 ,lowerCamelCase : int="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase : str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _A : Tuple = [] for i in range(lowerCamelCase ): _A : Optional[Any] = i / num_diffusion_timesteps _A : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowerCamelCase ) / alpha_bar_fn(lowerCamelCase ) ,lowerCamelCase ) ) return torch.tensor(lowerCamelCase ,dtype=torch.floataa ) class __lowerCamelCase ( a_ , a_ ): """simple docstring""" a = 1 @register_to_config def __init__( self : Tuple , SCREAMING_SNAKE_CASE : int = 1000 , SCREAMING_SNAKE_CASE : float = 0.0001 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : str = "linear" , SCREAMING_SNAKE_CASE : Optional[Union[np.ndarray, List[float]]] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : str = "epsilon" , SCREAMING_SNAKE_CASE : float = 1.0 , **SCREAMING_SNAKE_CASE : List[str] , ): if kwargs.get('set_alpha_to_one' , SCREAMING_SNAKE_CASE) is not None: _A : Tuple = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE) _A : Tuple = kwargs['set_alpha_to_one'] if trained_betas is not None: _A : Any = torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "linear": _A : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A : List[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}') _A : Optional[int] = 1.0 - self.betas _A : Union[str, Any] = torch.cumprod(self.alphas , dim=0) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _A : Optional[int] = torch.tensor(0.0) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _A : Union[str, Any] = 1.0 # setable values _A : List[str] = None _A : Dict = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE).copy().astype(np.intaa)) def A ( self : str , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : Optional[int] = None): return sample def A ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, torch.device] = None): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.') _A : Optional[Any] = num_inference_steps _A : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A : List[str] = (np.arange(0 , SCREAMING_SNAKE_CASE) * step_ratio).round().copy().astype(np.intaa) _A : int = torch.from_numpy(SCREAMING_SNAKE_CASE).to(SCREAMING_SNAKE_CASE) self.timesteps += self.config.steps_offset def A ( self : List[Any] , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : torch.FloatTensor , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : bool = True , ): # 1. get previous step value (=t+1) _A : Union[str, Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _A : List[str] = self.alphas_cumprod[timestep] _A : List[str] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _A : List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _A : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _A : List[Any] = model_output elif self.config.prediction_type == "sample": _A : List[Any] = model_output _A : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _A : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _A : Optional[int] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ' `v_prediction`') # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _A : str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Any = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE , pred_original_sample=SCREAMING_SNAKE_CASE) def __len__( self : List[Any]): return self.config.num_train_timesteps
227
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _A ( _a ): """simple docstring""" UpperCAmelCase : Union[str, Any] = """microsoft/speecht5_tts""" UpperCAmelCase : Optional[Any] = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) UpperCAmelCase : str = """text_reader""" UpperCAmelCase : str = SpeechTaProcessor UpperCAmelCase : Tuple = SpeechTaForTextToSpeech UpperCAmelCase : Tuple = SpeechTaHifiGan UpperCAmelCase : Optional[Any] = ["""text"""] UpperCAmelCase : List[Any] = ["""audio"""] def __snake_case ( self : Tuple): if self.post_processor is None: a : Tuple = "microsoft/speecht5_hifigan" super().setup() def __snake_case ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any]=None): a : Any = self.pre_processor(text=__UpperCAmelCase , return_tensors="pt" , truncation=__UpperCAmelCase) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings.") a : List[str] = load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation") a : Optional[int] = torch.tensor(embeddings_dataset[7305]["xvector"]).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Optional[int]): with torch.no_grad(): return self.model.generate_speech(**__UpperCAmelCase) def __snake_case ( self : Tuple , __UpperCAmelCase : str): with torch.no_grad(): return self.post_processor(__UpperCAmelCase).cpu().detach()
40
'''simple docstring''' import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : str ) -> int: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights UpperCAmelCase : Optional[Any] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case , cache_dir=__snake_case ) UpperCAmelCase : str = [t[-1] for t in os.walk(os.path.join(__snake_case , os.listdir(__snake_case )[0] , '''snapshots''' ) )] UpperCAmelCase : str = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''' ) for f in files ) @slow @require_flax class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : List[str] ) -> Dict: UpperCAmelCase , UpperCAmelCase : str = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__snake_case ) UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Tuple = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1E-3 assert np.abs(np.abs(__snake_case , dtype=np.floataa ).sum() - 4_99_47.8_75 ) < 5E-1 UpperCAmelCase : Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(__snake_case ) == num_samples def A ( self : List[Any] ) -> List[str]: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Optional[Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : Any = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : int = num_samples * [prompt] UpperCAmelCase : Union[str, Any] = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : int = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Tuple = shard(__snake_case ) UpperCAmelCase : Tuple = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_38_38_08.2) ) < 5E-1 def A ( self : int ) -> Dict: UpperCAmelCase , UpperCAmelCase : List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case ) UpperCAmelCase : Dict = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.random.PRNGKey(0 ) UpperCAmelCase : List[str] = 50 UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : List[Any] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : int ) -> Any: UpperCAmelCase , UpperCAmelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa ) UpperCAmelCase : List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : List[str] = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[int] = jax.device_count() UpperCAmelCase : List[str] = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : Tuple = replicate(__snake_case ) UpperCAmelCase : Any = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : str = shard(__snake_case ) UpperCAmelCase : Optional[int] = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_37_35_16.75) ) < 5E-1 def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : int = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__snake_case , steps_offset=1 , ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__snake_case , safety_checker=__snake_case , ) UpperCAmelCase : Tuple = scheduler.create_state() UpperCAmelCase : Dict = scheduler_state UpperCAmelCase : str = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : int = jax.random.PRNGKey(0 ) UpperCAmelCase : Union[str, Any] = 50 UpperCAmelCase : Optional[Any] = jax.device_count() UpperCAmelCase : Any = num_samples * [prompt] UpperCAmelCase : Dict = pipeline.prepare_inputs(__snake_case ) # shard inputs and rng UpperCAmelCase : str = replicate(__snake_case ) UpperCAmelCase : List[str] = jax.random.split(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = shard(__snake_case ) UpperCAmelCase : Dict = pipeline(__snake_case , __snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1E-3 assert np.abs((np.abs(__snake_case , dtype=np.floataa ).sum() - 2_34_76_93.5) ) < 5E-1 def A ( self : Any ) -> Tuple: UpperCAmelCase : List[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) UpperCAmelCase : Union[str, Any] = jax.device_count() UpperCAmelCase : List[Any] = num_samples * [prompt] UpperCAmelCase : str = jax.random.split(jax.random.PRNGKey(0 ) , __snake_case ) UpperCAmelCase , UpperCAmelCase : Tuple = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , ) UpperCAmelCase : Dict = replicate(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[str] = shard(__snake_case ) UpperCAmelCase : Any = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : Optional[int] = images[2, 0, 256, 10:17, 1] # With memory efficient attention UpperCAmelCase , UpperCAmelCase : Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__snake_case , use_memory_efficient_attention=__snake_case , ) UpperCAmelCase : int = replicate(__snake_case ) UpperCAmelCase : int = pipeline.prepare_inputs(__snake_case ) UpperCAmelCase : List[Any] = shard(__snake_case ) UpperCAmelCase : Optional[Any] = pipeline(__snake_case , __snake_case , __snake_case , jit=__snake_case ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) UpperCAmelCase : int = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
23
0
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split lowerCamelCase_ = datasets.load_iris() lowerCamelCase_ = np.array(data['data']) lowerCamelCase_ = np.array(data['target']) lowerCamelCase_ = data['target_names'] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = train_test_split(X, y) def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : Union[str, Any] ) -> List[Any]: return np.linalg.norm(np.array(__A ) - np.array(__A ) ) def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : List[str] , __A : List[str] , __A : List[Any] , __A : int=5 ) -> List[Any]: _SCREAMING_SNAKE_CASE = zip(__A , __A ) # List of distances of all points from the point to be classified _SCREAMING_SNAKE_CASE = [] for data_point in data: _SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , __A ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. _SCREAMING_SNAKE_CASE = [i[1] for i in sorted(__A )[:k]] # Most commonly occurring class among them # is the class into which the point is classified _SCREAMING_SNAKE_CASE = Counter(__A ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
363
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCamelCase_ = '<<<<<<< This should probably be modified because it mentions: ' lowerCamelCase_ = '=======\n>>>>>>>\n' lowerCamelCase_ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCamelCase_ = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def SCREAMING_SNAKE_CASE_ ( __A : Namespace ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase_ ( A ): """simple docstring""" @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : ArgumentParser ): """simple docstring""" _SCREAMING_SNAKE_CASE = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowerCamelCase ) def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str , *__lowerCamelCase : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = get_logger("datasets-cli/converting" ) _SCREAMING_SNAKE_CASE = tfds_path _SCREAMING_SNAKE_CASE = datasets_directory def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) _SCREAMING_SNAKE_CASE = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {} if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.listdir(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) if not os.path.isfile(__lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowerCamelCase , encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = [] for line in lines: _SCREAMING_SNAKE_CASE = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _SCREAMING_SNAKE_CASE = "import datasets\n" elif "import tensorflow" in out_line: # order is important here _SCREAMING_SNAKE_CASE = "" continue elif "from absl import logging" in out_line: _SCREAMING_SNAKE_CASE = "from datasets import logging\n" elif "getLogger" in out_line: _SCREAMING_SNAKE_CASE = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = list(filter(lambda __lowerCamelCase : e in out_line , __lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCamelCase ) + "\n" ) out_lines.append(__lowerCamelCase ) out_lines.append(__lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: _SCREAMING_SNAKE_CASE = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _SCREAMING_SNAKE_CASE = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) _SCREAMING_SNAKE_CASE = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _SCREAMING_SNAKE_CASE = True out_lines.append(__lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _SCREAMING_SNAKE_CASE = f_name.replace(".py" , "" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCamelCase ) if needs_manual_update: with_manual_update.append(__lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.writelines(__lowerCamelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: _SCREAMING_SNAKE_CASE = os.path.basename(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__lowerCamelCase , __lowerCamelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
111
0
"""simple docstring""" # flake8: noqa # Lint as: python3 a : List[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
105
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _SCREAMING_SNAKE_CASE ( ) ->Dict: '''simple docstring''' a : Any = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=_lowercase ) a : List[Any] = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=_lowercase ) env_command_parser(subparsers=_lowercase ) launch_command_parser(subparsers=_lowercase ) tpu_command_parser(subparsers=_lowercase ) test_command_parser(subparsers=_lowercase ) # Let's go a : List[Any] = parser.parse_args() if not hasattr(_lowercase , "func" ): parser.print_help() exit(1 ) # Run args.func(_lowercase ) if __name__ == "__main__": main()
105
1
def lowerCamelCase__ ( _lowercase = 3 , _lowercase = 7 , _lowercase = 1000000 ): '''simple docstring''' UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : Union[str, Any] = 1 for current_denominator in range(1 , limit + 1 ): UpperCAmelCase_ : List[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: UpperCAmelCase_ : Dict = current_numerator UpperCAmelCase_ : Optional[int] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_000_000))
235
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __a = logging.getLogger() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[str] = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class __a( _a ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : int = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase_ : int = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 ,'''run_glue_deebert.py''' ) with patch.object(_SCREAMING_SNAKE_CASE ,'''argv''' ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_SCREAMING_SNAKE_CASE ,0.6_66 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> List[str]: UpperCAmelCase_ : List[Any] = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_SCREAMING_SNAKE_CASE )
235
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' # Load configuration defined in the metadata file with open(lowerCAmelCase__ ) as metadata_file: lowercase = json.load(lowerCAmelCase__ ) lowercase = LukeConfig(use_entity_aware_attention=lowerCAmelCase__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path lowercase = torch.load(lowerCAmelCase__ , map_location='''cpu''' )['''module'''] # Load the entity vocab file lowercase = load_original_entity_vocab(lowerCAmelCase__ ) # add an entry for [MASK2] lowercase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks lowercase = AddedToken('''<ent>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) lowercase = AddedToken('''<ent2>''' , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''r''' ) as f: lowercase = json.load(lowerCAmelCase__ ) lowercase = '''MLukeTokenizer''' with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) # Initialize the embeddings of the special tokens lowercase = tokenizer.convert_tokens_to_ids(['''@'''] )[0] lowercase = tokenizer.convert_tokens_to_ids(['''#'''] )[0] lowercase = state_dict['''embeddings.word_embeddings.weight'''] lowercase = word_emb[ent_init_index].unsqueeze(0 ) lowercase = word_emb[enta_init_index].unsqueeze(0 ) lowercase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase = state_dict[bias_name] lowercase = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase = f'encoder.layer.{layer_index}.attention.self.' lowercase = state_dict[prefix + matrix_name] lowercase = state_dict[prefix + matrix_name] lowercase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase = state_dict['''entity_embeddings.entity_embeddings.weight'''] lowercase = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowercase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase = state_dict['''entity_predictions.bias'''] lowercase = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) lowercase = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase = LukeForMaskedLM(config=lowerCAmelCase__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) lowercase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): lowercase = state_dict[key] else: lowercase = state_dict[key] lowercase , lowercase = model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) if set(lowerCAmelCase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowerCAmelCase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase = MLukeTokenizer.from_pretrained(lowerCAmelCase__ , task='''entity_classification''' ) lowercase = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' lowercase = (0, 9) lowercase = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) lowercase = model(**lowerCAmelCase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase = torch.Size((1, 33, 768) ) lowercase = torch.tensor([[0.08_92, 0.05_96, -0.28_19], [0.01_34, 0.11_99, 0.05_73], [-0.01_69, 0.09_27, 0.06_44]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase = torch.Size((1, 1, 768) ) lowercase = torch.tensor([[-0.14_82, 0.06_09, 0.03_22]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction lowercase = MLukeTokenizer.from_pretrained(lowerCAmelCase__ ) lowercase = '''Tokyo is the capital of <mask>.''' lowercase = (24, 30) lowercase = tokenizer(lowerCAmelCase__ , entity_spans=[span] , return_tensors='''pt''' ) lowercase = model(**lowerCAmelCase__ ) lowercase = encoding['''input_ids'''][0].tolist() lowercase = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) lowercase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowerCAmelCase__ ) lowercase = outputs.entity_logits[0][0].argmax().item() lowercase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(lowerCAmelCase__ ) ) model.save_pretrained(lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] lowercase = [json.loads(lowerCAmelCase__ ) for line in open(lowerCAmelCase__ )] lowercase = {} for entry in data: lowercase = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase = entity_id break lowercase = f'{language}:{entity_name}' lowercase = entity_id return new_mapping if __name__ == "__main__": lowercase__ :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowercase__ :int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
101
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = (EulerDiscreteScheduler,) __SCREAMING_SNAKE_CASE : Optional[int] = 10 def __lowerCAmelCase ( self , **_lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**_lowerCamelCase ) return config def __lowerCAmelCase ( self ) ->Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : int = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : Any = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[Any] = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma SCREAMING_SNAKE_CASE : List[str] = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model() SCREAMING_SNAKE_CASE : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : Dict = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = output.prev_sample SCREAMING_SNAKE_CASE : List[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() SCREAMING_SNAKE_CASE : int = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = output.prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : Any = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
313
0
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = (KDPMaDiscreteScheduler,) snake_case_ = 10 def lowercase_ ( self , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = { 'num_train_timesteps': 1_100, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowerCamelCase__ ) return config def lowercase_ ( self ) -> List[str]: '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def lowercase_ ( self ) -> List[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def lowercase_ ( self ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34e-07 ) < 1e-2 assert abs(result_mean.item() - 6.11_12e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72e-07 ) < 1e-2 assert abs(result_mean.item() - 0.00_02 ) < 1e-3 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' if torch_device == "mps": return __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma __lowerCamelCase = sample.to(lowerCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return __lowerCamelCase = self.scheduler_classes[0] __lowerCamelCase = self.get_scheduler_config() __lowerCamelCase = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase__ ) __lowerCamelCase = self.dummy_model() __lowerCamelCase = self.dummy_sample_deter.to(lowerCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __lowerCamelCase = scheduler.scale_model_input(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = model(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = output.prev_sample __lowerCamelCase = torch.sum(torch.abs(lowerCamelCase__ ) ) __lowerCamelCase = torch.mean(torch.abs(lowerCamelCase__ ) ) if str(lowerCamelCase__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3
356
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __lowerCAmelCase : List[str] = StableDiffusionXLImgaImgPipeline __lowerCAmelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} __lowerCAmelCase : List[str] = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCAmelCase : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Any = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=A_ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) _lowerCAmelCase : Optional[Any] = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _lowerCAmelCase : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=3_2 , ) _lowerCAmelCase : Any = CLIPTextModel(A_ ) _lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=A_ ) _lowerCAmelCase : int = CLIPTextModelWithProjection(A_ ) _lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=A_ ) _lowerCAmelCase : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __UpperCamelCase ( self , snake_case_ , snake_case_=0 ): _lowerCAmelCase : int = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A_ ) ).to(A_ ) _lowerCAmelCase : int = image / 2 + 0.5 if str(A_ ).startswith("""mps""" ): _lowerCAmelCase : Union[str, Any] = torch.manual_seed(A_ ) else: _lowerCAmelCase : int = torch.Generator(device=A_ ).manual_seed(A_ ) _lowerCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Optional[int] = self.get_dummy_components() _lowerCAmelCase : Dict = StableDiffusionXLImgaImgPipeline(**A_ ) _lowerCAmelCase : Optional[int] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs(A_ ) _lowerCAmelCase : Any = sd_pipe(**A_ ).images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowerCAmelCase : Dict = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __UpperCamelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : str = StableDiffusionXLImgaImgPipeline(**A_ ) _lowerCAmelCase : List[str] = sd_pipe.to(A_ ) _lowerCAmelCase : int = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) # forward without prompt embeds _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(A_ ) _lowerCAmelCase : List[str] = 3 * ['''this is a negative prompt'''] _lowerCAmelCase : List[Any] = negative_prompt _lowerCAmelCase : Dict = 3 * [inputs['''prompt''']] _lowerCAmelCase : Any = sd_pipe(**A_ ) _lowerCAmelCase : List[str] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(A_ ) _lowerCAmelCase : Tuple = 3 * ['''this is a negative prompt'''] _lowerCAmelCase : List[str] = 3 * [inputs.pop("""prompt""" )] ( _lowerCAmelCase ) : Tuple = sd_pipe.encode_prompt(A_ , negative_prompt=A_ ) _lowerCAmelCase : Dict = sd_pipe( **A_ , prompt_embeds=A_ , negative_prompt_embeds=A_ , pooled_prompt_embeds=A_ , negative_pooled_prompt_embeds=A_ , ) _lowerCAmelCase : Optional[int] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self , snake_case_ , snake_case_="cpu" , snake_case_=torch.floataa , snake_case_=0 ): _lowerCAmelCase : str = torch.Generator(device=A_ ).manual_seed(A_ ) _lowerCAmelCase : Dict = np.random.RandomState(A_ ).standard_normal((1, 4, 6_4, 6_4) ) _lowerCAmelCase : str = torch.from_numpy(A_ ).to(device=A_ , dtype=A_ ) _lowerCAmelCase : Union[str, Any] = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self ): _lowerCAmelCase : str = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _lowerCAmelCase : int = self.get_inputs(A_ ) _lowerCAmelCase : Tuple = pipe(**A_ ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _lowerCAmelCase : Dict = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
309
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class __lowercase (_UpperCAmelCase ): _UpperCamelCase = """table-transformer""" _UpperCamelCase = ["""past_key_values"""] _UpperCamelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A_=True , A_=None , A_=3 , A_=100 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , **A_ , ) ->Any: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowerCAmelCase : Optional[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A_ , A_ ): __lowerCAmelCase : int = backbone_config.get('''model_type''' ) __lowerCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase : Any = config_class.from_dict(A_ ) # set timm attributes to None __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase : List[str] = None, None, None __lowerCAmelCase : Tuple = use_timm_backbone __lowerCAmelCase : Optional[Any] = backbone_config __lowerCAmelCase : List[str] = num_channels __lowerCAmelCase : Tuple = num_queries __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_ffn_dim __lowerCAmelCase : Optional[int] = encoder_layers __lowerCAmelCase : List[str] = encoder_attention_heads __lowerCAmelCase : str = decoder_ffn_dim __lowerCAmelCase : Union[str, Any] = decoder_layers __lowerCAmelCase : Any = decoder_attention_heads __lowerCAmelCase : Optional[int] = dropout __lowerCAmelCase : Any = attention_dropout __lowerCAmelCase : Tuple = activation_dropout __lowerCAmelCase : Optional[Any] = activation_function __lowerCAmelCase : List[str] = init_std __lowerCAmelCase : Tuple = init_xavier_std __lowerCAmelCase : Any = encoder_layerdrop __lowerCAmelCase : List[Any] = decoder_layerdrop __lowerCAmelCase : Optional[Any] = encoder_layers __lowerCAmelCase : Optional[Any] = auxiliary_loss __lowerCAmelCase : Optional[Any] = position_embedding_type __lowerCAmelCase : Tuple = backbone __lowerCAmelCase : Any = use_pretrained_backbone __lowerCAmelCase : int = dilation # Hungarian matcher __lowerCAmelCase : Dict = class_cost __lowerCAmelCase : List[str] = bbox_cost __lowerCAmelCase : int = giou_cost # Loss coefficients __lowerCAmelCase : Optional[Any] = mask_loss_coefficient __lowerCAmelCase : Tuple = dice_loss_coefficient __lowerCAmelCase : int = bbox_loss_coefficient __lowerCAmelCase : List[Any] = giou_loss_coefficient __lowerCAmelCase : int = eos_coefficient super().__init__(is_encoder_decoder=A_ , **A_ ) @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return self.d_model class __lowercase (_UpperCAmelCase ): _UpperCamelCase = version.parse("""1.11""" ) @property def UpperCamelCase__ ( self ) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def UpperCamelCase__ ( self ) ->float: '''simple docstring''' return 1e-5 @property def UpperCamelCase__ ( self ) ->int: '''simple docstring''' return 12
275
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu __a = False class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase ( self : str ): return 12 @property def lowerCamelCase ( self : int ): return 12 @property def lowerCamelCase ( self : str ): return 32 @property def lowerCamelCase ( self : str ): torch.manual_seed(0 ) snake_case__ : int = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def lowerCamelCase ( self : Tuple ): snake_case__ : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(snake_case_ ) @property def lowerCamelCase ( self : Optional[Any] ): torch.manual_seed(0 ) snake_case__ : Union[str, Any] = 12 snake_case__ : Dict = 12 snake_case__ : Optional[Any] = { """attention_bias""": True, """cross_attention_dim""": 32, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 32, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case__ : Union[str, Any] = TransformeraDModel(**snake_case_ ) return model def lowerCamelCase ( self : Optional[Any] ): snake_case__ : List[Any] = """cpu""" snake_case__ : Union[str, Any] = self.dummy_vqvae snake_case__ : Dict = self.dummy_text_encoder snake_case__ : Union[str, Any] = self.dummy_tokenizer snake_case__ : Any = self.dummy_transformer snake_case__ : Optional[Any] = VQDiffusionScheduler(self.num_embed ) snake_case__ : Optional[int] = LearnedClassifierFreeSamplingEmbeddings(learnable=snake_case_ ) snake_case__ : int = VQDiffusionPipeline( vqvae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , transformer=snake_case_ , scheduler=snake_case_ , learned_classifier_free_sampling_embeddings=snake_case_ , ) snake_case__ : Dict = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Tuple = """teddy bear playing in the pool""" snake_case__ : Tuple = torch.Generator(device=snake_case_ ).manual_seed(0 ) snake_case__ : List[str] = pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="""np""" ) snake_case__ : Optional[int] = output.images snake_case__ : Any = torch.Generator(device=snake_case_ ).manual_seed(0 ) snake_case__ : Optional[Any] = pipe( [prompt] , generator=snake_case_ , output_type="""np""" , return_dict=snake_case_ , num_inference_steps=2 )[0] snake_case__ : List[Any] = image[0, -3:, -3:, -1] snake_case__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case__ : Tuple = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase ( self : int ): snake_case__ : Tuple = """cpu""" snake_case__ : Optional[Any] = self.dummy_vqvae snake_case__ : List[str] = self.dummy_text_encoder snake_case__ : int = self.dummy_tokenizer snake_case__ : str = self.dummy_transformer snake_case__ : List[str] = VQDiffusionScheduler(self.num_embed ) snake_case__ : Dict = LearnedClassifierFreeSamplingEmbeddings( learnable=snake_case_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case__ : int = VQDiffusionPipeline( vqvae=snake_case_ , text_encoder=snake_case_ , tokenizer=snake_case_ , transformer=snake_case_ , scheduler=snake_case_ , learned_classifier_free_sampling_embeddings=snake_case_ , ) snake_case__ : Optional[Any] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) snake_case__ : Dict = """teddy bear playing in the pool""" snake_case__ : Optional[Any] = torch.Generator(device=snake_case_ ).manual_seed(0 ) snake_case__ : List[Any] = pipe([prompt] , generator=snake_case_ , num_inference_steps=2 , output_type="""np""" ) snake_case__ : List[str] = output.images snake_case__ : Dict = torch.Generator(device=snake_case_ ).manual_seed(0 ) snake_case__ : List[str] = pipe( [prompt] , generator=snake_case_ , output_type="""np""" , return_dict=snake_case_ , num_inference_steps=2 )[0] snake_case__ : List[Any] = image[0, -3:, -3:, -1] snake_case__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case__ : Optional[int] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : str ): snake_case__ : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case__ : Optional[Any] = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case__ : List[Any] = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case__ : Any = torch.Generator(device=snake_case_ ).manual_seed(0 ) snake_case__ : Optional[int] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=snake_case_ , output_type="""np""" , ) snake_case__ : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
350
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase_ ( _a ): """simple docstring""" lowercase = "markuplm" def __init__( self : List[Any] , snake_case_ : List[Any]=30_522 , snake_case_ : Tuple=768 , snake_case_ : Union[str, Any]=12 , snake_case_ : str=12 , snake_case_ : Optional[Any]=3_072 , snake_case_ : Optional[Any]="gelu" , snake_case_ : str=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Dict=512 , snake_case_ : Tuple=2 , snake_case_ : List[str]=0.02 , snake_case_ : int=1E-1_2 , snake_case_ : Any=0 , snake_case_ : Any=0 , snake_case_ : str=2 , snake_case_ : Optional[int]=256 , snake_case_ : Optional[int]=1_024 , snake_case_ : str=216 , snake_case_ : List[str]=1_001 , snake_case_ : Optional[Any]=32 , snake_case_ : int=50 , snake_case_ : Tuple="absolute" , snake_case_ : Tuple=True , snake_case_ : int=None , **snake_case_ : str , ): super().__init__( pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ , ) snake_case__ : Tuple = vocab_size snake_case__ : Optional[int] = hidden_size snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_dropout_prob snake_case__ : Any = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : List[str] = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : List[Any] = position_embedding_type snake_case__ : Any = use_cache snake_case__ : Union[str, Any] = classifier_dropout # additional properties snake_case__ : List[str] = max_depth snake_case__ : int = max_xpath_tag_unit_embeddings snake_case__ : Tuple = max_xpath_subs_unit_embeddings snake_case__ : Dict = tag_pad_id snake_case__ : Union[str, Any] = subs_pad_id snake_case__ : Tuple = xpath_unit_hidden_size
43
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : str=0.0 ,lowercase__ : Dict = None ,lowercase__ : str = "geglu" ,lowercase__ : List[Any] = None ,lowercase__ : Optional[int] = False ,lowercase__ : List[str] = False ,lowercase__ : Optional[Any] = False ,lowercase__ : Any = False ,lowercase__ : List[str] = True ,lowercase__ : Optional[int] = "layer_norm" ,lowercase__ : Optional[int] = False ,): super().__init__() __lowercase = only_cross_attention __lowercase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __lowercase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowercase = AdaLayerNorm(_A ,_A ) elif self.use_ada_layer_norm_zero: __lowercase = AdaLayerNormZero(_A ,_A ) else: __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ) __lowercase = Attention( query_dim=_A ,heads=_A ,dim_head=_A ,dropout=_A ,bias=_A ,cross_attention_dim=cross_attention_dim if only_cross_attention else None ,upcast_attention=_A ,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowercase = ( AdaLayerNorm(_A ,_A ) if self.use_ada_layer_norm else nn.LayerNorm(_A ,elementwise_affine=_A ) ) __lowercase = Attention( query_dim=_A ,cross_attention_dim=cross_attention_dim if not double_self_attention else None ,heads=_A ,dim_head=_A ,dropout=_A ,bias=_A ,upcast_attention=_A ,) # is self-attn if encoder_hidden_states is none else: __lowercase = None __lowercase = None # 3. Feed-forward __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ) __lowercase = FeedForward(_A ,dropout=_A ,activation_fn=_A ,final_dropout=_A ) # let chunk size default to None __lowercase = None __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Optional[int] ,lowercase__ : Tuple ): # Sets chunk feed-forward __lowercase = chunk_size __lowercase = dim def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] = None ,lowercase__ : Any = None ,lowercase__ : Optional[int] = None ,lowercase__ : Any = None ,lowercase__ : Union[str, Any] = None ,lowercase__ : Tuple = None ,): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __lowercase = self.norma(_A ,_A ) elif self.use_ada_layer_norm_zero: __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = self.norma( _A ,_A ,_A ,hidden_dtype=hidden_states.dtype ) else: __lowercase = self.norma(_A ) __lowercase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowercase = self.attna( _A ,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None ,attention_mask=_A ,**_A ,) if self.use_ada_layer_norm_zero: __lowercase = gate_msa.unsqueeze(1 ) * attn_output __lowercase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowercase = ( self.norma(_A ,_A ) if self.use_ada_layer_norm else self.norma(_A ) ) __lowercase = self.attna( _A ,encoder_hidden_states=_A ,attention_mask=_A ,**_A ,) __lowercase = attn_output + hidden_states # 3. Feed-forward __lowercase = self.norma(_A ) if self.use_ada_layer_norm_zero: __lowercase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) __lowercase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowercase = torch.cat( [self.ff(_A ) for hid_slice in norm_hidden_states.chunk(_A ,dim=self._chunk_dim )] ,dim=self._chunk_dim ,) else: __lowercase = self.ff(_A ) if self.use_ada_layer_norm_zero: __lowercase = gate_mlp.unsqueeze(1 ) * ff_output __lowercase = ff_output + hidden_states return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : int ,lowercase__ : Optional[int] = None ,lowercase__ : Optional[int] = 4 ,lowercase__ : Optional[Any] = 0.0 ,lowercase__ : Dict = "geglu" ,lowercase__ : Dict = False ,): super().__init__() __lowercase = int(dim * mult ) __lowercase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowercase = GELU(_A ,_A ) if activation_fn == "gelu-approximate": __lowercase = GELU(_A ,_A ,approximate='''tanh''' ) elif activation_fn == "geglu": __lowercase = GEGLU(_A ,_A ) elif activation_fn == "geglu-approximate": __lowercase = ApproximateGELU(_A ,_A ) __lowercase = nn.ModuleList([] ) # project in self.net.append(_A ) # project dropout self.net.append(nn.Dropout(_A ) ) # project out self.net.append(nn.Linear(_A ,_A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_A ) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ): for module in self.net: __lowercase = module(_A ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : List[Any] = "none" ): super().__init__() __lowercase = nn.Linear(_A ,_A ) __lowercase = approximate def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Any ): if gate.device.type != "mps": return F.gelu(_A ,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ,approximate=self.approximate ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ): __lowercase = self.proj(_A ) __lowercase = self.gelu(_A ) return hidden_states class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Dict ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ): super().__init__() __lowercase = nn.Linear(_A ,dim_out * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Union[str, Any] ): if gate.device.type != "mps": return F.gelu(_A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : int ): __lowercase , __lowercase = self.proj(_A ).chunk(2 ,dim=-1 ) return hidden_states * self.gelu(_A ) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ): super().__init__() __lowercase = nn.Linear(_A ,_A ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Any ): __lowercase = self.proj(_A ) return x * torch.sigmoid(1.7_0_2 * x ) class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : int ,lowercase__ : str ,lowercase__ : Union[str, Any] ): super().__init__() __lowercase = nn.Embedding(_A ,_A ) __lowercase = nn.SiLU() __lowercase = nn.Linear(_A ,embedding_dim * 2 ) __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[str] ,lowercase__ : Any ): __lowercase = self.linear(self.silu(self.emb(_A ) ) ) __lowercase , __lowercase = torch.chunk(_A ,2 ) __lowercase = self.norm(_A ) * (1 + scale) + shift return x class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : str ): super().__init__() __lowercase = CombinedTimestepLabelEmbeddings(_A ,_A ) __lowercase = nn.SiLU() __lowercase = nn.Linear(_A ,6 * embedding_dim ,bias=_A ) __lowercase = nn.LayerNorm(_A ,elementwise_affine=_A ,eps=1e-6 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : List[str] ,lowercase__ : Any ,lowercase__ : str=None ): __lowercase = self.linear(self.silu(self.emb(_A ,_A ,hidden_dtype=_A ) ) ) __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = emb.chunk(6 ,dim=1 ) __lowercase = self.norm(_A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowercase_ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int] = None ,lowercase__ : Dict = 1e-5 ): super().__init__() __lowercase = num_groups __lowercase = eps if act_fn is None: __lowercase = None else: __lowercase = get_activation(_A ) __lowercase = nn.Linear(_A ,out_dim * 2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Dict ,lowercase__ : Tuple ): if self.act: __lowercase = self.act(_A ) __lowercase = self.linear(_A ) __lowercase = emb[:, :, None, None] __lowercase , __lowercase = emb.chunk(2 ,dim=1 ) __lowercase = F.group_norm(_A ,self.num_groups ,eps=self.eps ) __lowercase = x * (1 + scale) + shift return x
104
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ : Optional[Any] = logging.get_logger(__name__) class _UpperCAmelCase : def __init__( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Dict ): snake_case_ : Any = question_encoder snake_case_ : int = generator snake_case_ : Optional[Any] = self.question_encoder def _snake_case ( self : Any , lowercase_ : str ): if os.path.isfile(lowercase_ ): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file" ) os.makedirs(lowercase_ , exist_ok=lowercase_ ) snake_case_ : Dict = os.path.join(lowercase_ , '''question_encoder_tokenizer''' ) snake_case_ : int = os.path.join(lowercase_ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(lowercase_ ) self.generator.save_pretrained(lowercase_ ) @classmethod def _snake_case ( cls : List[str] , lowercase_ : Any , **lowercase_ : Any ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer snake_case_ : Optional[Any] = kwargs.pop('''config''' , lowercase_ ) if config is None: snake_case_ : int = RagConfig.from_pretrained(lowercase_ ) snake_case_ : int = AutoTokenizer.from_pretrained( lowercase_ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) snake_case_ : Optional[int] = AutoTokenizer.from_pretrained( lowercase_ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=lowercase_ , generator=lowercase_ ) def __call__( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[Any] ): return self.current_tokenizer(*lowercase_ , **lowercase_ ) def _snake_case ( self : str , *lowercase_ : List[str] , **lowercase_ : Dict ): return self.generator.batch_decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : str , *lowercase_ : Optional[int] , **lowercase_ : Optional[Any] ): return self.generator.decode(*lowercase_ , **lowercase_ ) def _snake_case ( self : List[str] ): snake_case_ : Union[str, Any] = self.question_encoder def _snake_case ( self : Optional[Any] ): snake_case_ : List[Any] = self.generator def _snake_case ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : Optional[List[str]] = None , lowercase_ : Optional[int] = None , lowercase_ : Optional[int] = None , lowercase_ : str = "longest" , lowercase_ : str = None , lowercase_ : bool = True , **lowercase_ : Union[str, Any] , ): warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , lowercase_ , ) if max_length is None: snake_case_ : str = self.current_tokenizer.model_max_length snake_case_ : str = self( lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , max_length=lowercase_ , padding=lowercase_ , truncation=lowercase_ , **lowercase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case_ : Union[str, Any] = self.current_tokenizer.model_max_length snake_case_ : Any = self( text_target=lowercase_ , add_special_tokens=lowercase_ , return_tensors=lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = labels['''input_ids'''] return model_inputs
155
"""simple docstring""" import math import sys def __lowercase ( _a ): if number != int(_a ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 snake_case_ : int = [-1] * (number + 1) snake_case_ : int = 0 for i in range(1 , number + 1 ): snake_case_ : Tuple = sys.maxsize snake_case_ : List[Any] = int(math.sqrt(_a ) ) for j in range(1 , root + 1 ): snake_case_ : Dict = 1 + answers[i - (j**2)] snake_case_ : int = min(_a , _a ) snake_case_ : Any = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
155
1
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def snake_case_ (_a : List[str] ): UpperCAmelCase = [] for line in lines: UpperCAmelCase = re.sub(R'''#.*''' , '''''' , _a ) # remove comments if line: filtered_lines.append(_a ) UpperCAmelCase = '\n'.join(_a ) # Make a hash from all this code UpperCAmelCase = full_str.encode('''utf-8''' ) return shaaaa(_a ).hexdigest() # get importable module names and hash for caching A ={ 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions A ={ '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) A ={'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name A ={} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
34
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=1_3 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=9_9 , UpperCAmelCase : Optional[int]=3_2 , UpperCAmelCase : Dict=5 , UpperCAmelCase : int=4 , UpperCAmelCase : Optional[Any]=3_7 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=5_1_2 , UpperCAmelCase : Dict=1_6 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : List[Any]=4 , ) -> Optional[Any]: __lowerCAmelCase: str = parent __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: Optional[int] = seq_length __lowerCAmelCase: Dict = is_training __lowerCAmelCase: Optional[Any] = use_attention_mask __lowerCAmelCase: List[Any] = use_token_type_ids __lowerCAmelCase: Optional[int] = use_labels __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: List[str] = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: List[Any] = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = type_vocab_size __lowerCAmelCase: int = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: Any = num_choices def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: List[Any] = None if self.use_attention_mask: __lowerCAmelCase: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: Optional[Any] = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase: Optional[int] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = config_and_inputs __lowerCAmelCase: Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( snake_case__ , unittest.TestCase ): _lowercase : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase: List[Any] = FlaxAlbertModelTester(self ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Optional[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase ) @require_flax class A_ ( unittest.TestCase ): @slow def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: List[Any] = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCAmelCase: Optional[int] = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) __lowerCAmelCase: Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCAmelCase: Tuple = model(UpperCAmelCase , attention_mask=UpperCAmelCase )[0] __lowerCAmelCase: str = (1, 1_1, 7_6_8) self.assertEqual(output.shape , UpperCAmelCase ) __lowerCAmelCase: List[str] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCAmelCase , atol=1E-4 ) )
322
0
"""simple docstring""" import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def lowerCAmelCase_ ( __A, __A=False ) -> int: '''simple docstring''' UpperCAmelCase__ = OmegaConf.load(lowercase__ ) if display: print(yaml.dump(OmegaConf.to_container(lowercase__ ) ) ) return config def lowerCAmelCase_ ( __A, __A=None, __A=None ) -> Tuple: '''simple docstring''' if conf_path is None: UpperCAmelCase__ = "./model_checkpoints/vqgan_only.yaml" UpperCAmelCase__ = load_config(lowercase__, display=lowercase__ ) UpperCAmelCase__ = VQModel(**config.model.params ) if ckpt_path is None: UpperCAmelCase__ = "./model_checkpoints/vqgan_only.pt" UpperCAmelCase__ = torch.load(lowercase__, map_location=lowercase__ ) if ".ckpt" in ckpt_path: UpperCAmelCase__ = sd["state_dict"] model.load_state_dict(lowercase__, strict=lowercase__ ) model.to(lowercase__ ) del sd return model def lowerCAmelCase_ ( __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = model.encode(lowercase__ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) UpperCAmelCase__ = model.decode(lowercase__ ) return xrec def lowerCAmelCase_ ( __A, __A=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ = string.rsplit(".", 1 ) if reload: UpperCAmelCase__ = importlib.import_module(lowercase__ ) importlib.reload(lowercase__ ) return getattr(importlib.import_module(lowercase__, package=lowercase__ ), cls ) def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' if "target" not in config: raise KeyError("Expected key `target` to instantiate." ) return get_obj_from_str(config["target"] )(**config.get("params", {} ) ) def lowerCAmelCase_ ( __A, __A, __A=True, __A=True ) -> Dict: '''simple docstring''' UpperCAmelCase__ = instantiate_from_config(lowercase__ ) if sd is not None: model.load_state_dict(lowercase__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def lowerCAmelCase_ ( __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' if ckpt: UpperCAmelCase__ = torch.load(lowercase__, map_location="cpu" ) UpperCAmelCase__ = pl_sd["global_step"] print(f"""loaded model from global step {global_step}.""" ) else: UpperCAmelCase__ = {"state_dict": None} UpperCAmelCase__ = None UpperCAmelCase__ = load_model_from_config(config.model, pl_sd["state_dict"], gpu=lowercase__, eval_mode=lowercase__ )["model"] return model, global_step
363
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
143
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = 10 _UpperCAmelCase : List[Any] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) _UpperCAmelCase : str = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowerCAmelCase_ ) ), } , features=lowerCAmelCase_ , ) return dataset @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : str = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowerCAmelCase_ ) return filename # FILE_CONTENT + files A_ : Optional[int] = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt""" _UpperCAmelCase : Any = FILE_CONTENT with open(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ ) return filename @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' import bza _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" _UpperCAmelCase : int = bytes(lowerCAmelCase_ , """utf-8""" ) with bza.open(lowerCAmelCase_ , """wb""" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' import gzip _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) _UpperCAmelCase : str = bytes(lowerCAmelCase_ , """utf-8""" ) with gzip.open(lowerCAmelCase_ , """wb""" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if datasets.config.LZ4_AVAILABLE: import lza.frame _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" _UpperCAmelCase : Optional[int] = bytes(lowerCAmelCase_ , """utf-8""" ) with lza.frame.open(lowerCAmelCase_ , """wb""" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if datasets.config.PY7ZR_AVAILABLE: import pyazr _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCAmelCase_ , """w""" ) as archive: archive.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' import tarfile _UpperCAmelCase : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowerCAmelCase_ , """w""" ) as f: f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' import lzma _UpperCAmelCase : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" _UpperCAmelCase : Any = bytes(lowerCAmelCase_ , """utf-8""" ) with lzma.open(lowerCAmelCase_ , """wb""" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' import zipfile _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" _UpperCAmelCase : Union[str, Any] = bytes(lowerCAmelCase_ , """utf-8""" ) with zstd.open(lowerCAmelCase_ , """wb""" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """file.xml""" _UpperCAmelCase : Optional[int] = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ ) return filename A_ : int = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] A_ : Dict = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] A_ : Union[str, Any] = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } A_ : List[Any] = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] A_ : Tuple = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def snake_case_ ( )-> Optional[int]: '''simple docstring''' return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = datasets.Dataset.from_dict(lowerCAmelCase_ ) _UpperCAmelCase : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowerCAmelCase_ ) ) as con: _UpperCAmelCase : Optional[int] = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowerCAmelCase_ , """w""" , newline="""""" ) as f: _UpperCAmelCase : List[Any] = csv.DictWriter(lowerCAmelCase_ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowerCAmelCase_ , """w""" , newline="""""" ) as f: _UpperCAmelCase : Tuple = csv.DictWriter(lowerCAmelCase_ , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import bza _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowerCAmelCase_ , """rb""" ) as f: _UpperCAmelCase : List[str] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCAmelCase_ , """wb""" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) _UpperCAmelCase : Dict = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowerCAmelCase_ , """wb""" ) as f: _UpperCAmelCase : Tuple = pq.ParquetWriter(lowerCAmelCase_ , schema=lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCAmelCase_ ) )] for k in DATA[0]} , schema=lowerCAmelCase_ ) writer.write_table(lowerCAmelCase_ ) writer.close() return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) _UpperCAmelCase : Tuple = {"""data""": DATA} with open(lowerCAmelCase_ , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) _UpperCAmelCase : Tuple = {"""data""": DATA_DICT_OF_LISTS} with open(lowerCAmelCase_ , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowerCAmelCase_ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowerCAmelCase_ , """w""" ) as f: for item in DATA: f.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowerCAmelCase_ , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowerCAmelCase_ , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' import gzip _UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowerCAmelCase_ , """rb""" ) as orig_file: with gzip.open(lowerCAmelCase_ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' import gzip _UpperCAmelCase : Optional[int] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowerCAmelCase_ , """rb""" ) as orig_file: with gzip.open(lowerCAmelCase_ , """wb""" ) as zipped_file: zipped_file.writelines(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join("""nested""" , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCAmelCase_ , """w""" ) as f: f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.add(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : int = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCAmelCase_ , """w""" ) as f: f.add(lowerCAmelCase_ , arcname=os.path.join("""nested""" , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowerCAmelCase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase : Any = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowerCAmelCase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = ["""0""", """1""", """2""", """3"""] _UpperCAmelCase : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowerCAmelCase_ , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase_ ) ) ) f.write(lowerCAmelCase_ , arcname=os.path.join("""main_dir""" , os.path.basename(lowerCAmelCase_ ) ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) _UpperCAmelCase : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(lowerCAmelCase_ ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( )-> List[Any]: '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def snake_case_ ( )-> Dict: '''simple docstring''' return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ) ) f.write(lowerCAmelCase_ , arcname=os.path.basename(lowerCAmelCase_ ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
215
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Dict = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _UpperCAmelCase : Optional[int] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" _UpperCAmelCase : Dict = model(a_ )["""last_hidden_state"""] _UpperCAmelCase : Dict = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape ,a_ ) # compare the actual values for a slice. _UpperCAmelCase : Tuple = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4 ) )
215
1
from __future__ import annotations _lowerCamelCase = 1.60_21e-19 # units = C def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
360
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class a ( _A ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 'data2vec-text' def __init__( self : Optional[Any] , __snake_case : Optional[int]=3_05_22 , __snake_case : List[str]=7_68 , __snake_case : Tuple=12 , __snake_case : int=12 , __snake_case : Union[str, Any]=30_72 , __snake_case : List[Any]="gelu" , __snake_case : Any=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Tuple=5_12 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : List[Any]=1E-12 , __snake_case : Any=1 , __snake_case : List[Any]=0 , __snake_case : Dict=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : Any=None , **__snake_case : List[Any] , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class a ( _A ): '''simple docstring''' @property def lowerCamelCase_ ( self : str ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
177
0
def lowerCamelCase_ ( _a : Optional[int] = 100_0000 ): '''simple docstring''' UpperCAmelCase_ : int = 1 UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : Union[str, Any] = {1: 1} for inputa in range(2 , UpperCamelCase_ ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: UpperCAmelCase_ : str = (3 * number) + 1 counter += 1 if inputa not in counters: UpperCAmelCase_ : Tuple = counter if counter > pre_counter: UpperCAmelCase_ : Tuple = inputa UpperCAmelCase_ : List[Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
345
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __magic_name__ = logging.get_logger(__name__) @add_end_docstrings( __a , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" def snake_case_ ( self , lowerCAmelCase__): if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy() elif self.framework == "pt": __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__) else: raise ValueError("""Unsupported framework""") return masked_index def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.get_masked_index(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = np.prod(masked_index.shape) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def snake_case_ ( self , lowerCAmelCase__): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0]) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , **lowerCAmelCase__): if return_tensors is None: __SCREAMING_SNAKE_CASE = self.framework __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) self.ensure_exactly_one_mask_token(lowerCAmelCase__) return model_inputs def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.model(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = model_inputs["""input_ids"""] return model_outputs def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 , lowerCAmelCase__=None): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __SCREAMING_SNAKE_CASE = target_ids.shape[0] __SCREAMING_SNAKE_CASE = model_outputs["""input_ids"""][0] __SCREAMING_SNAKE_CASE = model_outputs["""logits"""] if self.framework == "tf": __SCREAMING_SNAKE_CASE = tf.where(input_ids == self.tokenizer.mask_token_id).numpy()[:, 0] __SCREAMING_SNAKE_CASE = outputs.numpy() __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = stable_softmax(lowerCAmelCase__ , axis=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = tf.gather_nd(tf.squeeze(lowerCAmelCase__ , 0) , target_ids.reshape(-1 , 1)) __SCREAMING_SNAKE_CASE = tf.expand_dims(lowerCAmelCase__ , 0) __SCREAMING_SNAKE_CASE = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = topk.values.numpy(), topk.indices.numpy() else: __SCREAMING_SNAKE_CASE = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase__).squeeze(-1) # Fill mask pipeline supports only one ${mask_token} per sample __SCREAMING_SNAKE_CASE = outputs[0, masked_index, :] __SCREAMING_SNAKE_CASE = logits.softmax(dim=-1) if target_ids is not None: __SCREAMING_SNAKE_CASE = probs[..., target_ids] __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = probs.topk(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist())): __SCREAMING_SNAKE_CASE = [] for v, p in zip(_values , _predictions): # Copy is important since we're going to modify this array in place __SCREAMING_SNAKE_CASE = input_ids.numpy().copy() if target_ids is not None: __SCREAMING_SNAKE_CASE = target_ids[p].tolist() __SCREAMING_SNAKE_CASE = p # Filter padding out: __SCREAMING_SNAKE_CASE = tokens[np.where(tokens != self.tokenizer.pad_token_id)] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __SCREAMING_SNAKE_CASE = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p]), """sequence""": sequence} row.append(lowerCAmelCase__) result.append(lowerCAmelCase__) if single_mask: return result[0] return result def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = [targets] try: __SCREAMING_SNAKE_CASE = self.tokenizer.get_vocab() except Exception: __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = [] for target in targets: __SCREAMING_SNAKE_CASE = vocab.get(lowerCAmelCase__ , lowerCAmelCase__) if id_ is None: __SCREAMING_SNAKE_CASE = self.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , max_length=1 , truncation=lowerCAmelCase__ , )["""input_ids"""] if len(lowerCAmelCase__) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""") continue __SCREAMING_SNAKE_CASE = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_)}`.") target_ids.append(id_) __SCREAMING_SNAKE_CASE = list(set(lowerCAmelCase__)) if len(lowerCAmelCase__) == 0: raise ValueError("""At least one target must be provided when passed.""") __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase__) return target_ids def snake_case_ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = {} if targets is not None: __SCREAMING_SNAKE_CASE = self.get_target_ids(lowerCAmelCase__ , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = target_ids if top_k is not None: __SCREAMING_SNAKE_CASE = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""") return {}, {}, postprocess_params def __call__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) == 1: return outputs[0] return outputs
100
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :Union[str, Any] = ViTImageProcessor if is_vision_available() else None @property def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = (3, 32, 1_28) lowerCAmelCase__ : List[Any] = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ : Union[str, Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on lowerCAmelCase__ : Dict = dict(zip(UpperCamelCase , range(len(UpperCamelCase ) ) ) ) lowerCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase ) + """\n""" ) lowerCAmelCase__ : Any = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 1_28}, } lowerCAmelCase__ : List[str] = os.path.join(self.tmpdirname , UpperCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] , **UpperCamelCase : Dict ) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] , **UpperCamelCase : str ) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[str] = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) lowerCAmelCase__ : Union[str, Any] = Image.fromarray(np.moveaxis(UpperCamelCase , 0 , -1 ) ) return image_input def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : List[Any] = self.get_image_processor() lowerCAmelCase__ : List[str] = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : List[str] = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" lowerCAmelCase__ : int = self.get_tokenizer() lowerCAmelCase__ : Any = self.get_image_processor() lowerCAmelCase__ : int = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase__ : List[str] = self.get_image_processor(do_normalize=UpperCamelCase , padding_value=1.0 ) lowerCAmelCase__ : str = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ : int = self.get_image_processor() lowerCAmelCase__ : str = self.get_tokenizer() lowerCAmelCase__ : str = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Dict = self.prepare_image_inputs() lowerCAmelCase__ : List[Any] = image_processor(UpperCamelCase , return_tensors="""np""" ) lowerCAmelCase__ : Optional[Any] = processor(images=UpperCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.get_image_processor() lowerCAmelCase__ : List[Any] = self.get_tokenizer() lowerCAmelCase__ : Any = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Tuple = """test""" lowerCAmelCase__ : int = processor(text=UpperCamelCase ) lowerCAmelCase__ : List[str] = tokenizer(UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = self.get_image_processor() lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ : List[Any] = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : str = """test""" lowerCAmelCase__ : List[str] = self.prepare_image_inputs() lowerCAmelCase__ : Union[str, Any] = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase ): processor() def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : str = self.get_image_processor() lowerCAmelCase__ : Tuple = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ : List[str] = processor.char_decode(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = tokenizer.batch_decode(UpperCamelCase ) lowerCAmelCase__ : Tuple = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Any = self.get_image_processor() lowerCAmelCase__ : Tuple = self.get_tokenizer() lowerCAmelCase__ : Optional[Any] = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Union[str, Any] = self.prepare_image_inputs() lowerCAmelCase__ : int = processor(text=UpperCamelCase , images=UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.get_image_processor() lowerCAmelCase__ : Any = self.get_tokenizer() lowerCAmelCase__ : int = MgpstrProcessor(tokenizer=UpperCamelCase , image_processor=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn(1 , 27 , 38 ) lowerCAmelCase__ : Any = torch.randn(1 , 27 , 5_02_57 ) lowerCAmelCase__ : Any = torch.randn(1 , 27 , 3_05_22 ) lowerCAmelCase__ : Optional[Any] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
212
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def lowercase_ ( __UpperCAmelCase ) -> None: lowerCAmelCase__ , lowerCAmelCase__ : int = analyze_text(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase__ : List[str] = sum(single_char_strings.values() ) # one length string lowerCAmelCase__ : List[str] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase__ : List[Any] = single_char_strings[ch] lowerCAmelCase__ : int = my_str / all_sum my_fir_sum += prob * math.loga(__UpperCAmelCase ) # entropy formula. # print entropy print(f"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase__ : Tuple = sum(two_char_strings.values() ) lowerCAmelCase__ : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase__ : Optional[int] = cha + cha if sequence in two_char_strings: lowerCAmelCase__ : int = two_char_strings[sequence] lowerCAmelCase__ : str = int(__UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__UpperCAmelCase ) # print second entropy print(f"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def lowercase_ ( __UpperCAmelCase ) -> tuple[dict, dict]: lowerCAmelCase__ : Any = Counter() # type: ignore lowerCAmelCase__ : Tuple = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def lowercase_ ( ) -> Any: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
212
1
"""simple docstring""" import math def _snake_case ( lowerCamelCase__ : list , lowerCamelCase__ : int ) -> int: lowerCamelCase_ : int =len(lowerCamelCase__ ) lowerCamelCase_ : List[Any] =int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) lowerCamelCase_ : List[Any] =0 while arr[min(lowerCamelCase__ , lowerCamelCase__ ) - 1] < x: lowerCamelCase_ : str =step step += int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowerCamelCase_ : Dict =prev + 1 if prev == min(lowerCamelCase__ , lowerCamelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A__ : List[Any] = input('Enter numbers separated by a comma:\n').strip() A__ : Optional[Any] = [int(item) for item in user_input.split(',')] A__ : List[str] = int(input('Enter the number to be searched:\n')) A__ : Any = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'Number {x} is at index {res}')
144
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : str ) -> str: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowerCamelCase_ : Optional[Any] =mf_knapsack(i - 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) else: lowerCamelCase_ : Union[str, Any] =max( mf_knapsack(i - 1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) , mf_knapsack(i - 1 , lowerCamelCase__ , lowerCamelCase__ , j - wt[i - 1] ) + val[i - 1] , ) lowerCamelCase_ : int =val return f[i][j] def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Any , lowerCamelCase__ : int ) -> Dict: lowerCamelCase_ : List[Any] =[[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowerCamelCase_ : Union[str, Any] =max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowerCamelCase_ : Optional[int] =dp[i - 1][w_] return dp[n][w_], dp def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : list , lowerCamelCase__ : list ) -> Tuple: if not (isinstance(lowerCamelCase__ , (list, tuple) ) and isinstance(lowerCamelCase__ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) lowerCamelCase_ : Optional[int] =len(lowerCamelCase__ ) if num_items != len(lowerCamelCase__ ): lowerCamelCase_ : Optional[Any] =( "The number of weights must be the same as the number of values.\n" F"""But got {num_items} weights and {len(lowerCamelCase__ )} values""" ) raise ValueError(lowerCamelCase__ ) for i in range(lowerCamelCase__ ): if not isinstance(wt[i] , lowerCamelCase__ ): lowerCamelCase_ : Optional[Any] =( "All weights must be integers but got weight of " F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Optional[int] =knapsack(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : set =set() _construct_solution(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return optimal_val, example_optional_set def _snake_case ( lowerCamelCase__ : list , lowerCamelCase__ : list , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : set ) -> Optional[int]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCamelCase__ , lowerCamelCase__ , i - 1 , lowerCamelCase__ , lowerCamelCase__ ) else: optimal_set.add(lowerCamelCase__ ) _construct_solution(lowerCamelCase__ , lowerCamelCase__ , i - 1 , j - wt[i - 1] , lowerCamelCase__ ) if __name__ == "__main__": A__ : Optional[Any] = [3, 2, 4, 4] A__ : str = [4, 3, 2, 3] A__ : List[Any] = 4 A__ : Union[str, Any] = 6 A__ : List[str] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A__ , A__ : Any = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A__ , A__ : str = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
144
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase__ ( metaclass=lowercase ): '''simple docstring''' lowerCamelCase__ = ["""torch""", """scipy"""] def __init__( self , *lowercase , **lowercase ): requires_backends(self , ['torch', 'scipy'] ) @classmethod def A_ ( cls , *lowercase , **lowercase ): requires_backends(cls , ['torch', 'scipy'] ) @classmethod def A_ ( cls , *lowercase , **lowercase ): requires_backends(cls , ['torch', 'scipy'] )
368
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase ): _lowerCamelCase : Dict = question_encoder _lowerCamelCase : List[Any] = generator _lowerCamelCase : Optional[Any] = self.question_encoder def A_ ( self , lowercase ): if os.path.isfile(lowercase ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(lowercase , exist_ok=lowercase ) _lowerCamelCase : List[Any] = os.path.join(lowercase , 'question_encoder_tokenizer' ) _lowerCamelCase : Dict = os.path.join(lowercase , 'generator_tokenizer' ) self.question_encoder.save_pretrained(lowercase ) self.generator.save_pretrained(lowercase ) @classmethod def A_ ( cls , lowercase , **lowercase ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCamelCase : Optional[int] = kwargs.pop('config' , lowercase ) if config is None: _lowerCamelCase : int = RagConfig.from_pretrained(lowercase ) _lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( lowercase , config=config.question_encoder , subfolder='question_encoder_tokenizer' ) _lowerCamelCase : Dict = AutoTokenizer.from_pretrained( lowercase , config=config.generator , subfolder='generator_tokenizer' ) return cls(question_encoder=lowercase , generator=lowercase ) def __call__( self , *lowercase , **lowercase ): return self.current_tokenizer(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.batch_decode(*lowercase , **lowercase ) def A_ ( self , *lowercase , **lowercase ): return self.generator.decode(*lowercase , **lowercase ) def A_ ( self ): _lowerCamelCase : Any = self.question_encoder def A_ ( self ): _lowerCamelCase : Optional[Any] = self.generator def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = "longest" , lowercase = None , lowercase = True , **lowercase , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , lowercase , ) if max_length is None: _lowerCamelCase : Optional[Any] = self.current_tokenizer.model_max_length _lowerCamelCase : Optional[Any] = self( lowercase , add_special_tokens=lowercase , return_tensors=lowercase , max_length=lowercase , padding=lowercase , truncation=lowercase , **lowercase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCamelCase : int = self.current_tokenizer.model_max_length _lowerCamelCase : str = self( text_target=lowercase , add_special_tokens=lowercase , return_tensors=lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase , **lowercase , ) _lowerCamelCase : int = labels['input_ids'] return model_inputs
12
0
'''simple docstring''' import functools def lowerCamelCase ( lowerCAmelCase : list[int] , lowerCAmelCase : list[int] ): """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase ) or not all(isinstance(lowerCAmelCase , lowerCAmelCase ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(lowerCAmelCase ) != 3 or not all(isinstance(lowerCAmelCase , lowerCAmelCase ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(lowerCAmelCase ) == 0: return 0 if min(lowerCAmelCase ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(lowerCAmelCase ) >= 366: raise ValueError('All days elements should be less than 366' ) __magic_name__ : Any = set(lowerCAmelCase ) @functools.cache def dynamic_programming(lowerCAmelCase : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
331
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase :Tuple = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase :List[Any] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase :str = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase :Optional[Any] = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase :Union[str, Any] = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase :Tuple = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ , __magic_name__ : Union[str, Any] = randrange(len(lowerCAmelCase ) ), randrange(len(lowerCAmelCase ) ) __magic_name__ : Optional[int] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] __magic_name__ , __magic_name__ : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase ( lowerCAmelCase : int = 100 ): """simple docstring""" return (generate_random_hand() for _ in range(lowerCAmelCase )) @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Any = PokerHand(lowerCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Any , lowerCAmelCase : str ): """simple docstring""" assert PokerHand(lowerCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : Dict ): """simple docstring""" assert PokerHand(lowerCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCAmelCase ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Tuple ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any ): """simple docstring""" assert PokerHand(lowerCAmelCase ).compare_with(PokerHand(lowerCAmelCase ) ) == expected def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Optional[int] = [PokerHand(lowerCAmelCase ) for hand in SORTED_HANDS] __magic_name__ : Tuple = poker_hands.copy() shuffle(lowerCAmelCase ) __magic_name__ : Union[str, Any] = chain(sorted(lowerCAmelCase ) ) for index, hand in enumerate(lowerCAmelCase ): assert hand == poker_hands[index] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = PokerHand('2C 4S AS 3D 5C' ) __magic_name__ : Optional[Any] = True __magic_name__ : Union[str, Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Dict = 0 __magic_name__ : Dict = os.path.abspath(os.path.dirname(lowerCAmelCase ) ) __magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase , 'poker_hands.txt' ) with open(lowerCAmelCase ) as file_hand: for line in file_hand: __magic_name__ : Optional[int] = line[:14].strip() __magic_name__ : List[Any] = line[15:].strip() __magic_name__ , __magic_name__ : Tuple = PokerHand(lowerCAmelCase ), PokerHand(lowerCAmelCase ) __magic_name__ : List[Any] = player.compare_with(lowerCAmelCase ) if output == "Win": answer += 1 assert answer == 376
331
1
"""simple docstring""" from __future__ import annotations class __snake_case : def __init__( self : Dict , __lowerCAmelCase : int = 0 ): """simple docstring""" _lowerCamelCase : Any = key def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : str , __lowerCAmelCase : int ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__lowerCAmelCase ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(__lowerCAmelCase ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : int = 0 ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned _lowerCamelCase : str = '''''' for ch in content: ans += chr(ord(__lowerCAmelCase ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : int = 0 ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : int = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned _lowerCamelCase : Dict = '''''' for ch in content: ans += chr(ord(__lowerCAmelCase ) ^ key ) return ans def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : int = 0 ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) try: with open(__lowerCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__lowerCAmelCase , __lowerCAmelCase ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : int ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) and isinstance(__lowerCAmelCase , __lowerCAmelCase ) try: with open(__lowerCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__lowerCAmelCase , __lowerCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
353
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case ( _lowercase): def __init__( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=1_3 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : int=False , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Dict=9_9 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : Tuple=5 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : Optional[int]=5_1_2 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : str=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Optional[int]="last" , __lowerCAmelCase : str=None , __lowerCAmelCase : int=None , ): """simple docstring""" _lowerCamelCase : Dict = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Dict = seq_length _lowerCamelCase : List[Any] = is_training _lowerCamelCase : Dict = use_input_lengths _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[Any] = gelu_activation _lowerCamelCase : Optional[Any] = sinusoidal_embeddings _lowerCamelCase : Dict = causal _lowerCamelCase : Dict = asm _lowerCamelCase : str = n_langs _lowerCamelCase : str = vocab_size _lowerCamelCase : Optional[int] = n_special _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : Any = type_vocab_size _lowerCamelCase : Optional[int] = type_sequence_label_size _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : List[Any] = num_labels _lowerCamelCase : Dict = num_choices _lowerCamelCase : str = summary_type _lowerCamelCase : List[str] = use_proj _lowerCamelCase : int = scope def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] = None if self.use_input_lengths: _lowerCamelCase : int = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: _lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : List[str] = None _lowerCamelCase : Optional[Any] = None if self.use_labels: _lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : str = ids_tensor([self.batch_size] , 2 ).float() _lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , ): """simple docstring""" _lowerCamelCase : Optional[Any] = FlaubertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , lengths=__lowerCAmelCase , langs=__lowerCAmelCase ) _lowerCamelCase : str = model(__lowerCAmelCase , langs=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : Tuple = FlaubertWithLMHeadModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , ): """simple docstring""" _lowerCamelCase : Union[str, Any] = FlaubertForQuestionAnsweringSimple(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = model(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , ): """simple docstring""" _lowerCamelCase : str = FlaubertForQuestionAnswering(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , p_mask=__lowerCAmelCase , ) _lowerCamelCase : List[str] = model( __lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , cls_index=__lowerCAmelCase , is_impossible=__lowerCAmelCase , ) ((_lowerCamelCase) , ) : str = result_with_labels.to_tuple() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase ) ((_lowerCamelCase) , ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict , __lowerCAmelCase : str , ): """simple docstring""" _lowerCamelCase : Dict = FlaubertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : str = model(__lowerCAmelCase ) _lowerCamelCase : Tuple = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , ): """simple docstring""" _lowerCamelCase : Any = self.num_labels _lowerCamelCase : List[str] = FlaubertForTokenClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Union[str, Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[str] = self.num_choices _lowerCamelCase : Any = FlaubertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCamelCase : int = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Optional[Any] = config_and_inputs _lowerCamelCase : int = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : List[str] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) snake_case__ : List[Any] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : Dict = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _lowerCamelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) _lowerCamelCase : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : int = FlaubertModelTester(self ) _lowerCamelCase : str = ConfigTester(self , config_class=__lowerCAmelCase , emb_dim=3_7 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Dict = FlaubertModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _lowerCamelCase : Any = True _lowerCamelCase : int = model_class(config=__lowerCAmelCase ) _lowerCamelCase : List[str] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : int = torch.jit.trace( __lowerCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) ) _lowerCamelCase : Union[str, Any] = torch.jit.load(os.path.join(__lowerCAmelCase , '''traced_model.pt''' ) , map_location=__lowerCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__lowerCAmelCase ) , inputs_dict['''attention_mask'''].to(__lowerCAmelCase ) ) @require_torch class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _lowerCamelCase : Any = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): _lowerCamelCase : Any = model(__lowerCAmelCase )[0] _lowerCamelCase : Optional[Any] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 ) )
175
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule A__: Optional[int] = {'''tokenization_bertweet''': ['''BertweetTokenizer''']} if TYPE_CHECKING: from .tokenization_bertweet import BertweetTokenizer else: import sys A__: int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = NllbTokenizer SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = legacy_behaviour super().__init__( vocab_file=lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, legacy_behaviour=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True snake_case_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens}) snake_case_ = { lang_code: self.convert_tokens_to_ids(lowerCAmelCase__) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ = src_lang if src_lang is not None else 'eng_Latn' snake_case_ = self.convert_tokens_to_ids(self._src_lang) snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def a_ ( self) -> str: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> str: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) snake_case_ = tgt_lang_id return inputs def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "eng_Latn", lowerCAmelCase__ = None, lowerCAmelCase__ = "fra_Latn", **lowerCAmelCase__, ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory.') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
69
0
"""simple docstring""" from collections.abc import Callable class UpperCAmelCase_ : def __init__( self : Dict , A : Callable | None = None ): # Stores actual heap items. _UpperCAmelCase : list = [] # Stores indexes of each item for supporting updates and deletion. _UpperCAmelCase : dict = {} # Stores current size of heap. _UpperCAmelCase : Tuple = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. _UpperCAmelCase : Any = key or (lambda A : x) def snake_case_ ( self : List[Any] , A : int ): return int((i - 1) / 2 ) if i > 0 else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 1 ) return left if 0 < left < self.size else None def snake_case_ ( self : List[Any] , A : int ): _UpperCAmelCase : Tuple = int(2 * i + 2 ) return right if 0 < right < self.size else None def snake_case_ ( self : Optional[int] , A : int , A : int ): _UpperCAmelCase : int = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. _UpperCAmelCase : Any = self.arr[j], self.arr[i] def snake_case_ ( self : List[str] , A : int , A : int ): return self.arr[i][1] < self.arr[j][1] def snake_case_ ( self : Dict , A : int ): _UpperCAmelCase : str = self._left(A ) _UpperCAmelCase : str = self._right(A ) _UpperCAmelCase : List[Any] = i if left is not None and not self._cmp(A , A ): _UpperCAmelCase : Optional[int] = left if right is not None and not self._cmp(A , A ): _UpperCAmelCase : Any = right return valid_parent def snake_case_ ( self : Tuple , A : int ): _UpperCAmelCase : Tuple = self._parent(A ) while parent is not None and not self._cmp(A , A ): self._swap(A , A ) _UpperCAmelCase : Dict = parent, self._parent(A ) def snake_case_ ( self : Optional[int] , A : int ): _UpperCAmelCase : Tuple = self._get_valid_parent(A ) while valid_parent != index: self._swap(A , A ) _UpperCAmelCase : Optional[Any] = valid_parent, self._get_valid_parent(A ) def snake_case_ ( self : Dict , A : int , A : int ): if item not in self.pos_map: return _UpperCAmelCase : Any = self.pos_map[item] _UpperCAmelCase : Optional[int] = [item, self.key(A )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : List[str] , A : int ): if item not in self.pos_map: return _UpperCAmelCase : str = self.pos_map[item] del self.pos_map[item] _UpperCAmelCase : Tuple = self.arr[self.size - 1] _UpperCAmelCase : List[Any] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(A ) self._heapify_down(A ) def snake_case_ ( self : Any , A : int , A : int ): _UpperCAmelCase : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(A )] ) else: _UpperCAmelCase : Any = [item, self.key(A )] _UpperCAmelCase : List[Any] = self.size self.size += 1 self._heapify_up(self.size - 1 ) def snake_case_ ( self : Tuple ): return self.arr[0] if self.size else None def snake_case_ ( self : Any ): _UpperCAmelCase : Dict = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def __snake_case ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : Union[str, Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
202
0
from __future__ import annotations a_ :int = tuple[int, int, int] a_ :int = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a_ :Union[str, Any] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- a_ :List[str] = "EGZWVONAHDCLFQMSIPJBYUKXTR" a_ :Optional[int] = "FOBHMDKEXQNRAULPGSJVTYICZW" a_ :Dict = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- a_ :Optional[Any] = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- a_ :List[Any] = "RMDJXFUWGISLHVTCQNKYPBEZOA" a_ :List[Any] = "SGLCPQWZHKXAREONTFBVIYJUDM" a_ :Optional[int] = "HVSICLTYKQUBXDWAJZOMFGPREN" a_ :List[Any] = "RZWQHFMVDBKICJLNTUXAGYPSOE" a_ :int = "LFKIJODBEGAMQPXVUHYSTCZRWN" a_ :Tuple = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def lowercase_ (A : RotorPositionT , A : RotorSelectionT , A : str ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(A ) )) < 3: snake_case__ : Optional[Any] = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(A ) # Checks if rotor positions are valid snake_case__ , snake_case__ , snake_case__ : str = rotpos if not 0 < rotorposa <= len(A ): snake_case__ : int = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(A ) if not 0 < rotorposa <= len(A ): snake_case__ : Any = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(A ) if not 0 < rotorposa <= len(A ): snake_case__ : str = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(A ) # Validates string and returns dict snake_case__ : List[Any] = _plugboard(A ) return rotpos, rotsel, pbdict def lowercase_ (A : str ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(A , A ): snake_case__ : Dict = F'''Plugboard setting isn\'t type string ({type(A )})''' raise TypeError(A ) elif len(A ) % 2 != 0: snake_case__ : Optional[int] = F'''Odd number of symbols ({len(A )})''' raise Exception(A ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique snake_case__ : List[str] = set() for i in pbstring: if i not in abc: snake_case__ : Any = F'''\'{i}\' not in list of symbols''' raise Exception(A ) elif i in tmppbl: snake_case__ : str = F'''Duplicate symbol ({i})''' raise Exception(A ) else: tmppbl.add(A ) del tmppbl # Created the dictionary snake_case__ : Dict = {} for j in range(0 , len(A ) - 1 , 2 ): snake_case__ : Any = pbstring[j + 1] snake_case__ : Dict = pbstring[j] return pb def lowercase_ (A : str , A : RotorPositionT , A : RotorSelectionT = (rotora, rotora, rotora) , A : str = "" , ): snake_case__ : List[str] = text.upper() snake_case__ , snake_case__ , snake_case__ : str = _validator( A , A , plugb.upper() ) snake_case__ , snake_case__ , snake_case__ : str = rotor_position snake_case__ , snake_case__ , snake_case__ : int = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 snake_case__ : Tuple = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: snake_case__ : Union[str, Any] = plugboard[symbol] # rotor ra -------------------------- snake_case__ : Optional[int] = abc.index(A ) + rotorposa snake_case__ : Optional[Any] = rotora[index % len(A )] # rotor rb -------------------------- snake_case__ : Optional[int] = abc.index(A ) + rotorposa snake_case__ : Union[str, Any] = rotora[index % len(A )] # rotor rc -------------------------- snake_case__ : Dict = abc.index(A ) + rotorposa snake_case__ : List[str] = rotora[index % len(A )] # reflector -------------------------- # this is the reason you don't need another machine to decipher snake_case__ : Any = reflector[symbol] # 2nd rotors snake_case__ : Tuple = abc[rotora.index(A ) - rotorposa] snake_case__ : List[str] = abc[rotora.index(A ) - rotorposa] snake_case__ : List[str] = abc[rotora.index(A ) - rotorposa] # 2nd plugboard if symbol in plugboard: snake_case__ : Union[str, Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(A ): snake_case__ : str = 0 rotorposa += 1 if rotorposa >= len(A ): snake_case__ : Optional[Any] = 0 rotorposa += 1 if rotorposa >= len(A ): snake_case__ : Tuple = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(A ) return "".join(A ) if __name__ == "__main__": a_ :Tuple = "This is my Python script that emulates the Enigma machine from WWII." a_ :List[Any] = (1, 1, 1) a_ :List[Any] = "pictures" a_ :Tuple = (rotora, rotora, rotora) a_ :Optional[int] = enigma(message, rotor_pos, rotor_sel, pb) print("Encrypted message:", en) print("Decrypted message:", enigma(en, rotor_pos, rotor_sel, pb))
277
from collections import deque from .hash_table import HashTable class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any], *_snake_case : Optional[Any], **_snake_case : List[Any] ) ->Optional[int]: super().__init__(*_snake_case, **_snake_case ) def lowercase_ ( self : Optional[Any], _snake_case : Tuple, _snake_case : Dict ) ->Dict: snake_case__ : int = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_snake_case ) snake_case__ : Dict = self.values[key] def lowercase_ ( self : Any ) ->Optional[Any]: return ( sum(self.charge_factor - len(_snake_case ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowercase_ ( self : Union[str, Any], _snake_case : str, _snake_case : Optional[int]=None ) ->Optional[Any]: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_snake_case ) == 0 ): return key return super()._collision_resolution(_snake_case, _snake_case )
277
1
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) _SCREAMING_SNAKE_CASE = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _SCREAMING_SNAKE_CASE = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__lowerCAmelCase )} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __lowerCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCamelCase_ ( self : str ): """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can\'t be used in combination with --config_name or --model_name_or_path""" ) @dataclass class SCREAMING_SNAKE_CASE_ : __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase = field(default=__lowerCAmelCase , metadata={"""help""": """The input training data file (a text file)."""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __lowerCAmelCase = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __lowerCAmelCase = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __lowerCAmelCase = field( default=__lowerCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" if self.train_file is not None: UpperCamelCase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: UpperCamelCase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' with open(lowercase__ , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.loads(lowercase__ ) for line in f.read().splitlines() if (len(lowercase__ ) > 0 and not line.isspace())] assert len(lowercase__ ) == len(lowercase__ ) UpperCamelCase = {c: dataset[c] for c in dataset.column_names} UpperCamelCase = refs return Dataset.from_dict(lowercase__ ) def lowercase( ) -> Tuple: '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowercase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCamelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , ) UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , ) else: UpperCamelCase = {} if data_args.train_file is not None: UpperCamelCase = data_args.train_file if data_args.validation_file is not None: UpperCamelCase = data_args.validation_file UpperCamelCase = data_args.train_file.split(""".""" )[-1] if extension == "txt": UpperCamelCase = 'text' UpperCamelCase = load_dataset(lowercase__ , data_files=lowercase__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase = AutoConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) UpperCamelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: UpperCamelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: UpperCamelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase = AutoModelForMaskedLM.from_config(lowercase__ ) model.resize_token_embeddings(len(lowercase__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: UpperCamelCase = datasets['train'].column_names else: UpperCamelCase = datasets['validation'].column_names UpperCamelCase = 'text' if 'text' in column_names else column_names[0] UpperCamelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(UpperCamelCase_ ): # Remove empty lines UpperCamelCase = [line for line in examples['text'] if len(lowercase__ ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=lowercase__ , truncation=lowercase__ , max_length=data_args.max_seq_length ) UpperCamelCase = datasets.map( lowercase__ , batched=lowercase__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: UpperCamelCase = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: UpperCamelCase = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer UpperCamelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: UpperCamelCase = False # Data collator # This one will take care of randomly masking the tokens. UpperCamelCase = DataCollatorForWholeWordMask(tokenizer=lowercase__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCamelCase = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: if last_checkpoint is not None: UpperCamelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): UpperCamelCase = model_args.model_name_or_path else: UpperCamelCase = None UpperCamelCase = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation UpperCamelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) UpperCamelCase = trainer.evaluate() UpperCamelCase = math.exp(eval_output["""eval_loss"""] ) UpperCamelCase = perplexity UpperCamelCase = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(lowercase__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(f""" {key} = {value}""" ) writer.write(f"""{key} = {value}\n""" ) return results def lowercase( UpperCamelCase_ ) -> Any: '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
362
def lowercase( UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = len(UpperCamelCase_ ) for i in range(n - 1 ): for j in range(i + 1 , UpperCamelCase_ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' if len(UpperCamelCase_ ) <= 1: return arr, 0 UpperCamelCase = len(UpperCamelCase_ ) // 2 UpperCamelCase = arr[0:mid] UpperCamelCase = arr[mid:] UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = _count_cross_inversions(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = inversion_p + inversions_q + cross_inversions return c, num_inversions def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = UpperCamelCase = UpperCamelCase = 0 while i < len(UpperCamelCase_ ) and j < len(UpperCamelCase_ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCamelCase_ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCamelCase_ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def lowercase( ) -> List[str]: '''simple docstring''' UpperCamelCase = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) UpperCamelCase = count_inversions_bf(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 8 print("""number of inversions = """ , UpperCamelCase_ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() UpperCamelCase = count_inversions_bf(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , UpperCamelCase_ ) # an empty list should also have zero inversions UpperCamelCase = [] UpperCamelCase = count_inversions_bf(UpperCamelCase_ ) UpperCamelCase , UpperCamelCase = count_inversions_recursive(UpperCamelCase_ ) assert num_inversions_bf == num_inversions_recursive == 0 print("""number of inversions = """ , UpperCamelCase_ ) if __name__ == "__main__": main()
165
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , "depth_multiplier" ) ) class A__ : def __init__( self , A_ , A_=13 , A_=3 , A_=32 , A_=0.25 , A_=8 , A_=True , A_=1024 , A_=32 , A_="relu6" , A_=0.1 , A_=0.02 , A_=True , A_=True , A_=10 , A_=None , ): '''simple docstring''' UpperCamelCase : Dict = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Dict = num_channels UpperCamelCase : Any = image_size UpperCamelCase : Any = depth_multiplier UpperCamelCase : Dict = min_depth UpperCamelCase : List[str] = tf_padding UpperCamelCase : List[str] = int(last_hidden_size * depth_multiplier ) UpperCamelCase : str = output_stride UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Tuple = classifier_dropout_prob UpperCamelCase : Optional[Any] = use_labels UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Union[str, Any] = num_labels UpperCamelCase : str = initializer_range UpperCamelCase : List[str] = scope def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None if self.use_labels: UpperCamelCase : str = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase : int = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase( self ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = MobileNetVaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase : str = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Union[str, Any] = MobileNetVaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase : Optional[int] = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : int = config_and_inputs UpperCamelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () _UpperCAmelCase :List[str] = ( {'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase :Tuple = False _UpperCAmelCase :int = False _UpperCAmelCase :List[Any] = False _UpperCAmelCase :str = False def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = MobileNetVaModelTester(self ) UpperCamelCase : List[Any] = MobileNetVaConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def __UpperCamelCase( self ): '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def __UpperCamelCase( self ): '''simple docstring''' pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def __UpperCamelCase( self ): '''simple docstring''' pass def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Any = model_class(__UpperCamelCase ) UpperCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Any = [*signature.parameters.keys()] UpperCamelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __UpperCamelCase( self ): '''simple docstring''' def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase : int = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) UpperCamelCase : Any = outputs.hidden_states UpperCamelCase : List[Any] = 26 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[Any] = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[int] = MobileNetVaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def A_ ( ) -> str: UpperCamelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase( self ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(__UpperCamelCase ) UpperCamelCase : Dict = self.default_image_processor UpperCamelCase : Dict = prepare_img() UpperCamelCase : Any = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**__UpperCamelCase ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) UpperCamelCase : List[Any] = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
52
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def lowercase ( _SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' _UpperCAmelCase = args.pruning_method _UpperCAmelCase = args.threshold _UpperCAmelCase = args.model_name_or_path.rstrip('''/''' ) _UpperCAmelCase = args.target_model_path print(f'Load fine-pruned model from {model_name_or_path}' ) _UpperCAmelCase = torch.load(os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) _UpperCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) elif "bias" in name: _UpperCAmelCase = tensor print(f'Copied layer {name}' ) else: if pruning_method == "magnitude": _UpperCAmelCase = MagnitudeBinarizer.apply(inputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase = TopKBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase = ThresholdBinarizer.apply(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue _UpperCAmelCase = name[:-6] _UpperCAmelCase = model[f'{prefix_}mask_scores'] _UpperCAmelCase , _UpperCAmelCase = -0.1, 1.1 _UpperCAmelCase = torch.sigmoid(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = s * (r - l) + l _UpperCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) _UpperCAmelCase = tensor * mask print(f'Pruned layer {name}' ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: _UpperCAmelCase = os.path.join( os.path.dirname(_SCREAMING_SNAKE_CASE ) , f'bertarized_{os.path.basename(_SCREAMING_SNAKE_CASE )}' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): shutil.copytree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print(f'\nCreated folder {target_model_path}' ) torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": __A : Tuple = argparse.ArgumentParser() parser.add_argument( "--pruning_method", choices=["l0", "magnitude", "topK", "sigmoied_threshold"], type=str, required=True, help=( "Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning," " sigmoied_threshold = Soft movement pruning)" ), ) parser.add_argument( "--threshold", type=float, required=False, help=( "For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model." "For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared." "Not needed for `l0`" ), ) parser.add_argument( "--model_name_or_path", type=str, required=True, help="Folder containing the model that was previously fine-pruned", ) parser.add_argument( "--target_model_path", default=None, type=str, required=False, help="Folder containing the model that was previously fine-pruned", ) __A : Optional[int] = parser.parse_args() main(args)
260
0
import heapq import sys import numpy as np UpperCamelCase_ = tuple[int, int] class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Optional[Any] = set() def UpperCamelCase_ ( self ): '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('inf' ) def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.elements ) == 0 def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if item not in self.set: heapq.heappush(self.elements, (priority, item) ) self.set.add(A ) else: # update # print("update", item) SCREAMING_SNAKE_CASE : Union[str, Any] = [] (SCREAMING_SNAKE_CASE) : Any = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) (SCREAMING_SNAKE_CASE) : Any = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements, (pro, xxx) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if item in self.set: self.set.remove(A ) SCREAMING_SNAKE_CASE : str = [] (SCREAMING_SNAKE_CASE) : List[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) (SCREAMING_SNAKE_CASE) : Optional[int] = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements, (prito, yyy) ) def UpperCamelCase_ ( self ): '''simple docstring''' return self.elements[0][1] def UpperCamelCase_ ( self ): '''simple docstring''' (SCREAMING_SNAKE_CASE) : List[str] = heapq.heappop(self.elements ) self.set.remove(A ) return (priority, item) def lowercase__( __UpperCamelCase: TPos ,__UpperCamelCase: TPos ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE : str = np.array(__UpperCamelCase ) return np.linalg.norm(a - b ) def lowercase__( __UpperCamelCase: TPos ,__UpperCamelCase: TPos ): """simple docstring""" return consistent_heuristic(__UpperCamelCase ,__UpperCamelCase ) // t def lowercase__( __UpperCamelCase: TPos ,__UpperCamelCase: TPos ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowercase__( __UpperCamelCase: TPos ,__UpperCamelCase: int ,__UpperCamelCase: TPos ,__UpperCamelCase: dict[TPos, float] ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = g_function[start] + Wa * heuristics[i](__UpperCamelCase ,__UpperCamelCase ) return ans def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.chararray((n, n) ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = '*' for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (j, (n - 1) - i) in blocks: SCREAMING_SNAKE_CASE : Dict = '#' SCREAMING_SNAKE_CASE : Union[str, Any] = '-' SCREAMING_SNAKE_CASE : Any = back_pointer[goal] while x != start: (SCREAMING_SNAKE_CASE) : List[Any] = x # print(x) SCREAMING_SNAKE_CASE : Tuple = '-' SCREAMING_SNAKE_CASE : Dict = back_pointer[x] SCREAMING_SNAKE_CASE : Tuple = '-' for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if (i, j) == (0, n - 1): print(grid[i][j] ,end=' ' ) print('<-- End position' ,end=' ' ) else: print(grid[i][j] ,end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) SCREAMING_SNAKE_CASE : Optional[int] = back_pointer[goal] while x != start: print(__UpperCamelCase ,end=' ' ) SCREAMING_SNAKE_CASE : Any = back_pointer[x] print(__UpperCamelCase ) sys.exit() def lowercase__( __UpperCamelCase: TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowercase__( __UpperCamelCase: List[Any] ,__UpperCamelCase: Any ,__UpperCamelCase: int ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: str ,__UpperCamelCase: Dict ,__UpperCamelCase: Any ,__UpperCamelCase: Dict ,): """simple docstring""" for itera in range(__UpperCamelCase ): open_list[itera].remove_element(__UpperCamelCase ) # print("s", s) # print("j", j) (SCREAMING_SNAKE_CASE) : List[str] = s SCREAMING_SNAKE_CASE : List[str] = (x - 1, y) SCREAMING_SNAKE_CASE : str = (x + 1, y) SCREAMING_SNAKE_CASE : Dict = (x, y + 1) SCREAMING_SNAKE_CASE : Any = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__UpperCamelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = -1 SCREAMING_SNAKE_CASE : Optional[Any] = float('inf' ) if valid(__UpperCamelCase ) and g_function[neighbours] > g_function[s] + 1: SCREAMING_SNAKE_CASE : Tuple = g_function[s] + 1 SCREAMING_SNAKE_CASE : Any = s if neighbours not in close_list_anchor: open_list[0].put(__UpperCamelCase ,key(__UpperCamelCase ,0 ,__UpperCamelCase ,__UpperCamelCase ) ) if neighbours not in close_list_inad: for var in range(1 ,__UpperCamelCase ): if key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) <= Wa * key( __UpperCamelCase ,0 ,__UpperCamelCase ,__UpperCamelCase ): open_list[j].put( __UpperCamelCase ,key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [] for x in range(1 ,5 ): for y in range(1 ,6 ): some_list.append((x, y) ) for x in range(15 ,20 ): some_list.append((x, 17) ) for x in range(10 ,19 ): for y in range(1 ,15 ): some_list.append((x, y) ) # L block for x in range(1 ,4 ): for y in range(12 ,19 ): some_list.append((x, y) ) for x in range(3 ,13 ): for y in range(16 ,19 ): some_list.append((x, y) ) return some_list UpperCamelCase_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] UpperCamelCase_ = make_common_ground() UpperCamelCase_ = blocks_blk # hyper parameters UpperCamelCase_ = 1 UpperCamelCase_ = 1 UpperCamelCase_ = 2_0 UpperCamelCase_ = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase_ = (0, 0) UpperCamelCase_ = (n - 1, n - 1) UpperCamelCase_ = 1 def lowercase__( __UpperCamelCase: TPos ,__UpperCamelCase: TPos ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = {start: 0, goal: float('inf' )} SCREAMING_SNAKE_CASE : Optional[int] = {start: -1, goal: -1} SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : str = set() for i in range(__UpperCamelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__UpperCamelCase ,key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : list[int] = [] while open_list[0].minkey() < float('inf' ): for i in range(1 ,__UpperCamelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : List[str] = open_list[i].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) close_list_inad.append(__UpperCamelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) else: SCREAMING_SNAKE_CASE : Optional[int] = open_list[0].top_show() visited.add(__UpperCamelCase ) expand_state( __UpperCamelCase ,0 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) close_list_anchor.append(__UpperCamelCase ) print('No path found to goal' ) print() for i in range(n - 1 ,-1 ,-1 ): for j in range(__UpperCamelCase ): if (j, i) in blocks: print('#' ,end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' ,end=' ' ) else: print('-' ,end=' ' ) else: print('*' ,end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' ,end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
370
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } UpperCamelCase_ = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } UpperCamelCase_ = { "vinai/phobert-base": 2_5_6, "vinai/phobert-large": 2_5_6, } def lowercase__( __UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = set() SCREAMING_SNAKE_CASE : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE : int = char SCREAMING_SNAKE_CASE : str = set(__UpperCamelCase ) return pairs class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Any = VOCAB_FILES_NAMES A : List[str] = PRETRAINED_VOCAB_FILES_MAP A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, A, A, A="<s>", A="</s>", A="</s>", A="<s>", A="<unk>", A="<pad>", A="<mask>", **A, ): '''simple docstring''' super().__init__( bos_token=A, eos_token=A, unk_token=A, sep_token=A, cls_token=A, pad_token=A, mask_token=A, **A, ) SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : str = merges_file SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : Dict = 3 self.add_from_file(A ) SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(A, encoding='utf-8' ) as merges_handle: SCREAMING_SNAKE_CASE : int = merges_handle.read().split('\n' )[:-1] SCREAMING_SNAKE_CASE : List[Any] = [tuple(merge.split()[:-1] ) for merge in merges] SCREAMING_SNAKE_CASE : Tuple = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : List[Any] = {} def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : int = [self.cls_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase_ ( self, A, A = None, A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A, token_ids_a=A, already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.encoder ) def UpperCamelCase_ ( self ): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder ) def UpperCamelCase_ ( self, A ): '''simple docstring''' if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE : Any = tuple(A ) SCREAMING_SNAKE_CASE : List[Any] = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE : int = min(A, key=lambda A : self.bpe_ranks.get(A, float('inf' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = bigram SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : Optional[Any] = 0 while i < len(A ): try: SCREAMING_SNAKE_CASE : str = word.index(A, A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE : List[str] = j if word[i] == first and i < len(A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE : List[str] = tuple(A ) SCREAMING_SNAKE_CASE : Any = new_word if len(A ) == 1: break else: SCREAMING_SNAKE_CASE : Optional[Any] = get_pairs(A ) SCREAMING_SNAKE_CASE : Optional[Any] = '@@ '.join(A ) SCREAMING_SNAKE_CASE : Optional[int] = word[:-4] SCREAMING_SNAKE_CASE : Any = word return word def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Tuple = re.findall(r'\S+\n?', A ) for token in words: split_tokens.extend(list(self.bpe(A ).split(' ' ) ) ) return split_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.encoder.get(A, self.encoder.get(self.unk_token ) ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.decoder.get(A, self.unk_token ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = ' '.join(A ).replace('@@ ', '' ).strip() return out_string def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file, A ) if os.path.abspath(self.merges_file ) != os.path.abspath(A ): copyfile(self.merges_file, A ) return out_vocab_file, out_merge_file def UpperCamelCase_ ( self, A ): '''simple docstring''' if isinstance(A, A ): try: with open(A, 'r', encoding='utf-8' ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"Incorrect encoding detected in {f}, please rebuild the dataset" ) return SCREAMING_SNAKE_CASE : int = f.readlines() for lineTmp in lines: SCREAMING_SNAKE_CASE : List[str] = lineTmp.strip() SCREAMING_SNAKE_CASE : Optional[Any] = line.rfind(' ' ) if idx == -1: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt>\'' ) SCREAMING_SNAKE_CASE : Optional[int] = line[:idx] SCREAMING_SNAKE_CASE : Optional[Any] = len(self.encoder )
246
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=2 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=None , UpperCamelCase__=2 , UpperCamelCase__=2 , ) -> List[Any]: lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Any = batch_size lowerCamelCase : List[Any] = patch_size lowerCamelCase : List[str] = max_length lowerCamelCase : Optional[Any] = num_mel_bins lowerCamelCase : Optional[int] = is_training lowerCamelCase : Optional[int] = use_labels lowerCamelCase : Dict = hidden_size lowerCamelCase : Union[str, Any] = num_hidden_layers lowerCamelCase : str = num_attention_heads lowerCamelCase : List[str] = intermediate_size lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : int = type_sequence_label_size lowerCamelCase : int = initializer_range lowerCamelCase : Union[str, Any] = scope lowerCamelCase : str = frequency_stride lowerCamelCase : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase : Optional[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowerCamelCase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 lowerCamelCase : str = frequency_out_dimension * time_out_dimension lowerCamelCase : str = num_patches + 2 def _lowercase ( self ) -> List[str]: lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowerCamelCase : List[Any] = None if self.use_labels: lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : int = self.get_config() return config, input_values, labels def _lowercase ( self ) -> Optional[Any]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: lowerCamelCase : Union[str, Any] = ASTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : int = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : int = config_and_inputs lowerCamelCase : int = {"input_values": input_values} return config, inputs_dict @require_torch class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Tuple = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowerCamelCase_ : Optional[int] = ( {"""audio-classification""": ASTForAudioClassification, """feature-extraction""": ASTModel} if is_torch_available() else {} ) lowerCamelCase_ : Optional[int] = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Any = False lowerCamelCase_ : List[Any] = False def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowercase ( self ) -> int: lowerCamelCase : List[Any] = ASTModelTester(self ) lowerCamelCase : Any = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _lowercase ( self ) -> List[Any]: pass def _lowercase ( self ) -> str: lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[str] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _lowercase ( self ) -> Dict: lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Dict = model_class(UpperCamelCase__ ) lowerCamelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : int = [*signature.parameters.keys()] lowerCamelCase : Union[str, Any] = ["input_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self ) -> Union[str, Any]: lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @slow def _lowercase ( self ) -> str: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : str = ASTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def A ( ) -> Optional[Any]: lowerCamelCase : Union[str, Any] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" ,filename="sample_audio.flac" ,repo_type="dataset" ) lowerCamelCase , lowerCamelCase : List[str] = torchaudio.load(_SCREAMING_SNAKE_CASE ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> List[Any]: return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _lowercase ( self ) -> Optional[int]: lowerCamelCase : List[Any] = self.default_feature_extractor lowerCamelCase : Dict = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(UpperCamelCase__ ) lowerCamelCase : Dict = self.default_feature_extractor lowerCamelCase , lowerCamelCase : int = prepare_audio() lowerCamelCase : Union[str, Any] = audio.squeeze().numpy() lowerCamelCase : str = feature_extractor(UpperCamelCase__ , sampling_rate=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase : List[str] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase : List[Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
48
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : int = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'xlm-roberta' def __init__( self : List[Any] , lowerCAmelCase_ : str=3_05_22 , lowerCAmelCase_ : Any=7_68 , lowerCAmelCase_ : Any=12 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any=5_12 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : List[str]=0.02 , lowerCAmelCase_ : str=1e-12 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Dict=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) A__ : Any =vocab_size A__ : Any =hidden_size A__ : Any =num_hidden_layers A__ : str =num_attention_heads A__ : Union[str, Any] =hidden_act A__ : Union[str, Any] =intermediate_size A__ : Optional[Any] =hidden_dropout_prob A__ : List[Any] =attention_probs_dropout_prob A__ : Dict =max_position_embeddings A__ : int =type_vocab_size A__ : Any =initializer_range A__ : Union[str, Any] =layer_norm_eps A__ : str =position_embedding_type A__ : str =use_cache A__ : Any =classifier_dropout class lowerCamelCase ( lowercase_ ): '''simple docstring''' @property def lowercase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ : Union[str, Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ : str ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
134
0
'''simple docstring''' import datasets from .evaluate import evaluate __SCREAMING_SNAKE_CASE :List[Any] = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' __SCREAMING_SNAKE_CASE :int = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' __SCREAMING_SNAKE_CASE :List[str] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def lowercase ( self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[str] ): _UpperCAmelCase = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} _UpperCAmelCase = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] _UpperCAmelCase = evaluate(dataset=snake_case_ , predictions=snake_case_ ) return score
156
'''simple docstring''' from sklearn.metrics import recall_score import datasets __SCREAMING_SNAKE_CASE :Any = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' __SCREAMING_SNAKE_CASE :Tuple = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' __SCREAMING_SNAKE_CASE :Optional[int] = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowercase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def lowercase ( self : Tuple , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Optional[int]=None , snake_case_ : str=1 , snake_case_ : str="binary" , snake_case_ : int=None , snake_case_ : List[Any]="warn" , ): _UpperCAmelCase = recall_score( snake_case_ , snake_case_ , labels=snake_case_ , pos_label=snake_case_ , average=snake_case_ , sample_weight=snake_case_ , zero_division=snake_case_ , ) return {"recall": float(snake_case_ ) if score.size == 1 else score}
156
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __snake_case =get_logger() __snake_case =None class UpperCAmelCase_ ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): def __init__( self : Optional[int] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : List[Any]=None , **UpperCAmelCase__ : Dict ) -> int: super().__init__(features=UpperCAmelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError( F'''Expected {device} to be a `str` not {type(UpperCAmelCase__ )}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) lowerCAmelCase = device if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'''Device with string identifier {self.device} not listed among the available ''' F'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' F'''device: {str(jax.devices()[0] )}.''' ) lowerCAmelCase = str(jax.devices()[0] ) lowerCAmelCase = jnp_array_kwargs @staticmethod def __UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(UpperCAmelCase__ ): device for device in jax.devices()} def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[Any]: import jax import jax.numpy as jnp if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and column: if all( isinstance(UpperCAmelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(UpperCAmelCase__ , axis=0 ) return column def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: import jax import jax.numpy as jnp if isinstance(UpperCAmelCase__ , (str, bytes, type(UpperCAmelCase__ )) ): return value elif isinstance(UpperCAmelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase = {} if isinstance(UpperCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase = {'dtype': jnp.intaa} else: lowerCAmelCase = {'dtype': jnp.intaa} elif isinstance(UpperCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCAmelCase = np.asarray(UpperCAmelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(UpperCAmelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> str: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(UpperCAmelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(UpperCAmelCase__ , '__array__' ) and not isinstance(UpperCAmelCase__ , jax.Array ): lowerCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase__ ) for substruct in data_struct] ) elif isinstance(UpperCAmelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCAmelCase__ ) for substruct in data_struct] ) return self._tensorize(UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : dict ) -> str: return map_nested(self._recursive_tensorize , UpperCAmelCase__ , map_list=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : pa.Table ) -> Mapping: lowerCAmelCase = self.numpy_arrow_extractor().extract_row(UpperCAmelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_row(UpperCAmelCase__ ) return self.recursive_tensorize(UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : pa.Table ) -> "jax.Array": lowerCAmelCase = self.numpy_arrow_extractor().extract_column(UpperCAmelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_column(UpperCAmelCase__ , pa_table.column_names[0] ) lowerCAmelCase = self.recursive_tensorize(UpperCAmelCase__ ) lowerCAmelCase = self._consolidate(UpperCAmelCase__ ) return column def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : pa.Table ) -> Mapping: lowerCAmelCase = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase__ ) lowerCAmelCase = self.python_features_decoder.decode_batch(UpperCAmelCase__ ) lowerCAmelCase = self.recursive_tensorize(UpperCAmelCase__ ) for column_name in batch: lowerCAmelCase = self._consolidate(batch[column_name] ) return batch
4
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Union[str, Any] = ['''image_processor'''] A__ : Any = '''SamImageProcessor''' def __init__( self : Tuple , _snake_case : Tuple ): super().__init__(_snake_case ) __lowercase : str = self.image_processor __lowercase : Any = -10 __lowercase : Dict = self.image_processor.size['''longest_edge'''] def __call__( self : Dict , _snake_case : str=None , _snake_case : Any=None , _snake_case : List[str]=None , _snake_case : Any=None , _snake_case : Optional[Union[str, TensorType]] = None , **_snake_case : List[Any] , ): __lowercase : List[str] = self.image_processor( _snake_case , return_tensors=_snake_case , **_snake_case , ) # pop arguments that are not used in the foward but used nevertheless __lowercase : Optional[int] = encoding_image_processor['''original_sizes'''] if hasattr(_snake_case , '''numpy''' ): # Checks if Torch or TF tensor __lowercase : Optional[int] = original_sizes.numpy() __lowercase , __lowercase , __lowercase : str = self._check_and_preprocess_points( input_points=_snake_case , input_labels=_snake_case , input_boxes=_snake_case , ) __lowercase : int = self._normalize_and_convert( _snake_case , _snake_case , input_points=_snake_case , input_labels=_snake_case , input_boxes=_snake_case , return_tensors=_snake_case , ) return encoding_image_processor def snake_case_ ( self : List[str] , _snake_case : int , _snake_case : Optional[int] , _snake_case : Any=None , _snake_case : Optional[Any]=None , _snake_case : Any=None , _snake_case : str="pt" , ): if input_points is not None: if len(_snake_case ) != len(_snake_case ): __lowercase : Optional[Any] = [ self._normalize_coordinates(self.target_size , _snake_case , original_sizes[0] ) for point in input_points ] else: __lowercase : List[Any] = [ self._normalize_coordinates(self.target_size , _snake_case , _snake_case ) for point, original_size in zip(_snake_case , _snake_case ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowercase , __lowercase : Tuple = self._pad_points_and_labels(_snake_case , _snake_case ) __lowercase : Dict = np.array(_snake_case ) if input_labels is not None: __lowercase : Dict = np.array(_snake_case ) if input_boxes is not None: if len(_snake_case ) != len(_snake_case ): __lowercase : Union[str, Any] = [ self._normalize_coordinates(self.target_size , _snake_case , original_sizes[0] , is_bounding_box=_snake_case ) for box in input_boxes ] else: __lowercase : Tuple = [ self._normalize_coordinates(self.target_size , _snake_case , _snake_case , is_bounding_box=_snake_case ) for box, original_size in zip(_snake_case , _snake_case ) ] __lowercase : Dict = np.array(_snake_case ) if input_boxes is not None: if return_tensors == "pt": __lowercase : int = torch.from_numpy(_snake_case ) # boxes batch size of 1 by default __lowercase : List[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowercase : Dict = tf.convert_to_tensor(_snake_case ) # boxes batch size of 1 by default __lowercase : int = tf.expand_dims(_snake_case , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowercase : Tuple = torch.from_numpy(_snake_case ) # point batch size of 1 by default __lowercase : Tuple = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowercase : List[Any] = tf.convert_to_tensor(_snake_case ) # point batch size of 1 by default __lowercase : Optional[int] = tf.expand_dims(_snake_case , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": __lowercase : int = torch.from_numpy(_snake_case ) # point batch size of 1 by default __lowercase : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowercase : Any = tf.convert_to_tensor(_snake_case ) # point batch size of 1 by default __lowercase : Union[str, Any] = tf.expand_dims(_snake_case , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def snake_case_ ( self : int , _snake_case : Any , _snake_case : str ): __lowercase : Union[str, Any] = max([point.shape[0] for point in input_points] ) __lowercase : List[Any] = [] for i, point in enumerate(_snake_case ): if point.shape[0] != expected_nb_points: __lowercase : Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __lowercase : Tuple = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_snake_case ) __lowercase : List[Any] = processed_input_points return input_points, input_labels def snake_case_ ( self : Dict , _snake_case : int , _snake_case : np.ndarray , _snake_case : Any , _snake_case : Any=False ): __lowercase , __lowercase : Tuple = original_size __lowercase , __lowercase : Optional[Any] = self.image_processor._get_preprocess_shape(_snake_case , longest_edge=_snake_case ) __lowercase : Optional[int] = deepcopy(_snake_case ).astype(_snake_case ) if is_bounding_box: __lowercase : str = coords.reshape(-1 , 2 , 2 ) __lowercase : Dict = coords[..., 0] * (new_w / old_w) __lowercase : int = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowercase : Optional[Any] = coords.reshape(-1 , 4 ) return coords def snake_case_ ( self : List[str] , _snake_case : List[Any]=None , _snake_case : Any=None , _snake_case : int=None , ): if input_points is not None: if hasattr(_snake_case , '''numpy''' ): # Checks for TF or Torch tensor __lowercase : Tuple = input_points.numpy().tolist() if not isinstance(_snake_case , _snake_case ) or not isinstance(input_points[0] , _snake_case ): raise ValueError('''Input points must be a list of list of floating points.''' ) __lowercase : str = [np.array(_snake_case ) for input_point in input_points] else: __lowercase : str = None if input_labels is not None: if hasattr(_snake_case , '''numpy''' ): __lowercase : Any = input_labels.numpy().tolist() if not isinstance(_snake_case , _snake_case ) or not isinstance(input_labels[0] , _snake_case ): raise ValueError('''Input labels must be a list of list integers.''' ) __lowercase : List[Any] = [np.array(_snake_case ) for label in input_labels] else: __lowercase : Tuple = None if input_boxes is not None: if hasattr(_snake_case , '''numpy''' ): __lowercase : str = input_boxes.numpy().tolist() if ( not isinstance(_snake_case , _snake_case ) or not isinstance(input_boxes[0] , _snake_case ) or not isinstance(input_boxes[0][0] , _snake_case ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) __lowercase : List[Any] = [np.array(_snake_case ).astype(np.floataa ) for box in input_boxes] else: __lowercase : Dict = None return input_points, input_labels, input_boxes @property def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(_snake_case ) ) def snake_case_ ( self : str , *_snake_case : Union[str, Any] , **_snake_case : Dict ): return self.image_processor.post_process_masks(*_snake_case , **_snake_case )
156
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __magic_name__ = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __magic_name__ = "UperNetConfig" class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 0 , _snake_case = False , _snake_case = 1 , ) -> None: """simple docstring""" super().__init__() UpperCAmelCase = nn.Convad( in_channels=_snake_case , out_channels=_snake_case , kernel_size=_snake_case , padding=_snake_case , bias=_snake_case , dilation=_snake_case , ) UpperCAmelCase = nn.BatchNormad(_snake_case ) UpperCAmelCase = nn.ReLU() def snake_case_ ( self , _snake_case ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = self.conv(_snake_case ) UpperCAmelCase = self.batch_norm(_snake_case ) UpperCAmelCase = self.activation(_snake_case ) return output class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case ) -> None: """simple docstring""" super().__init__() UpperCAmelCase = [ nn.AdaptiveAvgPoolad(_snake_case ), UperNetConvModule(_snake_case , _snake_case , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_snake_case ) , _snake_case ) def snake_case_ ( self , _snake_case ) -> torch.Tensor: """simple docstring""" UpperCAmelCase = input for layer in self.layers: UpperCAmelCase = layer(_snake_case ) return hidden_state class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case ) -> None: """simple docstring""" super().__init__() UpperCAmelCase = pool_scales UpperCAmelCase = align_corners UpperCAmelCase = in_channels UpperCAmelCase = channels UpperCAmelCase = [] for i, pool_scale in enumerate(_snake_case ): UpperCAmelCase = UperNetPyramidPoolingBlock(pool_scale=_snake_case , in_channels=_snake_case , channels=_snake_case ) self.blocks.append(_snake_case ) self.add_module(str(_snake_case ) , _snake_case ) def snake_case_ ( self , _snake_case ) -> List[torch.Tensor]: """simple docstring""" UpperCAmelCase = [] for ppm in self.blocks: UpperCAmelCase = ppm(_snake_case ) UpperCAmelCase = nn.functional.interpolate( _snake_case , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_snake_case ) return ppm_outs class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase = config UpperCAmelCase = config.pool_scales # e.g. (1, 2, 3, 6) UpperCAmelCase = in_channels UpperCAmelCase = config.hidden_size UpperCAmelCase = False UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCAmelCase = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCAmelCase = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCAmelCase = nn.ModuleList() UpperCAmelCase = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCAmelCase = UperNetConvModule(_snake_case , self.channels , kernel_size=1 ) UpperCAmelCase = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_snake_case ) self.fpn_convs.append(_snake_case ) UpperCAmelCase = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" self.apply(self._init_weights ) def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" if isinstance(_snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case_ ( self , _snake_case ) -> Dict: """simple docstring""" UpperCAmelCase = inputs[-1] UpperCAmelCase = [x] psp_outs.extend(self.psp_modules(_snake_case ) ) UpperCAmelCase = torch.cat(_snake_case , dim=1 ) UpperCAmelCase = self.bottleneck(_snake_case ) return output def snake_case_ ( self , _snake_case ) -> torch.Tensor: """simple docstring""" # build laterals UpperCAmelCase = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_snake_case ) ) # build top-down path UpperCAmelCase = len(_snake_case ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase = laterals[i - 1].shape[2:] UpperCAmelCase = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_snake_case , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCAmelCase = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCAmelCase = torch.cat(_snake_case , dim=1 ) UpperCAmelCase = self.fpn_bottleneck(_snake_case ) UpperCAmelCase = self.classifier(_snake_case ) return output class lowercase ( nn.Module ): '''simple docstring''' def __init__( self , _snake_case , _snake_case = 2 , _snake_case = 3 , _snake_case = 1 ) -> None: """simple docstring""" super().__init__() UpperCAmelCase = config UpperCAmelCase = config.auxiliary_in_channels UpperCAmelCase = config.auxiliary_channels UpperCAmelCase = config.auxiliary_num_convs UpperCAmelCase = config.auxiliary_concat_input UpperCAmelCase = in_index UpperCAmelCase = (kernel_size // 2) * dilation UpperCAmelCase = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_snake_case , padding=_snake_case , dilation=_snake_case ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_snake_case , padding=_snake_case , dilation=_snake_case ) ) if self.num_convs == 0: UpperCAmelCase = nn.Identity() else: UpperCAmelCase = nn.Sequential(*_snake_case ) if self.concat_input: UpperCAmelCase = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_snake_case , padding=kernel_size // 2 ) UpperCAmelCase = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def snake_case_ ( self ) -> Any: """simple docstring""" self.apply(self._init_weights ) def snake_case_ ( self , _snake_case ) -> Union[str, Any]: """simple docstring""" if isinstance(_snake_case , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def snake_case_ ( self , _snake_case ) -> torch.Tensor: """simple docstring""" # just take the relevant feature maps UpperCAmelCase = encoder_hidden_states[self.in_index] UpperCAmelCase = self.convs(_snake_case ) if self.concat_input: UpperCAmelCase = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCAmelCase = self.classifier(_snake_case ) return output class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = UperNetConfig __SCREAMING_SNAKE_CASE = """pixel_values""" __SCREAMING_SNAKE_CASE = True def snake_case_ ( self , _snake_case ) -> Optional[int]: """simple docstring""" if isinstance(_snake_case , _snake_case ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def snake_case_ ( self ) -> List[str]: """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def snake_case_ ( self , _snake_case , _snake_case=False ) -> int: """simple docstring""" if isinstance(_snake_case , _snake_case ): UpperCAmelCase = value __magic_name__ = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __magic_name__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , A__ , ) class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case ) -> List[str]: """simple docstring""" super().__init__(_snake_case ) UpperCAmelCase = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCAmelCase = UperNetHead(_snake_case , in_channels=self.backbone.channels ) UpperCAmelCase = UperNetFCNHead(_snake_case ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_snake_case , config_class=_CONFIG_FOR_DOC ) def snake_case_ ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , ) -> Union[tuple, SemanticSegmenterOutput]: """simple docstring""" UpperCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase = output_attentions if output_attentions is not None else self.config.output_attentions UpperCAmelCase = self.backbone.forward_with_filtered_kwargs( _snake_case , output_hidden_states=_snake_case , output_attentions=_snake_case ) UpperCAmelCase = outputs.feature_maps UpperCAmelCase = self.decode_head(_snake_case ) UpperCAmelCase = nn.functional.interpolate(_snake_case , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_snake_case ) UpperCAmelCase = None if self.auxiliary_head is not None: UpperCAmelCase = self.auxiliary_head(_snake_case ) UpperCAmelCase = nn.functional.interpolate( _snake_case , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_snake_case ) UpperCAmelCase = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCAmelCase = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCAmelCase = loss_fct(_snake_case , _snake_case ) UpperCAmelCase = loss_fct(_snake_case , _snake_case ) UpperCAmelCase = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCAmelCase = (logits,) + outputs[1:] else: UpperCAmelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
152
def _lowerCAmelCase ( A__: list[int] , A__: list[int] ): '''simple docstring''' UpperCAmelCase = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [1, 3, 0, 5, 8, 5] __magic_name__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
152
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__a ) class lowercase( __a ): '''simple docstring''' lowercase__ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} ) lowercase__ = Features({"text": Value("string" )} ) lowercase__ = Features({} ) lowercase__ = "text" @property def UpperCamelCase_ ( self: Any ): '''simple docstring''' return {self.text_column: "text"}
64
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer __lowerCAmelCase : Optional[int] = ["bert-base-uncased", "bert-base-cased"] __lowerCAmelCase : List[str] = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class __lowerCAmelCase ( tf.keras.Model ): """simple docstring""" def __init__( self : Any , _snake_case : str ): super().__init__() __lowercase : str = tokenizer __lowercase : Any = AutoConfig.from_pretrained(_snake_case ) __lowercase : Union[str, Any] = TFAutoModel.from_config(_snake_case ) def snake_case_ ( self : str , _snake_case : int ): __lowercase : Optional[Any] = self.tokenizer(_snake_case ) __lowercase : int = self.bert(**_snake_case ) return out["pooler_output"] @require_tf @require_tensorflow_text class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : int ): super().setUp() __lowercase : Optional[int] = [ BertTokenizer.from_pretrained(_snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __lowercase : Optional[Any] = [TFBertTokenizer.from_pretrained(_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_snake_case , use_fast_bert_tokenizer=_snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowercase : Optional[int] = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __lowercase : Tuple = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def snake_case_ ( self : List[str] ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __lowercase : Dict = tokenizer(_snake_case , return_tensors='''tf''' , padding='''longest''' ) __lowercase : int = tf_tokenizer(_snake_case ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def snake_case_ ( self : Union[str, Any] ): for tf_tokenizer in self.tf_tokenizers: __lowercase : Union[str, Any] = tf_tokenizer(self.paired_sentences ) __lowercase : List[str] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def snake_case_ ( self : Optional[Any] ): for tf_tokenizer in self.tf_tokenizers: __lowercase : Any = tf.function(_snake_case ) for test_inputs in (self.test_sentences, self.paired_sentences): __lowercase : List[Any] = tf.constant(_snake_case ) __lowercase : Any = compiled_tokenizer(_snake_case ) __lowercase : Union[str, Any] = tf_tokenizer(_snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def snake_case_ ( self : Tuple ): for tf_tokenizer in self.tf_tokenizers: __lowercase : Any = ModelToSave(tokenizer=_snake_case ) __lowercase : str = tf.convert_to_tensor(self.test_sentences ) __lowercase : Union[str, Any] = model(_snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowercase : Union[str, Any] = Path(_snake_case ) / '''saved.model''' model.save(_snake_case ) __lowercase : List[str] = tf.keras.models.load_model(_snake_case ) __lowercase : Tuple = loaded_model(_snake_case ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
156
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __a = {"processing_layoutxlm": ["LayoutXLMProcessor"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["LayoutXLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["LayoutXLMTokenizerFast"] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
353
'''simple docstring''' import numpy as np def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 1e-12 , _lowerCAmelCase = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[1] # Ensure proper dimensionality. assert np.shape(_lowerCAmelCase )[0] == np.shape(_lowerCAmelCase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_lowerCAmelCase ) == np.iscomplexobj(_lowerCAmelCase ) snake_case__ : str = np.iscomplexobj(_lowerCAmelCase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_lowerCAmelCase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. snake_case__ : Tuple = False snake_case__ : Any = 0 snake_case__ : List[str] = 0 snake_case__ : Dict = 1e12 while not convergence: # Multiple matrix by the vector. snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , _lowerCAmelCase ) # Normalize the resulting output vector. snake_case__ : Optional[Any] = w / np.linalg.norm(_lowerCAmelCase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) snake_case__ : List[str] = vector.conj().T if is_complex else vector.T snake_case__ : Optional[int] = np.dot(_lowerCAmelCase , np.dot(_lowerCAmelCase , _lowerCAmelCase ) ) # Check convergence. snake_case__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: snake_case__ : Dict = True snake_case__ : Union[str, Any] = lambda_ if is_complex: snake_case__ : int = np.real(lambda_ ) return lambda_, vector def __snake_case( ) -> None: snake_case__ : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) snake_case__ : Tuple = np.array([41, 4, 20] ) snake_case__ : Dict = real_input_matrix.astype(np.complexaaa ) snake_case__ : Optional[int] = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T snake_case__ : Dict = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": snake_case__ : Dict = real_input_matrix snake_case__ : Optional[Any] = real_vector elif problem_type == "complex": snake_case__ : Optional[Any] = complex_input_matrix snake_case__ : Optional[Any] = complex_vector # Our implementation. snake_case__ , snake_case__ : Tuple = power_iteration(_lowerCAmelCase , _lowerCAmelCase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). snake_case__ , snake_case__ : Dict = np.linalg.eigh(_lowerCAmelCase ) # Last eigenvalue is the maximum one. snake_case__ : Optional[int] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. snake_case__ : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_lowerCAmelCase ) - np.abs(_lowerCAmelCase ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
43
0
'''simple docstring''' from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. lowerCAmelCase_ : List[Any] = 10 def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : list[int] , lowercase : int ) -> int: for i in range(lowercase , lowercase ): if array[i] == target: return i return -1 def _lowerCamelCase ( lowercase : list[int] , lowercase : int ) -> int: _a = 0 _a = len(lowercase ) while left <= right: if right - left < precision: return lin_search(lowercase , lowercase , lowercase , lowercase ) _a = (left + right) // 3 + 1 _a = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _a = one_third - 1 elif array[two_third] < target: _a = two_third + 1 else: _a = one_third + 1 _a = two_third - 1 else: return -1 def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : list[int] , lowercase : int ) -> int: if left < right: if right - left < precision: return lin_search(lowercase , lowercase , lowercase , lowercase ) _a = (left + right) // 3 + 1 _a = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase , one_third - 1 , lowercase , lowercase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase , lowercase , lowercase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase , lowercase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : int = input('Enter numbers separated by comma:\n').strip() lowerCAmelCase_ : Tuple = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." lowerCAmelCase_ : str = int(input('Enter the number to be found in the list:\n').strip()) lowerCAmelCase_ : Optional[int] = ite_ternary_search(collection, target) lowerCAmelCase_ : Optional[int] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
63
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Tuple = ['pixel_values'] def __init__( self: Any , UpperCamelCase_: bool = True , UpperCamelCase_: Union[int, float] = 1 / 2_55 , UpperCamelCase_: bool = True , UpperCamelCase_: int = 8 , **UpperCamelCase_: Tuple , ): super().__init__(**UpperCamelCase_ ) __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_pad __lowerCamelCase = pad_size def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: np.ndarray , UpperCamelCase_: float , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_: Tuple ): return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: np.ndarray , UpperCamelCase_: int , UpperCamelCase_: Optional[Union[str, ChannelDimension]] = None ): __lowerCamelCase, __lowerCamelCase = get_image_size(UpperCamelCase_ ) __lowerCamelCase = (old_height // size + 1) * size - old_height __lowerCamelCase = (old_width // size + 1) * size - old_width return pad(UpperCamelCase_ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: ImageInput , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[float] = None , UpperCamelCase_: Optional[bool] = None , UpperCamelCase_: Optional[int] = None , UpperCamelCase_: Optional[Union[str, TensorType]] = None , UpperCamelCase_: Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_: Any , ): __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_pad if do_pad is not None else self.do_pad __lowerCamelCase = pad_size if pad_size is not None else self.pad_size __lowerCamelCase = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_pad: __lowerCamelCase = [self.pad(UpperCamelCase_ , size=UpperCamelCase_ ) for image in images] __lowerCamelCase = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __lowerCamelCase = {"""pixel_values""": images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
12
0
'''simple docstring''' def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Union[str, Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
350
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __a = (3, 9, -11, 0, 7, 5, 1, -1) __a = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A__ : """simple docstring""" UpperCamelCase_ : int UpperCamelCase_ : Node | None class A__ : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Iterable[int] ) -> None: """simple docstring""" _UpperCAmelCase : Node | None = None for i in sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ): _UpperCAmelCase : str = Node(lowerCAmelCase__ , self.head ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" _UpperCAmelCase : List[Any] = self.head while node: yield node.data _UpperCAmelCase : List[str] = node.next_node def __len__( self : Any ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return " -> ".join([str(lowerCAmelCase__ ) for node in self] ) def __UpperCAmelCase ( a_: SortedLinkedList, a_: SortedLinkedList ): return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() __a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
17
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __SCREAMING_SNAKE_CASE : Optional[int] = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' __UpperCamelCase: str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCamelCase: Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCamelCase: int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCamelCase: List[Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _A ( self : Union[str, Any] , A : int , A : Tuple , A : Optional[Any] ): _UpperCAmelCase : Dict = ZeroShotClassificationPipeline( model=A , tokenizer=A , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _A ( self : Any , A : Optional[int] , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(A , {"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) # No kwarg _UpperCAmelCase : int = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(A , {"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) _UpperCAmelCase : Dict = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(A , {"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) _UpperCAmelCase : Tuple = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( A , {"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) _UpperCAmelCase : Any = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( A , {"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) _UpperCAmelCase : Tuple = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(A , {"sequence": ANY(A ), "labels": [ANY(A )], "scores": [ANY(A )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase : Union[str, Any] = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( A , [ {"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} for i in range(1 ) ] , ) _UpperCAmelCase : Dict = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( A , [ {"sequence": ANY(A ), "labels": [ANY(A ), ANY(A )], "scores": [ANY(A ), ANY(A )]} for i in range(2 ) ] , ) with self.assertRaises(A ): classifier("" , candidate_labels="politics" ) with self.assertRaises(A ): classifier(A , candidate_labels="politics" ) with self.assertRaises(A ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(A ): classifier("Who are you voting for in 2020?" , candidate_labels=A ) with self.assertRaises(A ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(A ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=A , ) self.run_entailment_id(A ) def _A ( self : Tuple , A : Pipeline ): _UpperCAmelCase : Tuple = zero_shot_classifier.model.config _UpperCAmelCase : Optional[int] = config.labelaid _UpperCAmelCase : Dict = zero_shot_classifier.entailment_id _UpperCAmelCase : Optional[Any] = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase : Any = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase : List[Any] = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase : List[Any] = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase : Optional[int] = original_labelaid self.assertEqual(A , zero_shot_classifier.entailment_id ) @require_torch def _A ( self : Tuple ): _UpperCAmelCase : Union[str, Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def _A ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) _UpperCAmelCase : Optional[Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @require_tf def _A ( self : int ): _UpperCAmelCase : Tuple = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) _UpperCAmelCase : Union[str, Any] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @slow @require_torch def _A ( self : Union[str, Any] ): _UpperCAmelCase : Any = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) _UpperCAmelCase : Any = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) _UpperCAmelCase : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def _A ( self : str ): _UpperCAmelCase : Tuple = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) _UpperCAmelCase : Optional[int] = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(A ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) _UpperCAmelCase : Optional[int] = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=A , ) self.assertEqual( nested_simplify(A ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , )
31
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor class A ( nn.Module ): def __init__(self : Union[str, Any] , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[Any]=("DownEncoderBlock2D",) , __UpperCAmelCase : int=(6_4,) , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Any=3_2 , __UpperCAmelCase : str="silu" , __UpperCAmelCase : Any=True , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = torch.nn.Convad( __UpperCAmelCase , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) # down UpperCAmelCase__ = block_out_channels[0] for i, down_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_down_block( __UpperCAmelCase , num_layers=self.layers_per_block , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) self.down_blocks.append(__UpperCAmelCase ) # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # out UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = 2 * out_channels if double_z else out_channels UpperCAmelCase__ = nn.Convad(block_out_channels[-1] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = x UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : int ): def custom_forward(*__UpperCAmelCase : Optional[Any] ): return module(*__UpperCAmelCase ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: for down_block in self.down_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase ) # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __UpperCAmelCase ) else: # down for down_block in self.down_blocks: UpperCAmelCase__ = down_block(__UpperCAmelCase ) # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase ) # post-process UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : List[Any] , __UpperCAmelCase : str=3 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Optional[int]=("UpDecoderBlock2D",) , __UpperCAmelCase : str=(6_4,) , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : Any="silu" , __UpperCAmelCase : Any="group" , ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = layers_per_block UpperCAmelCase__ = nn.Convad( __UpperCAmelCase , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) UpperCAmelCase__ = None UpperCAmelCase__ = nn.ModuleList([] ) UpperCAmelCase__ = in_channels if norm_type == "spatial" else None # mid UpperCAmelCase__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__UpperCAmelCase , temb_channels=__UpperCAmelCase , ) # up UpperCAmelCase__ = list(reversed(__UpperCAmelCase ) ) UpperCAmelCase__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(__UpperCAmelCase ): UpperCAmelCase__ = output_channel UpperCAmelCase__ = reversed_block_out_channels[i] UpperCAmelCase__ = i == len(__UpperCAmelCase ) - 1 UpperCAmelCase__ = get_up_block( __UpperCAmelCase , num_layers=self.layers_per_block + 1 , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , prev_output_channel=__UpperCAmelCase , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__UpperCAmelCase , resnet_groups=__UpperCAmelCase , attention_head_dim=__UpperCAmelCase , temb_channels=__UpperCAmelCase , resnet_time_scale_shift=__UpperCAmelCase , ) self.up_blocks.append(__UpperCAmelCase ) UpperCAmelCase__ = output_channel # out if norm_type == "spatial": UpperCAmelCase__ = SpatialNorm(block_out_channels[0] , __UpperCAmelCase ) else: UpperCAmelCase__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__UpperCAmelCase , eps=1E-6 ) UpperCAmelCase__ = nn.SiLU() UpperCAmelCase__ = nn.Convad(block_out_channels[0] , __UpperCAmelCase , 3 , padding=1 ) UpperCAmelCase__ = False def lowercase_ (self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=None ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = z UpperCAmelCase__ = self.conv_in(__UpperCAmelCase ) UpperCAmelCase__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__UpperCAmelCase : str ): def custom_forward(*__UpperCAmelCase : List[str] ): return module(*__UpperCAmelCase ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase , use_reentrant=__UpperCAmelCase ) else: # middle UpperCAmelCase__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__UpperCAmelCase ) , __UpperCAmelCase , __UpperCAmelCase ) else: # middle UpperCAmelCase__ = self.mid_block(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = sample.to(__UpperCAmelCase ) # up for up_block in self.up_blocks: UpperCAmelCase__ = up_block(__UpperCAmelCase , __UpperCAmelCase ) # post-process if latent_embeds is None: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase ) else: UpperCAmelCase__ = self.conv_norm_out(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.conv_act(__UpperCAmelCase ) UpperCAmelCase__ = self.conv_out(__UpperCAmelCase ) return sample class A ( nn.Module ): def __init__(self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]="random" , __UpperCAmelCase : Dict=False , __UpperCAmelCase : Union[str, Any]=True ) -> Dict: """simple docstring""" super().__init__() UpperCAmelCase__ = n_e UpperCAmelCase__ = vq_embed_dim UpperCAmelCase__ = beta UpperCAmelCase__ = legacy UpperCAmelCase__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) UpperCAmelCase__ = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) UpperCAmelCase__ = self.used.shape[0] UpperCAmelCase__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": UpperCAmelCase__ = self.re_embed UpperCAmelCase__ = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: UpperCAmelCase__ = n_e UpperCAmelCase__ = sane_index_shape def lowercase_ (self : str , __UpperCAmelCase : str ) -> List[str]: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) UpperCAmelCase__ = (inds[:, :, None] == used[None, None, ...]).long() UpperCAmelCase__ = match.argmax(-1 ) UpperCAmelCase__ = match.sum(2 ) < 1 if self.unknown_index == "random": UpperCAmelCase__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: UpperCAmelCase__ = self.unknown_index return new.reshape(__UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" UpperCAmelCase__ = inds.shape assert len(__UpperCAmelCase ) > 1 UpperCAmelCase__ = inds.reshape(ishape[0] , -1 ) UpperCAmelCase__ = self.used.to(__UpperCAmelCase ) if self.re_embed > self.used.shape[0]: # extra token UpperCAmelCase__ = 0 # simply set to zero UpperCAmelCase__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __UpperCAmelCase ) return back.reshape(__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = z.permute(0 , 2 , 3 , 1 ).contiguous() UpperCAmelCase__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z UpperCAmelCase__ = torch.argmin(torch.cdist(__UpperCAmelCase , self.embedding.weight ) , dim=1 ) UpperCAmelCase__ = self.embedding(__UpperCAmelCase ).view(z.shape ) UpperCAmelCase__ = None UpperCAmelCase__ = None # compute loss for embedding if not self.legacy: UpperCAmelCase__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: UpperCAmelCase__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients UpperCAmelCase__ = z + (z_q - z).detach() # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: UpperCAmelCase__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.remap_to_used(__UpperCAmelCase ) UpperCAmelCase__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: UpperCAmelCase__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" if self.remap is not None: UpperCAmelCase__ = indices.reshape(shape[0] , -1 ) # add batch axis UpperCAmelCase__ = self.unmap_to_all(__UpperCAmelCase ) UpperCAmelCase__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors UpperCAmelCase__ = self.embedding(__UpperCAmelCase ) if shape is not None: UpperCAmelCase__ = z_q.view(__UpperCAmelCase ) # reshape back to match original input shape UpperCAmelCase__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A ( UpperCAmelCase_ ): def __init__(self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str=False ) -> Tuple: """simple docstring""" UpperCAmelCase__ = parameters UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(__UpperCAmelCase , 2 , dim=1 ) UpperCAmelCase__ = torch.clamp(self.logvar , -30.0 , 20.0 ) UpperCAmelCase__ = deterministic UpperCAmelCase__ = torch.exp(0.5 * self.logvar ) UpperCAmelCase__ = torch.exp(self.logvar ) if self.deterministic: UpperCAmelCase__ = UpperCAmelCase__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = randn_tensor( self.mean.shape , generator=__UpperCAmelCase , device=self.parameters.device , dtype=self.parameters.dtype ) UpperCAmelCase__ = self.mean + self.std * sample return x def lowercase_ (self : str , __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=[1, 2, 3] ) -> Dict: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) UpperCAmelCase__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Optional[Any]: """simple docstring""" return self.mean
65
0
"""simple docstring""" _a = 8.314_4598 def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _a = 300 _a = 28 _a = rms_speed_of_molecule(temperature, molar_mass) print(F"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
360
"""simple docstring""" import numpy class _UpperCAmelCase: def __init__( self , __a , __a) -> None: '''simple docstring''' _UpperCamelCase = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _UpperCamelCase = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _UpperCamelCase = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _UpperCamelCase = numpy.random.rand(3 , 1) # Real output values provided. _UpperCamelCase = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _UpperCamelCase = numpy.zeros(output_array.shape) def UpperCAmelCase ( self) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def UpperCAmelCase ( self) -> None: '''simple docstring''' _UpperCamelCase = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) _UpperCamelCase = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) _UpperCamelCase = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def UpperCAmelCase ( self , __a , __a , __a) -> None: '''simple docstring''' for iteration in range(1 , iterations + 1): _UpperCamelCase = self.feedforward() self.back_propagation() if give_loss: _UpperCamelCase = numpy.mean(numpy.square(output - self.feedforward())) print(F'''Iteration {iteration} Loss: {loss}''') def UpperCAmelCase ( self , __a) -> int: '''simple docstring''' _UpperCamelCase = input_arr _UpperCamelCase = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) _UpperCamelCase = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def lowerCamelCase__ ( __snake_case ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def lowerCamelCase__ ( ) -> int: """simple docstring""" _UpperCamelCase = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ), dtype=numpy.floataa, ) # True output values for the given input values. _UpperCamelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=numpy.floataa ) # Calling neural network class. _UpperCamelCase = TwoHiddenLayerNeuralNetwork( input_array=__snake_case, output_array=__snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__snake_case, iterations=10, give_loss=__snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]), dtype=numpy.floataa ) ) if __name__ == "__main__": example()
100
0
'''simple docstring''' from math import factorial a__ : int = {str(d): factorial(d) for d in range(1_0)} def _lowercase ( __A ): '''simple docstring''' return sum(DIGIT_FACTORIAL[d] for d in str(__A ) ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 7 * factorial(9 ) + 1 return sum(i for i in range(3 ,__A ) if sum_of_digit_factorial(__A ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
349
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata def _lowercase ( __A ,__A=False ): '''simple docstring''' try: __UpperCamelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCamelCase = default else: # KEY is set, convert it to True or False. try: __UpperCamelCase = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value a__ : Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) a__ : Union[str, Any] = parse_flag_from_env('RUN_REMOTE', default=False) a__ : Any = parse_flag_from_env('RUN_LOCAL', default=True) a__ : List[Any] = parse_flag_from_env('RUN_PACKAGED', default=True) # Compression a__ : Optional[int] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4') a__ : Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr') a__ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard') # Audio a__ : List[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'), reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ', ) # Beam a__ : str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'), reason='test requires apache-beam and a compatible dill version', ) # Dill-cloudpickle compatibility a__ : str = pytest.mark.skipif( config.DILL_VERSION <= version.parse('0.3.2'), reason='test requires dill>0.3.2 for cloudpickle compatibility', ) # Windows a__ : Tuple = pytest.mark.skipif( sys.platform == 'win32', reason='test should not be run on Windows', ) def _lowercase ( __A ): '''simple docstring''' try: import faiss # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires faiss""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import regex # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires regex""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import elasticsearch # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires elasticsearch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import sqlalchemy # noqa except ImportError: __UpperCamelCase = unittest.skip("""test requires sqlalchemy""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TORCH_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires PyTorch""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.TF_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires TensorFlow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.JAX_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires JAX""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not config.PIL_AVAILABLE: __UpperCamelCase = unittest.skip("""test requires Pillow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' def _require_spacy_model(__A ): try: import spacy # noqa F401 spacy.load(__A ) except ImportError: return unittest.skip("""test requires spacy""" )(__A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(__A ) )(__A ) else: return test_case return _require_spacy_model def _lowercase ( __A ): '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(__A ) else: return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: __UpperCamelCase = unittest.skip("""test is slow""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: __UpperCamelCase = unittest.skip("""test is local""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: __UpperCamelCase = unittest.skip("""test is packaged""" )(__A ) return test_case def _lowercase ( __A ): '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: __UpperCamelCase = unittest.skip("""test requires remote""" )(__A ) return test_case def _lowercase ( *__A ): '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(__A ) and name.startswith("""test""" ): for decorator in decorators: __UpperCamelCase = decorator(__A ) setattr(cls ,__A ,__A ) return cls return decorate class UpperCAmelCase__ ( UpperCAmelCase_): pass class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def _lowercase ( __A=OfflineSimulationMode.CONNECTION_FAILS ,__A=1E-16 ): '''simple docstring''' __UpperCamelCase = requests.Session().request def timeout_request(__A ,__A ,__A ,**__A ): # Change the url to an invalid url so that the connection hangs __UpperCamelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) __UpperCamelCase = timeout try: return online_request(__A ,__A ,**__A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __UpperCamelCase = url __UpperCamelCase = e.args[0] __UpperCamelCase = (max_retry_error.args[0].replace("""10.255.255.1""" ,f"OfflineMock[{url}]" ),) __UpperCamelCase = (max_retry_error,) raise def raise_connection_error(__A ,__A ,**__A ): raise requests.ConnectionError("""Offline mode is enabled.""" ,request=__A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" ,__A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" ,__A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" ,__A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _lowercase ( *__A ,**__A ): '''simple docstring''' __UpperCamelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__A ,**__A ) as tmp_dir: try: os.chdir(__A ) yield finally: os.chdir(__A ) @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _lowercase ( ): '''simple docstring''' import gc gc.collect() __UpperCamelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _lowercase ( __A ,__A ): '''simple docstring''' return deepcopy(__A ).integers(0 ,100 ,10 ).tolist() == deepcopy(__A ).integers(0 ,100 ,10 ).tolist() def _lowercase ( __A ): '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(__A ,*__A ,**__A ): try: return func(*__A ,**__A ) except HTTPError as err: if str(__A ).startswith("""500""" ) or str(__A ).startswith("""502""" ): pytest.xfail(str(__A ) ) raise err return decorator.decorator(_wrapper ,__A ) class UpperCAmelCase__ : def __init__( self , lowercase , lowercase , lowercase ) -> str: __UpperCamelCase = returncode __UpperCamelCase = stdout __UpperCamelCase = stderr async def _lowercase ( __A ,__A ): '''simple docstring''' while True: __UpperCamelCase = await stream.readline() if line: callback(__A ) else: break async def _lowercase ( __A ,__A=None ,__A=None ,__A=None ,__A=False ,__A=False ): '''simple docstring''' if echo: print("""\nRunning: """ ,""" """.join(__A ) ) __UpperCamelCase = await asyncio.create_subprocess_exec( cmd[0] ,*cmd[1:] ,stdin=__A ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__A ,) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCamelCase = [] __UpperCamelCase = [] def tee(__A ,__A ,__A ,__A="" ): __UpperCamelCase = line.decode("""utf-8""" ).rstrip() sink.append(__A ) if not quiet: print(__A ,__A ,file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout ,lambda __A : tee(__A ,__A ,sys.stdout ,label="""stdout:""" ) ), _read_stream(p.stderr ,lambda __A : tee(__A ,__A ,sys.stderr ,label="""stderr:""" ) ), ] ,timeout=__A ,) return _RunOutput(await p.wait() ,__A ,__A ) def _lowercase ( __A ,__A=None ,__A=None ,__A=180 ,__A=False ,__A=True ): '''simple docstring''' __UpperCamelCase = asyncio.get_event_loop() __UpperCamelCase = loop.run_until_complete( _stream_subprocess(__A ,env=__A ,stdin=__A ,timeout=__A ,quiet=__A ,echo=__A ) ) __UpperCamelCase = """ """.join(__A ) if result.returncode > 0: __UpperCamelCase = """\n""".join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def _lowercase ( ): '''simple docstring''' __UpperCamelCase = os.environ.get("""PYTEST_XDIST_WORKER""" ,"""gw0""" ) __UpperCamelCase = re.sub(R"""^gw""" ,"""""" ,__A ,0 ,re.M ) return int(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = 29_500 __UpperCamelCase = pytest_xdist_worker_id() return port + uniq_delta
349
1
"""simple docstring""" from __future__ import annotations import bisect def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> int: '''simple docstring''' if hi < 0: _lowerCamelCase : Dict = len(_lowerCamelCase ) while lo < hi: _lowerCamelCase : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _lowerCamelCase : Union[str, Any] = mid + 1 else: _lowerCamelCase : int = mid return lo def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> int: '''simple docstring''' if hi < 0: _lowerCamelCase : Union[str, Any] = len(_lowerCamelCase ) while lo < hi: _lowerCamelCase : int = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _lowerCamelCase : Union[str, Any] = mid + 1 else: _lowerCamelCase : Optional[int] = mid return lo def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int | None: '''simple docstring''' _lowerCamelCase : Tuple = 0 _lowerCamelCase : Tuple = len(_lowerCamelCase ) - 1 while left <= right: _lowerCamelCase : Tuple = left + (right - left) // 2 _lowerCamelCase : Union[str, Any] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _lowerCamelCase : List[str] = midpoint - 1 else: _lowerCamelCase : Any = midpoint + 1 return None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int | None: '''simple docstring''' _lowerCamelCase : Tuple = bisect.bisect_left(_lowerCamelCase , _lowerCamelCase ) if index != len(_lowerCamelCase ) and sorted_collection[index] == item: return index return None def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> int | None: '''simple docstring''' if right < left: return None _lowerCamelCase : int = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , midpoint + 1 , _lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : int = input('''Enter numbers separated by comma:\n''').strip() _lowerCAmelCase : Any = sorted(int(item) for item in user_input.split(''',''')) _lowerCAmelCase : Optional[Any] = int(input('''Enter a single number to be found in the list:\n''')) _lowerCAmelCase : Optional[Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
340
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
1
'''simple docstring''' import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCAmelCase_ ( __lowercase : List[str] ) -> List[str]: '''simple docstring''' monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> Any: '''simple docstring''' class A_ : def __init__( self : Optional[int] , snake_case_ : str ): _UpperCAmelCase = metric_id class A_ : _lowerCamelCase : Any = [MetricMock(lowerCAmelCase_ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def lowercase ( self : Tuple ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Dict , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : List[str] ) -> int: '''simple docstring''' if "tmp_path" in args: _UpperCAmelCase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__lowercase , match="https://huggingface.co/docs/evaluate" ): func(*__lowercase )
22
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Dict = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys A_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
165
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase_ : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: Dict ) -> List[List[ImageInput]]: if isinstance(__UpperCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCAmelCase ): return [[videos]] raise ValueError(f"Could not make batched video from {videos}" ) class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[Any] = ["pixel_values"] def __init__( self, __magic_name__ = True, __magic_name__ = None, __magic_name__ = PILImageResampling.BILINEAR, __magic_name__ = True, __magic_name__ = None, __magic_name__ = True, __magic_name__ = 1 / 255, __magic_name__ = True, __magic_name__ = None, __magic_name__ = None, **__magic_name__, ) -> None: """simple docstring""" super().__init__(**__magic_name__ ) UpperCamelCase__ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase__ : List[str] = get_size_dict(__magic_name__, default_to_square=__magic_name__ ) UpperCamelCase__ : Dict = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ : Optional[Any] = get_size_dict(__magic_name__, param_name='''crop_size''' ) UpperCamelCase__ : Optional[int] = do_resize UpperCamelCase__ : List[Any] = size UpperCamelCase__ : Optional[Any] = do_center_crop UpperCamelCase__ : List[str] = crop_size UpperCamelCase__ : Union[str, Any] = resample UpperCamelCase__ : List[str] = do_rescale UpperCamelCase__ : Dict = rescale_factor UpperCamelCase__ : Tuple = do_normalize UpperCamelCase__ : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ = PILImageResampling.BILINEAR, __magic_name__ = None, **__magic_name__, ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : Any = get_size_dict(__magic_name__, default_to_square=__magic_name__ ) if "shortest_edge" in size: UpperCamelCase__ : List[Any] = get_resize_output_image_size(__magic_name__, size['''shortest_edge'''], default_to_square=__magic_name__ ) elif "height" in size and "width" in size: UpperCamelCase__ : str = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(__magic_name__, size=__magic_name__, resample=__magic_name__, data_format=__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ = None, **__magic_name__, ) -> np.ndarray: """simple docstring""" UpperCamelCase__ : List[str] = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(__magic_name__, size=(size['''height'''], size['''width''']), data_format=__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ = None, **__magic_name__, ) -> List[Any]: """simple docstring""" return rescale(__magic_name__, scale=__magic_name__, data_format=__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__, __magic_name__ = None, **__magic_name__, ) -> np.ndarray: """simple docstring""" return normalize(__magic_name__, mean=__magic_name__, std=__magic_name__, data_format=__magic_name__, **__magic_name__ ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = ChannelDimension.FIRST, ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCamelCase__ : Optional[Any] = to_numpy_array(__magic_name__ ) if do_resize: UpperCamelCase__ : Optional[Any] = self.resize(image=__magic_name__, size=__magic_name__, resample=__magic_name__ ) if do_center_crop: UpperCamelCase__ : Any = self.center_crop(__magic_name__, size=__magic_name__ ) if do_rescale: UpperCamelCase__ : Optional[Any] = self.rescale(image=__magic_name__, scale=__magic_name__ ) if do_normalize: UpperCamelCase__ : Optional[int] = self.normalize(image=__magic_name__, mean=__magic_name__, std=__magic_name__ ) UpperCamelCase__ : int = to_channel_dimension_format(__magic_name__, __magic_name__ ) return image def UpperCamelCase__ ( self, __magic_name__, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = None, __magic_name__ = ChannelDimension.FIRST, **__magic_name__, ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase__ : Optional[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : str = resample if resample is not None else self.resample UpperCamelCase__ : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ : int = image_std if image_std is not None else self.image_std UpperCamelCase__ : List[str] = size if size is not None else self.size UpperCamelCase__ : List[Any] = get_size_dict(__magic_name__, default_to_square=__magic_name__ ) UpperCamelCase__ : Optional[Any] = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ : int = get_size_dict(__magic_name__, param_name='''crop_size''' ) if not valid_images(__magic_name__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCamelCase__ : Optional[Any] = make_batched(__magic_name__ ) UpperCamelCase__ : Dict = [ [ self._preprocess_image( image=__magic_name__, do_resize=__magic_name__, size=__magic_name__, resample=__magic_name__, do_center_crop=__magic_name__, crop_size=__magic_name__, do_rescale=__magic_name__, rescale_factor=__magic_name__, do_normalize=__magic_name__, image_mean=__magic_name__, image_std=__magic_name__, data_format=__magic_name__, ) for img in video ] for video in videos ] UpperCamelCase__ : Optional[Any] = {'''pixel_values''': videos} return BatchFeature(data=__magic_name__, tensor_type=__magic_name__ )
362
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def lowerCAmelCase_ ( __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Optional[Any]=False ) -> List[Any]: UpperCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCAmelCase_ ( __UpperCAmelCase: Dict , __UpperCAmelCase: Any , __UpperCAmelCase: Dict=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ : Tuple = '''''' else: UpperCamelCase__ : Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ : int = in_proj_bias[: config.hidden_size] UpperCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : List[Any] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __UpperCAmelCase: Optional[Any] ) -> Optional[Any]: UpperCamelCase__ : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] , __UpperCAmelCase: str , __UpperCAmelCase: Tuple ) -> Dict: UpperCamelCase__ : List[str] = dct.pop(__UpperCAmelCase ) UpperCamelCase__ : int = val def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : int = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __UpperCAmelCase: List[str] , __UpperCAmelCase: Dict , __UpperCAmelCase: List[Any]=True ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ViTConfig() # patch_size if model_name[-1] == "8": UpperCamelCase__ : List[str] = 8 # set labels if required if not base_model: UpperCamelCase__ : Union[str, Any] = 1000 UpperCamelCase__ : Optional[Any] = '''huggingface/label-files''' UpperCamelCase__ : Dict = '''imagenet-1k-id2label.json''' UpperCamelCase__ : str = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCamelCase__ : str = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: UpperCamelCase__ : str = 384 UpperCamelCase__ : str = 1536 UpperCamelCase__ : Tuple = 12 UpperCamelCase__ : Optional[int] = 6 # load original model from torch hub UpperCamelCase__ : Any = torch.hub.load('''facebookresearch/dino:main''' , __UpperCAmelCase ) original_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ : str = original_model.state_dict() if base_model: remove_classification_head_(__UpperCAmelCase ) UpperCamelCase__ : int = create_rename_keys(__UpperCAmelCase , base_model=__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_q_k_v(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # load HuggingFace model if base_model: UpperCamelCase__ : int = ViTModel(__UpperCAmelCase , add_pooling_layer=__UpperCAmelCase ).eval() else: UpperCamelCase__ : Optional[int] = ViTForImageClassification(__UpperCAmelCase ).eval() model.load_state_dict(__UpperCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor UpperCamelCase__ : Dict = ViTImageProcessor() UpperCamelCase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCamelCase__ : Optional[Any] = encoding['''pixel_values'''] UpperCamelCase__ : Optional[Any] = model(__UpperCAmelCase ) if base_model: UpperCamelCase__ : Union[str, Any] = original_model(__UpperCAmelCase ) assert torch.allclose(__UpperCAmelCase , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: UpperCamelCase__ : Any = original_model(__UpperCAmelCase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__UpperCAmelCase , outputs.logits , atol=1e-3 ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCAmelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
247
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : str = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
264
"""simple docstring""" import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCamelCase__ : str = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCamelCase__ : Union[str, Any] = '''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCamelCase ( _lowerCAmelCase : List[str] ) -> Optional[Any]: _UpperCAmelCase : str = numpy.dtype(numpy.uintaa ).newbyteorder(""">""" ) return numpy.frombuffer(bytestream.read(4 ), dtype=_lowerCAmelCase )[0] @deprecated(_lowerCAmelCase, """Please use tf.data to implement this functionality.""" ) def UpperCamelCase ( _lowerCAmelCase : int ) -> Optional[Any]: print("""Extracting""", f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: _UpperCAmelCase : Tuple = _readaa(_lowerCAmelCase ) if magic != 2051: raise ValueError( """Invalid magic number %d in MNIST image file: %s""" % (magic, f.name) ) _UpperCAmelCase : Optional[int] = _readaa(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = _readaa(_lowerCAmelCase ) _UpperCAmelCase : List[str] = _readaa(_lowerCAmelCase ) _UpperCAmelCase : List[str] = bytestream.read(rows * cols * num_images ) _UpperCAmelCase : Optional[Any] = numpy.frombuffer(_lowerCAmelCase, dtype=numpy.uinta ) _UpperCAmelCase : Any = data.reshape(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, 1 ) return data @deprecated(_lowerCAmelCase, """Please use tf.one_hot on tensors.""" ) def UpperCamelCase ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple ) -> Union[str, Any]: _UpperCAmelCase : int = labels_dense.shape[0] _UpperCAmelCase : Any = numpy.arange(_lowerCAmelCase ) * num_classes _UpperCAmelCase : Tuple = numpy.zeros((num_labels, num_classes) ) _UpperCAmelCase : Dict = 1 return labels_one_hot @deprecated(_lowerCAmelCase, """Please use tf.data to implement this functionality.""" ) def UpperCamelCase ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[int]=False, _lowerCAmelCase : Optional[Any]=10 ) -> Union[str, Any]: print("""Extracting""", f.name ) with gzip.GzipFile(fileobj=_lowerCAmelCase ) as bytestream: _UpperCAmelCase : Tuple = _readaa(_lowerCAmelCase ) if magic != 2049: raise ValueError( """Invalid magic number %d in MNIST label file: %s""" % (magic, f.name) ) _UpperCAmelCase : str = _readaa(_lowerCAmelCase ) _UpperCAmelCase : Dict = bytestream.read(_lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = numpy.frombuffer(_lowerCAmelCase, dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_lowerCAmelCase, _lowerCAmelCase ) return labels class _UpperCAmelCase : @deprecated( _A , """Please use alternatives such as official/mnist/_DataSet.py""" """ from tensorflow/models.""" , ) def __init__( self , _A , _A , _A=False , _A=False , _A=dtypes.floataa , _A=True , _A=None , ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : int = random_seed.get_seed(_A ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _UpperCAmelCase : Tuple = dtypes.as_dtype(_A ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("""Invalid image dtype %r, expected uint8 or float32""" % dtype ) if fake_data: _UpperCAmelCase : Union[str, Any] = 1_00_00 _UpperCAmelCase : Union[str, Any] = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' _UpperCAmelCase : Any = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _UpperCAmelCase : int = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _UpperCAmelCase : Dict = images.astype(numpy.floataa ) _UpperCAmelCase : Any = numpy.multiply(_A , 1.0 / 255.0 ) _UpperCAmelCase : Union[str, Any] = images _UpperCAmelCase : List[Any] = labels _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Optional[Any] = 0 @property def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return self._images @property def __snake_case ( self ) -> Any: '''simple docstring''' return self._labels @property def __snake_case ( self ) -> Union[str, Any]: '''simple docstring''' return self._num_examples @property def __snake_case ( self ) -> Optional[int]: '''simple docstring''' return self._epochs_completed def __snake_case ( self , _A , _A=False , _A=True ) -> Tuple: '''simple docstring''' if fake_data: _UpperCAmelCase : int = [1] * 7_84 _UpperCAmelCase : str = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(_A )], [fake_label for _ in range(_A )], ) _UpperCAmelCase : Tuple = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _UpperCAmelCase : str = numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _UpperCAmelCase : List[Any] = self.images[perma] _UpperCAmelCase : Union[str, Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _UpperCAmelCase : List[Any] = self._num_examples - start _UpperCAmelCase : str = self._images[start : self._num_examples] _UpperCAmelCase : List[str] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _UpperCAmelCase : str = numpy.arange(self._num_examples ) numpy.random.shuffle(_A ) _UpperCAmelCase : Optional[int] = self.images[perm] _UpperCAmelCase : str = self.labels[perm] # Start next epoch _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Tuple = batch_size - rest_num_examples _UpperCAmelCase : Union[str, Any] = self._index_in_epoch _UpperCAmelCase : Optional[int] = self._images[start:end] _UpperCAmelCase : str = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _UpperCAmelCase : List[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_lowerCAmelCase, """Please write your own downloading logic.""" ) def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: if not gfile.Exists(_lowerCAmelCase ): gfile.MakeDirs(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = os.path.join(_lowerCAmelCase, _lowerCAmelCase ) if not gfile.Exists(_lowerCAmelCase ): urllib.request.urlretrieve(_lowerCAmelCase, _lowerCAmelCase ) # noqa: S310 with gfile.GFile(_lowerCAmelCase ) as f: _UpperCAmelCase : Optional[int] = f.size() print("""Successfully downloaded""", _lowerCAmelCase, _lowerCAmelCase, """bytes.""" ) return filepath @deprecated( _lowerCAmelCase, """Please use alternatives such as:""" """ tensorflow_datasets.load('mnist')""" ) def UpperCamelCase ( _lowerCAmelCase : Tuple, _lowerCAmelCase : str=False, _lowerCAmelCase : List[str]=False, _lowerCAmelCase : Tuple=dtypes.floataa, _lowerCAmelCase : List[str]=True, _lowerCAmelCase : Union[str, Any]=5000, _lowerCAmelCase : Optional[Any]=None, _lowerCAmelCase : int=DEFAULT_SOURCE_URL, ) -> Optional[Any]: if fake_data: def fake(): return _DataSet( [], [], fake_data=_lowerCAmelCase, one_hot=_lowerCAmelCase, dtype=_lowerCAmelCase, seed=_lowerCAmelCase ) _UpperCAmelCase : List[Any] = fake() _UpperCAmelCase : int = fake() _UpperCAmelCase : Any = fake() return _Datasets(train=_lowerCAmelCase, validation=_lowerCAmelCase, test=_lowerCAmelCase ) if not source_url: # empty string check _UpperCAmelCase : Optional[Any] = DEFAULT_SOURCE_URL _UpperCAmelCase : Optional[int] = """train-images-idx3-ubyte.gz""" _UpperCAmelCase : int = """train-labels-idx1-ubyte.gz""" _UpperCAmelCase : Optional[Any] = """t10k-images-idx3-ubyte.gz""" _UpperCAmelCase : Tuple = """t10k-labels-idx1-ubyte.gz""" _UpperCAmelCase : Tuple = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + train_images_file ) with gfile.Open(_lowerCAmelCase, """rb""" ) as f: _UpperCAmelCase : Optional[int] = _extract_images(_lowerCAmelCase ) _UpperCAmelCase : Any = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + train_labels_file ) with gfile.Open(_lowerCAmelCase, """rb""" ) as f: _UpperCAmelCase : Optional[int] = _extract_labels(_lowerCAmelCase, one_hot=_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + test_images_file ) with gfile.Open(_lowerCAmelCase, """rb""" ) as f: _UpperCAmelCase : Union[str, Any] = _extract_images(_lowerCAmelCase ) _UpperCAmelCase : Optional[int] = _maybe_download( _lowerCAmelCase, _lowerCAmelCase, source_url + test_labels_file ) with gfile.Open(_lowerCAmelCase, """rb""" ) as f: _UpperCAmelCase : List[Any] = _extract_labels(_lowerCAmelCase, one_hot=_lowerCAmelCase ) if not 0 <= validation_size <= len(_lowerCAmelCase ): _UpperCAmelCase : int = ( """Validation size should be between 0 and """ f'''{len(_lowerCAmelCase )}. Received: {validation_size}.''' ) raise ValueError(_lowerCAmelCase ) _UpperCAmelCase : str = train_images[:validation_size] _UpperCAmelCase : Union[str, Any] = train_labels[:validation_size] _UpperCAmelCase : Optional[Any] = train_images[validation_size:] _UpperCAmelCase : Optional[int] = train_labels[validation_size:] _UpperCAmelCase : Optional[int] = {"""dtype""": dtype, """reshape""": reshape, """seed""": seed} _UpperCAmelCase : Tuple = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase ) _UpperCAmelCase : Dict = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase ) _UpperCAmelCase : List[Any] = _DataSet(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase ) return _Datasets(train=_lowerCAmelCase, validation=_lowerCAmelCase, test=_lowerCAmelCase )
246
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : List[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
363
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : str ) -> Optional[int]: """simple docstring""" return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any , __magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : Tuple="attention" ) -> Optional[int]: """simple docstring""" UpperCamelCase :Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) UpperCamelCase :Any = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCamelCase :Optional[Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) UpperCamelCase :Tuple = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCamelCase :Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) UpperCamelCase :List[str] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCamelCase :int = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) UpperCamelCase :Optional[int] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int]=False ) -> Optional[int]: """simple docstring""" if split_mlp_wi: UpperCamelCase :Tuple = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] UpperCamelCase :Optional[int] = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] UpperCamelCase :Union[str, Any] = (wi_a, wi_a) else: UpperCamelCase :Union[str, Any] = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] UpperCamelCase :List[str] = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : str ) -> List[Any]: """simple docstring""" return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def SCREAMING_SNAKE_CASE_ ( __magic_name__ : dict , *, __magic_name__ : int , __magic_name__ : bool , __magic_name__ : bool = False ) -> List[str]: """simple docstring""" UpperCamelCase :str = traverse_util.flatten_dict(variables["""target"""] ) UpperCamelCase :int = {"""/""".join(__magic_name__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase :Union[str, Any] = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , __magic_name__ ) UpperCamelCase :Tuple = collections.OrderedDict() # Shared embeddings. UpperCamelCase :Optional[int] = old["""token_embedder/embedding"""] # Encoder. for i in range(__magic_name__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :List[Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = tax_attention_lookup(__magic_name__ , __magic_name__ , """encoder""" , """attention""" ) UpperCamelCase :Dict = layer_norm UpperCamelCase :str = k.T UpperCamelCase :int = o.T UpperCamelCase :Optional[int] = q.T UpperCamelCase :List[str] = v.T # Block i, layer 1 (MLP). UpperCamelCase :Union[str, Any] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """encoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase :List[Any] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """encoder""" , __magic_name__ ) UpperCamelCase :Dict = layer_norm if split_mlp_wi: UpperCamelCase :Union[str, Any] = wi[0].T UpperCamelCase :List[str] = wi[1].T else: UpperCamelCase :str = wi.T UpperCamelCase :Dict = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :List[Any] = tax_relpos_bias_lookup( __magic_name__ , __magic_name__ , """encoder""" ).T UpperCamelCase :Dict = old["""encoder/encoder_norm/scale"""] if not scalable_attention: UpperCamelCase :Optional[Any] = tax_relpos_bias_lookup( __magic_name__ , 0 , """encoder""" ).T UpperCamelCase :str = tax_relpos_bias_lookup( __magic_name__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(__magic_name__ ): # Block i, layer 0 (Self Attention). UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """self_attention""" ) UpperCamelCase :Any = layer_norm UpperCamelCase :Tuple = k.T UpperCamelCase :Optional[Any] = o.T UpperCamelCase :List[Any] = q.T UpperCamelCase :Optional[Any] = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase :List[str] = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = tax_attention_lookup(__magic_name__ , __magic_name__ , """decoder""" , """encoder_decoder_attention""" ) UpperCamelCase :Union[str, Any] = layer_norm UpperCamelCase :int = k.T UpperCamelCase :Union[str, Any] = o.T UpperCamelCase :Optional[Any] = q.T UpperCamelCase :List[str] = v.T # Block i, layer 2 (MLP). UpperCamelCase :Tuple = tax_layer_norm_lookup(__magic_name__ , __magic_name__ , """decoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase , UpperCamelCase :Optional[int] = tax_mlp_lookup(__magic_name__ , __magic_name__ , """decoder""" , __magic_name__ ) UpperCamelCase :Optional[int] = layer_norm if split_mlp_wi: UpperCamelCase :List[Any] = wi[0].T UpperCamelCase :Tuple = wi[1].T else: UpperCamelCase :Any = wi.T UpperCamelCase :List[Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCamelCase :Optional[int] = tax_relpos_bias_lookup(__magic_name__ , __magic_name__ , """decoder""" ).T UpperCamelCase :int = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase :Dict = old["""decoder/logits_dense/kernel"""].T return new def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : bool ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase :str = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase :Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCamelCase :Dict = state_dict["""shared.weight"""] return state_dict def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : int ) -> List[str]: """simple docstring""" UpperCamelCase :Union[str, Any] = checkpoints.load_tax_checkpoint(__magic_name__ ) UpperCamelCase :Optional[Any] = convert_tax_to_pytorch( __magic_name__ , num_layers=config.num_layers , is_encoder_only=__magic_name__ , scalable_attention=__magic_name__ ) UpperCamelCase :Optional[int] = make_state_dict(__magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ , strict=__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : bool = False , __magic_name__ : bool = False , ) -> List[str]: """simple docstring""" UpperCamelCase :Tuple = MTaConfig.from_json_file(__magic_name__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase :Optional[Any] = UMTaEncoderModel(__magic_name__ ) else: UpperCamelCase :Tuple = UMTaForConditionalGeneration(__magic_name__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__magic_name__ ) # Verify that we can load the checkpoint. model.from_pretrained(__magic_name__ ) print("""Done""" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) UpperCAmelCase_ : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
62
0
import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __A = { "E": 1_2.7_0, "T": 9.0_6, "A": 8.1_7, "O": 7.5_1, "I": 6.9_7, "N": 6.7_5, "S": 6.3_3, "H": 6.0_9, "R": 5.9_9, "D": 4.2_5, "L": 4.0_3, "C": 2.7_8, "U": 2.7_6, "M": 2.4_1, "W": 2.3_6, "F": 2.2_3, "G": 2.0_2, "Y": 1.9_7, "P": 1.9_3, "B": 1.2_9, "V": 0.9_8, "K": 0.7_7, "J": 0.1_5, "X": 0.1_5, "Q": 0.1_0, "Z": 0.0_7, } __A = "ETAOINSHRDLCUMWFGYPBVKJXQZ" __A = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def lowerCamelCase_ ( UpperCamelCase__ : str ) -> dict[str, int]: """simple docstring""" __lowerCamelCase = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowerCamelCase_ ( UpperCamelCase__ : tuple ) -> str: """simple docstring""" return x[0] def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" __lowerCamelCase = get_letter_count(UpperCamelCase__ ) __lowerCamelCase = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(UpperCamelCase__ ) __lowerCamelCase = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=UpperCamelCase__ ) __lowerCamelCase = ''.join(freq_to_letter[freq] ) __lowerCamelCase = list(freq_to_letter_str.items() ) freq_pairs.sort(key=UpperCamelCase__ , reverse=UpperCamelCase__ ) __lowerCamelCase = [freq_pair[1] for freq_pair in freq_pairs] return "".join(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : str ) -> int: """simple docstring""" __lowerCamelCase = get_frequency_order(UpperCamelCase__ ) __lowerCamelCase = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
90
class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ ) -> Any: '''simple docstring''' __lowerCamelCase = n __lowerCamelCase = [None] * self.n __lowerCamelCase = 0 # index of the first element __lowerCamelCase = 0 __lowerCamelCase = 0 def __len__( self ) -> int: '''simple docstring''' return self.size def lowercase_ ( self ) -> bool: '''simple docstring''' return self.size == 0 def lowercase_ ( self ) -> str: '''simple docstring''' return False if self.is_empty() else self.array[self.front] def lowercase_ ( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' if self.size >= self.n: raise Exception('QUEUE IS FULL' ) __lowerCamelCase = data __lowerCamelCase = (self.rear + 1) % self.n self.size += 1 return self def lowercase_ ( self ) -> Tuple: '''simple docstring''' if self.size == 0: raise Exception('UNDERFLOW' ) __lowerCamelCase = self.array[self.front] __lowerCamelCase = None __lowerCamelCase = (self.front + 1) % self.n self.size -= 1 return temp
90
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class a_ : '''simple docstring''' lowerCamelCase__ : Any = PegasusConfig lowerCamelCase__ : Optional[Any] = {} lowerCamelCase__ : int = 'gelu' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=7, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_=9_9, lowerCamelCase_=3_2, lowerCamelCase_=2, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=4_0, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=0, ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Tuple = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : List[str] = eos_token_id lowerCamelCase__ : Dict = pad_token_id lowerCamelCase__ : Optional[Any] = bos_token_id def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) lowerCamelCase__ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) lowerCamelCase__ : Union[str, Any] = tf.concat([input_ids, eos_tensor], axis=1 ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase__ : Any = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) lowerCamelCase__ : List[str] = prepare_pegasus_inputs_dict(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) return config, inputs_dict def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = TFPegasusModel(config=lowerCamelCase_ ).get_decoder() lowerCamelCase__ : Any = inputs_dict['input_ids'] lowerCamelCase__ : Tuple = input_ids[:1, :] lowerCamelCase__ : str = inputs_dict['attention_mask'][:1, :] lowerCamelCase__ : Optional[Any] = inputs_dict['head_mask'] lowerCamelCase__ : str = 1 # first forward pass lowerCamelCase__ : List[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, head_mask=lowerCamelCase_, use_cache=lowerCamelCase_ ) lowerCamelCase__ , lowerCamelCase__ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : int = ids_tensor((self.batch_size, 3), config.vocab_size ) lowerCamelCase__ : Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and lowerCamelCase__ : Tuple = tf.concat([input_ids, next_tokens], axis=-1 ) lowerCamelCase__ : List[str] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_ )[0] lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, attention_mask=lowerCamelCase_, past_key_values=lowerCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice lowerCamelCase__ : List[str] = int(ids_tensor((1,), output_from_past.shape[-1] ) ) lowerCamelCase__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase_, lowerCamelCase_, rtol=1e-3 ) def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , ): if attention_mask is None: lowerCamelCase__ : Any = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () lowerCamelCase__ : int = (TFPegasusForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ : Optional[int] = ( { 'conversational': TFPegasusForConditionalGeneration, 'feature-extraction': TFPegasusModel, 'summarization': TFPegasusForConditionalGeneration, 'text2text-generation': TFPegasusForConditionalGeneration, 'translation': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ : int = True lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : Tuple = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFPegasusModelTester(self ) lowerCamelCase__ : Tuple = ConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : List[Any] = [ ' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.', ' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ', ] lowerCamelCase__ : str = [ 'California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to' ' reduce the risk of wildfires.', 'N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.', ] # differs slightly from pytorch, likely due to numerical differences in linear layers lowerCamelCase__ : int = 'google/pegasus-xsum' @cached_property def a__ (self ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.translate_src_text(**lowerCamelCase_ ) assert self.expected_text == generated_words def a__ (self, **lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text, **lowerCamelCase_, padding=lowerCamelCase_, return_tensors='tf' ) lowerCamelCase__ : Tuple = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=lowerCamelCase_, ) lowerCamelCase__ : Tuple = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=lowerCamelCase_ ) return generated_words @slow def a__ (self ): '''simple docstring''' self._assert_generated_batch_equal_expected()
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A_ : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class a_ ( snake_case_ ): '''simple docstring''' lowerCamelCase__ : bool = field(default=snake_case_ , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase__ : bool = field( default=snake_case_ , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[int] = field( default=snake_case_ , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=snake_case_ , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = super().to_dict() for k, v in d.items(): if isinstance(lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : Any = v.to_dict() return d
316
1
from ...configuration_utils import PretrainedConfig __A : Optional[Any] = { "google/tapas-base-finetuned-sqa": ( "https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json" ), "google/tapas-base-finetuned-wtq": ( "https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json" ), "google/tapas-base-finetuned-wikisql-supervised": ( "https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json" ), "google/tapas-base-finetuned-tabfact": ( "https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json" ), } class __A ( lowerCAmelCase ): lowerCAmelCase_ : Dict = "tapas" def __init__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=30522 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : List[str]=3072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Dict=1024 , UpperCAmelCase_ : Optional[int]=[3, 256, 256, 2, 256, 256, 10] , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : int=1E-12 , UpperCAmelCase_ : Tuple=0 , UpperCAmelCase_ : Optional[int]=10.0 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Tuple=1.0 , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1.0 , UpperCAmelCase_ : List[str]=1.0 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Dict="ratio" , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=64 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : int=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : int=False , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Any , ): super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : List[str] = max_position_embeddings lowerCAmelCase : Tuple = type_vocab_sizes lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Any = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase : Dict = positive_label_weight lowerCAmelCase : Optional[int] = num_aggregation_labels lowerCAmelCase : List[Any] = aggregation_loss_weight lowerCAmelCase : List[Any] = use_answer_as_supervision lowerCAmelCase : Tuple = answer_loss_importance lowerCAmelCase : Tuple = use_normalized_answer_loss lowerCAmelCase : List[str] = huber_loss_delta lowerCAmelCase : int = temperature lowerCAmelCase : int = aggregation_temperature lowerCAmelCase : List[Any] = use_gumbel_for_cells lowerCAmelCase : List[str] = use_gumbel_for_aggregation lowerCAmelCase : Any = average_approximation_function lowerCAmelCase : List[Any] = cell_selection_preference lowerCAmelCase : Dict = answer_loss_cutoff lowerCAmelCase : Union[str, Any] = max_num_rows lowerCAmelCase : List[Any] = max_num_columns lowerCAmelCase : Union[str, Any] = average_logits_per_cell lowerCAmelCase : List[str] = select_one_column lowerCAmelCase : Dict = allow_empty_column_selection lowerCAmelCase : List[Any] = init_cell_selection_weights_to_zero lowerCAmelCase : Any = reset_position_index_per_cell lowerCAmelCase : Tuple = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase : Union[str, Any] = aggregation_labels lowerCAmelCase : Union[str, Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , UpperCAmelCase_ ): lowerCAmelCase : Any = {int(UpperCAmelCase_ ): v for k, v in aggregation_labels.items()}
138
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 100 ) -> int: UpperCAmelCase_ : Tuple = n * (n + 1) * (2 * n + 1) / 6 UpperCAmelCase_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
125
0
"""simple docstring""" from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : Any ): __lowercase = data __lowercase = None class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] ): __lowercase = None def _lowercase ( self : Any ): __lowercase = self.head while temp is not None: print(temp.data, end=" " ) __lowercase = temp.next print() def _lowercase ( self : List[Any], UpperCAmelCase__ : Any ): __lowercase = Node(UpperCAmelCase__ ) __lowercase = self.head __lowercase = new_node def _lowercase ( self : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Tuple ): if node_data_a == node_data_a: return else: __lowercase = self.head while node_a is not None and node_a.data != node_data_a: __lowercase = node_a.next __lowercase = self.head while node_a is not None and node_a.data != node_data_a: __lowercase = node_a.next if node_a is None or node_a is None: return __lowercase ,__lowercase = node_a.data, node_a.data if __name__ == "__main__": _a = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
366
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ["pixel_values"] def __init__( self : int, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Dict[str, int]] = None, UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, **UpperCAmelCase__ : str, ): super().__init__(**UpperCAmelCase__ ) __lowercase = size if size is not None else {"shortest_edge": 2_5_6} __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowercase = get_size_dict(UpperCAmelCase__ ) __lowercase = do_resize __lowercase = size __lowercase = resample __lowercase = do_center_crop __lowercase = crop_size __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self : int, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Dict, ): __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __lowercase = get_resize_output_image_size(UpperCAmelCase__, size=size["shortest_edge"], default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Dict[str, int], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Dict, ): __lowercase = get_size_dict(UpperCAmelCase__ ) return center_crop(UpperCAmelCase__, size=(size["height"], size["width"]), data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : float, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : Union[str, Any] ): return rescale(UpperCAmelCase__, scale=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Union[float, List[float]], UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : int, ): return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, data_format=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Any, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : PILImageResampling = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[float] = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[float, List[float]]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[int], ): __lowercase = do_resize if do_resize is not None else self.do_resize __lowercase = size if size is not None else self.size __lowercase = get_size_dict(UpperCAmelCase__, default_to_square=UpperCAmelCase__ ) __lowercase = resample if resample is not None else self.resample __lowercase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase = crop_size if crop_size is not None else self.crop_size __lowercase = get_size_dict(UpperCAmelCase__ ) __lowercase = do_rescale if do_rescale is not None else self.do_rescale __lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = image_mean if image_mean is not None else self.image_mean __lowercase = image_std if image_std is not None else self.image_std __lowercase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowercase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: __lowercase = [self.resize(image=UpperCAmelCase__, size=UpperCAmelCase__, resample=UpperCAmelCase__ ) for image in images] if do_center_crop: __lowercase = [self.center_crop(image=UpperCAmelCase__, size=UpperCAmelCase__ ) for image in images] if do_rescale: __lowercase = [self.rescale(image=UpperCAmelCase__, scale=UpperCAmelCase__ ) for image in images] if do_normalize: __lowercase = [self.normalize(image=UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__ ) for image in images] __lowercase = [to_channel_dimension_format(UpperCAmelCase__, UpperCAmelCase__ ) for image in images] __lowercase = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__, tensor_type=UpperCAmelCase__ )
144
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {'''vocab_file''': '''vocab.txt'''} snake_case__ : Any = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } snake_case__ : Tuple = { '''openbmb/cpm-ant-10b''': 1_024, } def _snake_case ( _snake_case : int ): lowerCAmelCase : List[str] = collections.OrderedDict() with open(_snake_case , '''r''' , encoding='''utf-8''' ) as reader: lowerCAmelCase : List[Any] = reader.readlines() for index, token in enumerate(_snake_case ): lowerCAmelCase : List[Any] = token.rstrip('''\n''' ) lowerCAmelCase : Tuple = index return vocab class snake_case_( a__ ): def __init__( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]="<unk>" , UpperCamelCase_ : Any=2_0_0 ): lowerCAmelCase : Any = vocab lowerCAmelCase : List[Any] = unk_token lowerCAmelCase : Dict = max_input_chars_per_word def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Tuple ): lowerCAmelCase : Any = list(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = [] while start < len(UpperCamelCase_ ): lowerCAmelCase : List[str] = len(UpperCamelCase_ ) lowerCAmelCase : Dict = None while start < end: lowerCAmelCase : Union[str, Any] = ''''''.join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase : Any = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase_ ) lowerCAmelCase : List[Any] = end return sub_tokens class snake_case_( a__ ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ['''input_ids''', '''attention_mask'''] __UpperCamelCase = False def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]="<d>" , UpperCamelCase_ : int="</d>" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : str="</s>" , UpperCamelCase_ : Optional[int]="<pad>" , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : Any="</n>" , UpperCamelCase_ : List[Any]="</_>" , UpperCamelCase_ : int="left" , **UpperCamelCase_ : List[str] , ): requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=UpperCamelCase_ , eod_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , line_token=UpperCamelCase_ , space_token=UpperCamelCase_ , padding_side=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : Any = bod_token lowerCAmelCase : Union[str, Any] = eod_token lowerCAmelCase : Optional[Any] = load_vocab(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = self.encoder[space_token] lowerCAmelCase : Union[str, Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) lowerCAmelCase : Tuple = {v: k for k, v in self.encoder.items()} lowerCAmelCase : Any = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCamelCase__ ( self : Optional[int] ): return self.encoder[self.bod_token] @property def lowerCamelCase__ ( self : List[str] ): return self.encoder[self.eod_token] @property def lowerCamelCase__ ( self : Any ): return self.encoder["\n"] @property def lowerCamelCase__ ( self : List[Any] ): return len(self.encoder ) def lowerCamelCase__ ( self : str ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : List[Any] ): lowerCAmelCase : Dict = [] for x in jieba.cut(UpperCamelCase_ , cut_all=UpperCamelCase_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase_ ) ) return output_tokens def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Dict , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase : Tuple = [i for i in token_ids if i >= 0] lowerCAmelCase : Dict = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : str ): return token in self.encoder def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : List[str] ): return "".join(UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : int ): return self.encoder.get(UpperCamelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Dict ): return self.decoder.get(UpperCamelCase_ , self.unk_token ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): if os.path.isdir(UpperCamelCase_ ): lowerCAmelCase : Optional[int] = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowerCAmelCase : int = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory lowerCAmelCase : Any = 0 if " " in self.encoder: lowerCAmelCase : int = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase : Optional[Any] = self.encoder['''\n'''] del self.encoder["\n"] lowerCAmelCase : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase_ : x[1] ) ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) lowerCAmelCase : str = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) return [1] + ([0] * len(UpperCamelCase_ ))
60
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = 'T5Config' def SCREAMING_SNAKE_CASE_ ( __A : jnp.array , __A : int , __A : int ) -> jnp.ndarray: """simple docstring""" a_ : Dict = jnp.zeros_like(__A ) a_ : Dict = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) a_ : str = shifted_input_ids.at[:, 0].set(__A ) a_ : int = jnp.where(shifted_input_ids == -1_00 , __A , __A ) return shifted_input_ids class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[Any] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[str] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''mt5''' snake_case__ : Union[str, Any] = MTaConfig
32
0
"""simple docstring""" import numpy class A__ : '''simple docstring''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: numpy.ndarray , _SCREAMING_SNAKE_CASE: numpy.ndarray) -> None: """simple docstring""" __lowerCAmelCase : int = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __lowerCAmelCase : Optional[int] = numpy.random.rand( self.input_array.shape[1] , 4) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __lowerCAmelCase : Optional[Any] = numpy.random.rand( 4 , 3) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __lowerCAmelCase : Any = numpy.random.rand(3 , 1) # Real output values provided. __lowerCAmelCase : List[str] = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __lowerCAmelCase : str = numpy.zeros(output_array.shape) def _SCREAMING_SNAKE_CASE ( self: Any) -> numpy.ndarray: """simple docstring""" __lowerCAmelCase : List[Any] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights)) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __lowerCAmelCase : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __lowerCAmelCase : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return self.layer_between_second_hidden_layer_and_output def _SCREAMING_SNAKE_CASE ( self: Tuple) -> None: """simple docstring""" __lowerCAmelCase : List[Any] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , ) __lowerCAmelCase : Union[str, Any] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , ) __lowerCAmelCase : Union[str, Any] = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: numpy.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: bool) -> None: """simple docstring""" for iteration in range(1 , iterations + 1): __lowerCAmelCase : List[str] = self.feedforward() self.back_propagation() if give_loss: __lowerCAmelCase : Optional[int] = numpy.mean(numpy.square(output - self.feedforward())) print(F"""Iteration {iteration} Loss: {loss}""") def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: numpy.ndarray) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = input_arr __lowerCAmelCase : Optional[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights)) __lowerCAmelCase : List[Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , )) __lowerCAmelCase : int = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , )) return int(self.layer_between_second_hidden_layer_and_output > 0.6) def _lowercase ( __snake_case ) -> List[Any]: return 1 / (1 + numpy.exp(-value )) def _lowercase ( __snake_case ) -> Any: return (value) * (1 - (value)) def _lowercase ( ) -> Any: __lowerCAmelCase : int = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) ,dtype=numpy.floataa ,) # True output values for the given input values. __lowerCAmelCase : Tuple = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) ,dtype=numpy.floataa ) # Calling neural network class. __lowerCAmelCase : Union[str, Any] = TwoHiddenLayerNeuralNetwork( input_array=__snake_case ,output_array=__snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__snake_case ,iterations=10 ,give_loss=__snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) ,dtype=numpy.floataa ) ) if __name__ == "__main__": example()
361
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Any = ort.SessionOptions() __lowerCAmelCase : Dict = False return options def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png") __lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png") __lowerCAmelCase : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy") # using the PNDM scheduler by default __lowerCAmelCase : int = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = "A red cat sitting on a park bench" __lowerCAmelCase : Optional[int] = np.random.RandomState(0) __lowerCAmelCase : Optional[int] = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_SCREAMING_SNAKE_CASE , output_type="np" , ) __lowerCAmelCase : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1e-2
58
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase__ = logging.get_logger(__name__) class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : int , *__UpperCAmelCase : Any , **__UpperCAmelCase : Optional[int] ) ->None: """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
0
"""simple docstring""" from __future__ import annotations from typing import Any class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : int ): __lowercase = num_of_nodes __lowercase = [] __lowercase = {} def _lowercase ( self : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : int, UpperCAmelCase__ : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __lowercase = self.find_component(UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : list[int], UpperCAmelCase__ : int, UpperCAmelCase__ : int ): if component_size[u_node] <= component_size[v_node]: __lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCAmelCase__ ) elif component_size[u_node] >= component_size[v_node]: __lowercase = self.find_component(UpperCAmelCase__ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCAmelCase__ ) def _lowercase ( self : Any ): __lowercase = [] __lowercase = 0 __lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase ,__lowercase ,__lowercase = edge __lowercase = self.m_component[u] __lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __lowercase = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def _A ( ) -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
17
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( _a , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = BloomTokenizerFast __UpperCamelCase = BloomTokenizerFast __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = "tokenizer_file" __UpperCamelCase = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE_ : List[str] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''') tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : Dict , **lowercase_ : Dict): '''simple docstring''' kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] SCREAMING_SNAKE_CASE_ : str = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] SCREAMING_SNAKE_CASE_ : int = tokenizer.batch_encode_plus(snake_case_)["""input_ids"""] self.assertListEqual(snake_case_ , snake_case_) SCREAMING_SNAKE_CASE_ : str = tokenizer.batch_decode(snake_case_) self.assertListEqual(snake_case_ , snake_case_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str=6): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input SCREAMING_SNAKE_CASE_ : str = """This is a simple input""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["""This is a simple input 1""", """This is a simple input 2"""] SCREAMING_SNAKE_CASE_ : List[str] = ("""This is a simple input""", """This is a pair""") SCREAMING_SNAKE_CASE_ : str = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case_ , max_length=snake_case_) tokenizer_r.encode_plus(snake_case_ , max_length=snake_case_) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_) tokenizer_r.encode(snake_case_ , max_length=snake_case_) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # Hotfixing padding = None self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding='''max_length''') # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''') # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''' , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding='''max_length''') # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''') # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding='''max_length''' , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Any = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=snake_case_) SCREAMING_SNAKE_CASE_ : Dict = next(iter(snake_case_))["""premise"""] # pick up one data SCREAMING_SNAKE_CASE_ : Tuple = list(sample_data.values()) SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(map(tokenizer.encode , snake_case_)) SCREAMING_SNAKE_CASE_ : Optional[Any] = [tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_) for x in output_tokens] self.assertListEqual(snake_case_ , snake_case_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
371
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "ssube/stable-diffusion-x4-upscaler-onnx" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : Union[str, Any]=0): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.manual_seed(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Any = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Tuple = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Any = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''') SCREAMING_SNAKE_CASE_ : int = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**lowercase_).images SCREAMING_SNAKE_CASE_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Optional[int] = False return options def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''') SCREAMING_SNAKE_CASE_ : Tuple = init_image.resize((128, 128)) SCREAMING_SNAKE_CASE_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''') SCREAMING_SNAKE_CASE_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : int = '''A fantasy landscape, trending on artstation''' SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images SCREAMING_SNAKE_CASE_ : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : List[str] = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
318
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class A__ : @staticmethod def UpperCamelCase__ ( *__magic_name__ , **__magic_name__ ): pass def _a ( lowerCamelCase ): lowerCamelCase : Union[str, Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class A__ ( unittest.TestCase): _UpperCAmelCase : Any = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase : int = DepthEstimationPipeline(model=__magic_name__ , image_processor=__magic_name__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ ): lowerCamelCase : str = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , __magic_name__ ) import datasets lowerCamelCase : int = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) lowerCamelCase : Optional[Any] = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , __magic_name__ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def UpperCamelCase__ ( self ): pass @slow @require_torch def UpperCamelCase__ ( self ): lowerCamelCase : int = """Intel/dpt-large""" lowerCamelCase : Dict = pipeline("""depth-estimation""" , model=__magic_name__ ) lowerCamelCase : Tuple = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) lowerCamelCase : Optional[Any] = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def UpperCamelCase__ ( self ): # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
287
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Tuple = """camembert""" def __init__( self , __magic_name__=3_0_5_2_2 , __magic_name__=7_6_8 , __magic_name__=1_2 , __magic_name__=1_2 , __magic_name__=3_0_7_2 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=5_1_2 , __magic_name__=2 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , __magic_name__="absolute" , __magic_name__=True , __magic_name__=None , **__magic_name__ , ): super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) lowerCamelCase : int = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : int = num_hidden_layers lowerCamelCase : int = num_attention_heads lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : List[Any] = intermediate_size lowerCamelCase : Tuple = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : Optional[int] = max_position_embeddings lowerCamelCase : str = type_vocab_size lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : int = layer_norm_eps lowerCamelCase : Any = position_embedding_type lowerCamelCase : Optional[int] = use_cache lowerCamelCase : Union[str, Any] = classifier_dropout class A__ ( __SCREAMING_SNAKE_CASE): @property def UpperCamelCase__ ( self ): if self.task == "multiple-choice": lowerCamelCase : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCamelCase : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
287
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCamelCase ( _a , _a=1_0 ) -> List[Any]: '''simple docstring''' lowercase_ :Optional[int] = [] for _ in range(_a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def UpperCamelCase ( _a , _a=1_0 ) -> Optional[Any]: '''simple docstring''' lowercase_ :Tuple = [] for step in range(_a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ :Optional[Any] = os.path.join(_a , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _a ) lowercase_ :str = torch.load(_a ) scheduler.load_state_dict(_a ) return lrs @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :str = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowercase_ :List[Any] = torch.tensor([0.4, 0.2, -0.5] ) lowercase_ :Dict = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase_ :List[Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): lowercase_ :Dict = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def UpperCamelCase ( self ): lowercase_ :Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowercase_ :List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowercase_ :Union[str, Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowercase_ :Tuple = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1000 ): lowercase_ :str = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowercase : Optional[Any] =nn.Linear(50 , 50 ) if is_torch_available() else None lowercase : Tuple =AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowercase : Optional[int] =10 def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowercase_ :Any = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowercase_ , lowercase_ :str = data lowercase_ :List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowercase_ :Tuple = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , ) lowercase_ :Any = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowercase_ :List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=f"failed for {scheduler_func} in save and reload" ) class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ ): lowercase_ :Any = fn def __call__( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :List[Any] = list(map(self , scheduler.lr_lambdas ) )
252
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE : Dict = 16 SCREAMING_SNAKE_CASE : str = 32 def UpperCamelCase ( _a ) -> Any: '''simple docstring''' return int(x / 2**2_0 ) class UpperCamelCase : '''simple docstring''' def __enter__( self ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowercase_ :List[str] = torch.cuda.memory_allocated() return self def __exit__( self , *UpperCamelCase_ ): gc.collect() torch.cuda.empty_cache() lowercase_ :Any = torch.cuda.memory_allocated() lowercase_ :Union[str, Any] = torch.cuda.max_memory_allocated() lowercase_ :Optional[int] = bamb(self.end - self.begin ) lowercase_ :List[str] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase ( _a , _a = 1_6 , _a = "bert-base-cased" , _a = 3_2_0 , _a = 1_6_0 , ) -> Optional[Any]: '''simple docstring''' lowercase_ :Optional[Any] = AutoTokenizer.from_pretrained(_a ) lowercase_ :int = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': f"train[:{n_train}]", '''validation''': f"validation[:{n_val}]"} ) def tokenize_function(_a ): # max_length=None => use the model max length (it's actually the default) lowercase_ :Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase_ :Tuple = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ :int = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_a , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(_a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowercase_ :Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) lowercase_ :str = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a ) return train_dataloader, eval_dataloader def UpperCamelCase ( _a , _a ) -> List[Any]: '''simple docstring''' lowercase_ :Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ :Dict = config['''lr'''] lowercase_ :List[Any] = int(config['''num_epochs'''] ) lowercase_ :Tuple = int(config['''seed'''] ) lowercase_ :List[str] = int(config['''batch_size'''] ) lowercase_ :Optional[Any] = args.model_name_or_path set_seed(_a ) lowercase_ , lowercase_ :Any = get_dataloaders(_a , _a , _a , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ :Tuple = AutoModelForSequenceClassification.from_pretrained(_a , return_dict=_a ) # Instantiate optimizer lowercase_ :Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase_ :str = optimizer_cls(params=model.parameters() , lr=_a ) if accelerator.state.deepspeed_plugin is not None: lowercase_ :str = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowercase_ :List[str] = 1 lowercase_ :Union[str, Any] = (len(_a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase_ :int = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=0 , num_training_steps=_a , ) else: lowercase_ :str = DummyScheduler(_a , total_num_steps=_a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ :Optional[Any] = accelerator.prepare( _a , _a , _a , _a , _a ) # We need to keep track of how many total steps we have iterated over lowercase_ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly lowercase_ :int = 0 # Now we train the model lowercase_ :str = {} for epoch in range(_a , _a ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(_a ): lowercase_ :Optional[Any] = model(**_a ) lowercase_ :Dict = outputs.loss lowercase_ :Dict = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowercase_ :Union[str, Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(_a , _a ) def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowercase_ :List[str] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_a , ) parser.add_argument( '''--output_dir''' , type=_a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=_a , default=_a , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=_a , default=3_2_0 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=_a , default=1_6_0 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=_a , default=1 , help='''Number of train epochs.''' , ) lowercase_ :Dict = parser.parse_args() lowercase_ :Dict = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_a , _a ) if __name__ == "__main__": main()
252
1
def lowerCAmelCase__ ( a__: int ) -> str: '''simple docstring''' if number > 0: raise ValueError('input must be a negative integer' ) _UpperCAmelCase = len(bin(lowerCAmelCase__ )[3:] ) _UpperCAmelCase = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:] _UpperCAmelCase = ( ( '1' + '0' * (binary_number_length - len(lowerCAmelCase__ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
329
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm lowercase_ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex lowercase_ = 1_0 lowercase_ = 2_5_6 def lowercase ( lowerCAmelCase__ : List[str] ) -> Optional[MinHash]: if len(lowerCAmelCase__ ) < MIN_NUM_TOKENS: return None __a = MinHash(num_perm=lowerCAmelCase__ ) for token in set(lowerCAmelCase__ ): min_hash.update(token.encode() ) return min_hash def lowercase ( lowerCAmelCase__ : str ) -> Set[str]: return {t for t in NON_ALPHA.split(lowerCAmelCase__ ) if len(t.strip() ) > 0} class __lowerCAmelCase : '''simple docstring''' def __init__( self , *, _a = 0.85 , ): __a = duplication_jaccard_threshold __a = NUM_PERM __a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __a = defaultdict(_a ) def __UpperCAmelCase ( self , _a , _a ): __a = self._index.query(_a ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(_a , _a ) if len(_a ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(_a ) break else: self._duplicate_clusters[close_duplicates[0]].add(_a ) def __UpperCAmelCase ( self ): __a = [] for base, duplicates in self._duplicate_clusters.items(): __a = [base] + list(_a ) # reformat the cluster to be a list of dict __a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(_a ) return duplicate_clusters def __UpperCAmelCase ( self , _a ): __a = self.get_duplicate_clusters() with open(_a , '''w''' ) as f: json.dump(_a , _a ) def lowercase ( lowerCAmelCase__ : List[str] ) -> int: __a , __a = element __a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowercase ( lowerCAmelCase__ : Type[Dataset] ) -> str: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase__ , max_queue_size=10000 ) , chunksize=100 , ): if data is not None: yield data def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float ) -> Dict: __a = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase__ ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase__ ) ) , max_queue_size=100 ) ): di.add(lowerCAmelCase__ , lowerCAmelCase__ ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float: __a = get_tokens(lowerCAmelCase__ ) __a = get_tokens(lowerCAmelCase__ ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) lowercase_ = None def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any: __a = [] for elementa in cluster: __a = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __a = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(lowerCAmelCase__ , lowerCAmelCase__ ) >= jaccard_threshold: elementa["copies"] += 1 break else: __a = 1 extremes.append(lowerCAmelCase__ ) return extremes def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]: global _shared_dataset __a = dataset __a = [] __a = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase__ ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase__ , lowerCAmelCase__ , ) , total=len(lowerCAmelCase__ ) , ): extremes_list.append(lowerCAmelCase__ ) return extremes_list def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __a = make_duplicate_clusters(lowerCAmelCase__ , lowerCAmelCase__ ) __a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __a = {} __a = find_extremes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for extremes in extremes_clusters: for element in extremes: __a = element __a = duplicate_indices - set(extreme_dict.keys() ) __a = dataset.filter(lambda lowerCAmelCase__ , lowerCAmelCase__ : idx not in remove_indices , with_indices=lowerCAmelCase__ ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __a = element['''base_index'''] in extreme_dict if element["is_extreme"]: __a = extreme_dict[element['''base_index''']]['''copies'''] print(f'''Original dataset size: {len(lowerCAmelCase__ )}''' ) print(f'''Number of duplicate clusters: {len(lowerCAmelCase__ )}''' ) print(f'''Files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Unique files in duplicate cluster: {len(lowerCAmelCase__ )}''' ) print(f'''Filtered dataset size: {len(lowerCAmelCase__ )}''' ) return ds_filter, duplicate_clusters
45
0
from __future__ import annotations from scipy.special import comb # type: ignore class a__ : def __init__( self , UpperCAmelCase ) -> List[Any]: __a = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __a = len(UpperCAmelCase ) - 1 def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __a = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , UpperCAmelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(UpperCAmelCase ) , 5 ) == 1 return output_values def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __a = self.basis_function(UpperCAmelCase ) __a = 0.0 __a = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase = 0.01 ) -> Optional[Any]: from matplotlib import pyplot as plt # type: ignore __a = [] # x coordinates of points to plot __a = [] # y coordinates of points to plot __a = 0.0 while t <= 1: __a = self.bezier_curve_function(UpperCAmelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __a = [i[0] for i in self.list_of_points] __a = [i[1] for i in self.list_of_points] plt.plot( UpperCAmelCase , UpperCAmelCase , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(UpperCAmelCase , UpperCAmelCase , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
197
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Any = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
197
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Dict = """altclip_text_model""" def __init__( self: Tuple , snake_case: List[Any]=250_002 , snake_case: Dict=1_024 , snake_case: Tuple=24 , snake_case: int=16 , snake_case: Any=4_096 , snake_case: Optional[int]="gelu" , snake_case: List[Any]=0.1 , snake_case: Union[str, Any]=0.1 , snake_case: List[str]=514 , snake_case: List[Any]=1 , snake_case: Any=0.0_2 , snake_case: Optional[int]=0.0_2 , snake_case: Union[str, Any]=1E-05 , snake_case: List[Any]=1 , snake_case: Tuple=0 , snake_case: int=2 , snake_case: Dict="absolute" , snake_case: Optional[int]=True , snake_case: Tuple=768 , **snake_case: Union[str, Any] , ) -> Union[str, Any]: super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) snake_case_ :Dict = vocab_size snake_case_ :str = hidden_size snake_case_ :List[Any] = num_hidden_layers snake_case_ :List[Any] = num_attention_heads snake_case_ :Union[str, Any] = hidden_act snake_case_ :Tuple = intermediate_size snake_case_ :List[str] = hidden_dropout_prob snake_case_ :int = attention_probs_dropout_prob snake_case_ :int = max_position_embeddings snake_case_ :Optional[int] = type_vocab_size snake_case_ :Union[str, Any] = initializer_range snake_case_ :str = initializer_factor snake_case_ :List[str] = layer_norm_eps snake_case_ :Tuple = position_embedding_type snake_case_ :str = use_cache snake_case_ :List[str] = project_dim class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Optional[Any] = """altclip_vision_model""" def __init__( self: Dict , snake_case: Dict=768 , snake_case: List[Any]=3_072 , snake_case: int=512 , snake_case: List[Any]=12 , snake_case: List[str]=12 , snake_case: Optional[int]=3 , snake_case: int=224 , snake_case: Optional[Any]=32 , snake_case: Optional[int]="quick_gelu" , snake_case: Tuple=1E-5 , snake_case: Tuple=0.0 , snake_case: List[str]=0.0_2 , snake_case: Union[str, Any]=1.0 , **snake_case: str , ) -> Optional[Any]: super().__init__(**snake_case ) snake_case_ :int = hidden_size snake_case_ :Optional[int] = intermediate_size snake_case_ :List[str] = projection_dim snake_case_ :Any = num_hidden_layers snake_case_ :Optional[Any] = num_attention_heads snake_case_ :Union[str, Any] = num_channels snake_case_ :int = patch_size snake_case_ :List[Any] = image_size snake_case_ :int = initializer_range snake_case_ :Optional[Any] = initializer_factor snake_case_ :str = attention_dropout snake_case_ :List[Any] = layer_norm_eps snake_case_ :List[str] = hidden_act @classmethod def lowerCAmelCase_ ( cls: List[str] , snake_case: Union[str, os.PathLike] , **snake_case: List[Any] ) -> "PretrainedConfig": cls._set_token_in_kwargs(snake_case ) snake_case_, snake_case_ :List[str] = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": snake_case_ :Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case , **snake_case ) class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : str = """altclip""" _A : Any = True def __init__( self: int , snake_case: Any=None , snake_case: Optional[Any]=None , snake_case: str=768 , snake_case: int=2.6_5_9_2 , **snake_case: Union[str, Any] ) -> str: # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). snake_case_ :str = kwargs.pop("""text_config_dict""" , snake_case ) snake_case_ :List[str] = kwargs.pop("""vision_config_dict""" , snake_case ) super().__init__(**snake_case ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case_ :Tuple = {} # This is the complete result when using `text_config_dict`. snake_case_ :str = AltCLIPTextConfig(**snake_case ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case_ :List[str] = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case_ :str = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(snake_case ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case_ :Tuple = {} # This is the complete result when using `vision_config_dict`. snake_case_ :Dict = AltCLIPVisionConfig(**snake_case ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case_ :Union[str, Any] = { str(snake_case ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case_ :Dict = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case_ :Dict = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(snake_case ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case_ :Optional[Any] = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: snake_case_ :List[str] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) snake_case_ :Tuple = AltCLIPTextConfig(**snake_case ) snake_case_ :str = AltCLIPVisionConfig(**snake_case ) snake_case_ :int = projection_dim snake_case_ :Union[str, Any] = logit_scale_init_value snake_case_ :Dict = 1.0 @classmethod def lowerCAmelCase_ ( cls: str , snake_case: AltCLIPTextConfig , snake_case: AltCLIPVisionConfig , **snake_case: int ) -> Union[str, Any]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case ) def lowerCAmelCase_ ( self: int ) -> Tuple: snake_case_ :str = copy.deepcopy(self.__dict__ ) snake_case_ :Any = self.text_config.to_dict() snake_case_ :Optional[int] = self.vision_config.to_dict() snake_case_ :List[Any] = self.__class__.model_type return output
66
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {} __UpperCamelCase = padding_side return tokenizer( [line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]: """simple docstring""" __UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase (_a ): def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",): '''simple docstring''' super().__init__() __UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' ) __UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' ) __UpperCamelCase = self.get_char_lens(self.src_file ) __UpperCamelCase = max_source_length __UpperCamelCase = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __UpperCamelCase = tokenizer __UpperCamelCase = prefix if n_obs is not None: __UpperCamelCase = self.src_lens[:n_obs] __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang def __len__( self: Optional[Any] ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self: int,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = index + 1 # linecache starts at 1 __UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' ) __UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer,A_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __UpperCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer ) __UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer __UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' ) __UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' ) __UpperCamelCase = source_inputs['input_ids'].squeeze() __UpperCamelCase = target_inputs['input_ids'].squeeze() __UpperCamelCase = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case_ ( A_: List[Any] ): '''simple docstring''' return [len(A_ ) for x in Path(A_ ).open().readlines()] def snake_case_ ( self: Union[str, Any],A_: Any ): '''simple docstring''' __UpperCamelCase = torch.stack([x['input_ids'] for x in batch] ) __UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] ) __UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] ) __UpperCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer,A_ ) else self.tokenizer.pad_token_id ) __UpperCamelCase = trim_batch(A_,A_ ) __UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ ) __UpperCamelCase = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch __snake_case = getLogger(__name__) def _A ( _lowercase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowercase ) ) def _A ( _lowercase ) -> None: """simple docstring""" __UpperCamelCase = get_git_info() save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) ) def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]: """simple docstring""" with open(_lowercase , 'w' ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def _A ( _lowercase ) -> Union[str, Any]: """simple docstring""" with open(_lowercase ) as f: return json.load(_lowercase ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = git.Repo(search_parent_directories=_lowercase ) __UpperCamelCase = { 'repo_id': str(_lowercase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def _A ( _lowercase , _lowercase ) -> List: """simple docstring""" return list(map(_lowercase , _lowercase ) ) def _A ( _lowercase , _lowercase ) -> Tuple: """simple docstring""" with open(_lowercase , 'wb' ) as f: return pickle.dump(_lowercase , _lowercase ) def _A ( _lowercase ) -> List[Any]: """simple docstring""" def remove_articles(_lowercase ): return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __UpperCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def _A ( _lowercase , _lowercase ) -> int: """simple docstring""" __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = normalize_answer(_lowercase ).split() __UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase ) __UpperCamelCase = sum(common.values() ) if num_same == 0: return 0 __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = 1.0 * num_same / len(_lowercase ) __UpperCamelCase = (2 * precision * recall) / (precision + recall) return fa def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" assert len(_lowercase ) == len(_lowercase ) __UpperCamelCase = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" return model_prefix.startswith('rag' ) def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __UpperCamelCase = 'dropout_rate' for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
310
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Tuple , _lowerCAmelCase : pyspark.sql.DataFrame , _lowerCAmelCase : Optional[NamedSplit] = None , _lowerCAmelCase : Optional[Features] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : str = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : str = "arrow" , **_lowerCAmelCase : List[str] , ): super().__init__( split=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , **_lowerCAmelCase , ) A = load_from_cache_file A = file_format A = Spark( df=_lowerCAmelCase , features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , working_dir=_lowerCAmelCase , **_lowerCAmelCase , ) def A (self : Optional[int] ): if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) A = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
356
'''simple docstring''' import os def __a ( ) ->List[Any]: """simple docstring""" A = os.path.join(os.path.dirname(UpperCAmelCase ) , """num.txt""" ) with open(UpperCAmelCase ) as file_hand: return str(sum(int(UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
337
0
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] ): if isinstance(lowerCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_flax class UpperCamelCase__ : def lowerCAmelCase (self : str , snake_case_ : str , snake_case_ : List[Any] ): pass def lowerCAmelCase (self : Dict ): pass def lowerCAmelCase (self : List[str] ): pass def lowerCAmelCase (self : Dict , snake_case_ : np.ndarray , snake_case_ : np.ndarray , snake_case_ : float ): __a : int = np.abs((a - b) ).max() self.assertLessEqual(snake_case_ , snake_case_ , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase (self : int , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : int=None , **snake_case_ : Optional[Any] ): __a : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) __a : List[str] = FlaxVisionTextDualEncoderModel(snake_case_ ) __a : int = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any]=None , **snake_case_ : str ): __a , __a : Union[str, Any] = self.get_vision_text_model(snake_case_ , snake_case_ ) __a : List[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} __a : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) __a : Union[str, Any] = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase (self : Any , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any]=None , **snake_case_ : Union[str, Any] ): __a , __a : Optional[int] = self.get_vision_text_model(snake_case_ , snake_case_ ) __a : List[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} __a : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) __a : Optional[int] = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) __a : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) __a : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case_ ) __a : Tuple = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) __a : List[Any] = after_output[0] __a : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-3 ) def lowerCAmelCase (self : int , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : List[Any]=None , **snake_case_ : Dict ): __a , __a : Union[str, Any] = self.get_vision_text_model(snake_case_ , snake_case_ ) __a : Dict = {'''vision_model''': vision_model, '''text_model''': text_model} __a : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) __a : str = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) __a : Dict = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a : int = to_atuple(vision_model.config.image_size ) __a : Tuple = to_atuple(vision_model.config.patch_size ) __a : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a : Optional[int] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __a : Tuple = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase (self : Dict , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : Any ): pt_model.to(snake_case_ ) pt_model.eval() # prepare inputs __a : int = inputs_dict __a : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): __a : Optional[int] = pt_model(**snake_case_ ).to_tuple() __a : Any = fx_model(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(snake_case_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case_ ) __a : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case_ , from_pt=snake_case_ ) __a : Any = fx_model_loaded(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(snake_case_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case_ ) __a : Optional[int] = VisionTextDualEncoderModel.from_pretrained(snake_case_ , from_flax=snake_case_ ) pt_model_loaded.to(snake_case_ ) pt_model_loaded.eval() with torch.no_grad(): __a : str = pt_model_loaded(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(snake_case_ , pt_output_loaded.numpy() , 4E-2 ) def lowerCAmelCase (self : List[str] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): __a : Any = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) __a : Union[str, Any] = VisionTextDualEncoderModel(snake_case_ ) __a : Tuple = FlaxVisionTextDualEncoderModel(snake_case_ ) __a : List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case_ ) __a : Optional[int] = fx_state self.check_pt_flax_equivalence(snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : str , snake_case_ : Any , snake_case_ : int ): __a : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) __a : List[str] = VisionTextDualEncoderModel(snake_case_ ) __a : Optional[Any] = FlaxVisionTextDualEncoderModel(snake_case_ ) __a : List[Any] = load_flax_weights_in_pytorch_model(snake_case_ , fx_model.params ) self.check_pt_flax_equivalence(snake_case_ , snake_case_ , snake_case_ ) def lowerCAmelCase (self : Union[str, Any] ): __a : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case_ ) def lowerCAmelCase (self : Optional[Any] ): __a : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case_ ) def lowerCAmelCase (self : int ): __a : str = self.prepare_config_and_inputs() self.check_save_load(**snake_case_ ) def lowerCAmelCase (self : int ): __a : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case_ ) @is_pt_flax_cross_test def lowerCAmelCase (self : Tuple ): __a : str = self.prepare_config_and_inputs() __a : str = config_inputs_dict.pop('''vision_config''' ) __a : Union[str, Any] = config_inputs_dict.pop('''text_config''' ) __a : List[str] = config_inputs_dict self.check_equivalence_pt_to_flax(snake_case_ , snake_case_ , snake_case_ ) self.check_equivalence_flax_to_pt(snake_case_ , snake_case_ , snake_case_ ) @slow def lowerCAmelCase (self : Tuple ): __a , __a : Union[str, Any] = self.get_pretrained_model_and_inputs() __a : Optional[Any] = model_a(**snake_case_ ) __a : Union[str, Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case_ ) __a : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(snake_case_ ) __a : Tuple = model_a(**snake_case_ ) __a : int = after_outputs[0] __a : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @require_flax class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): def lowerCAmelCase (self : List[str] ): __a : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=snake_case_ , text_from_pt=snake_case_ , ) __a : List[str] = 1_3 __a : Optional[Any] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __a : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __a : Any = random_attention_mask([batch_size, 4] ) __a : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCAmelCase (self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any ): __a : int = FlaxViTModel(snake_case_ ) __a : str = FlaxBertModel(snake_case_ ) return vision_model, text_model def lowerCAmelCase (self : List[Any] ): __a : Tuple = FlaxViTModelTester(self ) __a : int = FlaxBertModelTester(self ) __a : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() __a : List[str] = bert_model_tester.prepare_config_and_inputs() __a , __a : Tuple = vision_config_and_inputs __a , __a , __a , __a : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class UpperCamelCase__ ( __lowercase ,unittest.TestCase ): def lowerCAmelCase (self : List[Any] ): __a : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=snake_case_ , text_from_pt=snake_case_ , ) __a : int = 1_3 __a : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) __a : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) __a : Optional[int] = random_attention_mask([batch_size, 4] ) __a : Tuple = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def lowerCAmelCase (self : Optional[int] , snake_case_ : str , snake_case_ : str ): __a : Union[str, Any] = FlaxCLIPVisionModel(snake_case_ ) __a : List[Any] = FlaxBertModel(snake_case_ ) return vision_model, text_model def lowerCAmelCase (self : Dict ): __a : Optional[int] = FlaxCLIPVisionModelTester(self ) __a : Union[str, Any] = FlaxBertModelTester(self ) __a : Any = clip_model_tester.prepare_config_and_inputs() __a : List[Any] = bert_model_tester.prepare_config_and_inputs() __a , __a : List[Any] = vision_config_and_inputs __a , __a , __a , __a : Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class UpperCamelCase__ ( unittest.TestCase ): @slow def lowerCAmelCase (self : List[Any] ): __a : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) __a : List[Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __a : Union[str, Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=snake_case_ , padding=snake_case_ , return_tensors='''np''' ) __a : List[Any] = model(**snake_case_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a : Dict = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , snake_case_ , atol=1E-3 ) )
216
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase__ =getLogger(__name__) def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 8 , lowerCAmelCase__ : int = 1_0_2_4 , lowerCAmelCase__ : Union[str, Any]="val" , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Union[str, Any]="summarization" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : int="" , **lowerCAmelCase__ : int , ): __a : List[Any] = str(lowerCAmelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='''nccl''' , rank=lowerCAmelCase__ ) __a : Tuple = Path(lowerCAmelCase__ ) __a : Dict = save_dir.joinpath(f"rank_{local_rank}_output.json" ) torch.cuda.set_device(lowerCAmelCase__ ) __a : Dict = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase__ ).cuda() if fpaa: __a : str = model.half() # determine if we need to increase num_beams use_task_specific_params(lowerCAmelCase__ , lowerCAmelCase__ ) # update config with task specific params __a : List[str] = generate_kwargs.pop('''num_beams''' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: __a : Dict = num_return_sequences __a : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) logger.info(f"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type. if max_source_length is None: __a : Dict = tokenizer.model_max_length if prefix is None: __a : Dict = prefix or getattr(model.config , '''prefix''' , '''''' ) or '''''' __a : List[Any] = SeqaSeqDataset( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_target_length=1_0_2_4 , type_path=lowerCAmelCase__ , n_obs=lowerCAmelCase__ , prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. __a : Tuple = ds.make_sortish_sampler(lowerCAmelCase__ , distributed=lowerCAmelCase__ , add_extra_examples=lowerCAmelCase__ , shuffle=lowerCAmelCase__ ) __a : List[Any] = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , collate_fn=ds.collate_fn ) __a : List[Any] = [] for batch in tqdm(lowerCAmelCase__ ): __a : Any = model.generate( input_ids=batch['''input_ids'''].to(model.device ) , attention_mask=batch['''attention_mask'''].to(model.device ) , num_return_sequences=lowerCAmelCase__ , num_beams=lowerCAmelCase__ , **lowerCAmelCase__ , ) __a : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) __a : int = batch['''ids'''] if num_return_sequences > 1: __a : List[str] = chunks(lowerCAmelCase__ , lowerCAmelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(lowerCAmelCase__ ): results.append({'''pred''': pred, '''id''': ids[i].item()} ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return results, sampler.num_replicas def __UpperCamelCase ( ): __a : str = argparse.ArgumentParser( epilog='''Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate''' ) parser.add_argument('''--data_dir''' , type=lowerCAmelCase__ , help='''like cnn_dm/test.source''' ) parser.add_argument( '''--model_name''' , type=lowerCAmelCase__ , help='''like facebook/bart-large-cnn,t5-base, etc.''' , default='''sshleifer/distilbart-xsum-12-3''' , ) parser.add_argument('''--save_dir''' , type=lowerCAmelCase__ , help='''where to save''' , default='''tmp_gen''' ) parser.add_argument('''--max_source_length''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ ) parser.add_argument( '''--type_path''' , type=lowerCAmelCase__ , default='''test''' , help='''which subset to evaluate typically train/val/test''' ) parser.add_argument('''--task''' , type=lowerCAmelCase__ , default='''summarization''' , help='''used for task_specific_params + metrics''' ) parser.add_argument('''--bs''' , type=lowerCAmelCase__ , default=8 , required=lowerCAmelCase__ , help='''batch size''' ) parser.add_argument( '''--local_rank''' , type=lowerCAmelCase__ , default=-1 , required=lowerCAmelCase__ , help='''should be passed by distributed.launch''' ) parser.add_argument( '''--n_obs''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='''How many observations. Defaults to all.''' ) parser.add_argument( '''--num_return_sequences''' , type=lowerCAmelCase__ , default=1 , required=lowerCAmelCase__ , help='''How many sequences to return''' ) parser.add_argument( '''--sync_timeout''' , type=lowerCAmelCase__ , default=6_0_0 , required=lowerCAmelCase__ , help='''How long should master process wait for other processes to finish.''' , ) parser.add_argument('''--src_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument('''--tgt_lang''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ ) parser.add_argument( '''--prefix''' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''will be added to the begininng of src examples''' ) parser.add_argument('''--fp16''' , action='''store_true''' ) parser.add_argument('''--debug''' , action='''store_true''' ) __a : int = time.time() __a , __a : Tuple = parser.parse_known_args() __a : Optional[int] = parse_numeric_n_bool_cl_kwargs(lowerCAmelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f"parsed the following generate kwargs: {generate_kwargs}" ) __a : Union[str, Any] = Path(args.save_dir + '''_tmp''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) # this handles locking. __a : Dict = list(json_save_dir.glob('''rank_*.json''' ) ) if intermediate_files: raise ValueError(f"Found files at {json_save_dir} please move or remove them." ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. __a : Optional[Any] = {} if args.src_lang is not None: __a : int = args.src_lang if args.tgt_lang is not None: __a : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=lowerCAmelCase__ ) __a , __a : Tuple = eval_data_dir( args.data_dir , lowerCAmelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) if args.local_rank <= 0: __a : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=lowerCAmelCase__ ) __a : List[str] = gather_results_from_each_node(lowerCAmelCase__ , lowerCAmelCase__ , args.sync_timeout ) __a : int = combine_partial_results(lowerCAmelCase__ ) if args.num_return_sequences > 1: __a : List[Any] = save_dir.joinpath('''pseudolabel_results.json''' ) print(f"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ ) return __a : Any = Path(args.data_dir ).joinpath(args.type_path + '''.target''' ) with open(lowerCAmelCase__ ) as f: __a : Optional[int] = [x.rstrip() for x in f.readlines()][: len(lowerCAmelCase__ )] # Calculate metrics, save metrics, and save _generations.txt __a : str = '''translation''' in args.task __a : List[str] = calculate_bleu if calc_bleu else calculate_rouge __a : Any = '''bleu''' if calc_bleu else '''rouge''' __a : Dict = score_fn(lowerCAmelCase__ , lowerCAmelCase__ ) __a : Dict = len(lowerCAmelCase__ ) __a : str = time.time() - start_time __a : List[str] = round(runtime / metrics['''n_obs'''] , 4 ) __a : Tuple = num_replicas # TODO(@stas00): add whatever metadata to metrics __a : Optional[int] = save_dir.joinpath(f"{args.type_path}_{metric_name}.json" ) save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) print(lowerCAmelCase__ ) write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}_generations.txt" ) ) if args.debug: write_txt_file(lowerCAmelCase__ , save_dir.joinpath(f"{args.type_path}.target" ) ) else: shutil.rmtree(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[int] ): __a : Optional[int] = [] for partial_result in partial_results: records.extend(lowerCAmelCase__ ) __a : Tuple = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["id"] ) __a : Tuple = [x['''pred'''] for x in records] return preds def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ): # WAIT FOR lots of .json files __a : Tuple = time.time() logger.info('''waiting for all nodes to finish''' ) __a : Optional[int] = None while (time.time() - start_wait) < timeout: __a : Optional[int] = list(save_dir.glob('''rank_*.json''' ) ) if len(lowerCAmelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved __a : Tuple = lmap(lowerCAmelCase__ , lowerCAmelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('''Rank 0 gave up on waiting for other processes''' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
216
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def _lowercase ( ) -> Tuple: '''simple docstring''' raise RuntimeError('CUDA out of memory.' ) class lowercase__ ( nn.Module ): def __init__( self : str ): super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE__ = nn.Linear(4 , 5 ) def A_ ( self : str , UpperCAmelCase_ : Union[str, Any] ): return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase_ ) ) ) class lowercase__ ( unittest.TestCase ): def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ : Optional[Any] ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ): nonlocal batch_sizes batch_sizes.append(UpperCAmelCase_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = mock_training_loop_function('hello' ) self.assertListEqual(UpperCAmelCase_ , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def A_ ( self : Any ): @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCAmelCase_ : Any ): pass with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def A_ ( self : Dict ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ : Tuple ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def A_ ( self : List[Any] ): @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def A_ ( self : List[str] ): @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCAmelCase_ : List[str] ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(UpperCAmelCase_ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE__ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = release_memory(UpperCAmelCase_ ) self.assertEqual(torch.cuda.memory_allocated() , UpperCAmelCase_ )
169
import math def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCamelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
169
1
from ...configuration_utils import PretrainedConfig UpperCAmelCase_ : Any = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[Any] = '''tapas''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int=3_0_5_2_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=7_6_8 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : List[Any]=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=1_0_2_4 , SCREAMING_SNAKE_CASE__ : List[str]=[3, 2_5_6, 2_5_6, 2, 2_5_6, 2_5_6, 1_0] , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1E-12 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : List[Any]=10.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Optional[int]=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]="ratio" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : List[str]=6_4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_2 , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , **SCREAMING_SNAKE_CASE__ : str , ) -> str: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) a_ : Any = vocab_size a_ : int = hidden_size a_ : List[str] = num_hidden_layers a_ : Optional[Any] = num_attention_heads a_ : Optional[int] = hidden_act a_ : List[Any] = intermediate_size a_ : Union[str, Any] = hidden_dropout_prob a_ : Union[str, Any] = attention_probs_dropout_prob a_ : Optional[Any] = max_position_embeddings a_ : int = type_vocab_sizes a_ : str = initializer_range a_ : Optional[Any] = layer_norm_eps # Fine-tuning task hyperparameters a_ : List[Any] = positive_label_weight a_ : int = num_aggregation_labels a_ : Union[str, Any] = aggregation_loss_weight a_ : Dict = use_answer_as_supervision a_ : Optional[int] = answer_loss_importance a_ : Any = use_normalized_answer_loss a_ : Optional[int] = huber_loss_delta a_ : Tuple = temperature a_ : str = aggregation_temperature a_ : Union[str, Any] = use_gumbel_for_cells a_ : Tuple = use_gumbel_for_aggregation a_ : Any = average_approximation_function a_ : Dict = cell_selection_preference a_ : Any = answer_loss_cutoff a_ : Dict = max_num_rows a_ : str = max_num_columns a_ : Union[str, Any] = average_logits_per_cell a_ : List[Any] = select_one_column a_ : Any = allow_empty_column_selection a_ : int = init_cell_selection_weights_to_zero a_ : List[Any] = reset_position_index_per_cell a_ : Tuple = disable_per_token_loss # Aggregation hyperparameters a_ : Union[str, Any] = aggregation_labels a_ : Optional[int] = no_aggregation_label_index if isinstance(self.aggregation_labels , SCREAMING_SNAKE_CASE__ ): a_ : Optional[Any] = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in aggregation_labels.items()}
32
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a__ : str = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
0
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _UpperCAmelCase ( a ,a ,a ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionControlNetImgaImgPipeline a__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) a__ =IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCAmelCase ( self ) -> Any: torch.manual_seed(0 ) _UpperCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) _UpperCAmelCase : int = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) _UpperCAmelCase : str = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _UpperCAmelCase : Union[str, Any] = CLIPTextModel(A ) _UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : Optional[Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> List[str]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : Dict = torch.manual_seed(A ) else: _UpperCAmelCase : Tuple = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : Optional[Any] = 2 _UpperCAmelCase : Tuple = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=A , device=torch.device(A ) , ) _UpperCAmelCase : Any = floats_tensor(control_image.shape , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : Optional[int] = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((6_4, 6_4) ) _UpperCAmelCase : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __lowerCAmelCase ( self ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> int: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _UpperCAmelCase ( a ,a ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionControlNetImgaImgPipeline a__ =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} a__ =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a__ =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __lowerCAmelCase ( self ) -> int: torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(A ): if isinstance(A , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _UpperCAmelCase : Dict = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(A ) torch.manual_seed(0 ) _UpperCAmelCase : int = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(A ) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=A , set_alpha_to_one=A , ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) _UpperCAmelCase : Tuple = CLIPTextModel(A ) _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : Union[str, Any] = MultiControlNetModel([controlneta, controlneta] ) _UpperCAmelCase : Optional[int] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> List[Any]: if str(A ).startswith('''mps''' ): _UpperCAmelCase : str = torch.manual_seed(A ) else: _UpperCAmelCase : Any = torch.Generator(device=A ).manual_seed(A ) _UpperCAmelCase : Optional[int] = 2 _UpperCAmelCase : int = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=A , device=torch.device(A ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=A , device=torch.device(A ) , ), ] _UpperCAmelCase : int = floats_tensor(control_image[0].shape , rng=random.Random(A ) ).to(A ) _UpperCAmelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[Any] = Image.fromarray(np.uinta(A ) ).convert('''RGB''' ).resize((6_4, 6_4) ) _UpperCAmelCase : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = self.pipeline_class(**A ) pipe.to(A ) _UpperCAmelCase : List[Any] = 10.0 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Tuple = self.get_dummy_inputs(A ) _UpperCAmelCase : Dict = steps _UpperCAmelCase : Optional[int] = scale _UpperCAmelCase : Optional[Any] = pipe(**A )[0] _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(A ) _UpperCAmelCase : Tuple = steps _UpperCAmelCase : str = scale _UpperCAmelCase : Tuple = pipe(**A , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _UpperCAmelCase : Dict = self.get_dummy_inputs(A ) _UpperCAmelCase : str = steps _UpperCAmelCase : List[str] = scale _UpperCAmelCase : Optional[Any] = pipe(**A , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _UpperCAmelCase : Tuple = self.get_dummy_inputs(A ) _UpperCAmelCase : Dict = steps _UpperCAmelCase : Tuple = scale _UpperCAmelCase : Optional[int] = pipe(**A , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = self.get_dummy_components() _UpperCAmelCase : Optional[int] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A ) except NotImplementedError: pass @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : List[str] = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) _UpperCAmelCase : int = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=A , controlnet=A ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) _UpperCAmelCase : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCAmelCase : str = '''evil space-punk bird''' _UpperCAmelCase : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((5_1_2, 5_1_2) ) _UpperCAmelCase : Dict = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((5_1_2, 5_1_2) ) _UpperCAmelCase : Optional[int] = pipe( A , A , control_image=A , generator=A , output_type='''np''' , num_inference_steps=5_0 , strength=0.6 , ) _UpperCAmelCase : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) _UpperCAmelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
351
"""simple docstring""" import qiskit def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): _UpperCAmelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register _UpperCAmelCase : Union[str, Any] = qiskit.QuantumCircuit(UpperCamelCase__ , UpperCamelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator _UpperCAmelCase : Tuple = qiskit.execute(UpperCamelCase__ , UpperCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase :str = single_qubit_measure(2, 2) print(f"Total count for various states are: {counts}")
68
0
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = [1] lowerCamelCase_ = 0, 0, 0 lowerCamelCase_ = ugly_nums[ia] * 2 lowerCamelCase_ = ugly_nums[ia] * 3 lowerCamelCase_ = ugly_nums[ia] * 5 for _ in range(1 , _A ): lowerCamelCase_ = min(_A , _A , _A ) ugly_nums.append(_A ) if next_num == next_a: ia += 1 lowerCamelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCamelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCamelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(200) = }""")
204
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase : int = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Tuple = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[Any] = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" import argparse import os import re import packaging.version _UpperCamelCase : Optional[Any] = 'examples/' _UpperCamelCase : Any = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _UpperCamelCase : List[str] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _UpperCamelCase : List[str] = 'README.md' def snake_case (A_ :str , A_ :Optional[Any] , A_ :Any ): '''simple docstring''' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a, a : Any = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , A_ ) a : Union[str, Any] = re_pattern.sub(A_ , A_ ) with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(A_ ) def snake_case (A_ :List[Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(A_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(A_ , A_ ) , A_ , pattern='examples' ) def snake_case (A_ :Tuple , A_ :Optional[Any]=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A_ , A_ , A_ ) if not patch: update_version_in_examples(A_ ) def snake_case (): '''simple docstring''' a : str = '🤗 Transformers currently provides the following architectures' a : Dict = '1. Want to contribute a new model?' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Optional[Any] = f.readlines() # Find the start of the list. a : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : int = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(A_ ) def snake_case (): '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: a : List[str] = f.read() a : str = REPLACE_PATTERNS['init'][0].search(A_ ).groups()[0] return packaging.version.parse(A_ ) def snake_case (A_ :Optional[Any]=False ): '''simple docstring''' a : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Tuple = default_version.base_version elif patch: a : Union[str, Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: a : Optional[Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. a : Union[str, Any] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(A_ ) == 0: a : int = default_version print(f'''Updating version to {version}.''' ) global_version_update(A_ , patch=A_ ) def snake_case (): '''simple docstring''' a : str = get_version() a : Optional[int] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' a : Optional[int] = current_version.base_version # Check with the user we got that right. a : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(A_ ) == 0: a : Union[str, Any] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(A_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _UpperCamelCase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
186
0
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = ProphetNetTokenizer _snake_case = False def A__ ( self ) -> List[Any]: super().setUp() __lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def A__ ( self , snake_case_ ) -> Dict: __lowerCAmelCase = """UNwant\u00E9d,running""" __lowerCAmelCase = """unwanted, running""" return input_text, output_text def A__ ( self ) -> List[Any]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case_ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 12, 10, 11] ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def A__ ( self ) -> Dict: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def A__ ( self ) -> str: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def A__ ( self ) -> str: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self ) -> str: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def A__ ( self ) -> Tuple: __lowerCAmelCase = BasicTokenizer(do_lower_case=snake_case_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def A__ ( self ) -> str: __lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowerCAmelCase = {} for i, token in enumerate(snake_case_ ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=snake_case_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def A__ ( self ) -> Dict: __lowerCAmelCase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowerCAmelCase = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __lowerCAmelCase = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] __lowerCAmelCase = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def A__ ( self ) -> List[Any]: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def A__ ( self ) -> Tuple: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def A__ ( self ) -> List[Any]: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def A__ ( self ) -> str: __lowerCAmelCase = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=snake_case_ ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
301
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
301
1
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = None __snake_case = None @property def UpperCamelCase__ ( self ): return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''padding_value''' ) ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = self.feat_extract_tester.seq_length_diff snake_case_ = self.feat_extract_tester.max_seq_length + pad_diff snake_case_ = self.feat_extract_tester.min_seq_length snake_case_ = self.feat_extract_tester.batch_size snake_case_ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , padding=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) snake_case_ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' )[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] self.assertTrue(all(len(_UpperCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct snake_case_ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to smallest with np snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to middle snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , truncation=_UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy snake_case_ = 12 snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , ) snake_case_ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of snake_case_ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: snake_case_ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = min(_UpperCAmelCase ) snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
267
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> List[Any]: """simple docstring""" for char in word: snake_case_ = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> str: """simple docstring""" snake_case_ = set() for token in tokens: snake_case_ = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) snake_case_ = list(SCREAMING_SNAKE_CASE ) return word_list def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> List[str]: """simple docstring""" if not chinese_word_set: return bert_tokens snake_case_ = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) snake_case_ = bert_tokens snake_case_ , snake_case_ = 0, len(SCREAMING_SNAKE_CASE ) while start < end: snake_case_ = True if is_chinese(bert_word[start] ): snake_case_ = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): snake_case_ = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case_ = '''##''' + bert_word[j] snake_case_ = start + i snake_case_ = False break if single_word: start += 1 return bert_word def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> Any: """simple docstring""" snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=['''cws'''] ).cws snake_case_ = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): snake_case_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) snake_case_ = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case_ = [] for id in input_ids: snake_case_ = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) snake_case_ = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": snake_case_ = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> Tuple: """simple docstring""" with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: snake_case_ = f.readlines() snake_case_ = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case_ = LTP(args.ltp ) # faster in GPU device snake_case_ = BertTokenizer.from_pretrained(args.bert ) snake_case_ = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: snake_case_ = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", required=False, type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", required=False, type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""", ) parser.add_argument( """--bert""", required=False, type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""", ) parser.add_argument( """--save_path""", required=False, type=str, default="""./resources/ref.txt""", help="""path to save res""", ) UpperCAmelCase = parser.parse_args() main(args)
267
1
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[Any] = None a__ : int = BloomTokenizerFast a__ : Any = BloomTokenizerFast a__ : Optional[Any] = True a__ : Optional[int] = False a__ : Union[str, Any] = """tokenizer_file""" a__ : Dict = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def UpperCamelCase__ ( self) -> List[str]: super().setUp() __UpperCamelCase :int = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''') tokenizer.save_pretrained(self.tmpdirname) def UpperCamelCase__ ( self , **__lowercase) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Union[str, Any] = self.get_rust_tokenizer() __UpperCamelCase :str = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] __UpperCamelCase :Optional[int] = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] __UpperCamelCase :Dict = tokenizer.batch_encode_plus(__lowercase)['''input_ids'''] self.assertListEqual(__lowercase , __lowercase) __UpperCamelCase :Dict = tokenizer.batch_decode(__lowercase) self.assertListEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self , __lowercase=6) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __UpperCamelCase :int = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __UpperCamelCase :str = '''This is a simple input''' __UpperCamelCase :Optional[int] = ['''This is a simple input 1''', '''This is a simple input 2'''] __UpperCamelCase :Any = ('''This is a simple input''', '''This is a pair''') __UpperCamelCase :Optional[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__lowercase , max_length=__lowercase) tokenizer_r.encode_plus(__lowercase , max_length=__lowercase) tokenizer_r.batch_encode_plus(__lowercase , max_length=__lowercase) tokenizer_r.encode(__lowercase , max_length=__lowercase) tokenizer_r.batch_encode_plus(__lowercase , max_length=__lowercase) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''') __UpperCamelCase :str = None # Hotfixing padding = None self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding='''max_length''') # Simple input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''') # Simple input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowercase , tokenizer_r.encode , __lowercase , max_length=__lowercase , padding='''max_length''') # Pair input self.assertRaises(__lowercase , tokenizer_r.encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''') # Pair input self.assertRaises( __lowercase , tokenizer_r.batch_encode_plus , __lowercase , max_length=__lowercase , padding='''max_length''' , ) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :int = self.get_rust_tokenizer() __UpperCamelCase :List[str] = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__lowercase) __UpperCamelCase :Optional[int] = next(iter(__lowercase))['''premise'''] # pick up one data __UpperCamelCase :Union[str, Any] = list(sample_data.values()) __UpperCamelCase :Optional[int] = list(map(tokenizer.encode , __lowercase)) __UpperCamelCase :Union[str, Any] = [tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase) for x in output_tokens] self.assertListEqual(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
43
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase : List[Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : str , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Any =np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__ : str =np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__ : Dict =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : Tuple, lowerCamelCase : List[str]=13, lowerCamelCase : Dict=7, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : int=99, lowerCamelCase : Union[str, Any]=16, lowerCamelCase : List[str]=2, lowerCamelCase : int=4, lowerCamelCase : Tuple=4, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[str]=0.1, lowerCamelCase : str=0.1, lowerCamelCase : Optional[int]=32, lowerCamelCase : List[str]=2, lowerCamelCase : Tuple=1, lowerCamelCase : Optional[int]=0, lowerCamelCase : int=0.02, )-> Optional[Any]: lowerCamelCase__ : List[str] =parent lowerCamelCase__ : Dict =batch_size lowerCamelCase__ : Optional[int] =seq_length lowerCamelCase__ : Any =is_training lowerCamelCase__ : Optional[int] =use_labels lowerCamelCase__ : List[str] =vocab_size lowerCamelCase__ : List[Any] =hidden_size lowerCamelCase__ : List[Any] =num_hidden_layers lowerCamelCase__ : Tuple =num_attention_heads lowerCamelCase__ : List[Any] =intermediate_size lowerCamelCase__ : Union[str, Any] =hidden_act lowerCamelCase__ : Optional[Any] =hidden_dropout_prob lowerCamelCase__ : Tuple =attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] =max_position_embeddings lowerCamelCase__ : List[Any] =eos_token_id lowerCamelCase__ : Tuple =pad_token_id lowerCamelCase__ : Union[str, Any] =bos_token_id lowerCamelCase__ : List[Any] =initializer_range def snake_case ( self : Optional[Any] )-> str: lowerCamelCase__ : Dict =np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) lowerCamelCase__ : Union[str, Any] =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) lowerCamelCase__ : Dict =shift_tokens_right(lowerCamelCase, 1, 2 ) lowerCamelCase__ : Optional[Any] =BlenderbotConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=lowerCamelCase, ) lowerCamelCase__ : List[str] =prepare_blenderbot_inputs_dict(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return config, inputs_dict def snake_case ( self : str )-> Optional[Any]: lowerCamelCase__ , lowerCamelCase__ : Any =self.prepare_config_and_inputs() return config, inputs_dict def snake_case ( self : int, lowerCamelCase : Tuple, lowerCamelCase : Dict, lowerCamelCase : Tuple )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =20 lowerCamelCase__ : Optional[int] =model_class_name(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase__ : Any =model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Dict =jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' ) lowerCamelCase__ : List[Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase__ : int =model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : Optional[int] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowerCamelCase__ : Union[str, Any] =model.decode( decoder_input_ids[:, -1:], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : int =model.decode(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) def snake_case ( self : str, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : str )-> List[str]: lowerCamelCase__ : List[Any] =20 lowerCamelCase__ : List[Any] =model_class_name(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =model.encode(inputs_dict['''input_ids'''] ) lowerCamelCase__ , lowerCamelCase__ : str =( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) lowerCamelCase__ : Tuple =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) lowerCamelCase__ : List[str] =model.init_cache(decoder_input_ids.shape[0], lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) lowerCamelCase__ : List[Any] =model.decode( decoder_input_ids[:, :-1], lowerCamelCase, decoder_attention_mask=lowerCamelCase, past_key_values=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) lowerCamelCase__ : Optional[Any] =model.decode( decoder_input_ids[:, -1:], lowerCamelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=lowerCamelCase, decoder_position_ids=lowerCamelCase, ) lowerCamelCase__ : Optional[Any] =model.decode(lowerCamelCase, lowerCamelCase, decoder_attention_mask=lowerCamelCase ) lowerCamelCase__ : List[Any] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3, msg=F'''Max diff is {diff}''' ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' _a = 9_9 def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) lowerCamelCase__ : Any =input_ids.shape[0] lowerCamelCase__ : Any =BlenderbotConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def snake_case ( self : Any )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =self._get_config_and_data() lowerCamelCase__ : int =FlaxBlenderbotForConditionalGeneration(lowerCamelCase ) lowerCamelCase__ : str =lm_model(input_ids=lowerCamelCase ) lowerCamelCase__ : List[Any] =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape, lowerCamelCase ) def snake_case ( self : Tuple )-> Optional[Any]: lowerCamelCase__ : Union[str, Any] =BlenderbotConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lowerCamelCase__ : Union[str, Any] =FlaxBlenderbotForConditionalGeneration(lowerCamelCase ) lowerCamelCase__ : List[Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) lowerCamelCase__ : Optional[Any] =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) lowerCamelCase__ : Optional[int] =lm_model(input_ids=lowerCamelCase, decoder_input_ids=lowerCamelCase ) lowerCamelCase__ : List[str] =(*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape, lowerCamelCase ) def snake_case ( self : Union[str, Any] )-> Union[str, Any]: lowerCamelCase__ : Optional[int] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) lowerCamelCase__ : Optional[Any] =shift_tokens_right(lowerCamelCase, 1, 2 ) lowerCamelCase__ : str =np.equal(lowerCamelCase, 1 ).astype(np.floataa ).sum() lowerCamelCase__ : List[str] =np.equal(lowerCamelCase, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(lowerCamelCase, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase , lowerCAmelCase_ ): '''simple docstring''' _a = True _a = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _a = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def snake_case ( self : Union[str, Any] )-> List[str]: lowerCamelCase__ : str =FlaxBlenderbotModelTester(self ) def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[str] )-> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[Any] )-> Tuple: lowerCamelCase__ , lowerCamelCase__ : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : List[Any] =self._prepare_for_class(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : int =model_class(lowerCamelCase ) @jax.jit def encode_jitted(lowerCamelCase : int, lowerCamelCase : Union[str, Any]=None, **lowerCamelCase : List[str] ): return model.encode(input_ids=lowerCamelCase, attention_mask=lowerCamelCase ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : Any =encode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Dict =encode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase ): self.assertEqual(jitted_output.shape, output.shape ) def snake_case ( self : List[str] )-> Dict: lowerCamelCase__ , lowerCamelCase__ : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Optional[Any] =model_class(lowerCamelCase ) lowerCamelCase__ : List[Any] =model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] ) lowerCamelCase__ : Optional[int] ={ '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Tuple ): return model.decode( decoder_input_ids=lowerCamelCase, decoder_attention_mask=lowerCamelCase, encoder_outputs=lowerCamelCase, ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : Union[str, Any] =decode_jitted(**lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Optional[Any] =decode_jitted(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ) ) for jitted_output, output in zip(lowerCamelCase, lowerCamelCase ): self.assertEqual(jitted_output.shape, output.shape ) @slow def snake_case ( self : Tuple )-> Tuple: for model_class_name in self.all_model_classes: lowerCamelCase__ : int =model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__ : Union[str, Any] =np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase__ : Optional[Any] =model(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skipUnless(jax_device != '''cpu''', '''3B test too slow on CPU.''' ) @slow def snake_case ( self : Optional[int] )-> Tuple: lowerCamelCase__ : List[Any] ={'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} lowerCamelCase__ : Optional[int] ={'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} lowerCamelCase__ : Tuple =FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''', from_pt=lowerCamelCase ) lowerCamelCase__ : int =BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) lowerCamelCase__ : str =['''Sam'''] lowerCamelCase__ : Union[str, Any] =tokenizer(lowerCamelCase, return_tensors='''jax''' ) lowerCamelCase__ : Tuple =model.generate(**lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Tuple ='''Sam is a great name. It means "sun" in Gaelic.''' lowerCamelCase__ : Union[str, Any] =tokenizer.batch_decode(lowerCamelCase, **lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
238
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : int = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def A ( lowercase , lowercase , lowercase=8 ) -> Optional[int]: '''simple docstring''' UpperCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ , ) -> Dict: """simple docstring""" super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) UpperCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" if latents is None: UpperCamelCase = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCamelCase = latents.to(A_ ) UpperCamelCase = latents * scheduler.init_noise_sigma return latents def __UpperCamelCase ( self , A_=0 ) -> Tuple: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) UpperCamelCase = torch.device(F'''cuda:{gpu_id}''' ) UpperCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def __UpperCamelCase ( self , A_=0 ) -> Dict: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) UpperCamelCase = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase , UpperCamelCase = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. UpperCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCamelCase ( self ) -> str: """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 100 , A_ = 4.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , ) -> str: """simple docstring""" UpperCamelCase = self._execution_device UpperCamelCase = guidance_scale > 1.0 if isinstance(A_ , A_ ): UpperCamelCase = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): UpperCamelCase = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): UpperCamelCase = torch.cat(A_ , dim=0 ) UpperCamelCase = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCamelCase = image_embeds.repeat_interleave(A_ , dim=0 ) UpperCamelCase = negative_image_embeds.repeat_interleave(A_ , dim=0 ) UpperCamelCase = hint.repeat_interleave(A_ , dim=0 ) UpperCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) UpperCamelCase = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) UpperCamelCase = self.scheduler.timesteps UpperCamelCase = self.movq.config.latent_channels UpperCamelCase , UpperCamelCase = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent UpperCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase = {'image_embeds': image_embeds, 'hint': hint} UpperCamelCase = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 ) UpperCamelCase , UpperCamelCase = variance_pred.chunk(2 ) UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase , UpperCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing UpperCamelCase = self.movq.decode(A_ , force_not_quantize=A_ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: UpperCamelCase = image * 0.5 + 0.5 UpperCamelCase = image.clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
371
import os import sys import unittest _UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = find_backend(' if not is_torch_available():' ) self.assertEqual(A_ , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCamelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(A_ , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCamelCase = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(A_ , 'torch_and_transformers_and_onnx' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A_ ) self.assertIn('torch_and_transformers' , A_ ) self.assertIn('flax_and_transformers' , A_ ) self.assertIn('torch_and_transformers_and_onnx' , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(A_ , '\nCONSTANT = None\n' ) UpperCamelCase = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( A_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' UpperCamelCase = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , A_ )
110
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Dict = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__) class _A ( __magic_name__): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True}) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'''text''': Value('''string''')}) SCREAMING_SNAKE_CASE : ClassVar[Features] = Features({'''labels''': ClassLabel}) SCREAMING_SNAKE_CASE : str = "text" SCREAMING_SNAKE_CASE : str = "labels" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) SCREAMING_SNAKE_CASE_ : List[Any] = copy.deepcopy(self ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.label_schema.copy() SCREAMING_SNAKE_CASE_ : List[Any] = features[self.label_column] SCREAMING_SNAKE_CASE_ : List[Any] = label_schema return task_template @property def UpperCAmelCase ( self ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
253
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer A_ :Optional[int] = ['''gpt2'''] A_ :List[Any] = '''gpt2''' if is_tf_available(): class __A ( tf.Module ): """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" super().__init__() __UpperCamelCase : str =tokenizer __UpperCamelCase : Optional[Any] =AutoConfig.from_pretrained(UpperCamelCase_ ) __UpperCamelCase : Tuple =TFGPTaLMHeadModel.from_config(UpperCamelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Optional[int] =self.tokenizer(UpperCamelCase_ ) __UpperCamelCase : int =tokenized['input_ids'].to_tensor() __UpperCamelCase : str =tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __UpperCamelCase : List[str] =self.model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ )['logits'] return outputs @require_tf @require_keras_nlp class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().setUp() __UpperCamelCase : Optional[int] =[GPTaTokenizer.from_pretrained(UpperCamelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __UpperCamelCase : Union[str, Any] =[TFGPTaTokenizer.from_pretrained(UpperCamelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCamelCase : Dict =[ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __UpperCamelCase : List[str] =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __lowercase ( self ): """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __UpperCamelCase : int =tokenizer([test_inputs] , return_tensors='tf' ) __UpperCamelCase : str =tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __UpperCamelCase : str =python_outputs[key].numpy() __UpperCamelCase : Tuple =tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCamelCase_ , tf.intaa ) == tf_outputs_values ) ) @slow def __lowercase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase : Optional[Any] =tf.function(UpperCamelCase_ ) for test_inputs in self.test_sentences: __UpperCamelCase : Dict =tf.constant(UpperCamelCase_ ) __UpperCamelCase : Any =compiled_tokenizer(UpperCamelCase_ ) __UpperCamelCase : Union[str, Any] =tf_tokenizer(UpperCamelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __lowercase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase : Any =ModelToSave(tokenizer=UpperCamelCase_ ) __UpperCamelCase : int =tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCamelCase : str =model.serving(UpperCamelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCamelCase : str =Path(UpperCamelCase_ ) / 'saved.model' tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'serving_default': model.serving} ) __UpperCamelCase : Optional[int] =tf.saved_model.load(UpperCamelCase_ ) __UpperCamelCase : Any =loaded_model.signatures['serving_default'](UpperCamelCase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __lowercase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __UpperCamelCase : List[str] =tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCamelCase : Optional[int] =tf_tokenizer(UpperCamelCase_ ) # Build model with some sample inputs __UpperCamelCase : List[Any] =tf_tokenizer.get_config() __UpperCamelCase : str =TFGPTaTokenizer.from_config(UpperCamelCase_ ) __UpperCamelCase : str =model_from_config(UpperCamelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __lowercase ( self ): """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run __UpperCamelCase : List[Any] =123123 for max_length in [3, 5, 1024]: __UpperCamelCase : Any =tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCamelCase : Optional[int] =tf_tokenizer(UpperCamelCase_ , max_length=UpperCamelCase_ ) __UpperCamelCase : Union[str, Any] =out['input_ids'].numpy().shape[1] assert out_length == max_length
355
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Any = logging.get_logger(__name__) A_ :List[Any] = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[Any] ="""decision_transformer""" UpperCamelCase__ : str =["""past_key_values"""] UpperCamelCase__ : Union[str, Any] ={ """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowerCamelCase__=17 , lowerCamelCase__=4 , lowerCamelCase__=128 , lowerCamelCase__=4096 , lowerCamelCase__=True , lowerCamelCase__=1 , lowerCamelCase__=1024 , lowerCamelCase__=3 , lowerCamelCase__=1 , lowerCamelCase__=None , lowerCamelCase__="relu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1E-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=50256 , lowerCamelCase__=50256 , lowerCamelCase__=False , lowerCamelCase__=False , **lowerCamelCase__ , ): """simple docstring""" __UpperCamelCase : str =state_dim __UpperCamelCase : List[Any] =act_dim __UpperCamelCase : Any =hidden_size __UpperCamelCase : Union[str, Any] =max_ep_len __UpperCamelCase : Optional[int] =action_tanh __UpperCamelCase : Tuple =vocab_size __UpperCamelCase : Any =n_positions __UpperCamelCase : Optional[Any] =n_layer __UpperCamelCase : List[str] =n_head __UpperCamelCase : Union[str, Any] =n_inner __UpperCamelCase : List[Any] =activation_function __UpperCamelCase : Tuple =resid_pdrop __UpperCamelCase : List[str] =embd_pdrop __UpperCamelCase : Tuple =attn_pdrop __UpperCamelCase : Dict =layer_norm_epsilon __UpperCamelCase : Any =initializer_range __UpperCamelCase : Tuple =scale_attn_weights __UpperCamelCase : List[Any] =use_cache __UpperCamelCase : List[str] =scale_attn_by_inverse_layer_idx __UpperCamelCase : Any =reorder_and_upcast_attn __UpperCamelCase : Tuple =bos_token_id __UpperCamelCase : Optional[int] =eos_token_id super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
245
0