code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( UpperCamelCase__): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> Any: '''simple docstring''' super().__init__( lowerCAmelCase__ , split=lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ , streaming=lowerCAmelCase__ , num_proc=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : List[str] =path_or_paths if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else {self.split: path_or_paths} a__ : Dict =Text( cache_dir=lowerCAmelCase__ , data_files=lowerCAmelCase__ , features=lowerCAmelCase__ , **lowerCAmelCase__ , ) def _lowercase ( self ) -> Any: '''simple docstring''' if self.streaming: a__ : Tuple =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a__ : Union[str, Any] =None a__ : Optional[int] =None a__ : Union[str, Any] =None a__ : Optional[Any] =None self.builder.download_and_prepare( download_config=lowerCAmelCase__ , download_mode=lowerCAmelCase__ , verification_mode=lowerCAmelCase__ , base_path=lowerCAmelCase__ , num_proc=self.num_proc , ) a__ : int =self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase__ , in_memory=self.keep_in_memory ) return dataset
95
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCAmelCase : int = False class __lowerCAmelCase ( unittest.TestCase): pass @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) a__ : Optional[Any] =torch.manual_seed(0 ) a__ : Optional[Any] =pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) a__ : str =VersatileDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] =generator.manual_seed(0 ) a__ : Tuple =pipe.dual_guided( prompt="first prompt" , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _lowercase ( self ) -> Any: '''simple docstring''' a__ : str =VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] ="cyberpunk 2077" a__ : int =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) a__ : Union[str, Any] =torch.manual_seed(0 ) a__ : Tuple =pipe.dual_guided( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , text_to_image_strength=0.75 , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" , ).images a__ : int =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Any =np.array([0.14_48, 0.16_19, 0.17_41, 0.10_86, 0.11_47, 0.11_28, 0.11_99, 0.11_65, 0.10_01] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a__ : str ="A painting of a squirrel eating a burger " a__ : Optional[int] =torch.manual_seed(0 ) a__ : str =pipe.text_to_image( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" ).images a__ : Any =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Optional[int] =np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 a__ : Optional[Any] =pipe.image_variation(lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type="numpy" ).images a__ : Union[str, Any] =image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) a__ : Any =np.array([0.30_76, 0.31_23, 0.32_84, 0.37_82, 0.37_70, 0.38_94, 0.42_97, 0.43_31, 0.44_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
95
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor UpperCamelCase_ = logging.get_logger(__name__) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, *A, **A ): '''simple docstring''' warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.', A, ) super().__init__(*A, **A )
364
'''simple docstring''' import math def lowercase__( __UpperCamelCase: float ,__UpperCamelCase: float ): """simple docstring""" return math.pow(__UpperCamelCase ,2 ) - a def lowercase__( __UpperCamelCase: float ): """simple docstring""" return 2 * x def lowercase__( __UpperCamelCase: float ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 2.0 while start <= a: SCREAMING_SNAKE_CASE : Dict = math.pow(__UpperCamelCase ,2 ) return start def lowercase__( __UpperCamelCase: float ,__UpperCamelCase: int = 99_99 ,__UpperCamelCase: float = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) SCREAMING_SNAKE_CASE : Union[str, Any] = get_initial_point(__UpperCamelCase ) for _ in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = value SCREAMING_SNAKE_CASE : Dict = value - fx(__UpperCamelCase ,__UpperCamelCase ) / fx_derivative(__UpperCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
246
0
from __future__ import annotations a_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] a_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a__ ( _UpperCamelCase : list[float] ): __lowerCamelCase = [] __lowerCamelCase = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): __lowerCamelCase = -1 for j in range(i + 1 ,_UpperCamelCase ): if arr[i] < arr[j]: __lowerCamelCase = arr[j] break result.append(_UpperCamelCase ) return result def a__ ( _UpperCamelCase : list[float] ): __lowerCamelCase = [] for i, outer in enumerate(_UpperCamelCase ): __lowerCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: __lowerCamelCase = inner break result.append(_UpperCamelCase ) return result def a__ ( _UpperCamelCase : list[float] ): __lowerCamelCase = len(_UpperCamelCase ) __lowerCamelCase = [] __lowerCamelCase = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __lowerCamelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) a_ = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
330
def a__ ( _UpperCamelCase : int ): __lowerCamelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
330
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __snake_case : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: AutoencoderKL , _SCREAMING_SNAKE_CASE: CLIPTextModel , _SCREAMING_SNAKE_CASE: CLIPTokenizer , _SCREAMING_SNAKE_CASE: UNetaDConditionModel , _SCREAMING_SNAKE_CASE: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _SCREAMING_SNAKE_CASE: StableDiffusionSafetyChecker , _SCREAMING_SNAKE_CASE: CLIPImageProcessor , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Union[str, int]] = "auto") -> Dict: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase : Tuple = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Union[str, Any]: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE) @torch.no_grad() def __call__( self: int , _SCREAMING_SNAKE_CASE: Union[str, List[str]] , _SCREAMING_SNAKE_CASE: int = 512 , _SCREAMING_SNAKE_CASE: int = 512 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: float = 7.5 , _SCREAMING_SNAKE_CASE: Optional[Union[str, List[str]]] = None , _SCREAMING_SNAKE_CASE: Optional[int] = 1 , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: Optional[torch.Generator] = None , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Tuple: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Any = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = len(_SCREAMING_SNAKE_CASE) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE)}""") if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(_SCREAMING_SNAKE_CASE)}.""") # get prompt text embeddings __lowerCAmelCase : Optional[int] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __lowerCAmelCase : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCAmelCase : int = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""") __lowerCAmelCase : Tuple = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __lowerCAmelCase : Any = self.text_encoder(text_input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowerCAmelCase : Optional[Any] = text_embeddings.shape __lowerCAmelCase : Tuple = text_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : List[Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCAmelCase : Union[str, Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCAmelCase : List[str] if negative_prompt is None: __lowerCAmelCase : List[str] = [""] elif type(_SCREAMING_SNAKE_CASE) is not type(_SCREAMING_SNAKE_CASE): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE)} !=""" F""" {type(_SCREAMING_SNAKE_CASE)}.""") elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE)}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`.") else: __lowerCAmelCase : Optional[Any] = negative_prompt __lowerCAmelCase : Dict = text_input_ids.shape[-1] __lowerCAmelCase : int = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" , ) __lowerCAmelCase : str = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCAmelCase : Any = uncond_embeddings.shape[1] __lowerCAmelCase : str = uncond_embeddings.repeat(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1) __lowerCAmelCase : Optional[int] = uncond_embeddings.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCAmelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowerCAmelCase : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __lowerCAmelCase : List[str] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowerCAmelCase : Tuple = torch.randn( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="cpu" , dtype=_SCREAMING_SNAKE_CASE).to(self.device) __lowerCAmelCase : List[Any] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="cpu" , dtype=_SCREAMING_SNAKE_CASE).to( self.device) else: __lowerCAmelCase : Any = torch.randn( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE) else: if latents_reference.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""") __lowerCAmelCase : Optional[int] = latents_reference.to(self.device) __lowerCAmelCase : str = latents.to(self.device) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __lowerCAmelCase : str = (latents_shape[3] - latents_shape_reference[3]) // 2 __lowerCAmelCase : Any = (latents_shape[2] - latents_shape_reference[2]) // 2 __lowerCAmelCase : Optional[int] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __lowerCAmelCase : str = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __lowerCAmelCase : Optional[int] = 0 if dx < 0 else dx __lowerCAmelCase : int = 0 if dy < 0 else dy __lowerCAmelCase : List[str] = max(-dx , 0) __lowerCAmelCase : Any = max(-dy , 0) # import pdb # pdb.set_trace() __lowerCAmelCase : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowerCAmelCase : List[Any] = self.scheduler.timesteps.to(self.device) # scale the initial noise by the standard deviation required by the scheduler __lowerCAmelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCAmelCase : Dict = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) __lowerCAmelCase : Dict = {} if accepts_eta: __lowerCAmelCase : Optional[int] = eta for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE)): # expand the latents if we are doing classifier free guidance __lowerCAmelCase : Any = torch.cat([latents] * 2) if do_classifier_free_guidance else latents __lowerCAmelCase : List[Any] = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # predict the noise residual __lowerCAmelCase : List[str] = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE).sample # perform guidance if do_classifier_free_guidance: __lowerCAmelCase : Any = noise_pred.chunk(2) __lowerCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase : Any = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = 1 / 0.1_8215 * latents __lowerCAmelCase : str = self.vae.decode(_SCREAMING_SNAKE_CASE).sample __lowerCAmelCase : Dict = (image / 2 + 0.5).clamp(0 , 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if self.safety_checker is not None: __lowerCAmelCase : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(_SCREAMING_SNAKE_CASE) , return_tensors="pt").to( self.device) __lowerCAmelCase : List[str] = self.safety_checker( images=_SCREAMING_SNAKE_CASE , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)) else: __lowerCAmelCase : List[Any] = None if output_type == "pil": __lowerCAmelCase : int = self.numpy_to_pil(_SCREAMING_SNAKE_CASE) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_SCREAMING_SNAKE_CASE , nsfw_content_detected=_SCREAMING_SNAKE_CASE)
350
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __snake_case : int = logging.get_logger(__name__) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['input_features'] def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any]=80 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1_6000 , _SCREAMING_SNAKE_CASE: Optional[int]=160 , _SCREAMING_SNAKE_CASE: Dict=30 , _SCREAMING_SNAKE_CASE: str=400 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=False , **_SCREAMING_SNAKE_CASE: Tuple , ) -> List[Any]: """simple docstring""" super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Dict = n_fft __lowerCAmelCase : Any = hop_length __lowerCAmelCase : List[Any] = chunk_length __lowerCAmelCase : Dict = chunk_length * sampling_rate __lowerCAmelCase : Optional[int] = self.n_samples // hop_length __lowerCAmelCase : Tuple = sampling_rate __lowerCAmelCase : int = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: np.array) -> np.ndarray: """simple docstring""" __lowerCAmelCase : Optional[Any] = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , "hann") , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) __lowerCAmelCase : Dict = log_spec[:, :-1] __lowerCAmelCase : List[str] = np.maximum(_SCREAMING_SNAKE_CASE , log_spec.max() - 8.0) __lowerCAmelCase : Union[str, Any] = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE: List[np.ndarray] , _SCREAMING_SNAKE_CASE: List[np.ndarray] , _SCREAMING_SNAKE_CASE: float = 0.0) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: __lowerCAmelCase : List[str] = np.array(_SCREAMING_SNAKE_CASE , np.intaa) __lowerCAmelCase : int = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1)): __lowerCAmelCase : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: __lowerCAmelCase : List[str] = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE) else: __lowerCAmelCase : int = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "max_length" , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") __lowerCAmelCase : str = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") __lowerCAmelCase : Optional[int] = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __lowerCAmelCase : str = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray): __lowerCAmelCase : Union[str, Any] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __lowerCAmelCase : List[Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __lowerCAmelCase : str = [np.asarray([raw_speech]).T] __lowerCAmelCase : str = BatchFeature({"input_features": raw_speech}) # convert into correct format for padding __lowerCAmelCase : Optional[int] = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: __lowerCAmelCase : List[str] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) __lowerCAmelCase : Dict = np.stack(padded_inputs["input_features"] , axis=0) # make sure list is in array format __lowerCAmelCase : Union[str, Any] = padded_inputs.get("input_features").transpose(2 , 0 , 1) __lowerCAmelCase : Dict = [self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE) for waveform in input_features[0]] if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : Dict = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa) for feature in input_features] else: __lowerCAmelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) __lowerCAmelCase : Optional[Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: __lowerCAmelCase : List[str] = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE) return padded_inputs def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Dict[str, Any]: """simple docstring""" __lowerCAmelCase : Any = copy.deepcopy(self.__dict__) __lowerCAmelCase : str = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
58
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
87
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A_ = re.compile(r'''\s+''') def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(snake_case__ , """""" , example["""content"""] ).encode("""utf-8""" ) ).hexdigest()} def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case : Any = [len(snake_case__ ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(snake_case__ ), "line_max": max(snake_case__ )} def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = np.mean([c.isalnum() for c in example["""content"""]] ) return {"alpha_frac": alpha_frac} def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : List[Any] ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["""hash"""] ) return True else: return False def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : List[str]=5 ): """simple docstring""" _snake_case : Any = ["""auto-generated""", """autogenerated""", """automatically generated"""] _snake_case : Tuple = example["""content"""].splitlines() for _, line in zip(range(snake_case__ ) , snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def UpperCAmelCase__ (snake_case__ : Any , snake_case__ : Union[str, Any]=5 , snake_case__ : Any=0.05 ): """simple docstring""" _snake_case : Optional[Any] = ["""unit tests""", """test file""", """configuration file"""] _snake_case : List[Any] = example["""content"""].splitlines() _snake_case : Dict = 0 _snake_case : str = 0 # first test for _, line in zip(range(snake_case__ ) , snake_case__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _snake_case : Optional[int] = example["""content"""].count("""\n""" ) _snake_case : Tuple = int(coeff * nlines ) for line in lines: count_config += line.lower().count("""config""" ) count_test += line.lower().count("""test""" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : Optional[int] = ["""def """, """class """, """for """, """while """] _snake_case : str = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : List[str]=4 ): """simple docstring""" _snake_case : List[Any] = example["""content"""].splitlines() _snake_case : str = 0 for line in lines: counter += line.lower().count("""=""" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def UpperCAmelCase__ (snake_case__ : List[str] ): """simple docstring""" _snake_case : Optional[Any] = tokenizer(example["""content"""] , truncation=snake_case__ )["""input_ids"""] _snake_case : Optional[Any] = len(example["""content"""] ) / len(snake_case__ ) return {"ratio": ratio} def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[int] = {} results.update(get_hash(snake_case__ ) ) results.update(line_stats(snake_case__ ) ) results.update(alpha_stats(snake_case__ ) ) results.update(char_token_ratio(snake_case__ ) ) results.update(is_autogenerated(snake_case__ ) ) results.update(is_config_or_test(snake_case__ ) ) results.update(has_no_keywords(snake_case__ ) ) results.update(has_few_assignments(snake_case__ ) ) return results def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : List[str] ): """simple docstring""" if not check_uniques(snake_case__ , snake_case__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """rb""" ) as f_in: with gzip.open(str(snake_case__ ) + """.gz""" , """wb""" , compresslevel=6 ) as f_out: shutil.copyfileobj(snake_case__ , snake_case__ ) os.unlink(snake_case__ ) # Settings A_ = HfArgumentParser(PreprocessingArguments) A_ = parser.parse_args() if args.num_workers is None: A_ = multiprocessing.cpu_count() A_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A_ = time.time() A_ = load_dataset(args.dataset_name, split='''train''') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing A_ = time.time() A_ = ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes A_ = set(ds.unique('''hash''')) A_ = len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics A_ = time.time() A_ = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A_ = time.time() A_ , A_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file A_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) A_ = output_dir / '''data''' data_dir.mkdir(exist_ok=True) A_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A_ = str(data_dir / F'''file-{file_number+1:012}.json''') A_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
64
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __SCREAMING_SNAKE_CASE :Dict = logging.getLogger() def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("-f" ) _UpperCAmelCase = parser.parse_args() return args.f class A_ ( lowerCAmelCase_ ): def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(snake_case_ ) def lowercase ( self : Tuple , snake_case_ : List[str] ): _UpperCAmelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(snake_case_ , "argv" , snake_case_ ): _UpperCAmelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(snake_case_ , 0.6_6_6 ) @slow @require_torch_non_multi_gpu def lowercase ( self : int ): _UpperCAmelCase = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(snake_case_ ) _UpperCAmelCase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case_ ) _UpperCAmelCase = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(snake_case_ )
156
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __lowercase : str , __lowercase : Tuple , __lowercase : Union[str, Any] , __lowercase : str , __lowercase : Dict=True , __lowercase : Dict="pt" ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(__lowercase , __lowercase ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=__lowercase , padding="max_length" if pad_to_max_length else None , truncation=__lowercase , return_tensors=__lowercase , add_special_tokens=__lowercase , **__lowercase , ) def UpperCAmelCase_ ( __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple=None , ) -> Dict: '''simple docstring''' _UpperCAmelCase = input_ids.ne(__lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A_ ( lowerCAmelCase_ ): def __init__( self : Union[str, Any] , snake_case_ : int , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : int="train" , snake_case_ : Tuple=None , snake_case_ : str=None , snake_case_ : Optional[Any]=None , snake_case_ : Any="" , ): super().__init__() _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case_ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : List[Any] ): return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case_ : List[Any] ): _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case_ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case_ ).rstrip("\n" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case_ , snake_case_ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase ( snake_case_ : Optional[Any] ): return [len(snake_case_ ) for x in Path(snake_case_ ).open().readlines()] def lowercase ( self : List[str] , snake_case_ : Optional[int] ): _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case_ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case_ , snake_case_ , attention_mask=snake_case_ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __SCREAMING_SNAKE_CASE :Union[str, Any] = getLogger(__name__) def UpperCAmelCase_ ( __lowercase : List[List] ) -> List[Any]: '''simple docstring''' return list(itertools.chain.from_iterable(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(__lowercase , os.path.join(__lowercase , "git_log.json" ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : Union[str, Any]=4 , **__lowercase : Any ) -> int: '''simple docstring''' with open(__lowercase , "w" ) as f: json.dump(__lowercase , __lowercase , indent=__lowercase , **__lowercase ) def UpperCAmelCase_ ( __lowercase : Union[str, Any] ) -> List[str]: '''simple docstring''' with open(__lowercase ) as f: return json.load(__lowercase ) def UpperCAmelCase_ ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=__lowercase ) _UpperCAmelCase = { "repo_id": str(__lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __lowercase : Callable , __lowercase : Iterable ) -> List: '''simple docstring''' return list(map(__lowercase , __lowercase ) ) def UpperCAmelCase_ ( __lowercase : Any , __lowercase : str ) -> List[Any]: '''simple docstring''' with open(__lowercase , "wb" ) as f: return pickle.dump(__lowercase , __lowercase ) def UpperCAmelCase_ ( __lowercase : str ) -> int: '''simple docstring''' def remove_articles(__lowercase : Union[str, Any] ): return re.sub(r"\b(a|an|the)\b" , " " , __lowercase ) def white_space_fix(__lowercase : str ): return " ".join(text.split() ) def remove_punc(__lowercase : Union[str, Any] ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowercase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowercase ) ) ) ) def UpperCAmelCase_ ( __lowercase : int , __lowercase : Union[str, Any] ) -> int: '''simple docstring''' _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = normalize_answer(__lowercase ).split() _UpperCAmelCase = Counter(__lowercase ) & Counter(__lowercase ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = 1.0 * num_same / len(__lowercase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __lowercase : Any , __lowercase : Optional[Any] ) -> int: '''simple docstring''' return normalize_answer(__lowercase ) == normalize_answer(__lowercase ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : List[str] ) -> Dict: '''simple docstring''' assert len(__lowercase ) == len(__lowercase ) _UpperCAmelCase = 0 for hypo, pred in zip(__lowercase , __lowercase ): em += exact_match_score(__lowercase , __lowercase ) if len(__lowercase ) > 0: em /= len(__lowercase ) return {"em": em} def UpperCAmelCase_ ( __lowercase : Tuple ) -> List[str]: '''simple docstring''' return model_prefix.startswith("rag" ) def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : int , __lowercase : int ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(__lowercase , __lowercase , __lowercase ): if not hasattr(__lowercase , __lowercase ) and not hasattr(__lowercase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__lowercase ) ) delattr(__lowercase , __lowercase ) continue _UpperCAmelCase = p if hasattr(__lowercase , __lowercase ) else equivalent_param[p] setattr(__lowercase , __lowercase , getattr(__lowercase , __lowercase ) ) delattr(__lowercase , __lowercase ) return hparams, config
156
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase : Dict =logging.get_logger(__name__) UpperCAmelCase : Dict ={ """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowercase (a_ ): '''simple docstring''' lowercase__ = """beit""" def __init__( self , snake_case__=8192 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=False , snake_case__=0.1 , snake_case__=0.1 , snake_case__=True , snake_case__=[3, 5, 7, 11] , snake_case__=[1, 2, 3, 6] , snake_case__=True , snake_case__=0.4 , snake_case__=256 , snake_case__=1 , snake_case__=False , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**__a ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = use_mask_token UpperCamelCase_ = use_absolute_position_embeddings UpperCamelCase_ = use_relative_position_bias UpperCamelCase_ = use_shared_relative_position_bias UpperCamelCase_ = layer_scale_init_value UpperCamelCase_ = drop_path_rate UpperCamelCase_ = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase_ = out_indices UpperCamelCase_ = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase_ = use_auxiliary_head UpperCamelCase_ = auxiliary_loss_weight UpperCamelCase_ = auxiliary_channels UpperCamelCase_ = auxiliary_num_convs UpperCamelCase_ = auxiliary_concat_input UpperCamelCase_ = semantic_loss_ignore_index class _lowercase (a_ ): '''simple docstring''' lowercase__ = version.parse("""1.11""" ) @property def _lowerCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self ): '''simple docstring''' return 1e-4
128
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( "kwargs, expected" , [ ({"num_shards": 0, "max_num_jobs": 1}, []), ({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]), ({"num_shards": 10, "max_num_jobs": 10}, [range(_lowerCamelCase , i + 1 ) for i in range(10 )]), ({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]), ({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : List[Any] = _distribute_shards(**_lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, max_num_jobs, expected" , [ ({"foo": 0}, 10, [{"foo": 0}]), ({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]), ({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]), ({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]), ({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]), ] , ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = _split_gen_kwargs(_lowerCamelCase , _lowerCamelCase ) assert out == expected @pytest.mark.parametrize( "gen_kwargs, expected" , [ ({"foo": 0}, 1), ({"shards": [0]}, 1), ({"shards": [0, 1, 2, 3]}, 4), ({"shards": [0, 1, 2, 3], "foo": 0}, 4), ({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4), ({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError), ] , ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if expected is RuntimeError: with pytest.raises(_lowerCamelCase ): _number_of_shards_in_gen_kwargs(_lowerCamelCase ) else: _lowerCAmelCase : Optional[int] = _number_of_shards_in_gen_kwargs(_lowerCamelCase ) assert out == expected
36
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __lowerCamelCase = GPTSanJapaneseTokenizer __lowerCamelCase = False __lowerCamelCase = {"do_clean_text": False, "add_prefix_space": False} def UpperCAmelCase_ ( self ): '''simple docstring''' super().setUp() # fmt: off lowercase__ : Tuple= ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on lowercase__ : Dict= {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 lowercase__ : Union[str, Any]= {'unk_token': '<unk>'} lowercase__ : Optional[int]= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : List[str]= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(snake_case__ ) ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : Optional[Any]= 'こんにちは、世界。 \nこんばんは、㔺界。😀' lowercase__ : Tuple= 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' lowercase__ : List[str]= self.get_input_output_texts(snake_case__ ) lowercase__ : List[str]= tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowercase__ : List[Any]= tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return text, ids def UpperCAmelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase_ ( self ): '''simple docstring''' pass # TODO add if relevant def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= self.get_tokenizer() # Testing tokenization lowercase__ : str= 'こんにちは、世界。 こんばんは、㔺界。' lowercase__ : int= ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] lowercase__ : Dict= tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids without special tokens lowercase__ : Any= [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase__ : int= tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids with special tokens lowercase__ : Dict= tokens + [tokenizer.unk_token] lowercase__ : Tuple= [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase__ : Any= tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= self.get_tokenizer() # Testing tokenization lowercase__ : str= 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' lowercase__ : Union[str, Any]= 'こんにちは、、、、世界。こんばんは、、、、世界。' lowercase__ : int= tokenizer.encode(snake_case__ ) lowercase__ : int= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Dict= self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization lowercase__ : List[str]= 'こんにちは、世界。' lowercase__ : Union[str, Any]= 'こんばんは、㔺界。😀' lowercase__ : List[Any]= 'こんにちは、世界。こんばんは、世界。😀' lowercase__ : Optional[int]= tokenizer.encode(prefix_text + input_text ) lowercase__ : Dict= tokenizer.encode("" , prefix_text=prefix_text + input_text ) lowercase__ : List[Any]= tokenizer.encode(snake_case__ , prefix_text=snake_case__ ) lowercase__ : Optional[int]= tokenizer.decode(snake_case__ ) lowercase__ : str= tokenizer.decode(snake_case__ ) lowercase__ : Optional[int]= tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization lowercase__ : List[Any]= 'こんにちは、世界。' lowercase__ : Tuple= 'こんばんは、㔺界。😀' lowercase__ : Optional[int]= len(tokenizer.encode(snake_case__ ) ) - 2 lowercase__ : Dict= len(tokenizer.encode(snake_case__ ) ) - 2 lowercase__ : Union[str, Any]= [1] + [0] * (len_prefix + len_text + 1) lowercase__ : Optional[int]= [1] * (len_prefix + len_text + 1) + [0] lowercase__ : Union[str, Any]= [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase__ : Tuple= tokenizer(prefix_text + input_text ).token_type_ids lowercase__ : int= tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids lowercase__ : int= tokenizer(snake_case__ , prefix_text=snake_case__ ).token_type_ids self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) lowercase__ : int= tokenizer.encode("あンいワ" ) lowercase__ : Any= tokenizer.encode("" , prefix_text="あンいワ" ) lowercase__ : str= tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(snake_case__ ) , tokenizer.decode(snake_case__ ) ) self.assertEqual(tokenizer.decode(snake_case__ ) , tokenizer.decode(snake_case__ ) ) self.assertNotEqual(snake_case__ , snake_case__ ) self.assertNotEqual(snake_case__ , snake_case__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) lowercase__ : Optional[Any]= [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] lowercase__ : Dict= tokenizer(snake_case__ , padding=snake_case__ ) lowercase__ : Any= tokenizer.batch_encode_plus(snake_case__ , padding=snake_case__ ) # fmt: off lowercase__ : Optional[int]= [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowercase__ : Optional[int]= [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase__ : List[str]= [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , snake_case__ ) self.assertListEqual(x_token.token_type_ids , snake_case__ ) self.assertListEqual(x_token.attention_mask , snake_case__ ) self.assertListEqual(x_token_a.input_ids , snake_case__ ) self.assertListEqual(x_token_a.token_type_ids , snake_case__ ) self.assertListEqual(x_token_a.attention_mask , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCAmelCase_ ( self ): '''simple docstring''' # tokenizer has no padding token pass
359
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __UpperCAmelCase( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[str]= tempfile.mkdtemp() lowercase__ : Union[str, Any]= BlipImageProcessor() lowercase__ : Any= GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" ) lowercase__ : Any= BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" ) lowercase__ : str= InstructBlipProcessor(snake_case__ , snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).qformer_tokenizer def UpperCAmelCase_ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Union[str, Any]= [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase__ : Union[str, Any]= [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Optional[Any]= self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase__ : Optional[Any]= self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowercase__ : Optional[Any]= InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) self.assertIsInstance(processor.qformer_tokenizer , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= self.get_image_processor() lowercase__ : Optional[int]= self.get_tokenizer() lowercase__ : Any= self.get_qformer_tokenizer() lowercase__ : Any= InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowercase__ : Tuple= self.prepare_image_inputs() lowercase__ : int= image_processor(snake_case__ , return_tensors="np" ) lowercase__ : List[str]= processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : List[Any]= self.get_image_processor() lowercase__ : List[str]= self.get_tokenizer() lowercase__ : Optional[Any]= self.get_qformer_tokenizer() lowercase__ : Optional[Any]= InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowercase__ : Optional[Any]= "lower newer" lowercase__ : Any= processor(text=snake_case__ ) lowercase__ : Union[str, Any]= tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) lowercase__ : List[Any]= qformer_tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : int= self.get_image_processor() lowercase__ : Optional[int]= self.get_tokenizer() lowercase__ : Any= self.get_qformer_tokenizer() lowercase__ : Optional[int]= InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowercase__ : List[str]= "lower newer" lowercase__ : Optional[int]= self.prepare_image_inputs() lowercase__ : Dict= processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Optional[Any]= self.get_image_processor() lowercase__ : int= self.get_tokenizer() lowercase__ : Optional[int]= self.get_qformer_tokenizer() lowercase__ : Any= InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowercase__ : Dict= [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Optional[Any]= processor.batch_decode(snake_case__ ) lowercase__ : List[Any]= tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : str= self.get_image_processor() lowercase__ : Optional[int]= self.get_tokenizer() lowercase__ : Optional[Any]= self.get_qformer_tokenizer() lowercase__ : int= InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) lowercase__ : Union[str, Any]= "lower newer" lowercase__ : int= self.prepare_image_inputs() lowercase__ : Dict= processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
150
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = "ZinengTang/tvlt-base" snake_case_ = tempfile.mkdtemp() def lowerCAmelCase__ ( self , **a__ ) -> Any: '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **a__ ) def lowerCAmelCase__ ( self , **a__ ) -> Union[str, Any]: '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **a__ ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) processor.save_pretrained(self.tmpdirname ) snake_case_ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , a__ ) self.assertIsInstance(processor.image_processor , a__ ) def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) snake_case_ = np.ones([12_000] ) snake_case_ = feature_extractor(a__ , return_tensors="np" ) snake_case_ = processor(audio=a__ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) snake_case_ = np.ones([3, 224, 224] ) snake_case_ = image_processor(a__ , return_tensors="np" ) snake_case_ = processor(images=a__ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) snake_case_ = np.ones([12_000] ) snake_case_ = np.ones([3, 224, 224] ) snake_case_ = processor(audio=a__ , images=a__ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(a__ ): processor() def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ = self.get_image_processor() snake_case_ = self.get_feature_extractor() snake_case_ = TvltProcessor(image_processor=a__ , feature_extractor=a__ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
85
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = LayoutLMTokenizer lowerCAmelCase : Tuple = LayoutLMTokenizerFast lowerCAmelCase : List[Any] = True lowerCAmelCase : int = True def __lowercase ( self : Dict ): super().setUp() _a : int = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _a : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __lowercase ( self : Dict ,**_UpperCAmelCase : List[str] ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**_UpperCAmelCase ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : Tuple ): _a : Optional[int] = 'UNwant\u00E9d,running' _a : List[Any] = 'unwanted, running' return input_text, output_text def __lowercase ( self : Optional[int] ): _a : Optional[Any] = self.tokenizer_class(self.vocab_file ) _a : Optional[Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase ,['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[7, 4, 5, 10, 8, 9] ) def __lowercase ( self : Optional[int] ): pass
89
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "roformer" def __init__( self , _UpperCAmelCase=5_00_00 , _UpperCAmelCase=None , _UpperCAmelCase=7_68 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=30_72 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=15_36 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ = vocab_size snake_case_ = hidden_size if embedding_size is None else embedding_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = rotary_value snake_case_ = use_cache class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self ): if self.task == "multiple-choice": snake_case_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case_ = {0: '''batch''', 1: '''sequence'''} snake_case_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
363
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "wavlm" def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=7_68 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=30_72 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=1_28 , _UpperCAmelCase=16 , _UpperCAmelCase=3_20 , _UpperCAmelCase=8_00 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.05 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=3_20 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1_00 , _UpperCAmelCase=2_56 , _UpperCAmelCase=2_56 , _UpperCAmelCase=0.1 , _UpperCAmelCase="mean" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=2_56 , _UpperCAmelCase=(5_12, 5_12, 5_12, 5_12, 15_00) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=5_12 , _UpperCAmelCase=80 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) snake_case_ = hidden_size snake_case_ = feat_extract_norm snake_case_ = feat_extract_activation snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = conv_bias snake_case_ = num_buckets snake_case_ = max_bucket_distance snake_case_ = num_conv_pos_embeddings snake_case_ = num_conv_pos_embedding_groups snake_case_ = len(self.conv_dim ) snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = num_attention_heads snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = feat_proj_dropout snake_case_ = final_dropout snake_case_ = layerdrop snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = num_ctc_classes snake_case_ = vocab_size snake_case_ = do_stable_layer_norm snake_case_ = use_weighted_layer_sum snake_case_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ = apply_spec_augment snake_case_ = mask_time_prob snake_case_ = mask_time_length snake_case_ = mask_time_min_masks snake_case_ = mask_feature_prob snake_case_ = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case_ = num_codevectors_per_group snake_case_ = num_codevector_groups snake_case_ = contrastive_logits_temperature snake_case_ = num_negatives snake_case_ = codevector_dim snake_case_ = proj_codevector_dim snake_case_ = diversity_loss_weight # ctc loss snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # adapter snake_case_ = add_adapter snake_case_ = adapter_kernel_size snake_case_ = adapter_stride snake_case_ = num_adapter_layers snake_case_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = list(_UpperCAmelCase ) snake_case_ = xvector_output_dim @property def UpperCamelCase__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
267
0
"""simple docstring""" import os from datetime import datetime as dt from github import Github snake_case_ = [ """good first issue""", """feature request""", """wip""", ] def _lowerCAmelCase ( ): UpperCAmelCase = Github(os.environ['GITHUB_TOKEN'] ) UpperCAmelCase = g.get_repo('huggingface/accelerate' ) UpperCAmelCase = repo.get_issues(state='open' ) for issue in open_issues: UpperCAmelCase = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase_ : i.created_at , reverse=lowercase_ ) UpperCAmelCase = comments[0] if len(lowercase_ ) > 0 else None UpperCAmelCase = dt.utcnow() UpperCAmelCase = (current_time - issue.updated_at).days UpperCAmelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='closed' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
78
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[Any] = """blip_2_vision_model""" def __init__( self , snake_case=1408 , snake_case=6144 , snake_case=39 , snake_case=16 , snake_case=224 , snake_case=14 , snake_case="gelu" , snake_case=0.00_001 , snake_case=0.0 , snake_case=1E-10 , snake_case=True , **snake_case , ): super().__init__(**snake_case ) lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act lowercase = qkv_bias @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """blip_2_qformer""" def __init__( self , snake_case=3_0522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case="absolute" , snake_case=2 , snake_case=1408 , **snake_case , ): super().__init__(pad_token_id=snake_case , **snake_case ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = cross_attention_frequency lowercase = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = """blip-2""" _UpperCamelCase : str = True def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case=32 , **snake_case ): super().__init__(**snake_case ) if vision_config is None: lowercase = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: lowercase = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: lowercase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowercase = BlipaVisionConfig(**snake_case ) lowercase = BlipaQFormerConfig(**snake_case ) lowercase = text_config['model_type'] if 'model_type' in text_config else 'opt' lowercase = CONFIG_MAPPING[text_model_type](**snake_case ) lowercase = self.text_config.tie_word_embeddings lowercase = self.text_config.is_encoder_decoder lowercase = num_query_tokens lowercase = self.vision_config.hidden_size lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase = 1.0 lowercase = 0.02 @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , snake_case , **snake_case , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case , ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.vision_config.to_dict() lowercase = self.qformer_config.to_dict() lowercase = self.text_config.to_dict() lowercase = self.__class__.model_type return output
195
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: __UpperCAmelCase = None try: import msvcrt except ImportError: __UpperCAmelCase = None try: import fcntl except ImportError: __UpperCAmelCase = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __UpperCAmelCase = OSError # Data # ------------------------------------------------ __UpperCAmelCase = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] __UpperCAmelCase = '3.0.12' __UpperCAmelCase = None def _snake_case ( ) -> int: '''simple docstring''' global _logger lowerCAmelCase_ :Any = _logger or logging.getLogger(__name__ ) return _logger class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A ) -> Optional[Any]: lowerCAmelCase_ :Tuple = lock_file return None def __str__( self ) -> Dict: lowerCAmelCase_ :Union[str, Any] = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _SCREAMING_SNAKE_CASE : def __init__( self , __A ) -> List[Any]: lowerCAmelCase_ :int = lock return None def __enter__( self ) -> Any: return self.lock def __exit__( self , __A , __A , __A ) -> str: self.lock.release() return None class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=-1 , __A=None ) -> str: lowerCAmelCase_ :Tuple = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long lowerCAmelCase_ :Tuple = self.hash_filename_if_too_long(__A , __A ) # The path to the lock file. lowerCAmelCase_ :int = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowerCAmelCase_ :Optional[Any] = None # The default timeout value. lowerCAmelCase_ :Tuple = timeout # We use this lock primarily for the lock counter. lowerCAmelCase_ :Optional[int] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowerCAmelCase_ :str = 0 return None @property def __lowerCAmelCase ( self ) -> List[str]: return self._lock_file @property def __lowerCAmelCase ( self ) -> List[str]: return self._timeout @timeout.setter def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: lowerCAmelCase_ :int = float(__A ) return None def __lowerCAmelCase ( self ) -> Union[str, Any]: raise NotImplementedError() def __lowerCAmelCase ( self ) -> str: raise NotImplementedError() @property def __lowerCAmelCase ( self ) -> str: return self._lock_file_fd is not None def __lowerCAmelCase ( self , __A=None , __A=0.0_5 ) -> Any: # Use the default timeout, if no timeout is provided. if timeout is None: lowerCAmelCase_ :Optional[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowerCAmelCase_ :str = id(self ) lowerCAmelCase_ :Union[str, Any] = self._lock_file lowerCAmelCase_ :Dict = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__A ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowerCAmelCase_ :Optional[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __lowerCAmelCase ( self , __A=False ) -> List[Any]: with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowerCAmelCase_ :Optional[Any] = id(self ) lowerCAmelCase_ :Optional[int] = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() lowerCAmelCase_ :Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__( self ) -> Optional[int]: self.acquire() return self def __exit__( self , __A , __A , __A ) -> str: self.release() return None def __del__( self ) -> str: self.release(force=__A ) return None def __lowerCAmelCase ( self , __A , __A ) -> str: lowerCAmelCase_ :Any = os.path.basename(__A ) if len(__A ) > max_length and max_length > 0: lowerCAmelCase_ :List[Any] = os.path.dirname(__A ) lowerCAmelCase_ :List[Any] = str(hash(__A ) ) lowerCAmelCase_ :Optional[Any] = filename[: max_length - len(__A ) - 8] + """...""" + hashed_filename + """.lock""" return os.path.join(__A , __A ) else: return path class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A=-1 , __A=None ) -> List[Any]: from .file_utils import relative_to_absolute_path super().__init__(__A , timeout=__A , max_filename_length=__A ) lowerCAmelCase_ :Dict = """\\\\?\\""" + relative_to_absolute_path(self.lock_file ) def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowerCAmelCase_ :List[Any] = os.open(self._lock_file , __A ) except OSError: pass else: try: msvcrt.locking(__A , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__A ) else: lowerCAmelCase_ :List[Any] = fd return None def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Optional[int] = self._lock_file_fd lowerCAmelCase_ :Any = None msvcrt.locking(__A , msvcrt.LK_UNLCK , 1 ) os.close(__A ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , __A , __A=-1 , __A=None ) -> Union[str, Any]: lowerCAmelCase_ :List[Any] = os.statvfs(os.path.dirname(__A ) ).f_namemax super().__init__(__A , timeout=__A , max_filename_length=__A ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Optional[int] = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowerCAmelCase_ :str = os.open(self._lock_file , __A ) try: fcntl.flock(__A , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__A ) else: lowerCAmelCase_ :Any = fd return None def __lowerCAmelCase ( self ) -> List[str]: # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowerCAmelCase_ :Dict = self._lock_file_fd lowerCAmelCase_ :Union[str, Any] = None fcntl.flock(__A , fcntl.LOCK_UN ) os.close(__A ) return None class _SCREAMING_SNAKE_CASE ( A__ ): def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowerCAmelCase_ :Dict = os.open(self._lock_file , __A ) except OSError: pass else: lowerCAmelCase_ :str = fd return None def __lowerCAmelCase ( self ) -> Optional[Any]: os.close(self._lock_file_fd ) lowerCAmelCase_ :str = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __UpperCAmelCase = None if msvcrt: __UpperCAmelCase = WindowsFileLock elif fcntl: __UpperCAmelCase = UnixFileLock else: __UpperCAmelCase = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
1
"""simple docstring""" def _snake_case ( lowercase__ : int = 5_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
1
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Union[str, Any] = R"""\w+[.]\d+""" UpperCamelCase :int = re.findall(__magic_name__ , __magic_name__ ) for pat in pats: UpperCamelCase :List[str] = key.replace(__magic_name__ , """_""".join(pat.split(""".""" ) ) ) return key def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCamelCase :List[str] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCamelCase :Optional[Any] = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCamelCase :Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCamelCase :Any = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCamelCase :Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": UpperCamelCase :Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCamelCase :str = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCamelCase :Optional[int] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def SCREAMING_SNAKE_CASE_ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple=42 ) -> Union[str, Any]: """simple docstring""" UpperCamelCase :Any = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCamelCase :Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) ) UpperCamelCase :Any = flatten_dict(__magic_name__ ) UpperCamelCase :Optional[int] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCamelCase :Union[str, Any] = rename_key(__magic_name__ ) UpperCamelCase :Optional[Any] = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters UpperCamelCase , UpperCamelCase :Tuple = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCamelCase :List[Any] = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
38
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Tuple = "openai/whisper-base" __UpperCAmelCase : Union[str, Any] = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase : List[str] = "transcriber" __UpperCAmelCase : Optional[Any] = WhisperProcessor __UpperCAmelCase : str = WhisperForConditionalGeneration __UpperCAmelCase : List[str] = ["audio"] __UpperCAmelCase : Tuple = ["text"] def _lowercase ( self : str, UpperCAmelCase__ : int ): return self.pre_processor(UpperCAmelCase__, return_tensors="pt" ).input_features def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.model.generate(inputs=UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[int] ): return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0]
17
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __snake_case : List[Any] = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __snake_case : int = logging.get_logger(__name__) class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : Optional[Any] = 'maskformer' __lowercase : Optional[int] = {'hidden_size': 'mask_feature_size'} __lowercase : int = ['resnet', 'swin'] __lowercase : Any = ['detr'] def __init__( self , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 256 , _SCREAMING_SNAKE_CASE = 0.1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0.02 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 1.0 , _SCREAMING_SNAKE_CASE = 20.0 , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> str: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k A_ = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ = backbone_config.pop('''model_type''' ) A_ = CONFIG_MAPPING[backbone_model_type] A_ = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 A_ = DetrConfig() else: # verify that the decoder is supported A_ = ( decoder_config.pop('''model_type''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'''Transformer Decoder {decoder_type} not supported, please use one of''' F''' {','.join(self.decoders_supported )}''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A_ = CONFIG_MAPPING[decoder_type] A_ = config_class.from_dict(_UpperCAmelCase ) A_ = backbone_config A_ = decoder_config # main feature dimension for the model A_ = fpn_feature_size A_ = mask_feature_size # initializer A_ = init_std A_ = init_xavier_std # Hungarian matcher && loss A_ = cross_entropy_weight A_ = dice_weight A_ = mask_weight A_ = use_auxiliary_loss A_ = no_object_weight A_ = output_auxiliary_logits A_ = self.decoder_config.encoder_attention_heads A_ = self.decoder_config.num_hidden_layers super().__init__(**_UpperCAmelCase ) @classmethod def __A ( cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: return cls( backbone_config=_UpperCAmelCase , decoder_config=_UpperCAmelCase , **_UpperCAmelCase , ) def __A ( self ) -> int: A_ = copy.deepcopy(self.__dict__ ) A_ = self.backbone_config.to_dict() A_ = self.decoder_config.to_dict() A_ = self.__class__.model_type return output
368
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __snake_case : Any = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' __snake_case : Dict = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __snake_case : Optional[int] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __A ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]: if rouge_types is None: A_ = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] A_ = rouge_scorer.RougeScorer(rouge_types=_SCREAMING_SNAKE_CASE , use_stemmer=_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = scoring.BootstrapAggregator() else: A_ = [] for ref, pred in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ = scorer.score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if use_aggregator: aggregator.add_scores(_SCREAMING_SNAKE_CASE ) else: scores.append(_SCREAMING_SNAKE_CASE ) if use_aggregator: A_ = aggregator.aggregate() else: A_ = {} for key in scores[0]: A_ = [score[key] for score in scores] return result
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[int] = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
269
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self: Any , UpperCamelCase: Optional[int]=None , **UpperCamelCase: Union[str, Any] ) -> int: super().__init__(features=UpperCamelCase ) snake_case__ = torch_tensor_kwargs import torch # noqa import torch at initialization def lowerCAmelCase_ ( self: Any , UpperCamelCase: Any ) -> List[str]: import torch if isinstance(UpperCamelCase , UpperCamelCase ) and column: if all( isinstance(UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase ) return column def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> Union[str, Any]: import torch if isinstance(UpperCamelCase , (str, bytes, type(UpperCamelCase )) ): return value elif isinstance(UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() snake_case__ = {} if isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): snake_case__ = {'dtype': torch.intaa} elif isinstance(UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): snake_case__ = {'dtype': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase , PIL.Image.Image ): snake_case__ = np.asarray(UpperCamelCase ) return torch.tensor(UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowerCAmelCase_ ( self: Any , UpperCamelCase: str ) -> Any: import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase , '__array__' ) and not isinstance(UpperCamelCase , torch.Tensor ): snake_case__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) elif isinstance(UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[Any] , UpperCamelCase: dict ) -> List[str]: return map_nested(self._recursive_tensorize , UpperCamelCase , map_list=UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_row(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_row(UpperCamelCase ) return self.recursive_tensorize(UpperCamelCase ) def lowerCAmelCase_ ( self: List[str] , UpperCamelCase: pa.Table ) -> "torch.Tensor": snake_case__ = self.numpy_arrow_extractor().extract_column(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_column(UpperCamelCase , pa_table.column_names[0] ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) snake_case__ = self._consolidate(UpperCamelCase ) return column def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: pa.Table ) -> Mapping: snake_case__ = self.numpy_arrow_extractor().extract_batch(UpperCamelCase ) snake_case__ = self.python_features_decoder.decode_batch(UpperCamelCase ) snake_case__ = self.recursive_tensorize(UpperCamelCase ) for column_name in batch: snake_case__ = self._consolidate(batch[column_name] ) return batch
307
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : Optional[int] = "▁" lowerCamelCase : Optional[int] = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowerCamelCase : Any = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowerCamelCase : Dict = { "facebook/m2m100_418M": 1_0_2_4, } # fmt: off lowerCamelCase : str = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class A__ ( A__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = ['input_ids', 'attention_mask'] A__ = [] A__ = [] def __init__( self : Optional[int] , _a : Dict , _a : List[str] , _a : str=None , _a : List[str]=None , _a : Union[str, Any]="<s>" , _a : Dict="</s>" , _a : int="</s>" , _a : List[str]="<pad>" , _a : Optional[Any]="<unk>" , _a : Tuple="m2m100" , _a : Optional[Dict[str, Any]] = None , _a : Dict=8 , **_a : int , ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if sp_model_kwargs is None else sp_model_kwargs _SCREAMING_SNAKE_CASE =language_codes _SCREAMING_SNAKE_CASE =FAIRSEQ_LANGUAGE_CODES[language_codes] _SCREAMING_SNAKE_CASE ={lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} _SCREAMING_SNAKE_CASE =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_a ) for lang_code in fairseq_language_code if self.get_lang_token(_a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_a , tgt_lang=_a , bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , language_codes=_a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_a , **_a , ) _SCREAMING_SNAKE_CASE =vocab_file _SCREAMING_SNAKE_CASE =load_json(_a ) _SCREAMING_SNAKE_CASE ={v: k for k, v in self.encoder.items()} _SCREAMING_SNAKE_CASE =spm_file _SCREAMING_SNAKE_CASE =load_spm(_a , self.sp_model_kwargs ) _SCREAMING_SNAKE_CASE =len(self.encoder ) _SCREAMING_SNAKE_CASE ={ self.get_lang_token(_a ): self.encoder_size + i for i, lang_code in enumerate(_a ) } _SCREAMING_SNAKE_CASE ={lang_code: self.encoder_size + i for i, lang_code in enumerate(_a )} _SCREAMING_SNAKE_CASE ={v: k for k, v in self.lang_token_to_id.items()} _SCREAMING_SNAKE_CASE =src_lang if src_lang is not None else 'en' _SCREAMING_SNAKE_CASE =tgt_lang _SCREAMING_SNAKE_CASE =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _SCREAMING_SNAKE_CASE =num_madeup_words @property def A ( self : List[Any] ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def A ( self : int ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def A ( self : List[Any] , _a : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A ( self : Optional[int] , _a : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_a , out_type=_a ) def A ( self : Optional[int] , _a : Dict ) -> Optional[Any]: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_a , self.encoder[self.unk_token] ) def A ( self : Dict , _a : int ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_a , self.unk_token ) def A ( self : Union[str, Any] , _a : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_a ) + token _SCREAMING_SNAKE_CASE =[] else: current_sub_tokens.append(_a ) out_string += self.sp_model.decode(_a ) return out_string.strip() def A ( self : List[Any] , _a : List[int] , _a : Optional[List[int]] = None , _a : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) _SCREAMING_SNAKE_CASE =[1] * len(self.prefix_tokens ) _SCREAMING_SNAKE_CASE =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def A ( self : Optional[int] , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE ={self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.__dict__.copy() _SCREAMING_SNAKE_CASE =None return state def __setstate__( self : List[str] , _a : Dict ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =load_spm(self.spm_file , self.sp_model_kwargs ) def A ( self : int , _a : str , _a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =Path(_a ) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory" ) _SCREAMING_SNAKE_CASE =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _SCREAMING_SNAKE_CASE =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _a ) if os.path.abspath(self.spm_file ) != os.path.abspath(_a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _a ) elif not os.path.isfile(self.spm_file ): with open(_a , 'wb' ) as fi: _SCREAMING_SNAKE_CASE =self.sp_model.serialized_model_proto() fi.write(_a ) return (str(_a ), str(_a )) def A ( self : List[Any] , _a : List[str] , _a : str = "en" , _a : Optional[List[str]] = None , _a : str = "ro" , **_a : Optional[Any] , ) -> BatchEncoding: '''simple docstring''' _SCREAMING_SNAKE_CASE =src_lang _SCREAMING_SNAKE_CASE =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_a , _a , **_a ) def A ( self : List[Any] , _a : Union[str, Any] , _a : Optional[str] , _a : Optional[str] , **_a : List[Any] ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _SCREAMING_SNAKE_CASE =src_lang _SCREAMING_SNAKE_CASE =self(_a , add_special_tokens=_a , **_a ) _SCREAMING_SNAKE_CASE =self.get_lang_id(_a ) _SCREAMING_SNAKE_CASE =tgt_lang_id return inputs def A ( self : Dict ) -> Tuple: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : List[Any] , _a : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_lang_token(_a ) _SCREAMING_SNAKE_CASE =self.lang_token_to_id[lang_token] _SCREAMING_SNAKE_CASE =[self.cur_lang_id] _SCREAMING_SNAKE_CASE =[self.eos_token_id] def A ( self : str , _a : str ) -> None: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_lang_token(_a ) _SCREAMING_SNAKE_CASE =self.lang_token_to_id[lang_token] _SCREAMING_SNAKE_CASE =[self.cur_lang_id] _SCREAMING_SNAKE_CASE =[self.eos_token_id] def A ( self : Optional[Any] , _a : str ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def A ( self : Tuple , _a : str ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_lang_token(_a ) return self.lang_token_to_id[lang_token] def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" _SCREAMING_SNAKE_CASE =sentencepiece.SentencePieceProcessor(**_UpperCamelCase ) spm.Load(str(_UpperCamelCase ) ) return spm def _lowerCAmelCase ( _UpperCamelCase : str ) -> Union[Dict, List]: """simple docstring""" with open(_UpperCamelCase , 'r' ) as f: return json.load(_UpperCamelCase ) def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : str ) -> None: """simple docstring""" with open(_UpperCamelCase , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=2 )
370
'''simple docstring''' import os def _lowerCAmelCase ( ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =os.path.dirname(os.path.realpath(_UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =os.path.join(_UpperCamelCase , 'triangle.txt' ) with open(_UpperCamelCase ) as f: _SCREAMING_SNAKE_CASE =f.readlines() _SCREAMING_SNAKE_CASE =[] for line in triangle: _SCREAMING_SNAKE_CASE =[] for number in line.strip().split(' ' ): numbers_from_line.append(int(_UpperCamelCase ) ) a.append(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): for j in range(len(a[i] ) ): _SCREAMING_SNAKE_CASE =a[i - 1][j] if j != len(a[i - 1] ) else 0 _SCREAMING_SNAKE_CASE =a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(_UpperCamelCase , _UpperCamelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
114
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Tuple = { """microsoft/biogpt""": """https://huggingface.co/microsoft/biogpt/resolve/main/config.json""", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Optional[Any] = '''biogpt''' def __init__( self , lowercase=4_2384 , lowercase=1024 , lowercase=24 , lowercase=16 , lowercase=4096 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=1024 , lowercase=0.02 , lowercase=1e-12 , lowercase=True , lowercase=True , lowercase=0.0 , lowercase=0.0 , lowercase=1 , lowercase=0 , lowercase=2 , **lowercase , ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = vocab_size a__ : Tuple = max_position_embeddings a__ : Union[str, Any] = hidden_size a__ : Tuple = num_hidden_layers a__ : Union[str, Any] = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : Dict = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Any = initializer_range a__ : str = layer_norm_eps a__ : Tuple = scale_embedding a__ : str = use_cache a__ : Optional[int] = layerdrop a__ : int = activation_dropout super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase)
99
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> np.ndarray: _a : Union[str, Any] = cva.getAffineTransform(lowerCAmelCase_ , lowerCAmelCase_ ) return cva.warpAffine(lowerCAmelCase_ , lowerCAmelCase_ , (rows, cols) ) if __name__ == "__main__": # read original image __lowerCAmelCase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __lowerCAmelCase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowerCAmelCase , __lowerCAmelCase = gray_img.shape # set different points to rotate image __lowerCAmelCase = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __lowerCAmelCase = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __lowerCAmelCase = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __lowerCAmelCase = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __lowerCAmelCase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowerCAmelCase = plt.figure(1) __lowerCAmelCase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
89
0
"""simple docstring""" import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _a = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n' _a = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n' _a = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 0.0 for i, j in zip(lowercase_ , lowercase_ ): n_correct += 1.0 if math_equivalence.is_equiv(lowercase_ , lowercase_ ) else 0.0 UpperCAmelCase_ : Optional[Any] = n_correct / len(lowercase_ ) return { "accuracy": accuracy, }
23
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
1
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase = 0 ): _lowerCamelCase, _lowerCamelCase : Tuple = row, column _lowerCamelCase : int = [[default_value for c in range(lowercase )] for r in range(lowercase )] def __str__( self ): _lowerCamelCase : Tuple = F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier _lowerCamelCase : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: _lowerCamelCase : int = max(lowercase , len(str(lowercase ) ) ) _lowerCamelCase : Optional[int] = F'''%{max_element_length}s''' # Make string and return def single_line(lowercase ) -> str: nonlocal string_format_identifier _lowerCamelCase : int = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(lowercase ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def A_ ( self , lowercase ): if not (isinstance(lowercase , (list, tuple) ) and len(lowercase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , lowercase ): assert self.validate_indicies(lowercase ) return self.array[loc[0]][loc[1]] def __setitem__( self , lowercase , lowercase ): assert self.validate_indicies(lowercase ) _lowerCamelCase : Dict = value def __add__( self , lowercase ): assert isinstance(lowercase , lowercase ) assert self.row == another.row and self.column == another.column # Add _lowerCamelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : List[str] = self[r, c] + another[r, c] return result def __neg__( self ): _lowerCamelCase : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : List[str] = -self[r, c] return result def __sub__( self , lowercase ): return self + (-another) def __mul__( self , lowercase ): if isinstance(lowercase , (int, float) ): # Scalar multiplication _lowerCamelCase : int = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : Optional[Any] = self[r, c] * another return result elif isinstance(lowercase , lowercase ): # Matrix multiplication assert self.column == another.row _lowerCamelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: _lowerCamelCase : Optional[int] = F'''Unsupported type given for another ({type(lowercase )})''' raise TypeError(lowercase ) def A_ ( self ): _lowerCamelCase : Any = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): _lowerCamelCase : Optional[Any] = self[r, c] return result def A_ ( self , lowercase , lowercase ): assert isinstance(lowercase , lowercase ) and isinstance(lowercase , lowercase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate _lowerCamelCase : Optional[int] = v.transpose() _lowerCamelCase : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _snake_case ( ): # a^(-1) _lowerCamelCase : Optional[Any] = Matrix(3 , 3 , 0 ) for i in range(3 ): _lowerCamelCase : Optional[Any] = 1 print(f'''a^(-1) is {ainv}''' ) # u, v _lowerCamelCase : Tuple = Matrix(3 , 1 , 0 ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = 1, 2, -3 _lowerCamelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(lowercase__ , lowercase__ )}''' ) def _snake_case ( ): import doctest doctest.testmod() testa()
96
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : Tuple = f'''{sampling_rate}''' _lowerCamelCase : str = '1' _lowerCamelCase : str = 'f32le' _lowerCamelCase : Union[str, Any] = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(lowercase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: _lowerCamelCase : str = ffmpeg_process.communicate(lowercase__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error _lowerCamelCase : List[Any] = output_stream[0] _lowerCamelCase : Tuple = np.frombuffer(lowercase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _snake_case ( lowercase__ , lowercase__ , lowercase__ = "f32le" , ): _lowerCamelCase : Optional[Any] = f'''{sampling_rate}''' _lowerCamelCase : List[str] = '1' if format_for_conversion == "s16le": _lowerCamelCase : List[str] = 2 elif format_for_conversion == "f32le": _lowerCamelCase : List[Any] = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) _lowerCamelCase : Dict = platform.system() if system == "Linux": _lowerCamelCase : Optional[int] = 'alsa' _lowerCamelCase : Optional[Any] = 'default' elif system == "Darwin": _lowerCamelCase : Optional[int] = 'avfoundation' _lowerCamelCase : Any = ':0' elif system == "Windows": _lowerCamelCase : Tuple = 'dshow' _lowerCamelCase : Tuple = 'default' _lowerCamelCase : Optional[int] = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] _lowerCamelCase : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample _lowerCamelCase : List[Any] = _ffmpeg_stream(lowercase__ , lowercase__ ) for item in iterator: yield item def _snake_case ( lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = "f32le" , ): if stream_chunk_s is not None: _lowerCamelCase : int = stream_chunk_s else: _lowerCamelCase : Optional[Any] = chunk_length_s _lowerCamelCase : Optional[Any] = ffmpeg_microphone(lowercase__ , lowercase__ , format_for_conversion=lowercase__ ) if format_for_conversion == "s16le": _lowerCamelCase : List[str] = np.intaa _lowerCamelCase : str = 2 elif format_for_conversion == "f32le": _lowerCamelCase : Any = np.floataa _lowerCamelCase : List[Any] = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: _lowerCamelCase : Union[str, Any] = chunk_length_s / 6 _lowerCamelCase : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowercase__ , (int, float) ): _lowerCamelCase : Any = [stride_length_s, stride_length_s] _lowerCamelCase : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample _lowerCamelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample _lowerCamelCase : List[Any] = datetime.datetime.now() _lowerCamelCase : Optional[int] = datetime.timedelta(seconds=lowercase__ ) for item in chunk_bytes_iter(lowercase__ , lowercase__ , stride=(stride_left, stride_right) , stream=lowercase__ ): # Put everything back in numpy scale _lowerCamelCase : List[Any] = np.frombuffer(item['raw'] , dtype=lowercase__ ) _lowerCamelCase : int = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) _lowerCamelCase : Optional[int] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): _lowerCamelCase : int = B'' _lowerCamelCase, _lowerCamelCase : Dict = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) _lowerCamelCase : str = 0 for raw in iterator: acc += raw if stream and len(lowercase__ ) < chunk_len: _lowerCamelCase : Optional[int] = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowercase__ ) >= chunk_len: # We are flushing the accumulator _lowerCamelCase : str = (_stride_left, stride_right) _lowerCamelCase : str = {'raw': acc[:chunk_len], 'stride': stride} if stream: _lowerCamelCase : List[Any] = False yield item _lowerCamelCase : Optional[Any] = stride_left _lowerCamelCase : str = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowercase__ ) > stride_left: _lowerCamelCase : Optional[Any] = {'raw': acc, 'stride': (_stride_left, 0)} if stream: _lowerCamelCase : Tuple = False yield item def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = 2**24 # 16Mo try: with subprocess.Popen(lowercase__ , stdout=subprocess.PIPE , bufsize=lowercase__ ) as ffmpeg_process: while True: _lowerCamelCase : Optional[Any] = ffmpeg_process.stdout.read(lowercase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
96
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( lowercase ) -> list[int]: # This function is recursive snake_case : List[Any] = len(lowercase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else snake_case : List[str] = array[0] snake_case : Tuple = False snake_case : List[Any] = 1 snake_case : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: snake_case : Tuple = True snake_case : List[Any] = [element for element in array[i:] if element >= array[i]] snake_case : Optional[Any] = longest_subsequence(lowercase ) if len(lowercase ) > len(lowercase ): snake_case : Any = temp_array else: i += 1 snake_case : Tuple = [element for element in array[1:] if element >= pivot] snake_case : Optional[int] = [pivot, *longest_subsequence(lowercase )] if len(lowercase ) > len(lowercase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
359
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Optional[int] = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """bart""" _snake_case = ["""past_key_values"""] _snake_case = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , A=5_0_2_6_5 , A=1_0_2_4 , A=1_2 , A=4_0_9_6 , A=1_6 , A=1_2 , A=4_0_9_6 , A=1_6 , A=0.0 , A=0.0 , A="gelu" , A=1_0_2_4 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=0.0 , A=False , A=True , A=3 , A=1 , A=0 , A=2 , A=True , A=2 , A=2 , **A , ) -> Any: snake_case : Optional[int] = vocab_size snake_case : Union[str, Any] = max_position_embeddings snake_case : List[str] = d_model snake_case : List[Any] = encoder_ffn_dim snake_case : Optional[Any] = encoder_layers snake_case : Union[str, Any] = encoder_attention_heads snake_case : str = decoder_ffn_dim snake_case : Union[str, Any] = decoder_layers snake_case : Any = decoder_attention_heads snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : List[Any] = activation_dropout snake_case : Optional[int] = activation_function snake_case : Union[str, Any] = init_std snake_case : List[str] = encoder_layerdrop snake_case : int = decoder_layerdrop snake_case : str = classifier_dropout snake_case : List[str] = use_cache snake_case : Tuple = encoder_layers snake_case : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=A , pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , forced_eos_token_id=A , **A , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , A ): snake_case : Any = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ """The config can simply be saved and uploaded again to be fixed.""" ) class __lowercase (UpperCamelCase__ ): """simple docstring""" @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case : Tuple = {0: """batch"""} snake_case : List[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: snake_case : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} snake_case : Any = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: snake_case , snake_case : List[Any] = self.num_layers for i in range(A ): snake_case : List[Any] = {0: """batch""", 2: """past_sequence + sequence"""} snake_case : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} else: snake_case : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: snake_case : Any = super().outputs else: snake_case : Any = super(A , self ).outputs if self.use_past: snake_case , snake_case : Any = self.num_layers for i in range(A ): snake_case : Any = {0: """batch""", 2: """past_sequence + sequence"""} snake_case : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: snake_case : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) # Generate decoder inputs snake_case : Any = seq_length if not self.use_past else 1 snake_case : List[str] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) snake_case : Optional[int] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case : List[str] = dict(**A , **A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case : Optional[int] = common_inputs["""input_ids"""].shape snake_case : Any = common_inputs["""decoder_input_ids"""].shape[1] snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : Optional[int] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Any = decoder_seq_length + 3 snake_case : List[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case : str = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(A , A )] , dim=1 ) snake_case : str = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case , snake_case : Any = self.num_layers snake_case : List[str] = min(A , A ) snake_case : Dict = max(A , A ) - min_num_layers snake_case : List[str] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(A ): common_inputs["past_key_values"].append( ( torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), torch.zeros(A ), ) ) # TODO: test this. snake_case : Tuple = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(A , A ): common_inputs["past_key_values"].append((torch.zeros(A ), torch.zeros(A )) ) return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: snake_case : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , A , A , A , A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch snake_case , snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values snake_case : Optional[int] = seqlen + 2 snake_case , snake_case : Tuple = self.num_layers snake_case , snake_case : Optional[Any] = self.num_attention_heads snake_case : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case : Optional[Any] = common_inputs["""attention_mask"""].dtype snake_case : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) snake_case : Union[str, Any] = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(A ) ] return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case : int = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : int = tokenizer.num_special_tokens_to_add(A ) snake_case : Tuple = compute_effective_axis_dimension( A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=A ) # Generate dummy inputs according to compute batch and sequence snake_case : int = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case : str = dict(tokenizer(A , return_tensors=A ) ) return common_inputs def UpperCAmelCase ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) elif self.task == "causal-lm": snake_case : Optional[int] = self._generate_dummy_inputs_for_causal_lm( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) else: snake_case : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) return common_inputs def UpperCAmelCase ( self , A , A , A , A ) -> Union[str, Any]: if self.task in ["default", "seq2seq-lm"]: snake_case : Optional[Any] = super()._flatten_past_key_values_(A , A , A , A ) else: snake_case : Union[str, Any] = super(A , self )._flatten_past_key_values_( A , A , A , A )
176
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __a: Dict = logging.get_logger(__name__) __a: List[Any] = { """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = "timesformer" def __init__( self , __lowerCAmelCase=224 , __lowerCAmelCase=16 , __lowerCAmelCase=3 , __lowerCAmelCase=8 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=True , __lowerCAmelCase="divided_space_time" , __lowerCAmelCase=0 , **__lowerCAmelCase , ) -> int: super().__init__(**__lowerCAmelCase ) lowercase__ : Optional[Any] = image_size lowercase__ : List[str] = patch_size lowercase__ : str = num_channels lowercase__ : Any = num_frames lowercase__ : Optional[int] = hidden_size lowercase__ : int = num_hidden_layers lowercase__ : str = num_attention_heads lowercase__ : Union[str, Any] = intermediate_size lowercase__ : int = hidden_act lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Union[str, Any] = attention_probs_dropout_prob lowercase__ : List[str] = initializer_range lowercase__ : int = layer_norm_eps lowercase__ : Any = qkv_bias lowercase__ : Dict = attention_type lowercase__ : str = drop_path_rate
198
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ , lowercase__ : Optional[int] = [], [] while len(UpperCAmelCase ) > 1: lowercase__ , lowercase__ : List[str] = min(UpperCAmelCase ), max(UpperCAmelCase ) start.append(UpperCAmelCase ) end.append(UpperCAmelCase ) collection.remove(UpperCAmelCase ) collection.remove(UpperCAmelCase ) end.reverse() return start + collection + end if __name__ == "__main__": __a: Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() __a: Tuple = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
198
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : str =logging.get_logger(__name__) lowerCAmelCase__ : str ={ 'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json', 'BridgeTower/bridgetower-base-itm-mlm': ( 'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json' ), } class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase__ : Dict = '''bridgetower_vision_model''' def __init__( self , _A=768 , _A=12 , _A=3 , _A=16 , _A=288 , _A=1 , _A=1e-05 , _A=False , _A=True , _A=False , **_A , ): '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = initializer_factor __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = stop_gradient __SCREAMING_SNAKE_CASE = share_layernorm __SCREAMING_SNAKE_CASE = remove_last_layer @classmethod def _A ( cls , _A , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if config_dict.get('model_type' ) == "bridgetower": __SCREAMING_SNAKE_CASE = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase__ : Any = '''bridgetower_text_model''' def __init__( self , _A=50_265 , _A=768 , _A=12 , _A=12 , _A=1 , _A=3_072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=514 , _A=1 , _A=1e-05 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , **_A , ): '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = initializer_factor __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id @classmethod def _A ( cls , _A , **_A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = cls.get_config_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if config_dict.get('model_type' ) == "bridgetower": __SCREAMING_SNAKE_CASE = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase__ : Any = '''bridgetower''' def __init__( self , _A=True , _A="gelu" , _A=768 , _A=1 , _A=1e-05 , _A=False , _A="add" , _A=12 , _A=6 , _A=False , _A=False , _A=None , _A=None , **_A , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = kwargs.pop('text_config_dict' , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = kwargs.pop('vision_config_dict' , _SCREAMING_SNAKE_CASE ) super().__init__(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = share_cross_modal_transformer_layers __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = initializer_factor __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = share_link_tower_layers __SCREAMING_SNAKE_CASE = link_tower_type __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = tie_word_embeddings __SCREAMING_SNAKE_CASE = init_layernorm_from_vision_encoder if text_config is None: __SCREAMING_SNAKE_CASE = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: __SCREAMING_SNAKE_CASE = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) __SCREAMING_SNAKE_CASE = BridgeTowerTextConfig(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = BridgeTowerVisionConfig(**_SCREAMING_SNAKE_CASE ) @classmethod def _A ( cls , _A , _A , **_A ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_SCREAMING_SNAKE_CASE ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE = self.text_config.to_dict() __SCREAMING_SNAKE_CASE = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE = self.__class__.model_type return output
364
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase__ : Dict =random.Random() if is_torch_available(): import torch def __lowercase ( a__ , a__=1.0 , a__=None , a__=None ) -> Any: if rng is None: __SCREAMING_SNAKE_CASE = global_rng __SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _A , _A=7 , _A=400 , _A=2_000 , _A=1 , _A=0.0 , _A=16_000 , _A=True , _A=True , ): '''simple docstring''' __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = min_seq_length __SCREAMING_SNAKE_CASE = max_seq_length __SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE = feature_size __SCREAMING_SNAKE_CASE = padding_value __SCREAMING_SNAKE_CASE = sampling_rate __SCREAMING_SNAKE_CASE = return_attention_mask __SCREAMING_SNAKE_CASE = do_normalize def _A ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _A ( self , _A=False , _A=False ): '''simple docstring''' def _flatten(_A ): return list(itertools.chain(*_A ) ) if equal_length: __SCREAMING_SNAKE_CASE = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE = [np.asarray(_A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase_ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Optional[int] = ASTFeatureExtractor def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ASTFeatureExtractionTester(self ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __SCREAMING_SNAKE_CASE = [np.asarray(_A ) for speech_input in speech_inputs] # Test not batched input __SCREAMING_SNAKE_CASE = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __SCREAMING_SNAKE_CASE = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test batched __SCREAMING_SNAKE_CASE = feat_extract(_A , padding=_A , return_tensors='np' ).input_values __SCREAMING_SNAKE_CASE = feat_extract(_A , padding=_A , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] __SCREAMING_SNAKE_CASE = np.asarray(_A ) __SCREAMING_SNAKE_CASE = feat_extract(_A , return_tensors='np' ).input_values __SCREAMING_SNAKE_CASE = feat_extract(_A , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_A , _A ): self.assertTrue(np.allclose(_A , _A , atol=1e-3 ) ) @require_torch def _A ( self ): '''simple docstring''' import torch __SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE = np.random.rand(100 ).astype(np.floataa ) __SCREAMING_SNAKE_CASE = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __SCREAMING_SNAKE_CASE = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __SCREAMING_SNAKE_CASE = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _A ( self , _A ): '''simple docstring''' from datasets import load_dataset __SCREAMING_SNAKE_CASE = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE = ds.sort('id' ).select(range(_A ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on __SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE = ASTFeatureExtractor() __SCREAMING_SNAKE_CASE = feature_extractor(_A , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _A , atol=1e-4 ) )
118
0
'''simple docstring''' from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch A__ : int = logging.get_logger(__name__) @add_end_docstrings( _UpperCAmelCase , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: if self.framework == "tf": __lowerCamelCase : int = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": __lowerCamelCase : Union[str, Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=SCREAMING_SNAKE_CASE_ ) else: raise ValueError('Unsupported framework' ) return masked_index def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> np.ndarray: __lowerCamelCase : List[Any] = self.get_masked_index(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , f'No mask_token ({self.tokenizer.mask_token}) found on the input' , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Dict[str, GenericTensor]: if return_tensors is None: __lowerCamelCase : Union[str, Any] = self.framework __lowerCamelCase : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.ensure_exactly_one_mask_token(SCREAMING_SNAKE_CASE_ ) return model_inputs def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Tuple = self.model(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = model_inputs['input_ids'] return model_outputs def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: __lowerCamelCase : Any = target_ids.shape[0] __lowerCamelCase : Any = model_outputs['input_ids'][0] __lowerCamelCase : str = model_outputs['logits'] if self.framework == "tf": __lowerCamelCase : Optional[Any] = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] __lowerCamelCase : Dict = outputs.numpy() __lowerCamelCase : Any = outputs[0, masked_index, :] __lowerCamelCase : int = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) if target_ids is not None: __lowerCamelCase : int = tf.gather_nd(tf.squeeze(SCREAMING_SNAKE_CASE_ , 0 ) , target_ids.reshape(-1 , 1 ) ) __lowerCamelCase : List[Any] = tf.expand_dims(SCREAMING_SNAKE_CASE_ , 0 ) __lowerCamelCase : str = tf.math.top_k(SCREAMING_SNAKE_CASE_ , k=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase : Tuple = topk.values.numpy(), topk.indices.numpy() else: __lowerCamelCase : Dict = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=SCREAMING_SNAKE_CASE_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample __lowerCamelCase : Tuple = outputs[0, masked_index, :] __lowerCamelCase : Optional[int] = logits.softmax(dim=-1 ) if target_ids is not None: __lowerCamelCase : Any = probs[..., target_ids] __lowerCamelCase , __lowerCamelCase : Any = probs.topk(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = [] __lowerCamelCase : Union[str, Any] = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): __lowerCamelCase : Optional[int] = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place __lowerCamelCase : int = input_ids.numpy().copy() if target_ids is not None: __lowerCamelCase : List[Any] = target_ids[p].tolist() __lowerCamelCase : Dict = p # Filter padding out: __lowerCamelCase : Optional[int] = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back __lowerCamelCase : Dict = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(SCREAMING_SNAKE_CASE_ ) result.append(SCREAMING_SNAKE_CASE_ ) if single_mask: return result[0] return result def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = [targets] try: __lowerCamelCase : List[Any] = self.tokenizer.get_vocab() except Exception: __lowerCamelCase : str = {} __lowerCamelCase : Optional[Any] = [] for target in targets: __lowerCamelCase : int = vocab.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if id_ is None: __lowerCamelCase : Dict = self.tokenizer( SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , max_length=1 , truncation=SCREAMING_SNAKE_CASE_ , )['input_ids'] if len(SCREAMING_SNAKE_CASE_ ) == 0: logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' 'We cannot replace it with anything meaningful, ignoring it' ) continue __lowerCamelCase : List[str] = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'The specified target token `{target}` does not exist in the model vocabulary. ' f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' ) target_ids.append(id_ ) __lowerCamelCase : Dict = list(set(SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) __lowerCamelCase : List[Any] = np.array(SCREAMING_SNAKE_CASE_ ) return target_ids def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Tuple = {} if targets is not None: __lowerCamelCase : str = self.get_target_ids(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = target_ids if top_k is not None: __lowerCamelCase : Any = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : str = super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1: return outputs[0] return outputs
185
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration A__ : str = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] A__ : Dict = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] A__ : int = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) A__ : Tuple = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ) -> List[str]: for tf_name, hf_name in patterns: __lowerCamelCase : Optional[int] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) return k def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : dict ) -> BigBirdPegasusForConditionalGeneration: __lowerCamelCase : int = BigBirdPegasusConfig(**UpperCAmelCase_ ) __lowerCamelCase : Any = BigBirdPegasusForConditionalGeneration(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = torch_model.state_dict() __lowerCamelCase : Tuple = {} # separating decoder weights __lowerCamelCase : Dict = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __lowerCamelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Tuple = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Tuple = DECODER_PATTERNS __lowerCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : Union[str, Any] = v.T __lowerCamelCase : str = torch.from_numpy(UpperCAmelCase_ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __lowerCamelCase : Optional[Any] = [k.endswith(UpperCAmelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCAmelCase_ ): continue __lowerCamelCase : Dict = REMAINING_PATTERNS __lowerCamelCase : List[str] = rename_state_dict_key(UpperCAmelCase_ , UpperCAmelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __lowerCamelCase : List[str] = v.T __lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __lowerCamelCase : Any = mapping['model.embed_positions.weight'] __lowerCamelCase : Union[str, Any] = mapping.pop('model.embed_positions.weight' ) __lowerCamelCase , __lowerCamelCase : List[str] = torch_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) __lowerCamelCase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Dict: __lowerCamelCase : int = tf.train.list_variables(UpperCAmelCase_ ) __lowerCamelCase : List[str] = {} __lowerCamelCase : List[Any] = ['global_step'] for name, shape in tqdm(UpperCAmelCase_ , desc='converting tf checkpoint to dict' ): __lowerCamelCase : Any = any(pat in name for pat in ignore_name ) if skip_key: continue __lowerCamelCase : Dict = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = array return tf_weights def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : dict ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = get_tf_weights_as_numpy(UpperCAmelCase_ ) __lowerCamelCase : List[str] = convert_bigbird_pegasus(UpperCAmelCase_ , UpperCAmelCase_ ) torch_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") A__ : List[str] = parser.parse_args() A__ : Optional[int] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
185
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase ( metaclass=_lowerCAmelCase ): '''simple docstring''' _A : str = ["keras_nlp"] def __init__( self : Optional[int] , *__a : Optional[Any] , **__a : Tuple ) -> Dict: """simple docstring""" requires_backends(self , ["""keras_nlp"""] )
370
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCamelCase : str = trt.Logger(trt.Logger.WARNING) lowerCamelCase : Any = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=3_84, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=1_28, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCamelCase : Dict = parser.parse_args() if args.tokenizer_name: lowerCamelCase : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCamelCase : List[str] = args.per_device_eval_batch_size lowerCamelCase : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCamelCase : List[str] = True lowerCamelCase : List[Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCamelCase : Optional[Any] = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCamelCase : int = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCamelCase : Union[str, Any] = [network.get_input(i) for i in range(network.num_inputs)] lowerCamelCase : Dict = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCamelCase : List[str] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCamelCase : Optional[int] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCamelCase : Optional[Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple ): __lowercase : List[str] = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) __lowercase : Union[str, Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) __lowercase : int = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase_ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase_ ) # start time __lowercase : Optional[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase_ ) for d_inp in d_inputs] + [int(lowerCAmelCase_ ), int(lowerCAmelCase_ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) cuda.memcpy_dtoh_async(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Synchronize the stream and take time stream.synchronize() # end time __lowercase : int = time.time() __lowercase : Union[str, Any] = end_time - start_time __lowercase : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCamelCase : Tuple = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase : List[Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCamelCase : Optional[Any] = raw_datasets['''validation'''].column_names lowerCamelCase : Union[str, Any] = '''question''' if '''question''' in column_names else column_names[0] lowerCamelCase : str = '''context''' if '''context''' in column_names else column_names[1] lowerCamelCase : Dict = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCamelCase : Dict = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase : Tuple = min(args.max_seq_length, tokenizer.model_max_length) def snake_case_ ( lowerCAmelCase_ : int ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace __lowercase : str = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __lowercase : List[str] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCAmelCase_ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __lowercase : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __lowercase : Any = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __lowercase : Dict = tokenized_examples.sequence_ids(lowerCAmelCase_ ) __lowercase : List[Any] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __lowercase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __lowercase : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples lowerCamelCase : Tuple = raw_datasets['''validation'''] # Validation Feature Creation lowerCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCamelCase : Union[str, Any] = default_data_collator lowerCamelCase : Optional[Any] = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCamelCase : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. __lowercase : int = postprocess_qa_predictions( examples=lowerCAmelCase_ , features=lowerCAmelCase_ , predictions=lowerCAmelCase_ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase_ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __lowercase : Optional[int] = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: __lowercase : List[Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] __lowercase : Optional[int] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase_ , label_ids=lowerCAmelCase_ ) lowerCamelCase : Dict = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def snake_case_ ( lowerCAmelCase_ : str ): return trt.volume(engine.get_binding_shape(lowerCAmelCase_ ) ) * engine.get_binding_dtype(lowerCAmelCase_ ).itemsize # Allocate device memory for inputs and outputs. lowerCamelCase : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCamelCase : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCamelCase : Dict = cuda.mem_alloc(h_outputa.nbytes) lowerCamelCase : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCamelCase : Optional[int] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') lowerCamelCase : int = 0.0 lowerCamelCase : List[str] = 0 lowerCamelCase : List[str] = timeit.default_timer() lowerCamelCase : List[Any] = None for step, batch in enumerate(eval_dataloader): lowerCamelCase ,lowerCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCamelCase ,lowerCamelCase : Union[str, Any] = outputs lowerCamelCase : Optional[Any] = torch.tensor(start_logits) lowerCamelCase : List[str] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCamelCase : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) lowerCamelCase : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) lowerCamelCase : List[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: lowerCamelCase : Tuple = nested_truncate(all_preds, len(eval_dataset)) lowerCamelCase : Dict = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 10_00 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 10_00)) logger.info('''Total Number of Inference = %d''', niter) lowerCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCamelCase : Optional[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
306
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} __UpperCAmelCase = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), } } __UpperCAmelCase = { "facebook/mbart-large-en-ro": 10_24, "facebook/mbart-large-cc25": 10_24, } # fmt: off __UpperCAmelCase = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =VOCAB_FILES_NAMES UpperCAmelCase_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ =["input_ids", "attention_mask"] UpperCAmelCase_ =[] UpperCAmelCase_ =[] def __init__( self , _A , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=None , _A=None , _A=None , _A = None , _A=None , **_A , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) SCREAMING_SNAKE_CASE_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = len(self.sp_model ) SCREAMING_SNAKE_CASE_ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) SCREAMING_SNAKE_CASE_ = src_lang if src_lang is not None else '''en_XX''' SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _UpperCamelCase ( self ) -> Union[str, Any]: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _UpperCamelCase ( self ) -> str: return self._src_lang @src_lang.setter def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCamelCase ( self , _A , _A = None , _A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def _UpperCamelCase ( self , _A , _A = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCamelCase ( self , _A , _A = None ) -> List[int]: SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase ( self , _A , _A , _A , _A , **_A ) -> int: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) SCREAMING_SNAKE_CASE_ = self.convert_tokens_to_ids(_A ) SCREAMING_SNAKE_CASE_ = tgt_lang_id return inputs def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCamelCase ( self , _A ) -> List[str]: return self.sp_model.encode(_A , out_type=_A ) def _UpperCamelCase ( self , _A ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCamelCase ( self , _A ) -> Tuple: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCamelCase ( self , _A ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def _UpperCamelCase ( self , _A , _A = None ) -> Tuple[str]: if not os.path.isdir(_A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def _UpperCamelCase ( self , _A , _A = "en_XX" , _A = None , _A = "ro_RO" , **_A , ) -> BatchEncoding: SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def _UpperCamelCase ( self ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCamelCase ( self ) -> Dict: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [self.eos_token_id, self.cur_lang_code] def _UpperCamelCase ( self , _A ) -> None: SCREAMING_SNAKE_CASE_ = self.lang_code_to_id[lang] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [self.eos_token_id, self.cur_lang_code]
299
from cva import destroyAllWindows, imread, imshow, waitKey def A__ ( __lowerCamelCase ): # getting number of pixels in the image SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image __UpperCAmelCase = imread("image_data/lena.jpg", 1) # convert to its negative __UpperCAmelCase = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
299
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' __UpperCamelCase : int __UpperCamelCase : TreeNode | None = None __UpperCamelCase : TreeNode | None = None UpperCAmelCase__ : Any = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( a ) -> int: if root is None: return 0 # Validation def count_nodes(a ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(a ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(a ) != count_coins(a ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(a ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _A , _A: Optional[int] = get_distrib(node.left ) _A , _A: int = get_distrib(node.right ) _A: List[str] = 1 - left_distrib_excess _A: Tuple = 1 - right_distrib_excess _A: Tuple = ( left_distrib_moves + right_distrib_moves + abs(a ) + abs(a ) ) _A: Union[str, Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a , a ) return get_distrib(a )[0] if __name__ == "__main__": import doctest doctest.testmod()
301
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = ['''image_processor''', '''tokenizer'''] __UpperCamelCase : Optional[Any] = '''BlipImageProcessor''' __UpperCamelCase : int = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: Optional[Any] = False super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) _A: List[Any] = self.image_processor def __call__( self : Optional[Any] , lowerCAmelCase_ : ImageInput = None , lowerCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Union[str, Any] , ): """simple docstring""" if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _A: Tuple = self.tokenizer _A: Optional[int] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) return text_encoding # add pixel_values _A: List[Any] = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) if text is not None: _A: Tuple = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) else: _A: str = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase_ ) return encoding_image_processor def __magic_name__ ( self : Optional[Any] , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : Tuple ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Union[str, Any] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __magic_name__ ( self : Dict ): """simple docstring""" _A: Dict = self.tokenizer.model_input_names _A: List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
301
1
'''simple docstring''' import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE_: Tuple =None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE_: Any =None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE_: int =None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE_: Tuple =OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE_: int =[ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] SCREAMING_SNAKE_CASE_: Union[str, Any] ='3.0.12' SCREAMING_SNAKE_CASE_: Any =None def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' global _logger UpperCAmelCase_ = _logger or logging.getLogger(__name__ ) return _logger class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , __a : Optional[int] ): UpperCAmelCase_ = lock_file return None def __str__(self : Optional[int] ): UpperCAmelCase_ = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class __A : def __init__(self : Optional[int] , __a : Optional[Any] ): UpperCAmelCase_ = lock return None def __enter__(self : int ): return self.lock def __exit__(self : Dict , __a : int , __a : Any , __a : Union[str, Any] ): self.lock.release() return None class __A : def __init__(self : Optional[int] , __a : str , __a : Dict=-1 , __a : Tuple=None ): UpperCAmelCase_ = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCAmelCase_ = self.hash_filename_if_too_long(__a , __a ) # The path to the lock file. UpperCAmelCase_ = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCAmelCase_ = None # The default timeout value. UpperCAmelCase_ = timeout # We use this lock primarily for the lock counter. UpperCAmelCase_ = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCAmelCase_ = 0 return None @property def _lowercase (self : Optional[int] ): return self._lock_file @property def _lowercase (self : int ): return self._timeout @timeout.setter def _lowercase (self : Optional[Any] , __a : Optional[Any] ): UpperCAmelCase_ = float(__a ) return None def _lowercase (self : List[str] ): raise NotImplementedError() def _lowercase (self : Union[str, Any] ): raise NotImplementedError() @property def _lowercase (self : str ): return self._lock_file_fd is not None def _lowercase (self : Tuple , __a : Optional[Any]=None , __a : List[Any]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: UpperCAmelCase_ = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCAmelCase_ = id(self ) UpperCAmelCase_ = self._lock_file UpperCAmelCase_ = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(__a ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCAmelCase_ = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def _lowercase (self : Any , __a : Optional[Any]=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCAmelCase_ = id(self ) UpperCAmelCase_ = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() UpperCAmelCase_ = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self : Optional[int] ): self.acquire() return self def __exit__(self : int , __a : str , __a : List[str] , __a : Any ): self.release() return None def __del__(self : Tuple ): self.release(force=__a ) return None def _lowercase (self : str , __a : str , __a : int ): UpperCAmelCase_ = os.path.basename(__a ) if len(__a ) > max_length and max_length > 0: UpperCAmelCase_ = os.path.dirname(__a ) UpperCAmelCase_ = str(hash(__a ) ) UpperCAmelCase_ = filename[: max_length - len(__a ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(__a , __a ) else: return path class __A ( UpperCamelCase__ ): def __init__(self : int , __a : Optional[int] , __a : Optional[Any]=-1 , __a : List[Any]=None ): from .file_utils import relative_to_absolute_path super().__init__(__a , timeout=__a , max_filename_length=__a ) UpperCAmelCase_ = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def _lowercase (self : str ): UpperCAmelCase_ = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCAmelCase_ = os.open(self._lock_file , __a ) except OSError: pass else: try: msvcrt.locking(__a , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(__a ) else: UpperCAmelCase_ = fd return None def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self._lock_file_fd UpperCAmelCase_ = None msvcrt.locking(__a , msvcrt.LK_UNLCK , 1 ) os.close(__a ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __A ( UpperCamelCase__ ): def __init__(self : Union[str, Any] , __a : List[Any] , __a : Any=-1 , __a : str=None ): UpperCAmelCase_ = os.statvfs(os.path.dirname(__a ) ).f_namemax super().__init__(__a , timeout=__a , max_filename_length=__a ) def _lowercase (self : str ): UpperCAmelCase_ = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCAmelCase_ = os.open(self._lock_file , __a ) try: fcntl.flock(__a , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(__a ) else: UpperCAmelCase_ = fd return None def _lowercase (self : Union[str, Any] ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition UpperCAmelCase_ = self._lock_file_fd UpperCAmelCase_ = None fcntl.flock(__a , fcntl.LOCK_UN ) os.close(__a ) return None class __A ( UpperCamelCase__ ): def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCAmelCase_ = os.open(self._lock_file , __a ) except OSError: pass else: UpperCAmelCase_ = fd return None def _lowercase (self : str ): os.close(self._lock_file_fd ) UpperCAmelCase_ = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE_: Any =None if msvcrt: SCREAMING_SNAKE_CASE_: List[str] =WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE_: List[Any] =UnixFileLock else: SCREAMING_SNAKE_CASE_: Optional[Any] =SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
1
'''simple docstring''' from __future__ import annotations import queue class __A : def __init__(self : Optional[Any] , __a : str ): UpperCAmelCase_ = data UpperCAmelCase_ = None UpperCAmelCase_ = None def lowerCAmelCase_ ( ) -> TreeNode: '''simple docstring''' print("\n********Press N to stop entering at any point of time********\n" ) UpperCAmelCase_ = input("Enter the value of the root node: " ).strip().lower() UpperCAmelCase_ = queue.Queue() UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() UpperCAmelCase_ = f"""Enter the left node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = left_node q.put(snake_case_ ) UpperCAmelCase_ = f"""Enter the right node of {node_found.data}: """ UpperCAmelCase_ = input(snake_case_ ).strip().lower() or "n" if check == "n": return tree_node UpperCAmelCase_ = TreeNode(int(snake_case_ ) ) UpperCAmelCase_ = right_node q.put(snake_case_ ) raise def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return print(node.data , end="," ) pre_order(node.left ) pre_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return in_order(node.left ) print(node.data , end="," ) in_order(node.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end="," ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = queue.Queue() q.put(snake_case_ ) while not q.empty(): UpperCAmelCase_ = [] while not q.empty(): UpperCAmelCase_ = q.get() print(node_dequeued.data , end="," ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: # start from root node, find its left child print(n.data , end="," ) stack.append(snake_case_ ) UpperCAmelCase_ = n.left # end of while means current node doesn't have left child UpperCAmelCase_ = stack.pop() # start to traverse its right child UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ = [] UpperCAmelCase_ = node while n or stack: while n: stack.append(snake_case_ ) UpperCAmelCase_ = n.left UpperCAmelCase_ = stack.pop() print(n.data , end="," ) UpperCAmelCase_ = n.right def lowerCAmelCase_ ( snake_case_ : TreeNode ) -> None: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ) or not node: return UpperCAmelCase_ , UpperCAmelCase_ = [], [] UpperCAmelCase_ = node stacka.append(snake_case_ ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase_ = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case_ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end="," ) def lowerCAmelCase_ ( snake_case_ : str = "" , snake_case_ : Any=50 , snake_case_ : Union[str, Any]="*" ) -> str: '''simple docstring''' if not s: return "\n" + width * char UpperCAmelCase_ , UpperCAmelCase_ = divmod(width - len(snake_case_ ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) SCREAMING_SNAKE_CASE_: TreeNode =build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
1
1
from maths.prime_factors import prime_factors def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = F'Input value of [number={number}] must be an integer' raise TypeError(UpperCamelCase_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(UpperCamelCase_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
169
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class lowercase__ ( _UpperCAmelCase ): A__ : Any =(CMStochasticIterativeScheduler,) A__ : Optional[int] =1_0 def A_ ( self : Dict , **UpperCAmelCase_ : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } config.update(**UpperCAmelCase_ ) return config def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0](**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps[0] SCREAMING_SNAKE_CASE__ = scheduler.timesteps[1] SCREAMING_SNAKE_CASE__ = self.dummy_sample SCREAMING_SNAKE_CASE__ = 0.1 * sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A_ ( self : List[str] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def A_ ( self : Any ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 1 scheduler.set_timesteps(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(UpperCAmelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [106, 0] scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = scheduler.timesteps SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = self.dummy_model() SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE__ = scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE__ = model(UpperCAmelCase_ , UpperCAmelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE__ = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ ).prev_sample SCREAMING_SNAKE_CASE__ = pred_prev_sample SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 15, 0] with self.assertRaises(UpperCAmelCase_ , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE__ = len(UpperCAmelCase_ ) with self.assertRaises(UpperCAmelCase_ , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=UpperCAmelCase_ , timesteps=UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ = scheduler_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCAmelCase_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=UpperCAmelCase_ )
169
1
"""simple docstring""" from collections import namedtuple __UpperCamelCase : Optional[int] = namedtuple('''from_to''', '''from_ to''') __UpperCamelCase : List[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_0_1, 1_0_0_0), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), '''cubicyard''': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), '''cubicfoot''': from_to(0.0_2_8, 3_5.3_1_4_7), '''cup''': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ ): if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ''', '''.join(A_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ''', '''.join(A_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
106
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : Path , lowerCAmelCase : str = None , lowerCAmelCase : str = None , lowerCAmelCase : str = None , ): """simple docstring""" if config_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Dict = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = question_encoder_name_or_path SCREAMING_SNAKE_CASE_ : Union[str, Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE_ : List[Any] = RagConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = gen_config SCREAMING_SNAKE_CASE_ : Optional[Any] = question_encoder_config SCREAMING_SNAKE_CASE_ : Dict = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase , lowerCAmelCase , config=lowerCAmelCase ) rag_model.save_pretrained(lowerCAmelCase ) # Sanity check. model_class.from_pretrained(lowerCAmelCase ) # Save tokenizers. SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __lowerCamelCase : str = parser.parse_args() __lowerCamelCase : int = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
18
0
"""simple docstring""" import functools from typing import Any def _A ( _a : int , _a : Optional[Any] ): """simple docstring""" if not isinstance(_a , _a ) or len(_a ) == 0: raise ValueError("""the string should be not empty string""" ) if not isinstance(_a , _a ) or not all( isinstance(_a , _a ) and len(_a ) > 0 for item in words ): raise ValueError("""the words should be a list of non-empty strings""" ) # Build trie A = {} A = '''WORD_KEEPER''' for word in words: A = trie for c in word: if c not in trie_node: A = {} A = trie_node[c] A = True A = len(_a ) # Dynamic programming method @functools.cache def is_breakable(_a : Dict ) -> bool: if index == len_string: return True A = trie for i in range(_a , _a ): A = trie_node.get(string[i] , _a ) if trie_node is None: return False if trie_node.get(_a , _a ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCAmelCase =parser.parse_args() UpperCAmelCase =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCAmelCase =CLIPImageProcessor() UpperCAmelCase =CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCAmelCase =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
77
0
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def _lowercase ( self : Tuple ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(_UpperCAmelCase, _UpperCAmelCase ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(_UpperCAmelCase ), np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase, 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
17
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
def a( A : str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) a = sorted(string.lower() ) return len(A ) == len(set(A ) ) if __name__ == "__main__": _lowercase: int = input("Enter a string ").strip() _lowercase: Dict = is_isogram(input_str) print(F"""{input_str} is {"an" if isogram else "not an"} isogram.""")
71
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
71
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase__: Union[str, Any] = [ "good first issue", "feature request", "wip", ] def snake_case_ ( ) -> int: UpperCAmelCase : Dict = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase : Any = g.get_repo('''huggingface/accelerate''' ) UpperCAmelCase : str = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCAmelCase : i.created_at , reverse=_lowerCAmelCase ) UpperCAmelCase : Optional[Any] = comments[0] if len(_lowerCAmelCase ) > 0 else None UpperCAmelCase : Optional[int] = dt.utcnow() UpperCAmelCase : Union[str, Any] = (current_time - issue.updated_at).days UpperCAmelCase : Optional[Any] = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''' ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __magic_name__: int = "\nHuman: <<task>>\n\nAssistant: " __magic_name__: Optional[int] = "huggingface-tools/default-prompts" __magic_name__: Optional[int] = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def UpperCamelCase ( _A, _A, _A="run" ): """simple docstring""" if prompt_or_repo_id is None: __magic_name__ : Optional[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""", _A ) is not None: return prompt_or_repo_id __magic_name__ : Union[str, Any] = cached_file( _A, PROMPT_FILES[mode], repo_type="""dataset""", user_agent={"""agent""": agent_name} ) with open(_A, """r""", encoding="""utf-8""" ) as f: return f.read()
138
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __magic_name__: Optional[Any] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __magic_name__: List[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __magic_name__: Union[str, Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): def __magic_name__ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase__ , hypotheses=lowerCAmelCase__ , min_len=lowerCAmelCase__ , max_len=lowerCAmelCase__ ) }
138
1
"""simple docstring""" from __future__ import annotations import time __SCREAMING_SNAKE_CASE =list[tuple[int, int]] __SCREAMING_SNAKE_CASE =[ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __SCREAMING_SNAKE_CASE =[[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : List[str] = pos_x lowercase_ : List[Any] = pos_y lowercase_ : Union[str, Any] = (pos_y, pos_x) lowercase_ : Union[str, Any] = goal_x lowercase_ : Union[str, Any] = goal_y lowercase_ : int = parent class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : Optional[Any] = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,__UpperCamelCase ) lowercase_ : Any = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,__UpperCamelCase ) lowercase_ : Optional[Any] = [self.start] lowercase_ : Tuple = False def _UpperCAmelCase ( self ) -> Path | None: '''simple docstring''' while self.node_queue: lowercase_ : Union[str, Any] = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: lowercase_ : Dict = True return self.retrace_path(__UpperCamelCase ) lowercase_ : str = self.get_successors(__UpperCamelCase ) for node in successors: self.node_queue.append(__UpperCamelCase ) if not self.reached: return [self.start.pos] return None def _UpperCAmelCase ( self ,__UpperCamelCase ) -> list[Node]: '''simple docstring''' lowercase_ : str = [] for action in delta: lowercase_ : Dict = parent.pos_x + action[1] lowercase_ : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(__UpperCamelCase ,__UpperCamelCase ,self.target.pos_y ,self.target.pos_x ,__UpperCamelCase ) ) return successors def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Path: '''simple docstring''' lowercase_ : Dict = node lowercase_ : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase_ : Tuple = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self ,__UpperCamelCase ,__UpperCamelCase ) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = BreadthFirstSearch(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Any = BreadthFirstSearch(__UpperCamelCase ,__UpperCamelCase ) lowercase_ : str = False def _UpperCAmelCase ( self ) -> Path | None: '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: lowercase_ : Union[str, Any] = self.fwd_bfs.node_queue.pop(0 ) lowercase_ : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: lowercase_ : Optional[Any] = True return self.retrace_bidirectional_path( __UpperCamelCase ,__UpperCamelCase ) lowercase_ : Optional[int] = current_bwd_node lowercase_ : Dict = current_fwd_node lowercase_ : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(__UpperCamelCase ), self.bwd_bfs: self.bwd_bfs.get_successors(__UpperCamelCase ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(__UpperCamelCase ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Path: '''simple docstring''' lowercase_ : Any = self.fwd_bfs.retrace_path(__UpperCamelCase ) lowercase_ : Optional[int] = self.bwd_bfs.retrace_path(__UpperCamelCase ) bwd_path.pop() bwd_path.reverse() lowercase_ : List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() __SCREAMING_SNAKE_CASE =(0, 0) __SCREAMING_SNAKE_CASE =(len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __SCREAMING_SNAKE_CASE =time.time() __SCREAMING_SNAKE_CASE =BreadthFirstSearch(init, goal) __SCREAMING_SNAKE_CASE =bfs.search() __SCREAMING_SNAKE_CASE =time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) __SCREAMING_SNAKE_CASE =time.time() __SCREAMING_SNAKE_CASE =BidirectionalBreadthFirstSearch(init, goal) __SCREAMING_SNAKE_CASE =bd_bfs.search() __SCREAMING_SNAKE_CASE =time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
213
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( lowercase_ ): lowercase = ['pixel_values'] def __init__( self ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 0.9 ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = 1 / 255 ,__UpperCamelCase = True ,__UpperCamelCase = True ,__UpperCamelCase = None ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> None: '''simple docstring''' super().__init__(**__UpperCamelCase ) lowercase_ : Optional[int] = size if size is not None else {'shortest_edge': 224} lowercase_ : Union[str, Any] = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} lowercase_ : Optional[int] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : List[str] = do_resize lowercase_ : List[Any] = size lowercase_ : int = crop_pct lowercase_ : Dict = resample lowercase_ : List[str] = do_center_crop lowercase_ : Union[str, Any] = crop_size lowercase_ : List[Any] = do_rescale lowercase_ : Tuple = rescale_factor lowercase_ : Tuple = do_normalize lowercase_ : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ : int = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = PILImageResampling.BICUBIC ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : Any = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: lowercase_ : Union[str, Any] = int(size['shortest_edge'] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase_ : Tuple = int(size['height'] / crop_pct ) else: lowercase_ : Dict = (int(size['height'] / crop_pct ), int(size['width'] / crop_pct )) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) lowercase_ : int = get_resize_output_image_size(__UpperCamelCase ,size=__UpperCamelCase ,default_to_square=__UpperCamelCase ) else: if "shortest_edge" in size: lowercase_ : Optional[int] = get_resize_output_image_size(__UpperCamelCase ,size=size['shortest_edge'] ,default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: lowercase_ : Dict = (size['height'], size['width']) else: raise ValueError('Invalid size for resize: {}'.format(__UpperCamelCase ) ) return resize(__UpperCamelCase ,size=__UpperCamelCase ,resample=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' lowercase_ : List[Any] = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__UpperCamelCase ,size=(size['height'], size['width']) ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> str: '''simple docstring''' return rescale(__UpperCamelCase ,scale=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,**__UpperCamelCase ,) -> np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ,data_format=__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = ChannelDimension.FIRST ,**__UpperCamelCase ,) -> PIL.Image.Image: '''simple docstring''' lowercase_ : List[Any] = do_resize if do_resize is not None else self.do_resize lowercase_ : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct lowercase_ : List[str] = resample if resample is not None else self.resample lowercase_ : str = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Tuple = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : str = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : str = image_mean if image_mean is not None else self.image_mean lowercase_ : Tuple = image_std if image_std is not None else self.image_std lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Tuple = get_size_dict(__UpperCamelCase ,default_to_square=__UpperCamelCase ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : List[str] = get_size_dict(__UpperCamelCase ,param_name='crop_size' ) lowercase_ : str = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_pct is None: raise ValueError('Crop_pct must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase_ : Optional[Any] = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: lowercase_ : str = [self.resize(image=__UpperCamelCase ,size=__UpperCamelCase ,crop_pct=__UpperCamelCase ,resample=__UpperCamelCase ) for image in images] if do_center_crop: lowercase_ : str = [self.center_crop(image=__UpperCamelCase ,size=__UpperCamelCase ) for image in images] if do_rescale: lowercase_ : Any = [self.rescale(image=__UpperCamelCase ,scale=__UpperCamelCase ) for image in images] if do_normalize: lowercase_ : int = [self.normalize(image=__UpperCamelCase ,mean=__UpperCamelCase ,std=__UpperCamelCase ) for image in images] lowercase_ : Dict = [to_channel_dimension_format(__UpperCamelCase ,__UpperCamelCase ) for image in images] lowercase_ : Any = {'pixel_values': images} return BatchFeature(data=__UpperCamelCase ,tensor_type=__UpperCamelCase )
213
1
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __a = random.Random() def lowerCamelCase__ ( _lowercase , _lowercase=1.0 , _lowercase=None , _lowercase=None ): '''simple docstring''' if rng is None: UpperCAmelCase_ : List[str] = global_rng UpperCAmelCase_ : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class __a( unittest.TestCase ): """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=400 ,_SCREAMING_SNAKE_CASE=2_000 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=16_000 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=80 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE="hann_window" ,_SCREAMING_SNAKE_CASE=80 ,_SCREAMING_SNAKE_CASE=7_600 ,_SCREAMING_SNAKE_CASE=1e-10 ,_SCREAMING_SNAKE_CASE=True ,) -> Dict: UpperCAmelCase_ : int = parent UpperCAmelCase_ : Any = batch_size UpperCAmelCase_ : str = min_seq_length UpperCAmelCase_ : List[Any] = max_seq_length UpperCAmelCase_ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ : Any = feature_size UpperCAmelCase_ : int = padding_value UpperCAmelCase_ : Tuple = sampling_rate UpperCAmelCase_ : List[Any] = do_normalize UpperCAmelCase_ : int = num_mel_bins UpperCAmelCase_ : List[str] = hop_length UpperCAmelCase_ : Any = win_length UpperCAmelCase_ : Optional[Any] = win_function UpperCAmelCase_ : Any = fmin UpperCAmelCase_ : List[str] = fmax UpperCAmelCase_ : Union[str, Any] = mel_floor UpperCAmelCase_ : List[str] = return_attention_mask def a__ ( self ) -> Optional[int]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def a__ ( self ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: def _flatten(_SCREAMING_SNAKE_CASE ): return list(itertools.chain(*_SCREAMING_SNAKE_CASE ) ) if equal_length: UpperCAmelCase_ : Union[str, Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase_ : Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: UpperCAmelCase_ : List[Any] = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs def a__ ( self ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ) -> str: if equal_length: UpperCAmelCase_ : List[Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ : List[Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: UpperCAmelCase_ : Union[str, Any] = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch class __a( _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = SpeechTaFeatureExtractor def a__ ( self ) -> int: UpperCAmelCase_ : Dict = SpeechTaFeatureExtractionTester(self ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Any: self.assertTrue(np.all(np.mean(_SCREAMING_SNAKE_CASE ,axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_SCREAMING_SNAKE_CASE ,axis=0 ) - 1 ) < 1e-3 ) ) def a__ ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ : int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] UpperCAmelCase_ : Union[str, Any] = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase_ : List[str] = feat_extract(speech_inputs[0] ,return_tensors='''np''' ).input_values UpperCAmelCase_ : Union[str, Any] = feat_extract(np_speech_inputs[0] ,return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # Test batched UpperCAmelCase_ : int = feat_extract(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_values UpperCAmelCase_ : Union[str, Any] = feat_extract(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] UpperCAmelCase_ : Any = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase_ : int = [None, 1_600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = feat_extract(_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def a__ ( self ) -> str: UpperCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : List[str] = range(800 ,1_400 ,200 ) UpperCAmelCase_ : int = [floats_list((1, x) )[0] for x in lengths] UpperCAmelCase_ : List[Any] = ['''longest''', '''max_length''', '''do_not_pad'''] UpperCAmelCase_ : List[str] = [None, 1_600, None] for max_length, padding in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = feat_extract(_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def a__ ( self ) -> int: UpperCAmelCase_ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : str = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] UpperCAmelCase_ : Optional[int] = feat_extract( _SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=1_000 ,padding='''max_length''' ,return_tensors='''np''' ) UpperCAmelCase_ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def a__ ( self ) -> Dict: UpperCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : int = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] UpperCAmelCase_ : int = feat_extract( _SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=1_000 ,padding='''longest''' ,return_tensors='''np''' ) UpperCAmelCase_ : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) UpperCAmelCase_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] UpperCAmelCase_ : Optional[Any] = feat_extract( _SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=2_000 ,padding='''longest''' ,return_tensors='''np''' ) UpperCAmelCase_ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : Optional[int] = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase_ : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ : Tuple = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase_ : Optional[Any] = feature_extractor.pad([{'''input_values''': inputs}] ,return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 ,1_400 ,200 )] UpperCAmelCase_ : List[Any] = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size UpperCAmelCase_ : int = feature_extractor(audio_target=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input UpperCAmelCase_ : Optional[Any] = feature_extractor(speech_inputs[0] ,return_tensors='''np''' ).input_values UpperCAmelCase_ : int = feature_extractor(np_speech_inputs[0] ,return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # Test batched UpperCAmelCase_ : Any = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_values UpperCAmelCase_ : List[str] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_ : Optional[int] = np.asarray(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_values UpperCAmelCase_ : str = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ : str = feat_extract.model_input_names[0] UpperCAmelCase_ : List[str] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) for x, y in zip(_SCREAMING_SNAKE_CASE ,processed_features[input_name] ) ) ) UpperCAmelCase_ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = BatchFeature({input_name: speech_inputs} ,tensor_type='''np''' ) UpperCAmelCase_ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_ : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def a__ ( self ) -> str: UpperCAmelCase_ : List[str] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ : str = feat_extract.model_input_names[0] UpperCAmelCase_ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ,tensor_type='''pt''' ) UpperCAmelCase_ : str = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCAmelCase_ : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) UpperCAmelCase_ : List[str] = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ : str = feat_extract.model_input_names[0] UpperCAmelCase_ : List[str] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_ : Any = feat_extract.num_mel_bins # hack! UpperCAmelCase_ : List[str] = feat_extract.pad(_SCREAMING_SNAKE_CASE ,padding='''longest''' ,return_tensors='''np''' )[input_name] UpperCAmelCase_ : str = feat_extract.pad(_SCREAMING_SNAKE_CASE ,padding='''longest''' ,return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Any = self.feat_extract_dict UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[Any] = self.feature_extraction_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ : Dict = [len(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] UpperCAmelCase_ : List[str] = feat_extract.model_input_names[0] UpperCAmelCase_ : Dict = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_ : int = feat_extract.num_mel_bins # hack! UpperCAmelCase_ : Optional[Any] = feat_extract.pad(_SCREAMING_SNAKE_CASE ,padding='''longest''' ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(processed.attention_mask.shape ) ,list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.feat_extract_dict UpperCAmelCase_ : str = True UpperCAmelCase_ : Any = self.feature_extraction_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = self.feat_extract_tester.prepare_inputs_for_target() UpperCAmelCase_ : Dict = [len(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] UpperCAmelCase_ : List[Any] = feat_extract.model_input_names[0] UpperCAmelCase_ : List[Any] = BatchFeature({input_name: speech_inputs} ) UpperCAmelCase_ : Any = min(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = feat_extract.num_mel_bins # hack! UpperCAmelCase_ : Optional[int] = feat_extract.pad( _SCREAMING_SNAKE_CASE ,padding='''max_length''' ,max_length=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) self.assertIn('''attention_mask''' ,_SCREAMING_SNAKE_CASE ) self.assertListEqual( list(processed_pad.attention_mask.shape ) ,[processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() ,[max_length for x in speech_inputs] ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> str: from datasets import load_dataset UpperCAmelCase_ : Any = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' ,'''clean''' ,split='''validation''' ) # automatic decoding with librispeech UpperCAmelCase_ : Union[str, Any] = ds.sort('''id''' ).select(range(_SCREAMING_SNAKE_CASE ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def a__ ( self ) -> Optional[Any]: # fmt: off UpperCAmelCase_ : List[str] = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on UpperCAmelCase_ : Union[str, Any] = self._load_datasamples(1 ) UpperCAmelCase_ : List[str] = SpeechTaFeatureExtractor() UpperCAmelCase_ : List[Any] = feature_extractor(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape ,(1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] ,_SCREAMING_SNAKE_CASE ,atol=1e-6 ) ) def a__ ( self ) -> List[str]: # fmt: off UpperCAmelCase_ : Union[str, Any] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on UpperCAmelCase_ : List[Any] = self._load_datasamples(1 ) UpperCAmelCase_ : Tuple = SpeechTaFeatureExtractor() UpperCAmelCase_ : Dict = feature_extractor(audio_target=_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape ,(1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
235
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : str = BlipImageProcessor() UpperCAmelCase_ : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) UpperCAmelCase_ : Optional[Any] = BlipaProcessor(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).tokenizer def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname ,**_SCREAMING_SNAKE_CASE ).image_processor def a__ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = [np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta )] UpperCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE ,0 ,-1 ) ) for x in image_inputs] return image_inputs def a__ ( self ) -> List[str]: UpperCAmelCase_ : Dict = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) UpperCAmelCase_ : Union[str, Any] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=_SCREAMING_SNAKE_CASE ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Any: UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : str = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = image_processor(_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) UpperCAmelCase_ : int = processor(images=_SCREAMING_SNAKE_CASE ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def a__ ( self ) -> int: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = '''lower newer''' UpperCAmelCase_ : Optional[int] = processor(text=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = tokenizer(_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : Tuple = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[str] = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : List[str] = processor.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : Union[str, Any] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = BlipaProcessor(tokenizer=_SCREAMING_SNAKE_CASE ,image_processor=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = self.prepare_image_inputs() UpperCAmelCase_ : Any = processor(text=_SCREAMING_SNAKE_CASE ,images=_SCREAMING_SNAKE_CASE ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
235
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _A : Union[str, Any] = None _A : Dict = logging.get_logger(__name__) _A : List[Any] = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _A : List[Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } _A : List[str] = { '''google/rembert''': 256, } _A : str = '''▁''' class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Union[str, Any] = RemBertTokenizer def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : Tuple="[CLS]" , SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="[SEP]" , SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE__ : List[Any]="[CLS]" , SCREAMING_SNAKE_CASE__ : Any="[MASK]" , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> Union[str, Any]: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , remove_space=SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = remove_space __lowerCAmelCase = keep_accents __lowerCAmelCase = vocab_file __lowerCAmelCase = False if not self.vocab_file else True def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return __lowerCAmelCase = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
229
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _A : Optional[Any] = logging.get_logger(__name__) # General docstring _A : Optional[Any] = '''ResNetConfig''' # Base docstring _A : Tuple = '''microsoft/resnet-50''' _A : List[str] = [1, 2048, 7, 7] # Image classification docstring _A : str = '''microsoft/resnet-50''' _A : Dict = '''tiger cat''' _A : List[Any] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> Any: super().__init__() __lowerCAmelCase = nn.Convad( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , padding=kernel_size // 2 , bias=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ACTaFN[activation] if activation is not None else nn.Identity() def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> List[str]: super().__init__() __lowerCAmelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __lowerCAmelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __lowerCAmelCase = config.num_channels def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) return embedding class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 ) -> Dict: super().__init__() __lowerCAmelCase = nn.Convad(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , stride=SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.BatchNormad(SCREAMING_SNAKE_CASE__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = self.convolution(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.normalization(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" ) -> Dict: super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCAmelCase = ACTaFN[activation] def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = "relu" , SCREAMING_SNAKE_CASE__ : int = 4 ) -> int: super().__init__() __lowerCAmelCase = in_channels != out_channels or stride != 1 __lowerCAmelCase = out_channels // reduction __lowerCAmelCase = ( ResNetShortCut(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase = nn.Sequential( ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ ) , ResNetConvLayer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE__ ) , ) __lowerCAmelCase = ACTaFN[activation] def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Tuple: __lowerCAmelCase = hidden_state __lowerCAmelCase = self.layer(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.shortcut(SCREAMING_SNAKE_CASE__ ) hidden_state += residual __lowerCAmelCase = self.activation(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , ) -> int: super().__init__() __lowerCAmelCase = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer __lowerCAmelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) , *[layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor ) -> Tensor: __lowerCAmelCase = input for layer in self.layers: __lowerCAmelCase = layer(SCREAMING_SNAKE_CASE__ ) return hidden_state class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : ResNetConfig ) -> Optional[int]: super().__init__() __lowerCAmelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( SCREAMING_SNAKE_CASE__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowerCAmelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(SCREAMING_SNAKE_CASE__ , config.depths[1:] ): self.stages.append(ResNetStage(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , depth=SCREAMING_SNAKE_CASE__ ) ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = True ) -> BaseModelOutputWithNoAttention: __lowerCAmelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) __lowerCAmelCase = stage_module(SCREAMING_SNAKE_CASE__ ) if output_hidden_states: __lowerCAmelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , hidden_states=SCREAMING_SNAKE_CASE__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = ResNetConfig _SCREAMING_SNAKE_CASE : Union[str, Any] = """resnet""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """pixel_values""" _SCREAMING_SNAKE_CASE : Union[str, Any] = True def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: if isinstance(SCREAMING_SNAKE_CASE__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ) -> int: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCAmelCase = value _A : Dict = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _A : Optional[int] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( """The bare ResNet model outputting raw features without any specific head on top.""" , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config __lowerCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.encoder( SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = encoder_outputs[0] __lowerCAmelCase = self.pooler(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE__ , pooler_output=SCREAMING_SNAKE_CASE__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: super().__init__(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = config.num_labels __lowerCAmelCase = ResNetModel(SCREAMING_SNAKE_CASE__ ) # classification head __lowerCAmelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.LongTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = self.resnet(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase = self.classifier(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase = """single_label_classification""" else: __lowerCAmelCase = """multi_label_classification""" if self.config.problem_type == "regression": __lowerCAmelCase = MSELoss() if self.num_labels == 1: __lowerCAmelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCAmelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase = CrossEntropyLoss() __lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase = BCEWithLogitsLoss() __lowerCAmelCase = loss_fct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not return_dict: __lowerCAmelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=SCREAMING_SNAKE_CASE__ , logits=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( """ ResNet backbone, to be used with frameworks like DETR and MaskFormer. """ , UpperCAmelCase__ , ) class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE__ ) super()._init_backbone(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = [config.embedding_size] + config.hidden_sizes __lowerCAmelCase = ResNetEmbeddings(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = ResNetEncoder(SCREAMING_SNAKE_CASE__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE__ ) @replace_return_docstrings(output_type=SCREAMING_SNAKE_CASE__ , config_class=_CONFIG_FOR_DOC ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Tensor , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None ) -> BackboneOutput: __lowerCAmelCase = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase = self.embedder(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = self.encoder(SCREAMING_SNAKE_CASE__ , output_hidden_states=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __lowerCAmelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=SCREAMING_SNAKE_CASE__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=SCREAMING_SNAKE_CASE__ , )
229
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __snake_case =1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase_ : def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any=1_6 , UpperCAmelCase__ : Any=1_3 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : int=1_4 , UpperCAmelCase__ : List[Any]=1_0 , UpperCAmelCase__ : Optional[int]=1_9 , UpperCAmelCase__ : Dict=5 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Tuple=1_6 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Optional[Any]=[1, 2, 3, 4, 5] , UpperCAmelCase__ : Optional[Any]=2_5 , UpperCAmelCase__ : Tuple=5 , ) -> List[str]: lowerCAmelCase = d_model lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = prediction_length lowerCAmelCase = context_length lowerCAmelCase = cardinality lowerCAmelCase = num_time_features lowerCAmelCase = lags_sequence lowerCAmelCase = embedding_dimension lowerCAmelCase = is_training lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = context_length lowerCAmelCase = prediction_length + label_length lowerCAmelCase = label_length lowerCAmelCase = moving_average lowerCAmelCase = autocorrelation_factor def __UpperCAmelCase ( self : str ) -> int: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Optional[Any] ) -> List[str]: lowerCAmelCase = config.context_length + max(config.lags_sequence ) lowerCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) lowerCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) lowerCAmelCase = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: lowerCAmelCase = self.get_config() lowerCAmelCase = self.prepare_autoformer_inputs_dict(UpperCAmelCase__ ) return config, inputs_dict def __UpperCAmelCase ( self : int ) -> List[str]: lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCAmelCase ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] ) -> int: lowerCAmelCase = AutoformerModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).eval() lowerCAmelCase = model(**UpperCAmelCase__ ) lowerCAmelCase = outputs.encoder_last_hidden_state lowerCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_encoder() encoder.save_pretrained(UpperCAmelCase__ ) lowerCAmelCase = AutoformerEncoder.from_pretrained(UpperCAmelCase__ ).to(UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = model.create_network_inputs(**UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCAmelCase = encoder(inputs_embeds=UpperCAmelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase = model.get_decoder() decoder.save_pretrained(UpperCAmelCase__ ) lowerCAmelCase = AutoformerDecoder.from_pretrained(UpperCAmelCase__ ).to(UpperCAmelCase__ ) lowerCAmelCase = decoder( trend=UpperCAmelCase__ , inputs_embeds=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Union[str, Any] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowerCamelCase : Any = (AutoformerForPrediction,) if is_torch_available() else () lowerCamelCase : Union[str, Any] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} lowerCamelCase : str = False lowerCamelCase : List[Any] = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[Any] = False def __UpperCAmelCase ( self : Dict ) -> Optional[int]: lowerCAmelCase = AutoformerModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Union[str, Any] ) -> str: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase = model_class.from_pretrained(UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ ) self.assertEqual(info['missing_keys'] , [] ) def __UpperCAmelCase ( self : List[Any] ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase__ ) @unittest.skip(reason='Model has no tokens embeddings' ) def __UpperCAmelCase ( self : int ) -> str: pass def __UpperCAmelCase ( self : str ) -> List[Any]: lowerCAmelCase = inspect.signature(getattr(UpperCAmelCase__ , 'forward' ) ) # The main input is the name of the argument after `self` lowerCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(UpperCAmelCase__ ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(UpperCAmelCase__ )] , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , 'seq_length' , UpperCAmelCase__ ) lowerCAmelCase = getattr(self.model_tester , 'decoder_seq_length' , UpperCAmelCase__ ) lowerCAmelCase = getattr(self.model_tester , 'encoder_seq_length' , UpperCAmelCase__ ) lowerCAmelCase = getattr(self.model_tester , 'd_model' , UpperCAmelCase__ ) lowerCAmelCase = getattr(self.model_tester , 'num_attention_heads' , UpperCAmelCase__ ) lowerCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) lowerCAmelCase = outputs.encoder_attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) # decoder attentions lowerCAmelCase = outputs.decoder_attentions self.assertIsInstance(UpperCAmelCase__ , (list, tuple) ) self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCAmelCase = outputs.cross_attentions self.assertIsInstance(UpperCAmelCase__ , (list, tuple) ) self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(out_len + 2 , len(UpperCAmelCase__ ) ) lowerCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __UpperCAmelCase ( self : Any ) -> Dict: super().test_retain_grad_hidden_states_attentions() def a_ ( lowerCamelCase : Dict="train-batch.pt" ): lowerCAmelCase = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=lowerCamelCase , repo_type='dataset' ) lowerCAmelCase = torch.load(lowerCamelCase , map_location=lowerCamelCase ) return batch @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : str ) -> List[str]: lowerCAmelCase = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(UpperCAmelCase__ ) lowerCAmelCase = prepare_batch() with torch.no_grad(): lowerCAmelCase = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] lowerCAmelCase = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : Tuple ) -> List[Any]: lowerCAmelCase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(UpperCAmelCase__ ) lowerCAmelCase = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCAmelCase = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state lowerCAmelCase = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def __UpperCAmelCase ( self : Tuple ) -> str: lowerCAmelCase = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(UpperCAmelCase__ ) lowerCAmelCase = prepare_batch('val-batch.pt' ) with torch.no_grad(): lowerCAmelCase = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) lowerCAmelCase = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=UpperCAmelCase__ ) lowerCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCAmelCase__ , rtol=1E-1 ) )
55
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Any = StableUnCLIPPipeline lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase = 3_2 lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=UpperCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=UpperCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase__ ) lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase__ , layers_per_block=1 , upcast_attention=UpperCAmelCase__ , use_linear_projection=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL() lowerCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: if str(UpperCAmelCase__ ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase__ ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = pipe('anime turle' , generator=UpperCAmelCase__ , output_type='np' ) lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
55
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def snake_case_ ( snake_case , snake_case , snake_case , snake_case ) -> Any: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: lowercase__: Tuple = TOKENIZER_CLASSES else: lowercase__: Union[str, Any] = {tokenizer_name: getattr(snake_case , tokenizer_name + 'Fast' )} logger.info(f'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: lowercase__: List[str] = TOKENIZER_CLASSES[tokenizer_name] lowercase__: Tuple = True if checkpoint_name is None: lowercase__: Dict = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowercase__: List[Any] = [checkpoint_name] logger.info(f'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(f'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer lowercase__: List[str] = tokenizer_class.from_pretrained(snake_case , force_download=snake_case ) # Save fast tokenizer logger.info(f'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: lowercase__ , lowercase__: List[str] = checkpoint.split('/' ) lowercase__: Any = os.path.join(snake_case , snake_case ) elif add_prefix: lowercase__: Optional[Any] = checkpoint lowercase__: Tuple = dump_path else: lowercase__: str = None lowercase__: Optional[int] = dump_path logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowercase__: Dict = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowercase__: Tuple = file_path.split(snake_case )[-1][0] if next_char == "/": lowercase__: str = os.path.join(snake_case , snake_case ) lowercase__: str = None logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) lowercase__: List[str] = tokenizer.save_pretrained( snake_case , legacy_format=snake_case , filename_prefix=snake_case ) logger.info(f'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(snake_case ) logger.info(f'=> removing {file_name}' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) __lowerCAmelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
196
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class __a ( __UpperCamelCase ): __lowercase : Optional[int] = 'data2vec-audio' def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="gelu" , lowerCAmelCase__=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=16 , lowerCAmelCase__=19 , lowerCAmelCase__=5 , lowerCAmelCase__=0.0_5 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=0 , lowerCAmelCase__="sum" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=256 , lowerCAmelCase__=(512, 512, 512, 512, 1_500) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=512 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) lowercase__: int = hidden_size lowercase__: str = feat_extract_activation lowercase__: List[Any] = list(lowerCAmelCase__ ) lowercase__: Optional[int] = list(lowerCAmelCase__ ) lowercase__: int = list(lowerCAmelCase__ ) lowercase__: Union[str, Any] = conv_bias lowercase__: int = num_conv_pos_embeddings lowercase__: List[str] = num_conv_pos_embedding_groups lowercase__: List[Any] = conv_pos_kernel_size lowercase__: Optional[Any] = len(self.conv_dim ) lowercase__: List[str] = num_hidden_layers lowercase__: List[str] = intermediate_size lowercase__: Tuple = hidden_act lowercase__: Any = num_attention_heads lowercase__: Optional[int] = hidden_dropout lowercase__: List[str] = attention_dropout lowercase__: int = activation_dropout lowercase__: Dict = feat_proj_dropout lowercase__: str = final_dropout lowercase__: List[str] = layerdrop lowercase__: str = layer_norm_eps lowercase__: Union[str, Any] = initializer_range lowercase__: Union[str, Any] = vocab_size lowercase__: Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase__: List[str] = mask_time_prob lowercase__: Tuple = mask_time_length lowercase__: List[Any] = mask_time_min_masks lowercase__: Optional[int] = mask_feature_prob lowercase__: Union[str, Any] = mask_feature_length lowercase__: List[str] = mask_feature_min_masks # ctc loss lowercase__: Union[str, Any] = ctc_loss_reduction lowercase__: str = ctc_zero_infinity # adapter lowercase__: str = add_adapter lowercase__: List[Any] = adapter_kernel_size lowercase__: Tuple = adapter_stride lowercase__: Dict = num_adapter_layers lowercase__: Optional[Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase__: List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase__: int = list(lowerCAmelCase__ ) lowercase__: Dict = list(lowerCAmelCase__ ) lowercase__: int = list(lowerCAmelCase__ ) lowercase__: str = xvector_output_dim @property def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' return math.prod(self.conv_stride )
196
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class _snake_case ( lowercase__): def A__ ( self : Union[str, Any] ): lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase, "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowercase, "num_attention_heads" ) ) self.parent.assertTrue(hasattr(__lowercase, "num_encoder_blocks" ) ) class _snake_case : def __init__( self : Optional[int], __lowercase : Any, __lowercase : Union[str, Any]=13, __lowercase : List[str]=64, __lowercase : Any=3, __lowercase : Any=4, __lowercase : Dict=[2, 2, 2, 2], __lowercase : Tuple=[8, 4, 2, 1], __lowercase : List[Any]=[16, 32, 64, 128], __lowercase : Optional[int]=[1, 4, 8, 16], __lowercase : List[Any]=[1, 2, 4, 8], __lowercase : int=True, __lowercase : Dict=True, __lowercase : Union[str, Any]="gelu", __lowercase : List[Any]=0.1, __lowercase : Tuple=0.1, __lowercase : Any=0.02, __lowercase : str=3, __lowercase : List[Any]=None, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_encoder_blocks lowercase__ = sr_ratios lowercase__ = depths lowercase__ = hidden_sizes lowercase__ = downsampling_rates lowercase__ = num_attention_heads lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = scope def A__ ( self : int ): lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def A__ ( self : Any ): return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def A__ ( self : Optional[Any], __lowercase : Optional[Any], __lowercase : Any, __lowercase : Dict ): lowercase__ = SegformerModel(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase ) lowercase__ = lowercase__ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def A__ ( self : Any, __lowercase : Dict, __lowercase : List[str], __lowercase : Union[str, Any] ): lowercase__ = self.num_labels lowercase__ = SegformerForSemanticSegmentation(__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = model(__lowercase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowercase__ = model(__lowercase, labels=__lowercase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss, 0.0 ) def A__ ( self : Optional[int], __lowercase : List[Any], __lowercase : int, __lowercase : List[str] ): lowercase__ = 1 lowercase__ = SegformerForSemanticSegmentation(config=__lowercase ) model.to(__lowercase ) model.eval() lowercase__ = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size) ).to(__lowercase ) lowercase__ = model(__lowercase, labels=__lowercase ) self.parent.assertGreater(result.loss, 0.0 ) def A__ ( self : List[str] ): lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : Union[str, Any] =( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCamelCase__ : str =( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Union[str, Any] =False def A__ ( self : str ): lowercase__ = SegformerModelTester(self ) lowercase__ = SegformerConfigTester(self, config_class=__lowercase ) def A__ ( self : Tuple ): self.config_tester.run_common_tests() def A__ ( self : Union[str, Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def A__ ( self : Optional[Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*__lowercase ) def A__ ( self : Optional[Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*__lowercase ) @unittest.skip("SegFormer does not use inputs_embeds" ) def A__ ( self : Union[str, Any] ): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def A__ ( self : str ): pass def A__ ( self : List[str] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(__lowercase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], __lowercase ) def A__ ( self : Tuple ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: lowercase__ = True lowercase__ = False lowercase__ = True lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(__lowercase, __lowercase ) ) lowercase__ = outputs.attentions lowercase__ = sum(self.model_tester.depths ) self.assertEqual(len(__lowercase ), __lowercase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ = True lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(__lowercase, __lowercase ) ) lowercase__ = outputs.attentions self.assertEqual(len(__lowercase ), __lowercase ) # verify the first attentions (first block, first layer) lowercase__ = (self.model_tester.image_size // 4) ** 2 lowercase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) lowercase__ = (self.model_tester.image_size // 32) ** 2 lowercase__ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) lowercase__ = len(__lowercase ) # Check attention is always last and order is fine lowercase__ = True lowercase__ = True lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(__lowercase, __lowercase ) ) self.assertEqual(out_len + 1, len(__lowercase ) ) lowercase__ = outputs.attentions self.assertEqual(len(__lowercase ), __lowercase ) # verify the first attentions (first block, first layer) lowercase__ = (self.model_tester.image_size // 4) ** 2 lowercase__ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def A__ ( self : List[Any] ): def check_hidden_states_output(__lowercase : Any, __lowercase : Tuple, __lowercase : Optional[int] ): lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(__lowercase, __lowercase ) ) lowercase__ = outputs.hidden_states lowercase__ = self.model_tester.num_encoder_blocks self.assertEqual(len(__lowercase ), __lowercase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(__lowercase, __lowercase, __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(__lowercase, __lowercase, __lowercase ) def A__ ( self : List[str] ): if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(__lowercase ): continue lowercase__ = model_class(__lowercase ) model.to(__lowercase ) model.train() lowercase__ = self._prepare_for_class(__lowercase, __lowercase, return_labels=__lowercase ) lowercase__ = model(**__lowercase ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self : str ): pass @slow def A__ ( self : List[Any] ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = SegformerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __lowerCAmelCase ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class _snake_case ( unittest.TestCase): @slow def A__ ( self : str ): # only resize + normalize lowercase__ = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=__lowercase, align=__lowercase, do_random_crop=__lowercase ) lowercase__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( __lowercase ) lowercase__ = prepare_img() lowercase__ = image_processor(images=__lowercase, return_tensors="pt" ) lowercase__ = encoded_inputs.pixel_values.to(__lowercase ) with torch.no_grad(): lowercase__ = model(__lowercase ) lowercase__ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape, __lowercase ) lowercase__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], __lowercase, atol=1e-4 ) ) @slow def A__ ( self : Optional[int] ): # only resize + normalize lowercase__ = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=__lowercase, align=__lowercase, do_random_crop=__lowercase ) lowercase__ = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(__lowercase ) lowercase__ = prepare_img() lowercase__ = image_processor(images=__lowercase, return_tensors="pt" ) lowercase__ = encoded_inputs.pixel_values.to(__lowercase ) with torch.no_grad(): lowercase__ = model(__lowercase ) lowercase__ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape, __lowercase ) lowercase__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], __lowercase, atol=1e-1 ) ) @slow def A__ ( self : Any ): # only resize + normalize lowercase__ = SegformerImageProcessor( image_scale=(512, 512), keep_ratio=__lowercase, align=__lowercase, do_random_crop=__lowercase ) lowercase__ = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( __lowercase ) lowercase__ = prepare_img() lowercase__ = image_processor(images=__lowercase, return_tensors="pt" ) lowercase__ = encoded_inputs.pixel_values.to(__lowercase ) with torch.no_grad(): lowercase__ = model(__lowercase ) lowercase__ = outputs.logits.detach().cpu() lowercase__ = image_processor.post_process_semantic_segmentation(outputs=__lowercase, target_sizes=[(500, 300)] ) lowercase__ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape, __lowercase ) lowercase__ = image_processor.post_process_semantic_segmentation(outputs=__lowercase ) lowercase__ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape, __lowercase )
224
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = "huggingface/label-files" lowercase__ = "imagenet-1k-id2label.json" lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = "std_conv" if "bit" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowercase__ = BitConfig( conv_layer=SCREAMING_SNAKE_CASE_ , num_labels=1000 , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ , ) return config def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if "stem.conv" in name: lowercase__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowercase__ = name.replace("blocks" , "layers" ) if "head.fc" in name: lowercase__ = name.replace("head.fc" , "classifier.1" ) if name.startswith("norm" ): lowercase__ = "bit." + name if "bit" not in name and "classifier" not in name: lowercase__ = "bit.encoder." + name return name def __lowerCAmelCase ( ): lowercase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): lowercase__ = get_config(SCREAMING_SNAKE_CASE_ ) # load original model from timm lowercase__ = create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ) timm_model.eval() # load state_dict of original model lowercase__ = timm_model.state_dict() for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE_ ) lowercase__ = val.squeeze() if "head" in key else val # load HuggingFace model lowercase__ = BitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # create image processor lowercase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE_ ) ) lowercase__ = transform.transforms lowercase__ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } lowercase__ = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE_ , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE_ , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ = prepare_img() lowercase__ = transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) lowercase__ = processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # verify logits with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE_ ) lowercase__ = outputs.logits print("Logits:" , logits[0, :3] ) print("Predicted class:" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowercase__ = timm_model(SCREAMING_SNAKE_CASE_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) lowercase_ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
224
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase_ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = '''cpu''' lowerCAmelCase_ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase_ = '''path-to-your-trained-model''' lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase_ = pipe.to(device) # to channels last lowerCAmelCase_ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase_ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase_ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase_ = torch.randn(2, 4, 64, 64) lowerCAmelCase_ = torch.rand(1) * 9_99 lowerCAmelCase_ = torch.randn(2, 77, 7_68) lowerCAmelCase_ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase_ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase_ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase_ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase_ = 6_66 lowerCAmelCase_ = torch.Generator(device).manual_seed(seed) lowerCAmelCase_ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase_ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase_ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
8
"""simple docstring""" from __future__ import annotations __magic_name__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __magic_name__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = -1 for j in range(i + 1 , UpperCamelCase_ ): if arr[i] < arr[j]: __SCREAMING_SNAKE_CASE = arr[j] break result.append(UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] for i, outer in enumerate(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = -1 for inner in arr[i + 1 :]: if outer < inner: __SCREAMING_SNAKE_CASE = inner break result.append(UpperCamelCase_ ) return result def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [-1] * arr_size for index in reversed(range(UpperCamelCase_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __SCREAMING_SNAKE_CASE = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __magic_name__ = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
100
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __lowerCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] , a_ : Dict ): lowerCAmelCase_ : List[str] = value lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Dict = None class __lowerCamelCase : '''simple docstring''' def __init__( self : int , a_ : Any ): lowerCAmelCase_ : Union[str, Any] = tree def lowerCamelCase ( self : Tuple , a_ : int ): if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Any ): yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase__ = random.Random() if is_torch_available(): import torch def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase=1.0 , __UpperCamelCase=None , __UpperCamelCase=None ) -> Dict: """simple docstring""" if rng is None: lowerCAmelCase_ : int = global_rng lowerCAmelCase_ : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , a_ : Dict , a_ : Dict=7 , a_ : int=4_00 , a_ : Union[str, Any]=20_00 , a_ : Any=1 , a_ : Optional[int]=0.0 , a_ : str=1_60_00 , a_ : Optional[int]=True , a_ : Dict=True , ): lowerCAmelCase_ : Tuple = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Optional[int] = min_seq_length lowerCAmelCase_ : List[Any] = max_seq_length lowerCAmelCase_ : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase_ : Dict = feature_size lowerCAmelCase_ : Tuple = padding_value lowerCAmelCase_ : int = sampling_rate lowerCAmelCase_ : str = return_attention_mask lowerCAmelCase_ : Union[str, Any] = do_normalize def lowerCamelCase ( self : Dict ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self : List[Any] , a_ : List[Any]=False , a_ : Optional[int]=False ): def _flatten(a_ : Optional[Any] ): return list(itertools.chain(*a_ ) ) if equal_length: lowerCAmelCase_ : Optional[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase_ : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase_ : List[Any] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : Tuple = ASTFeatureExtractor def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = ASTFeatureExtractionTester(self ) def lowerCamelCase ( self : Tuple ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase_ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase_ : str = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase_ : Optional[Any] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase_ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched lowerCAmelCase_ : Tuple = feat_extract(a_ , padding=a_ , return_tensors="np" ).input_values lowerCAmelCase_ : int = feat_extract(a_ , padding=a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase_ : Union[str, Any] = np.asarray(a_ ) lowerCAmelCase_ : str = feat_extract(a_ , return_tensors="np" ).input_values lowerCAmelCase_ : List[Any] = feat_extract(a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) @require_torch def lowerCamelCase ( self : List[str] ): import torch lowerCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase_ : Tuple = np.random.rand(1_00 ).astype(np.floataa ) lowerCAmelCase_ : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCamelCase ( self : List[Any] , a_ : List[str] ): from datasets import load_dataset lowerCAmelCase_ : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase_ : Optional[int] = ds.sort("id" ).select(range(a_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase ( self : str ): # fmt: off lowerCAmelCase_ : Tuple = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on lowerCAmelCase_ : Dict = self._load_datasamples(1 ) lowerCAmelCase_ : Union[str, Any] = ASTFeatureExtractor() lowerCAmelCase_ : int = feature_extractor(a_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
161
0
from __future__ import annotations from random import choice def lowerCAmelCase ( _lowerCAmelCase : Optional[int] ): """simple docstring""" return choice(_lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : list[int] , _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = random_pivot(_lowerCAmelCase ) # partition based on pivot # linear time UpperCAmelCase__ = [e for e in lst if e < pivot] UpperCAmelCase__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_lowerCAmelCase ) < k - 1: return kth_number(_lowerCAmelCase , k - len(_lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
169
import math class _UpperCamelCase : def __init__( self :Union[str, Any] , lowerCamelCase :Union[str, Any]=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 UpperCAmelCase__ = n UpperCAmelCase__ = [ [math.inf for j in range(0 , lowerCamelCase )] for i in range(0 , lowerCamelCase ) ] # adjacency matrix for weight UpperCAmelCase__ = [ [math.inf for j in range(0 , lowerCamelCase )] for i in range(0 , lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :List[Any] , lowerCamelCase :Optional[Any] , lowerCamelCase :int ) -> List[Any]: UpperCAmelCase__ = w def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCAmelCase__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase_ ( self :int , lowerCamelCase :List[Any] , lowerCamelCase :Dict ) -> List[str]: return self.dp[u][v] if __name__ == "__main__": _lowerCAmelCase : Optional[int] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
169
1
'''simple docstring''' import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCamelCase : Any = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize UpperCamelCase : int = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ UpperCamelCase : Any = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ UpperCamelCase : str = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCAmelCase_ : str): """simple docstring""" import nltk nltk.download('wordnet') if NLTK_VERSION >= version.Version('3.6.5'): nltk.download('punkt') if NLTK_VERSION >= version.Version('3.6.6'): nltk.download('omw-1.4') def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[int]=0.5): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5'): a : Union[str, Any] = [ meteor_score.single_meteor_score( word_tokenize(UpperCAmelCase_) , word_tokenize(UpperCAmelCase_) , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_) ] else: a : Optional[int] = [ meteor_score.single_meteor_score(UpperCAmelCase_ , UpperCAmelCase_ , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , gamma=UpperCAmelCase_) for ref, pred in zip(UpperCAmelCase_ , UpperCAmelCase_) ] return {"meteor": np.mean(UpperCAmelCase_)}
345
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( a_ , unittest.TestCase ): """simple docstring""" A : Union[str, Any] = CTRLTokenizer A : List[Any] = False A : Optional[Any] = False def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a : Dict = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] a : Tuple = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) a : Any = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] a : List[Any] = {'unk_token': '<unk>'} a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **UpperCAmelCase_ : Dict): """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCAmelCase_ : Any): """simple docstring""" a : List[str] = 'adapt react readapt apt' a : int = 'adapt react readapt apt' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a : str = 'adapt react readapt apt' a : Optional[Any] = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() a : List[Any] = tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) a : Union[str, Any] = tokens + [tokenizer.unk_token] a : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_)
345
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING lowerCAmelCase__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any): '''simple docstring''' __lowercase =AudioClassificationPipeline(model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase) # test with a raw waveform __lowercase =np.zeros((3_4_0_0_0,)) __lowercase =np.zeros((1_4_0_0_0,)) return audio_classifier, [audioa, audio] def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' __lowercase , __lowercase =examples __lowercase =audio_classifier(_lowerCAmelCase) # by default a model is initialized with num_labels=2 self.assertEqual( _lowerCAmelCase , [ {'score': ANY(_lowerCAmelCase), 'label': ANY(_lowerCAmelCase)}, {'score': ANY(_lowerCAmelCase), 'label': ANY(_lowerCAmelCase)}, ] , ) __lowercase =audio_classifier(_lowerCAmelCase , top_k=1) self.assertEqual( _lowerCAmelCase , [ {'score': ANY(_lowerCAmelCase), 'label': ANY(_lowerCAmelCase)}, ] , ) self.run_torchaudio(_lowerCAmelCase) @require_torchaudio def __lowerCamelCase ( self : Tuple , _lowerCAmelCase : str): '''simple docstring''' import datasets # test with a local file __lowercase =datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') __lowercase =dataset[0]['audio']['array'] __lowercase =audio_classifier(_lowerCAmelCase) self.assertEqual( _lowerCAmelCase , [ {'score': ANY(_lowerCAmelCase), 'label': ANY(_lowerCAmelCase)}, {'score': ANY(_lowerCAmelCase), 'label': ANY(_lowerCAmelCase)}, ] , ) @require_torch def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='anton-l/wav2vec2-random-tiny-classifier' __lowercase =pipeline('audio-classification' , model=_lowerCAmelCase) __lowercase =np.ones((8_0_0_0,)) __lowercase =audio_classifier(_lowerCAmelCase , top_k=4) __lowercase =[ {'score': 0.0842, 'label': 'no'}, {'score': 0.0838, 'label': 'up'}, {'score': 0.0837, 'label': 'go'}, {'score': 0.0834, 'label': 'right'}, ] __lowercase =[ {'score': 0.0845, 'label': 'stop'}, {'score': 0.0844, 'label': 'on'}, {'score': 0.0841, 'label': 'right'}, {'score': 0.0834, 'label': 'left'}, ] self.assertIn(nested_simplify(_lowerCAmelCase , decimals=4) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) __lowercase ={'array': np.ones((8_0_0_0,)), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} __lowercase =audio_classifier(_lowerCAmelCase , top_k=4) self.assertIn(nested_simplify(_lowerCAmelCase , decimals=4) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2]) @require_torch @slow def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' import datasets __lowercase ='superb/wav2vec2-base-superb-ks' __lowercase =pipeline('audio-classification' , model=_lowerCAmelCase) __lowercase =datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test') __lowercase =np.array(dataset[3]['speech'] , dtype=np.floataa) __lowercase =audio_classifier(_lowerCAmelCase , top_k=4) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=3) , [ {'score': 0.981, 'label': 'go'}, {'score': 0.007, 'label': 'up'}, {'score': 0.006, 'label': '_unknown_'}, {'score': 0.001, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF') def __lowerCamelCase ( self : Dict): '''simple docstring''' pass
166
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class _UpperCamelCase ( A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def __lowerCamelCase ( self : Dict): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowercase =SpeechTaTokenizer(_lowerCAmelCase) __lowercase =AddedToken('<mask>' , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase) __lowercase =mask_token tokenizer.add_special_tokens({'mask_token': mask_token}) tokenizer.add_tokens(['<ctc_blank>']) tokenizer.save_pretrained(self.tmpdirname) def __lowerCamelCase ( self : List[Any] , _lowerCAmelCase : Optional[int]): '''simple docstring''' __lowercase ='this is a test' __lowercase ='this is a test' return input_text, output_text def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Dict=2_0 , _lowerCAmelCase : Tuple=5): '''simple docstring''' __lowercase , __lowercase =self.get_input_output_texts(_lowerCAmelCase) __lowercase =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase) __lowercase =tokenizer.decode(_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase) return text, ids def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='<pad>' __lowercase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase) , _lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase) , _lowerCAmelCase) def __lowerCamelCase ( self : Dict): '''simple docstring''' __lowercase =list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-4] , 'œ') self.assertEqual(vocab_keys[-2] , '<mask>') self.assertEqual(vocab_keys[-1] , '<ctc_blank>') self.assertEqual(len(_lowerCAmelCase) , 8_1) def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 7_9) def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __lowercase =self.get_tokenizers(do_lower_case=_lowerCAmelCase) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}"""): __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __lowercase =['aaaaa bbbbbb', 'cccccccccdddddddd'] __lowercase =tokenizer.add_tokens(_lowerCAmelCase) __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase)) self.assertEqual(_lowerCAmelCase , all_size + len(_lowerCAmelCase)) __lowercase =tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_lowerCAmelCase) self.assertGreaterEqual(len(_lowerCAmelCase) , 4) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) __lowercase ={'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} __lowercase =tokenizer.add_special_tokens(_lowerCAmelCase) __lowercase =tokenizer.vocab_size __lowercase =len(_lowerCAmelCase) self.assertNotEqual(_lowerCAmelCase , 0) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase) self.assertEqual(_lowerCAmelCase , len(_lowerCAmelCase)) self.assertEqual(_lowerCAmelCase , all_size_a + len(_lowerCAmelCase)) __lowercase =tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_lowerCAmelCase) self.assertGreaterEqual(len(_lowerCAmelCase) , 6) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1) self.assertGreater(tokens[0] , tokens[1]) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1) self.assertGreater(tokens[-3] , tokens[-4]) self.assertEqual(tokens[0] , tokenizer.eos_token_id) self.assertEqual(tokens[-3] , tokenizer.pad_token_id) def __lowerCamelCase ( self : List[str]): '''simple docstring''' pass def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' pass def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __lowercase =self.get_tokenizer() __lowercase =tokenizer.tokenize('This is a test') # fmt: off self.assertListEqual(_lowerCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't']) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) __lowercase =tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) __lowercase =tokenizer.convert_tokens_to_ids(_lowerCAmelCase) # fmt: off self.assertListEqual(_lowerCAmelCase , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6]) # fmt: on __lowercase =tokenizer.convert_ids_to_tokens(_lowerCAmelCase) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.']) @slow def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =[ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off __lowercase ={ 'input_ids': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_lowerCAmelCase , )
166
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=A__ ): __UpperCAmelCase : List[Any] = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> Any: '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def lowerCamelCase ( cls , *UpperCamelCase__ , **UpperCamelCase__ ) -> int: '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] )
353
"""simple docstring""" from __future__ import annotations import numpy as np def __lowerCAmelCase ( lowercase : list[float] ) -> Any: """simple docstring""" return np.maximum(0 , lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
112
0
'''simple docstring''' import os def SCREAMING_SNAKE_CASE_ () -> Optional[Any]: with open(os.path.dirname(UpperCamelCase ) + """/grid.txt""" ) as f: lowerCamelCase__ : Tuple = [] # noqa: E741 for _ in range(20 ): l.append([int(UpperCamelCase ) for x in f.readline().split()] ) lowerCamelCase__ : Dict = 0 # right for i in range(20 ): for j in range(17 ): lowerCamelCase__ : Any = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCamelCase__ : List[str] = temp # down for i in range(17 ): for j in range(20 ): lowerCamelCase__ : Dict = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCamelCase__ : Dict = temp # diagonal 1 for i in range(17 ): for j in range(17 ): lowerCamelCase__ : List[str] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCamelCase__ : Optional[int] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): lowerCamelCase__ : int = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCamelCase__ : Tuple = temp return maximum if __name__ == "__main__": print(solution())
41
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __snake_case : Any = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __snake_case : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'whisper' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Any=5_1865 , _SCREAMING_SNAKE_CASE: Optional[Any]=80 , _SCREAMING_SNAKE_CASE: Optional[int]=6 , _SCREAMING_SNAKE_CASE: Any=4 , _SCREAMING_SNAKE_CASE: Dict=6 , _SCREAMING_SNAKE_CASE: Dict=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=1536 , _SCREAMING_SNAKE_CASE: List[str]=1536 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: List[str]=5_0257 , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: Optional[int]="gelu" , _SCREAMING_SNAKE_CASE: Tuple=256 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=1500 , _SCREAMING_SNAKE_CASE: str=448 , _SCREAMING_SNAKE_CASE: Any=5_0256 , _SCREAMING_SNAKE_CASE: Any=5_0256 , _SCREAMING_SNAKE_CASE: List[str]=5_0256 , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: List[Any]=[220, 5_0256] , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: str=256 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: Tuple=0.05 , _SCREAMING_SNAKE_CASE: List[str]=10 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Optional[int]=10 , _SCREAMING_SNAKE_CASE: int=0 , _SCREAMING_SNAKE_CASE: Any=7 , **_SCREAMING_SNAKE_CASE: List[str] , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : Optional[Any] = num_mel_bins __lowerCAmelCase : int = d_model __lowerCAmelCase : List[Any] = encoder_layers __lowerCAmelCase : List[Any] = encoder_attention_heads __lowerCAmelCase : List[str] = decoder_layers __lowerCAmelCase : Tuple = decoder_attention_heads __lowerCAmelCase : Any = decoder_ffn_dim __lowerCAmelCase : Tuple = encoder_ffn_dim __lowerCAmelCase : List[str] = dropout __lowerCAmelCase : Union[str, Any] = attention_dropout __lowerCAmelCase : Union[str, Any] = activation_dropout __lowerCAmelCase : Dict = activation_function __lowerCAmelCase : Tuple = init_std __lowerCAmelCase : str = encoder_layerdrop __lowerCAmelCase : int = decoder_layerdrop __lowerCAmelCase : Optional[int] = use_cache __lowerCAmelCase : Union[str, Any] = encoder_layers __lowerCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : int = max_source_positions __lowerCAmelCase : Any = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase : Dict = classifier_proj_size __lowerCAmelCase : Dict = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase : int = apply_spec_augment __lowerCAmelCase : Union[str, Any] = mask_time_prob __lowerCAmelCase : str = mask_time_length __lowerCAmelCase : int = mask_time_min_masks __lowerCAmelCase : List[Any] = mask_feature_prob __lowerCAmelCase : Tuple = mask_feature_length __lowerCAmelCase : Any = mask_feature_min_masks __lowerCAmelCase : Union[str, Any] = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __lowerCAmelCase : List[str] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ]) if self.use_past: __lowerCAmelCase : Tuple = {0: "batch"} else: __lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs") return common_inputs def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional["TensorType"] = None , _SCREAMING_SNAKE_CASE: int = 2_2050 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: int = 220 , ) -> Mapping[str, Any]: """simple docstring""" __lowerCAmelCase : int = OrderedDict() __lowerCAmelCase : Optional[Any] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : List[str] = encoder_inputs["input_features"].shape[2] __lowerCAmelCase : List[str] = encoder_sequence_length // 2 if self.use_past else seq_length __lowerCAmelCase : List[Any] = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = encoder_inputs.pop("input_features") __lowerCAmelCase : List[Any] = decoder_inputs.pop("decoder_input_ids") if "past_key_values" in decoder_inputs: __lowerCAmelCase : int = decoder_inputs.pop("past_key_values") return dummy_inputs @property def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> float: """simple docstring""" return 1e-3
269
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = "data2vec-audio" def __init__( self : Optional[Any] , UpperCamelCase__ : int=32 , UpperCamelCase__ : Dict=768 , UpperCamelCase__ : Dict=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Dict=3072 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : int=1e-5 , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase__ : Dict=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__ : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Any=19 , UpperCamelCase__ : int=5 , UpperCamelCase__ : List[str]=0.05 , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : str=10 , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Union[str, Any]="sum" , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]=256 , UpperCamelCase__ : Optional[int]=(512, 512, 512, 512, 1500) , UpperCamelCase__ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCamelCase__ : int=(1, 2, 3, 1, 1) , UpperCamelCase__ : Optional[Any]=512 , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : int=False , UpperCamelCase__ : Any=3 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Tuple=3 , UpperCamelCase__ : int=None , **UpperCamelCase__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case ) snake_case : int = hidden_size snake_case : List[str] = feat_extract_activation snake_case : Union[str, Any] = list(_snake_case ) snake_case : Union[str, Any] = list(_snake_case ) snake_case : Optional[int] = list(_snake_case ) snake_case : Union[str, Any] = conv_bias snake_case : Union[str, Any] = num_conv_pos_embeddings snake_case : Union[str, Any] = num_conv_pos_embedding_groups snake_case : Dict = conv_pos_kernel_size snake_case : List[Any] = len(self.conv_dim ) snake_case : Union[str, Any] = num_hidden_layers snake_case : Union[str, Any] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : List[str] = num_attention_heads snake_case : Optional[int] = hidden_dropout snake_case : Any = attention_dropout snake_case : Optional[Any] = activation_dropout snake_case : Any = feat_proj_dropout snake_case : Optional[Any] = final_dropout snake_case : str = layerdrop snake_case : Union[str, Any] = layer_norm_eps snake_case : List[Any] = initializer_range snake_case : int = vocab_size snake_case : List[Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case : List[str] = mask_time_prob snake_case : str = mask_time_length snake_case : Optional[int] = mask_time_min_masks snake_case : Optional[int] = mask_feature_prob snake_case : Any = mask_feature_length snake_case : Optional[Any] = mask_feature_min_masks # ctc loss snake_case : Any = ctc_loss_reduction snake_case : Optional[Any] = ctc_zero_infinity # adapter snake_case : str = add_adapter snake_case : Union[str, Any] = adapter_kernel_size snake_case : Optional[Any] = adapter_stride snake_case : List[Any] = num_adapter_layers snake_case : str = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case : int = list(_snake_case ) snake_case : Tuple = list(_snake_case ) snake_case : Any = list(_snake_case ) snake_case : Dict = xvector_output_dim @property def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" return math.prod(self.conv_stride )
351
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = DebertaTokenizer lowerCamelCase = True lowerCamelCase = DebertaTokenizerFast def lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : int = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] snake_case : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Tuple = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case : List[Any] = {'''unk_token''': '''[UNK]'''} snake_case : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def lowerCAmelCase ( self : Union[str, Any] , **UpperCamelCase__ : Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case : Tuple = '''lower newer''' snake_case : Optional[Any] = '''lower newer''' return input_text, output_text def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Dict = self.get_tokenizer() snake_case : Optional[Any] = '''lower newer''' snake_case : Tuple = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Union[str, Any] = tokens + [tokenizer.unk_token] snake_case : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" snake_case : int = self.get_tokenizer() snake_case : Optional[int] = tokenizer('''Hello''' , '''World''' ) snake_case : Optional[Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , UpperCamelCase__ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case : Optional[int] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase__ ) snake_case : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : Optional[int] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) snake_case : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) snake_case : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case : Dict = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case : Any = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) snake_case : Optional[Any] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] snake_case : Optional[Any] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ ) snake_case : List[str] = [tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for seq in encoding['''input_ids''']] # fmt: off snake_case : Optional[int] = { '''input_ids''': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case : Any = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , UpperCamelCase__ ) for expected, decoded in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
83
0
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class snake_case__( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = False , ) -> Tuple: super().__init__() lowerCAmelCase_ : str = nn.Embedding(__lowercase , __lowercase ) lowerCAmelCase_ : int = nn.Embedding(__lowercase , __lowercase ) lowerCAmelCase_ : Union[str, Any] = False lowerCAmelCase_ : Union[str, Any] = nn.Dropout(p=__lowercase ) lowerCAmelCase_ : Optional[int] = TaConfig( vocab_size=__lowercase , d_model=__lowercase , num_heads=__lowercase , d_kv=__lowercase , d_ff=__lowercase , dropout_rate=__lowercase , feed_forward_proj=__lowercase , is_decoder=__lowercase , is_encoder_decoder=__lowercase , ) lowerCAmelCase_ : Any = nn.ModuleList() for lyr_num in range(__lowercase ): lowerCAmelCase_ : Dict = TaBlock(__lowercase ) self.encoders.append(__lowercase ) lowerCAmelCase_ : Union[str, Any] = TaLayerNorm(__lowercase ) lowerCAmelCase_ : Optional[int] = nn.Dropout(p=__lowercase ) def lowercase_ ( self , __lowercase , __lowercase ) -> Optional[int]: lowerCAmelCase_ : Union[str, Any] = self.token_embedder(__lowercase ) lowerCAmelCase_ : List[Any] = encoder_input_tokens.shape[1] lowerCAmelCase_ : List[Any] = torch.arange(__lowercase , device=encoder_input_tokens.device ) x += self.position_encoding(__lowercase ) lowerCAmelCase_ : Dict = self.dropout_pre(__lowercase ) # inverted the attention mask lowerCAmelCase_ : List[Any] = encoder_input_tokens.size() lowerCAmelCase_ : Union[str, Any] = self.get_extended_attention_mask(__lowercase , __lowercase ) for lyr in self.encoders: lowerCAmelCase_ : Any = lyr(__lowercase , __lowercase )[0] lowerCAmelCase_ : Optional[int] = self.layer_norm(__lowercase ) return self.dropout_post(__lowercase ), encoder_inputs_mask
262
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
262
1
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple , _UpperCamelCase : Optional[int]=False ) -> Any: """simple docstring""" try: snake_case = os.environ[key] except KeyError: # KEY isn't set, default to `default`. snake_case = default else: # KEY is set, convert it to True or False. try: snake_case = strtobool(_UpperCamelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value SCREAMING_SNAKE_CASE__ = parse_flag_from_env("RUN_SLOW", default=False) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> str: """simple docstring""" return unittest.skip('Test was skipped' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , 'test is slow' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_xpu_available() , 'test requires a XPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> Any: """simple docstring""" return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> Dict: """simple docstring""" return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[str] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , 'test requires TPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> int: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] ) -> List[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> str: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_torch_version('>=' , '1.12.0' ) , 'test requires torch version >= 1.12.0' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Dict=None , _UpperCamelCase : Dict=None ) -> int: """simple docstring""" if test_case is None: return partial(_UpperCamelCase , version=_UpperCamelCase ) return unittest.skipUnless(is_torch_version('>=' , _UpperCamelCase ) , f"""test requires torch version >= {version}""" )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> int: """simple docstring""" return unittest.skipUnless(is_wandb_available() , 'test requires wandb' )(_UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Any: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml' )(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCAmelCase__ ( _UpperCamelCase : str ) -> List[str]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(_UpperCamelCase ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = True @classmethod def snake_case ( cls ): """simple docstring""" snake_case = tempfile.mkdtemp() @classmethod def snake_case ( cls ): """simple docstring""" if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def snake_case ( self ): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir ).glob('**/*' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCAmelCase ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self , lowerCAmelCase ): """simple docstring""" snake_case = mocks if isinstance(lowerCAmelCase , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCAmelCase__ ( _UpperCamelCase : int ) -> Any: """simple docstring""" snake_case = AcceleratorState() snake_case = tensor[None].clone().to(state.device ) snake_case = gather(_UpperCamelCase ).cpu() snake_case = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _UpperCamelCase ): return False return True class lowerCAmelCase_ : """simple docstring""" def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" snake_case = returncode snake_case = stdout snake_case = stderr async def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> List[Any]: """simple docstring""" while True: snake_case = await stream.readline() if line: callback(_UpperCamelCase ) else: break async def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[str]=False , _UpperCamelCase : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print('\nRunning: ' , ' '.join(_UpperCamelCase ) ) snake_case = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_UpperCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) snake_case = [] snake_case = [] def tee(_UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[str]="" ): snake_case = line.decode('utf-8' ).rstrip() sink.append(_UpperCamelCase ) if not quiet: print(_UpperCamelCase , _UpperCamelCase , file=_UpperCamelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stdout , label='stdout:' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _UpperCamelCase : tee(_UpperCamelCase , _UpperCamelCase , sys.stderr , label='stderr:' ) ) ), ] , timeout=_UpperCamelCase , ) return _RunOutput(await p.wait() , _UpperCamelCase , _UpperCamelCase ) def lowerCAmelCase__ ( _UpperCamelCase : List[Any] , _UpperCamelCase : str=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Tuple=1_8_0 , _UpperCamelCase : Dict=False , _UpperCamelCase : Optional[Any]=True ) -> _RunOutput: """simple docstring""" snake_case = asyncio.get_event_loop() snake_case = loop.run_until_complete( _stream_subprocess(_UpperCamelCase , env=_UpperCamelCase , stdin=_UpperCamelCase , timeout=_UpperCamelCase , quiet=_UpperCamelCase , echo=_UpperCamelCase ) ) snake_case = ' '.join(_UpperCamelCase ) if result.returncode > 0: snake_case = '\n'.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" pass def lowerCAmelCase__ ( _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" try: snake_case = subprocess.check_output(_UpperCamelCase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_UpperCamelCase , 'decode' ): snake_case = output.decode('utf-8' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{" ".join(_UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
149
"""simple docstring""" SCREAMING_SNAKE_CASE__ = {str(digit): digit**5 for digit in range(10)} def lowerCAmelCase__ ( _UpperCamelCase : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_UpperCamelCase ) ) def lowerCAmelCase__ ( ) -> int: """simple docstring""" return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(_UpperCamelCase ) ) if __name__ == "__main__": print(solution())
149
1
"""simple docstring""" import math from numpy import inf from scipy.integrate import quad def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] ) -> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(__UpperCAmelCase , 0 , __UpperCAmelCase , args=(__UpperCAmelCase) )[0] def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] ) -> float: '''simple docstring''' return math.pow(__UpperCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
197
'''simple docstring''' import re from filelock import FileLock try: import nltk a : Union[str, Any] = True except (ImportError, ModuleNotFoundError): a : Any = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' re.sub('''<n>''', '''''', __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
56
0
"""simple docstring""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __A : Tuple = logging.get_logger(__name__) __A : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } __A : Tuple = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } __A : Any = { "ctrl": 256, } __A : Optional[Any] = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def lowercase ( _SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) return pairs class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = CONTROL_CODES def __init__( self : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple="<unk>" , **__UpperCamelCase : str )->Tuple: super().__init__(unk_token=__UpperCamelCase , **__UpperCamelCase ) with open(__UpperCamelCase , encoding='''utf-8''' ) as vocab_handle: _UpperCAmelCase = json.load(__UpperCamelCase ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} with open(__UpperCamelCase , encoding='''utf-8''' ) as merges_handle: _UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in merges] _UpperCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) _UpperCAmelCase = {} @property def lowercase__ ( self : Union[str, Any] )->int: return len(self.encoder ) def lowercase__ ( self : Optional[int] )->Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] )->Optional[int]: if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _UpperCAmelCase = get_pairs(__UpperCamelCase ) if not pairs: return token while True: _UpperCAmelCase = min(__UpperCamelCase , key=lambda __UpperCamelCase : self.bpe_ranks.get(__UpperCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase , _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(__UpperCamelCase ): try: _UpperCAmelCase = word.index(__UpperCamelCase , __UpperCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(__UpperCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(__UpperCamelCase ) _UpperCAmelCase = new_word if len(__UpperCamelCase ) == 1: break else: _UpperCAmelCase = get_pairs(__UpperCamelCase ) _UpperCAmelCase = '''@@ '''.join(__UpperCamelCase ) _UpperCAmelCase = word[:-4] _UpperCAmelCase = word return word def lowercase__ ( self : Dict , __UpperCamelCase : List[Any] )->int: _UpperCAmelCase = [] _UpperCAmelCase = re.findall(r'''\S+\n?''' , __UpperCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCamelCase ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any )->Optional[int]: return self.encoder.get(__UpperCamelCase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Tuple , __UpperCamelCase : List[Any] )->str: return self.decoder.get(__UpperCamelCase , self.unk_token ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Tuple )->Optional[int]: _UpperCAmelCase = ''' '''.join(__UpperCamelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def lowercase__ ( self : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + '''\n''' ) _UpperCAmelCase = 0 with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) _UpperCAmelCase = token_index writer.write(''' '''.join(__UpperCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
350
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _a : """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = None __A : Union[str, Any] = namedtuple("CoinsDistribResult", "moves excess") def lowercase ( _SCREAMING_SNAKE_CASE : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_SCREAMING_SNAKE_CASE ) != count_coins(_SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.left ) _UpperCAmelCase , _UpperCAmelCase = get_distrib(node.right ) _UpperCAmelCase = 1 - left_distrib_excess _UpperCAmelCase = 1 - right_distrib_excess _UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return get_distrib(_SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
326
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( _lowerCAmelCase ): __A = ["image_processor", "tokenizer"] __A = "AutoImageProcessor" __A = "AutoTokenizer" def __init__( self : Tuple , lowercase : List[Any] , lowercase : str ): """simple docstring""" super().__init__(lowercase , lowercase ) lowercase_ :List[Any] = self.image_processor def __call__( self : Union[str, Any] , lowercase : int=None , lowercase : List[Any]=None , lowercase : List[str]=None , **lowercase : Any ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase_ :int = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase ) if images is not None: lowercase_ :Any = self.image_processor(lowercase , return_tensors=lowercase , **lowercase ) if text is not None and images is not None: lowercase_ :Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase ) , tensor_type=lowercase ) def lowercase__ ( self : List[Any] , *lowercase : Optional[int] , **lowercase : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowercase__ ( self : Union[str, Any] , *lowercase : Dict , **lowercase : str ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @property def lowercase__ ( self : Optional[Any] ): """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
223
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCAmelCase : Dict =collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test''']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCAmelCase : str ='''https://storage.googleapis.com/cvdf-datasets/mnist/''' def UpperCAmelCase_ ( __lowerCamelCase : str ): lowercase_ :Tuple = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) ,dtype=__lowerCamelCase )[0] @deprecated(__lowerCamelCase ,"Please use tf.data to implement this functionality." ) def UpperCAmelCase_ ( __lowerCamelCase : Any ): print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: lowercase_ :Union[str, Any] = _readaa(__lowerCamelCase ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) lowercase_ :int = _readaa(__lowerCamelCase ) lowercase_ :int = _readaa(__lowerCamelCase ) lowercase_ :Tuple = _readaa(__lowerCamelCase ) lowercase_ :Optional[Any] = bytestream.read(rows * cols * num_images ) lowercase_ :List[str] = numpy.frombuffer(__lowerCamelCase ,dtype=numpy.uinta ) lowercase_ :Dict = data.reshape(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,1 ) return data @deprecated(__lowerCamelCase ,"Please use tf.one_hot on tensors." ) def UpperCAmelCase_ ( __lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple ): lowercase_ :int = labels_dense.shape[0] lowercase_ :Any = numpy.arange(__lowerCamelCase ) * num_classes lowercase_ :Optional[int] = numpy.zeros((num_labels, num_classes) ) lowercase_ :List[Any] = 1 return labels_one_hot @deprecated(__lowerCamelCase ,"Please use tf.data to implement this functionality." ) def UpperCAmelCase_ ( __lowerCamelCase : Tuple ,__lowerCamelCase : Optional[Any]=False ,__lowerCamelCase : List[str]=10 ): print("Extracting" ,f.name ) with gzip.GzipFile(fileobj=__lowerCamelCase ) as bytestream: lowercase_ :List[Any] = _readaa(__lowerCamelCase ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) lowercase_ :List[str] = _readaa(__lowerCamelCase ) lowercase_ :Tuple = bytestream.read(__lowerCamelCase ) lowercase_ :int = numpy.frombuffer(__lowerCamelCase ,dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowerCamelCase ,__lowerCamelCase ) return labels class a_ : @deprecated( lowercase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : Tuple , lowercase : str , lowercase : Optional[int] , lowercase : List[Any]=False , lowercase : Tuple=False , lowercase : Optional[Any]=dtypes.floataa , lowercase : Tuple=True , lowercase : Optional[Any]=None , ): """simple docstring""" lowercase_ , lowercase_ :Union[str, Any] = random_seed.get_seed(lowercase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) lowercase_ :Optional[int] = dtypes.as_dtype(lowercase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: lowercase_ :List[str] = 10_000 lowercase_ :int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' lowercase_ :List[Any] = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 lowercase_ :Optional[int] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. lowercase_ :Any = images.astype(numpy.floataa ) lowercase_ :Optional[int] = numpy.multiply(lowercase , 1.0 / 2_55.0 ) lowercase_ :Tuple = images lowercase_ :Any = labels lowercase_ :Dict = 0 lowercase_ :Optional[Any] = 0 @property def lowercase__ ( self : Union[str, Any] ): """simple docstring""" return self._images @property def lowercase__ ( self : Tuple ): """simple docstring""" return self._labels @property def lowercase__ ( self : Optional[Any] ): """simple docstring""" return self._num_examples @property def lowercase__ ( self : str ): """simple docstring""" return self._epochs_completed def lowercase__ ( self : List[str] , lowercase : int , lowercase : List[Any]=False , lowercase : int=True ): """simple docstring""" if fake_data: lowercase_ :List[str] = [1] * 784 lowercase_ :Dict = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowercase )], [fake_label for _ in range(lowercase )], ) lowercase_ :Optional[Any] = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: lowercase_ :Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) lowercase_ :int = self.images[perma] lowercase_ :Tuple = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch lowercase_ :Dict = self._num_examples - start lowercase_ :List[str] = self._images[start : self._num_examples] lowercase_ :Optional[Any] = self._labels[start : self._num_examples] # Shuffle the data if shuffle: lowercase_ :str = numpy.arange(self._num_examples ) numpy.random.shuffle(lowercase ) lowercase_ :Optional[int] = self.images[perm] lowercase_ :List[Any] = self.labels[perm] # Start next epoch lowercase_ :List[str] = 0 lowercase_ :Any = batch_size - rest_num_examples lowercase_ :Optional[int] = self._index_in_epoch lowercase_ :Tuple = self._images[start:end] lowercase_ :Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size lowercase_ :Any = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowerCamelCase ,"Please write your own downloading logic." ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ): if not gfile.Exists(__lowerCamelCase ): gfile.MakeDirs(__lowerCamelCase ) lowercase_ :Dict = os.path.join(__lowerCamelCase ,__lowerCamelCase ) if not gfile.Exists(__lowerCamelCase ): urllib.request.urlretrieve(__lowerCamelCase ,__lowerCamelCase ) # noqa: S310 with gfile.GFile(__lowerCamelCase ) as f: lowercase_ :List[str] = f.size() print("Successfully downloaded" ,__lowerCamelCase ,__lowerCamelCase ,"bytes." ) return filepath @deprecated( __lowerCamelCase ,"Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def UpperCAmelCase_ ( __lowerCamelCase : int ,__lowerCamelCase : int=False ,__lowerCamelCase : Dict=False ,__lowerCamelCase : List[Any]=dtypes.floataa ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : int=50_00 ,__lowerCamelCase : Optional[Any]=None ,__lowerCamelCase : str=DEFAULT_SOURCE_URL ,): if fake_data: def fake(): return _DataSet( [] ,[] ,fake_data=__lowerCamelCase ,one_hot=__lowerCamelCase ,dtype=__lowerCamelCase ,seed=__lowerCamelCase ) lowercase_ :int = fake() lowercase_ :Optional[Any] = fake() lowercase_ :Tuple = fake() return _Datasets(train=__lowerCamelCase ,validation=__lowerCamelCase ,test=__lowerCamelCase ) if not source_url: # empty string check lowercase_ :str = DEFAULT_SOURCE_URL lowercase_ :Optional[int] = "train-images-idx3-ubyte.gz" lowercase_ :Optional[int] = "train-labels-idx1-ubyte.gz" lowercase_ :Optional[Any] = "t10k-images-idx3-ubyte.gz" lowercase_ :int = "t10k-labels-idx1-ubyte.gz" lowercase_ :Tuple = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + train_images_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Any = _extract_images(__lowerCamelCase ) lowercase_ :Optional[Any] = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + train_labels_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Any = _extract_labels(__lowerCamelCase ,one_hot=__lowerCamelCase ) lowercase_ :Any = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + test_images_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Union[str, Any] = _extract_images(__lowerCamelCase ) lowercase_ :int = _maybe_download( __lowerCamelCase ,__lowerCamelCase ,source_url + test_labels_file ) with gfile.Open(__lowerCamelCase ,"rb" ) as f: lowercase_ :Union[str, Any] = _extract_labels(__lowerCamelCase ,one_hot=__lowerCamelCase ) if not 0 <= validation_size <= len(__lowerCamelCase ): lowercase_ :Union[str, Any] = ( "Validation size should be between 0 and " F'{len(__lowerCamelCase )}. Received: {validation_size}.' ) raise ValueError(__lowerCamelCase ) lowercase_ :int = train_images[:validation_size] lowercase_ :Optional[int] = train_labels[:validation_size] lowercase_ :List[str] = train_images[validation_size:] lowercase_ :int = train_labels[validation_size:] lowercase_ :Dict = {"dtype": dtype, "reshape": reshape, "seed": seed} lowercase_ :List[str] = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) lowercase_ :str = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) lowercase_ :List[str] = _DataSet(__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ) return _Datasets(train=__lowerCamelCase ,validation=__lowerCamelCase ,test=__lowerCamelCase )
223
1
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def SCREAMING_SNAKE_CASE ( ) -> None: assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
45
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[Any] = get_failure_array(_UpperCAmelCase ) # 2) Step through text searching for pattern lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0 # index into text, pattern while i < len(_UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(_UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCamelCase__ : str = failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: lowerCamelCase__ : int = [0] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Any = 1 while j < len(_UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCamelCase__ : int = failure[i - 1] continue j += 1 failure.append(_UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) _UpperCAmelCase : Union[str, Any] = """abc1abc12""" _UpperCAmelCase : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _UpperCAmelCase : Dict = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCAmelCase : Any = """ABABX""" _UpperCAmelCase : Union[str, Any] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) _UpperCAmelCase : int = """AAAB""" _UpperCAmelCase : str = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) _UpperCAmelCase : Optional[Any] = """abcdabcy""" _UpperCAmelCase : List[Any] = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) _UpperCAmelCase : str = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
45
1
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _UpperCAmelCase = logging.getLogger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase=-1 ): """simple docstring""" A_ : str = label_idx def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = mode.value A_ : Any = os.path.join(lowercase , F'''{mode}.txt''' ) A_ : int = 1 A_ : Any = [] with open(lowercase , encoding='utf-8' ) as f: A_ : Optional[Any] = [] A_ : List[str] = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=lowercase , labels=lowercase ) ) guid_index += 1 A_ : Union[str, Any] = [] A_ : Union[str, Any] = [] else: A_ : List[Any] = line.split(' ' ) words.append(splits[0] ) if len(lowercase ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=lowercase , labels=lowercase ) ) return examples def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase ): """simple docstring""" A_ : Union[str, Any] = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(lowercase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: A_ : Optional[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(lowercase ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if path: with open(lowercase , 'r' ) as f: A_ : int = f.read().splitlines() if "O" not in labels: A_ : int = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self ): """simple docstring""" super().__init__(label_idx=-2 ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if path: with open(lowercase , 'r' ) as f: A_ : Tuple = f.read().splitlines() if "O" not in labels: A_ : Any = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class UpperCAmelCase ( __A ): '''simple docstring''' def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" if isinstance(lowercase , lowercase ): A_ : Union[str, Any] = mode.value A_ : List[str] = os.path.join(lowercase , F'''{mode}.txt''' ) A_ : Dict = 1 A_ : List[Any] = [] with open(lowercase , encoding='utf-8' ) as f: for sentence in parse_incr(lowercase ): A_ : Dict = [] A_ : List[str] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(lowercase ) == len(lowercase ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=lowercase , labels=lowercase ) ) guid_index += 1 return examples def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase ): """simple docstring""" A_ : Union[str, Any] = 0 for sentence in parse_incr(lowercase ): A_ : str = preds_list[example_id] A_ : Optional[Any] = '' for token in sentence: out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(lowercase ) example_id += 1 def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" if path: with open(lowercase , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
140
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp _UpperCAmelCase = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } _UpperCAmelCase = { """RUCAIBox/mvp""": 1024, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = ['''input_ids''', '''attention_mask'''] lowerCamelCase_ = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ): """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) A_ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : int = getattr(lowercase , pre_tok_state.pop('type' ) ) A_ : Union[str, Any] = add_prefix_space A_ : Dict = pre_tok_class(**lowercase ) A_ : Union[str, Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` A_ : Any = 'post_processor' A_ : List[str] = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: A_ : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A_ : int = tuple(state['sep'] ) if "cls" in state: A_ : Optional[int] = tuple(state['cls'] ) A_ : Tuple = False if state.get('add_prefix_space' , lowercase ) != add_prefix_space: A_ : Union[str, Any] = add_prefix_space A_ : Tuple = True if state.get('trim_offsets' , lowercase ) != trim_offsets: A_ : str = trim_offsets A_ : str = True if changes_to_apply: A_ : List[str] = getattr(lowercase , state.pop('type' ) ) A_ : List[str] = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value A_ : Dict = value def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Any = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" A_ : Dict = kwargs.get('is_split_into_words' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Any = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Union[str, Any] = [self.sep_token_id] A_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
140
1
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Union[str, Any]="pt" ): A__ = {"add_prefix_space": True} if isinstance(_lowerCamelCase , _lowerCamelCase ) and not line.startswith(" " ) else {} A__ = padding_side return tokenizer( [line] , max_length=_lowerCamelCase , padding="max_length" if pad_to_max_length else None , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any]=None , ): A__ = input_ids.ne(_lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( UpperCamelCase__ ): def __init__( self :Optional[int] , lowercase_ :Optional[Any] , lowercase_ :str , lowercase_ :List[Any] , lowercase_ :Optional[int] , lowercase_ :List[str]="train" , lowercase_ :Any=None , lowercase_ :Optional[int]=None , lowercase_ :str=None , lowercase_ :int="" , )-> int: super().__init__() A__ = Path(lowercase_ ).joinpath(type_path + ".source" ) A__ = Path(lowercase_ ).joinpath(type_path + ".target" ) A__ = self.get_char_lens(self.src_file ) A__ = max_source_length A__ = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" A__ = tokenizer A__ = prefix if n_obs is not None: A__ = self.src_lens[:n_obs] A__ = src_lang A__ = tgt_lang def __len__( self :Dict )-> Dict: return len(self.src_lens ) def __getitem__( self :int , lowercase_ :List[str] )-> Dict[str, torch.Tensor]: A__ = index + 1 # linecache starts at 1 A__ = self.prefix + linecache.getline(str(self.src_file ) , lowercase_ ).rstrip("\n" ) A__ = linecache.getline(str(self.tgt_file ) , lowercase_ ).rstrip("\n" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowercase_ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A__ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowercase_ ) else self.tokenizer ) A__ = self.tokenizer.generator if isinstance(self.tokenizer , lowercase_ ) else self.tokenizer A__ = encode_line(lowercase_ , lowercase_ , self.max_source_length , "right" ) A__ = encode_line(lowercase_ , lowercase_ , self.max_target_length , "right" ) A__ = source_inputs["input_ids"].squeeze() A__ = target_inputs["input_ids"].squeeze() A__ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCAmelCase_ ( lowercase_ :Any )-> List[str]: return [len(lowercase_ ) for x in Path(lowercase_ ).open().readlines()] def UpperCAmelCase_ ( self :str , lowercase_ :Dict )-> Dict[str, torch.Tensor]: A__ = torch.stack([x["input_ids"] for x in batch] ) A__ = torch.stack([x["attention_mask"] for x in batch] ) A__ = torch.stack([x["decoder_input_ids"] for x in batch] ) A__ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowercase_ ) else self.tokenizer.pad_token_id ) A__ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowercase_ ) else self.tokenizer.pad_token_id ) A__ = trim_batch(lowercase_ , lowercase_ ) A__, A__ = trim_batch(lowercase_ , lowercase_ , attention_mask=lowercase_ ) A__ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __lowerCAmelCase : Union[str, Any] =getLogger(__name__) def UpperCamelCase ( _lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(_lowerCamelCase ) ) def UpperCamelCase ( _lowerCamelCase : str ): A__ = get_git_info() save_json(_lowerCamelCase , os.path.join(_lowerCamelCase , "git_log.json" ) ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : str=4 , **_lowerCamelCase : int ): with open(_lowerCamelCase , "w" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : List[str] ): with open(_lowerCamelCase ) as f: return json.load(_lowerCamelCase ) def UpperCamelCase ( ): A__ = git.Repo(search_parent_directories=_lowerCamelCase ) A__ = { "repo_id": str(_lowerCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def UpperCamelCase ( _lowerCamelCase : Callable , _lowerCamelCase : Iterable ): return list(map(_lowerCamelCase , _lowerCamelCase ) ) def UpperCamelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int ): with open(_lowerCamelCase , "wb" ) as f: return pickle.dump(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : Union[str, Any] ): def remove_articles(_lowerCamelCase : Tuple ): return re.sub(r"\b(a|an|the)\b" , " " , _lowerCamelCase ) def white_space_fix(_lowerCamelCase : int ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase : Tuple ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def UpperCamelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict ): A__ = normalize_answer(_lowerCamelCase ).split() A__ = normalize_answer(_lowerCamelCase ).split() A__ = Counter(_lowerCamelCase ) & Counter(_lowerCamelCase ) A__ = sum(common.values() ) if num_same == 0: return 0 A__ = 1.0 * num_same / len(_lowerCamelCase ) A__ = 1.0 * num_same / len(_lowerCamelCase ) A__ = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase ( _lowerCamelCase : Any , _lowerCamelCase : List[str] ): return normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] ): assert len(_lowerCamelCase ) == len(_lowerCamelCase ) A__ = 0 for hypo, pred in zip(_lowerCamelCase , _lowerCamelCase ): em += exact_match_score(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: em /= len(_lowerCamelCase ) return {"em": em} def UpperCamelCase ( _lowerCamelCase : List[Any] ): return model_prefix.startswith("rag" ) def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] ): A__ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A__ = "dropout_rate" for p in extra_params: if getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not hasattr(_lowerCamelCase , _lowerCamelCase ) and not hasattr(_lowerCamelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) continue A__ = p if hasattr(_lowerCamelCase , _lowerCamelCase ) else equivalent_param[p] setattr(_lowerCamelCase , _lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) return hparams, config
123
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any ={ "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __lowerCAmelCase : List[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
123
1
"""simple docstring""" import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A : Any = get_tests_dir("fixtures/test_sentencepiece.model") if is_sentencepiece_available(): import sentencepiece as sp A : Optional[Any] = 5 A : str = 1_0 @require_sentencepiece @require_tokenizers class _UpperCamelCase ( lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] =SpeechaTextTokenizer __UpperCAmelCase : str =False __UpperCAmelCase : Any =True def snake_case ( self ): super().setUp() __lowerCAmelCase = sp.SentencePieceProcessor() spm_model.Load(UpperCAmelCase_ ) __lowerCAmelCase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(UpperCAmelCase_ ) )] __lowerCAmelCase = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) __lowerCAmelCase = Path(self.tmpdirname ) save_json(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCAmelCase_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = '<pad>' __lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def snake_case ( self ): __lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(UpperCAmelCase_ ) , 10_01 ) def snake_case ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def snake_case ( self ): __lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowerCAmelCase = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCAmelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowerCAmelCase = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __lowerCAmelCase = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def snake_case ( self ): # fmt: off __lowerCAmelCase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="valhalla/s2t_mustc_multilinguial_medium" __UpperCAmelCase : List[Any] ="C'est trop cool" __UpperCAmelCase : Optional[Any] ="Esto es genial" @classmethod def snake_case ( cls ): __lowerCAmelCase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def snake_case ( self ): self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def snake_case ( self ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def snake_case ( self ): self.assertIn(UpperCAmelCase_ , self.tokenizer.all_special_ids ) __lowerCAmelCase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowerCAmelCase = self.tokenizer.decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) __lowerCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , UpperCAmelCase_ ) def snake_case ( self ): __lowerCAmelCase = 'fr' __lowerCAmelCase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , UpperCAmelCase_ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def snake_case ( self ): __lowerCAmelCase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowerCAmelCase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
57
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __A : Any = datasets.utils.logging.get_logger(__name__) @dataclass class __A ( datasets.BuilderConfig ): lowerCAmelCase_ : int = 1_0000 lowerCAmelCase_ : Optional[List[str]] = None lowerCAmelCase_ : Optional[datasets.Features] = None class __A ( datasets.ArrowBasedBuilder ): lowerCAmelCase_ : List[Any] = ParquetConfig def lowercase__ ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self : List[str] , UpperCAmelCase_ : Dict ): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) lowerCAmelCase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase_ , (str, list, tuple) ): lowerCAmelCase : int = data_files if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Dict = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase : Any = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase : Tuple = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Dict = [dl_manager.iter_files(UpperCAmelCase_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'rb' ) as f: lowerCAmelCase : int = datasets.Features.from_arrow_schema(pq.read_schema(UpperCAmelCase_ ) ) break splits.append(datasets.SplitGenerator(name=UpperCAmelCase_ , gen_kwargs={'files': files} ) ) return splits def lowercase__ ( self : Any , UpperCAmelCase_ : pa.Table ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase : Union[str, Any] = table_cast(UpperCAmelCase_ , self.info.features.arrow_schema ) return pa_table def lowercase__ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int] ): lowerCAmelCase : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase_ ) ): with open(UpperCAmelCase_ , 'rb' ) as f: lowerCAmelCase : Optional[Any] = pq.ParquetFile(UpperCAmelCase_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(UpperCAmelCase_ ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(UpperCAmelCase_ )}: {e}" ) raise
138
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class lowercase ( unittest.TestCase ): def __init__( self ,A__): lowercase = parent def A__ ( self): return {} def UpperCamelCase ( ): '''simple docstring''' lowercase = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' lowercase = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : List[str] =MarkupLMFeatureExtractor if is_bsa_available() else None def A__ ( self): lowercase = MarkupLMFeatureExtractionTester(self) @property def A__ ( self): return self.feature_extract_tester.prepare_feat_extract_dict() def A__ ( self): # Initialize feature_extractor lowercase = self.feature_extraction_class() # Test not batched input lowercase = get_html_strings()[0] lowercase = feature_extractor(A__) # fmt: off lowercase = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] lowercase = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes ,A__) self.assertEqual(encoding.xpaths ,A__) # Test batched lowercase = get_html_strings() lowercase = feature_extractor(A__) # fmt: off lowercase = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] lowercase = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes) ,2) self.assertEqual(len(encoding.xpaths) ,2) self.assertEqual(encoding.nodes ,A__) self.assertEqual(encoding.xpaths ,A__)
97
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def A__ ( self): lowercase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''') lowercase = { '''input_ids''': tf.convert_to_tensor([[0, 2_6_4_6, 1_0_2_6_9, 8_3, 9_9_9_4_2, 2]] ,dtype=tf.intaa), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] ,dtype=tf.intaa), } lowercase = model(A__)['''last_hidden_state'''] lowercase = tf.TensorShape((1, 6, 7_6_8)) self.assertEqual(output.shape ,A__) # compare the actual values for a slice. lowercase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
97
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version UpperCamelCase_ = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize UpperCamelCase_ = '''\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } ''' UpperCamelCase_ = '''\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. ''' UpperCamelCase_ = ''' Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: \'meteor\': meteor score. Examples: >>> meteor = datasets.load_metric(\'meteor\') >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"] >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results["meteor"], 4)) 0.6944 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: List[str] ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py"""] ,reference_urls=[ """https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score""", """https://en.wikipedia.org/wiki/METEOR""", ] ,) def A__ ( self: Optional[int] ,lowerCamelCase_: List[Any] ) -> Tuple: import nltk nltk.download("""wordnet""" ) if NLTK_VERSION >= version.Version("""3.6.5""" ): nltk.download("""punkt""" ) if NLTK_VERSION >= version.Version("""3.6.6""" ): nltk.download("""omw-1.4""" ) def A__ ( self: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str]=0.9 ,lowerCamelCase_: Dict=3 ,lowerCamelCase_: int=0.5 ) -> Any: if NLTK_VERSION >= version.Version("""3.6.5""" ): UpperCAmelCase_ : Optional[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowerCamelCase_ ) ,word_tokenize(lowerCamelCase_ ) ,alpha=lowerCamelCase_ ,beta=lowerCamelCase_ ,gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ ,lowerCamelCase_ ) ] else: UpperCAmelCase_ : Tuple = [ meteor_score.single_meteor_score(lowerCamelCase_ ,lowerCamelCase_ ,alpha=lowerCamelCase_ ,beta=lowerCamelCase_ ,gamma=lowerCamelCase_ ) for ref, pred in zip(lowerCamelCase_ ,lowerCamelCase_ ) ] return {"meteor": np.mean(lowerCamelCase_ )}
345
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): '''simple docstring''' @property def A__ ( self: Optional[int] ) -> int: torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") ,up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") ,) return model @property def A__ ( self: Tuple ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = VQModel( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=3 ,) return model @property def A__ ( self: Tuple ) -> Any: torch.manual_seed(0 ) UpperCAmelCase_ : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) return CLIPTextModel(lowerCamelCase_ ) def A__ ( self: str ) -> Optional[Any]: UpperCAmelCase_ : str = self.dummy_uncond_unet UpperCAmelCase_ : List[Any] = DDIMScheduler() UpperCAmelCase_ : List[Any] = self.dummy_vq_model UpperCAmelCase_ : Optional[int] = LDMPipeline(unet=lowerCamelCase_ ,vqvae=lowerCamelCase_ ,scheduler=lowerCamelCase_ ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : int = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ).images UpperCAmelCase_ : List[str] = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = ldm(generator=lowerCamelCase_ ,num_inference_steps=2 ,output_type="""numpy""" ,return_dict=lowerCamelCase_ )[0] UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : str = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) UpperCAmelCase_ : Tuple = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _snake_case ( unittest.TestCase ): '''simple docstring''' def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(lowerCamelCase_ ) ldm.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = ldm(generator=lowerCamelCase_ ,num_inference_steps=5 ,output_type="""numpy""" ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : int = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) UpperCAmelCase_ : Union[str, Any] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
345
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
367
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : List[str] )->Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Optional[int] = PegasusTokenizer(_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def UpperCAmelCase__ ( self : Optional[Any] , **_snake_case : Tuple )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : Dict , _snake_case : List[Any] )->Tuple: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : Union[str, Any] )->Dict: '''simple docstring''' __lowerCAmelCase : Dict = """</s>""" __lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def UpperCAmelCase__ ( self : int )->Tuple: '''simple docstring''' __lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_snake_case ) , 1103 ) def UpperCAmelCase__ ( self : Optional[int] )->Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def UpperCAmelCase__ ( self : Dict )->str: '''simple docstring''' __lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : str = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : Optional[int] )->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __lowerCAmelCase : Tuple = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" __lowerCAmelCase : List[str] = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : str = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) def UpperCAmelCase__ ( self : List[str] )->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __lowerCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" __lowerCAmelCase : Optional[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __lowerCAmelCase : int = tokenizer([raw_input_str] , return_tensors=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCAmelCase__ ( self : Any )->Any: '''simple docstring''' __lowerCAmelCase : List[Any] = ["""This is going to be way too long.""" * 150, """short example"""] __lowerCAmelCase : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : Dict = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : Tuple = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. @slow def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Optional[Any] = {"""input_ids""": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def UpperCAmelCase__ ( self : Tuple )->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase : Any = PegasusTokenizer(_snake_case , offset=0 , mask_token_sent=_snake_case , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCAmelCase__ ( self : Any )->str: '''simple docstring''' return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def UpperCAmelCase__ ( self : Union[str, Any] , **_snake_case : Optional[Any] )->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCAmelCase__ ( self : List[str] , _snake_case : Optional[int] )->Union[str, Any]: '''simple docstring''' return ("This is a test", "This is a test") def UpperCAmelCase__ ( self : List[Any] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __lowerCAmelCase : int = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) __lowerCAmelCase : str = rust_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] __lowerCAmelCase : Tuple = py_tokenizer([raw_input_str] , return_tensors=_snake_case , add_special_tokens=_snake_case ).input_ids[0] self.assertListEqual(_snake_case , _snake_case ) @require_torch def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = ["""This is going to be way too long.""" * 1000, """short example"""] __lowerCAmelCase : Optional[int] = ["""not super long but more than 5 tokens""", """tiny"""] __lowerCAmelCase : str = self._large_tokenizer(_snake_case , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) __lowerCAmelCase : List[Any] = self._large_tokenizer( text_target=_snake_case , max_length=5 , padding=_snake_case , truncation=_snake_case , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_snake_case ) == 2 # input_ids, attention_mask. def UpperCAmelCase__ ( self : Optional[Any] )->Any: '''simple docstring''' __lowerCAmelCase : Tuple = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) __lowerCAmelCase : Optional[Any] = self._large_tokenizer(_snake_case ).input_ids self.assertListEqual( _snake_case , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
232
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a = logging.get_logger(__name__) _a = { "shi-labs/dinat-mini-in1k-224": "https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json", # See all Dinat models at https://huggingface.co/models?filter=dinat } class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = """dinat""" lowerCAmelCase_ = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __lowerCAmelCase=4 , __lowerCAmelCase=3 , __lowerCAmelCase=6_4 , __lowerCAmelCase=[3, 4, 6, 5] , __lowerCAmelCase=[2, 4, 8, 1_6] , __lowerCAmelCase=7 , __lowerCAmelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __lowerCAmelCase=3.0 , __lowerCAmelCase=True , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-5 , __lowerCAmelCase=0.0 , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase , ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = depths lowerCamelCase__ = len(__lowerCAmelCase ) lowerCamelCase__ = num_heads lowerCamelCase__ = kernel_size lowerCamelCase__ = dilations lowerCamelCase__ = mlp_ratio lowerCamelCase__ = qkv_bias lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = drop_path_rate lowerCamelCase__ = hidden_act lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ = int(embed_dim * 2 ** (len(__lowerCAmelCase ) - 1) ) lowerCamelCase__ = layer_scale_init_value lowerCamelCase__ = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__lowerCAmelCase ) + 1 )] lowerCamelCase__ , lowerCamelCase__ = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names )
209
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _a = logging.get_logger(__name__) _a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[Any]: '''simple docstring''' for attribute in key.split('''.''' ): lowerCamelCase__ = getattr(__snake_case ,__snake_case ) if weight_type is not None: lowerCamelCase__ = getattr(__snake_case ,__snake_case ).shape else: lowerCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCamelCase__ = value elif weight_type == "weight_g": lowerCamelCase__ = value elif weight_type == "weight_v": lowerCamelCase__ = value elif weight_type == "bias": lowerCamelCase__ = value else: lowerCamelCase__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = [] lowerCamelCase__ = fairseq_model.state_dict() lowerCamelCase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowerCamelCase__ = None for name, value in fairseq_dict.items(): lowerCamelCase__ = False if "conv_layers" in name: load_conv_layer( __snake_case ,__snake_case ,__snake_case ,__snake_case ,hf_model.config.feat_extract_norm == '''group''' ,) lowerCamelCase__ = True elif name.split('''.''' )[0] == "proj": lowerCamelCase__ = fairseq_model.proj lowerCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowerCamelCase__ = True if "*" in mapped_key: lowerCamelCase__ = name.split(__snake_case )[0].split('''.''' )[-2] lowerCamelCase__ = mapped_key.replace('''*''' ,__snake_case ) if "weight_g" in name: lowerCamelCase__ = '''weight_g''' elif "weight_v" in name: lowerCamelCase__ = '''weight_v''' elif "bias" in name: lowerCamelCase__ = '''bias''' elif "weight" in name: lowerCamelCase__ = '''weight''' else: lowerCamelCase__ = None set_recursively(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(F'Unused weights: {unused_weights}' ) return proj_weight def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ = full_name.split('''conv_layers.''' )[-1] lowerCamelCase__ = name.split('''.''' ) lowerCamelCase__ = int(items[0] ) lowerCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCamelCase__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(__snake_case ,__snake_case ,bias=__snake_case ) lowerCamelCase__ = emb.weight.data return lin_layer def lowerCAmelCase__(__snake_case ) -> Any: '''simple docstring''' with open(__snake_case ,'''r''' ,encoding='''utf-8''' ) as f: lowerCamelCase__ = f.readlines() lowerCamelCase__ = [line.split(''' ''' )[0] for line in lines] lowerCamelCase__ = len(__snake_case ) lowerCamelCase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__snake_case ,range(4 ,num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ = WavaVecaConfig.from_pretrained(__snake_case ) lowerCamelCase__ = SpeechaTextaConfig.from_pretrained( __snake_case ,vocab_size=__snake_case ,decoder_layers=__snake_case ,do_stable_layer_norm=__snake_case ) lowerCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=__snake_case ,return_attention_mask=__snake_case ,) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCamelCase__ = model[0].eval() # set weights for wav2vec2 encoder lowerCamelCase__ = WavaVecaModel(__snake_case ) lowerCamelCase__ = recursively_load_weights_wavaveca(model.encoder ,__snake_case ) lowerCamelCase__ = SpeechaTextaForCausalLM(__snake_case ) lowerCamelCase__ , lowerCamelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() ,strict=__snake_case ) # set output linear layer unexpected_keys.remove('''embed_out''' ) lowerCamelCase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowerCamelCase__ = SpeechEncoderDecoderModel(encoder=__snake_case ,decoder=__snake_case ) lowerCamelCase__ = False # add projection layer lowerCamelCase__ = nn.Parameter(projection_layer.weight ) lowerCamelCase__ = nn.Parameter(projection_layer.bias ) lowerCamelCase__ = create_vocab_dict(__snake_case ) with open(os.path.join(__snake_case ,'''vocab.json''' ) ,'''w''' ) as fp: json.dump(__snake_case ,__snake_case ) lowerCamelCase__ = SpeechaTextaTokenizer(os.path.join(__snake_case ,'''vocab.json''' ) ) tokenizer.save_pretrained(__snake_case ) lowerCamelCase__ = hf_wavavec.config.to_dict() lowerCamelCase__ = tokenizer.pad_token_id lowerCamelCase__ = tokenizer.bos_token_id lowerCamelCase__ = tokenizer.eos_token_id lowerCamelCase__ = '''speech_to_text_2''' lowerCamelCase__ = '''wav2vec2''' lowerCamelCase__ = SpeechEncoderDecoderConfig.from_dict(__snake_case ) hf_wavavec.save_pretrained(__snake_case ) feature_extractor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=10_224, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") _a = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
209
1
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets A_ : Optional[Any] =""" Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ A_ : int =""" Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ A_ : Any ="""\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def snake_case_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def snake_case_ ( self , a__ , a__ , a__=None ): return { "matthews_correlation": float(matthews_corrcoef(a__ , a__ , sample_weight=a__ ) ), }
80
"""simple docstring""" from math import factorial def SCREAMING_SNAKE_CASE_ ( snake_case : int = 20 )-> int: _lowerCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... _lowerCamelCase = n // 2 return int(factorial(snake_case ) / (factorial(snake_case ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: A_ : Optional[Any] =int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
80
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = KandinskyInpaintPipeline __lowerCAmelCase = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] __lowerCAmelCase = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] __lowerCAmelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowerCAmelCase = False @property def A (self : Union[str, Any] ): return 32 @property def A (self : Any ): return 32 @property def A (self : str ): return self.time_input_dim @property def A (self : List[Any] ): return self.time_input_dim * 4 @property def A (self : Optional[int] ): return 100 @property def A (self : Union[str, Any] ): A = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def A (self : Tuple ): torch.manual_seed(0 ) A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) A = MultilingualCLIP(_lowerCAmelCase ) A = text_encoder.eval() return text_encoder @property def A (self : Union[str, Any] ): torch.manual_seed(0 ) A = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A = UNetaDConditionModel(**_lowerCAmelCase ) return model @property def A (self : Union[str, Any] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A (self : int ): torch.manual_seed(0 ) A = VQModel(**self.dummy_movq_kwargs ) return model def A (self : List[Any] ): A = self.dummy_text_encoder A = self.dummy_tokenizer A = self.dummy_unet A = self.dummy_movq A = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_lowerCAmelCase , set_alpha_to_one=_lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_lowerCAmelCase , ) A = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def A (self : List[str] , _lowerCAmelCase : List[str] , _lowerCAmelCase : int=0 ): A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowerCAmelCase ) # create init_image A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) A = image.cpu().permute(0 , 2 , 3 , 1 )[0] A = Image.fromarray(np.uinta(_lowerCAmelCase ) ).convert("""RGB""" ).resize((256, 256) ) # create mask A = np.ones((64, 64) , dtype=np.floataa ) A = 0 if str(_lowerCAmelCase ).startswith("""mps""" ): A = torch.manual_seed(_lowerCAmelCase ) else: A = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) A = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def A (self : Union[str, Any] ): A = """cpu""" A = self.get_dummy_components() A = self.pipeline_class(**_lowerCAmelCase ) A = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) A = output.images A = pipe( **self.get_dummy_inputs(_lowerCAmelCase ) , return_dict=_lowerCAmelCase , )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) A = np.array( [0.8_326_919, 0.73_790_467, 0.20_918_581, 0.9_309_612, 0.5_511_791, 0.43_713_328, 0.5_513_321, 0.49_922_934, 0.59_497_786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def A (self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A (self : Union[str, Any] ): A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A = np.ones((768, 768) , dtype=np.floataa ) A = 0 A = """a hat""" A = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowerCAmelCase ) A = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) A = pipeline.to(_lowerCAmelCase ) pipeline.set_progress_bar_config(disable=_lowerCAmelCase ) A = torch.Generator(device="""cpu""" ).manual_seed(0 ) A , A = pipe_prior( _lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A = pipeline( _lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , image_embeds=_lowerCAmelCase , negative_image_embeds=_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
258
'''simple docstring''' def __a ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __a ( ) ->None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
258
1
'''simple docstring''' # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a_ : str = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
6
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() a_ : Any = logging.get_logger(__name__) a_ : Optional[int] = """https://openaipublic.azureedge.net/jukebox/models/""" a_ : Any = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def a_ ( __snake_case : int ) -> Any: """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: lowerCamelCase_ =key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: lowerCamelCase_ =key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: lowerCamelCase_ =key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ =key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: lowerCamelCase_ =key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a_ ( __snake_case : Dict , __snake_case : int , __snake_case : Dict , __snake_case : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ ={} import re lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) lowerCamelCase_ =re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) lowerCamelCase_ =re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_conv_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_conv_in.sub(__snake_case , __snake_case ) elif re_encoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_encoder_block_resnet.sub(__snake_case , __snake_case ) elif re_encoder_block_proj_out.fullmatch(__snake_case ): lowerCamelCase_ =re_encoder_block_proj_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCamelCase_ =re_encoder_block_proj_out.sub(__snake_case , __snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_conv_out.sub(__snake_case , __snake_case ) elif re_decoder_block_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_decoder_block_resnet.sub(__snake_case , __snake_case ) elif re_decoder_block_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_decoder_block_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCamelCase_ =re_decoder_block_proj_in.sub(__snake_case , __snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_conv_out.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_conv_out.sub(__snake_case , __snake_case ) elif re_prior_cond_resnet.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_resnet.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ ={'''1''': 1, '''3''': 2}[groups[-2]] lowerCamelCase_ =F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCamelCase_ =F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCamelCase_ =prefix + resnet_block lowerCamelCase_ =re_prior_cond_resnet.sub(__snake_case , __snake_case ) elif re_prior_cond_proj_in.fullmatch(__snake_case ): lowerCamelCase_ =re_prior_cond_proj_in.match(__snake_case ) lowerCamelCase_ =regex_match.groups() lowerCamelCase_ =F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCamelCase_ =re_prior_cond_proj_in.sub(__snake_case , __snake_case ) # keep original key else: lowerCamelCase_ =original_key lowerCamelCase_ =replace_key(__snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCamelCase_ =model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) lowerCamelCase_ =original_key lowerCamelCase_ =original_key lowerCamelCase_ =value return new_dict @torch.no_grad() def a_ ( __snake_case : List[str]=None , __snake_case : Tuple=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): lowerCamelCase_ =requests.get(F'''{PREFIX}{file}''' , allow_redirects=__snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=__snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) lowerCamelCase_ =MODEL_MAPPING[model_name.split('''/''' )[-1]] lowerCamelCase_ =JukeboxConfig.from_pretrained(__snake_case ) lowerCamelCase_ =JukeboxModel(__snake_case ) lowerCamelCase_ =[] lowerCamelCase_ ={} for i, dict_name in enumerate(__snake_case ): lowerCamelCase_ =torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] lowerCamelCase_ ={} for k in old_dic.keys(): if k.endswith('''.b''' ): lowerCamelCase_ =old_dic[k] elif k.endswith('''.w''' ): lowerCamelCase_ =old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ =old_dic[k] else: lowerCamelCase_ =old_dic[k] lowerCamelCase_ ='''vqvae''' if i == 0 else F'''priors.{3 - i}''' lowerCamelCase_ =fix_jukebox_keys(__snake_case , model.state_dict() , __snake_case , __snake_case ) weight_dict.append(__snake_case ) lowerCamelCase_ =weight_dict.pop(0 ) model.vqvae.load_state_dict(__snake_case ) for i in range(len(__snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(__snake_case , __snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) return weight_dict if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) a_ : Optional[int] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
6
1
import math _lowerCamelCase : Dict = 10 _lowerCamelCase : List[str] = 7 _lowerCamelCase : str = BALLS_PER_COLOUR * NUM_COLOURS def SCREAMING_SNAKE_CASE ( lowercase_ = 20 ) -> str: """simple docstring""" A__ = math.comb(lowercase_ , lowercase_ ) A__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowercase_ ) A__ = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
14
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A_ : Any = logging.get_logger(__name__) A_ : Optional[int] = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """longformer""" def __init__( self ,a_ = 512 ,a_ = 2 ,a_ = 1 ,a_ = 0 ,a_ = 2 ,a_ = 30_522 ,a_ = 768 ,a_ = 12 ,a_ = 12 ,a_ = 3_072 ,a_ = "gelu" ,a_ = 0.1 ,a_ = 0.1 ,a_ = 512 ,a_ = 2 ,a_ = 0.02 ,a_ = 1E-1_2 ,a_ = False ,**a_ ,) -> List[Any]: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = attention_window _UpperCAmelCase : Any = sep_token_id _UpperCAmelCase : Dict = bos_token_id _UpperCAmelCase : Tuple = eos_token_id _UpperCAmelCase : Tuple = vocab_size _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Optional[int] = type_vocab_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Union[str, Any] = onnx_export class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = "default" ,a_ = None ) -> int: super().__init__(a_ ,a_ ,a_ ) _UpperCAmelCase : Tuple = True @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""global_attention_mask""", dynamic_axis), ] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _UpperCAmelCase : str = super().outputs if self.task == "default": _UpperCAmelCase : int = {0: """batch"""} return outputs @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset ,14 ) def _snake_case ( self ,a_ ,a_ = -1 ,a_ = -1 ,a_ = False ,a_ = None ,) -> Mapping[str, Any]: _UpperCAmelCase : List[str] = super().generate_dummy_inputs( preprocessor=a_ ,batch_size=a_ ,seq_length=a_ ,is_pair=a_ ,framework=a_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _UpperCAmelCase : int = torch.zeros_like(inputs["""input_ids"""] ) # make every second token global _UpperCAmelCase : List[str] = 1 return inputs
215
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def a_ ( lowerCamelCase : Tuple ): def wrapper(*lowerCamelCase : Any , **lowerCamelCase : List[str] ): lowerCAmelCase = timeit.default_timer() lowerCAmelCase = func(*__lowerCAmelCase , **__lowerCAmelCase ) lowerCAmelCase = timeit.default_timer() - starttime return delta lowerCAmelCase = func.__name__ return wrapper def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=100 , lowerCamelCase : int=None ): lowerCAmelCase = [] lowerCAmelCase = seq_shapes or {} for i in range(__lowerCAmelCase ): lowerCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCAmelCase , _ArrayXD ): lowerCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCAmelCase , datasets.Value ): if v.dtype == "string": lowerCAmelCase = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCAmelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCAmelCase , datasets.Sequence ): while isinstance(__lowerCAmelCase , datasets.Sequence ): lowerCAmelCase = v.feature lowerCAmelCase = seq_shapes[k] lowerCAmelCase = np.random.rand(*__lowerCAmelCase ).astype(v.dtype ) lowerCAmelCase = data dummy_data.append((i, example) ) return dummy_data def a_ ( lowerCamelCase : Dict , lowerCamelCase : Any , lowerCamelCase : List[str]=100 , lowerCamelCase : Dict=None ): lowerCAmelCase = generate_examples(__lowerCAmelCase , num_examples=__lowerCAmelCase , seq_shapes=__lowerCAmelCase ) with ArrowWriter(features=__lowerCAmelCase , path=__lowerCAmelCase ) as writer: for key, record in dummy_data: lowerCAmelCase = features.encode_example(__lowerCAmelCase ) writer.write(__lowerCAmelCase ) lowerCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) lowerCAmelCase = datasets.Dataset.from_file(filename=__lowerCAmelCase , info=datasets.DatasetInfo(features=__lowerCAmelCase ) ) return dataset
350
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Any = StableUnCLIPPipeline lowerCamelCase : int = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCamelCase : Optional[int] = False def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: lowerCAmelCase = 3_2 lowerCAmelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=UpperCAmelCase__ , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=UpperCAmelCase__ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase = StableUnCLIPImageNormalizer(embedding_dim=UpperCAmelCase__ ) lowerCAmelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCAmelCase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCAmelCase__ , layers_per_block=1 , upcast_attention=UpperCAmelCase__ , use_linear_projection=UpperCAmelCase__ , ) torch.manual_seed(0 ) lowerCAmelCase = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCAmelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL() lowerCAmelCase = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]=0 ) -> Optional[Any]: if str(UpperCAmelCase__ ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(UpperCAmelCase__ ) else: lowerCAmelCase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: lowerCAmelCase = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: lowerCAmelCase = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCAmelCase__ ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase = pipe('anime turle' , generator=UpperCAmelCase__ , output_type='np' ) lowerCAmelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
55
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) @dataclass class _lowerCamelCase: lowercase_ : Optional[int] = field( default=1_28, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) }, ) @dataclass class _lowerCamelCase: lowercase_ : str = field( default=_a, metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase_ : str = field( default=_a, metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Train language if it is different from the evaluation language."""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) lowercase_ : Optional[bool] = field( default=_a, metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""}, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""}, ) lowercase_ : str = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""}, ) def UpperCamelCase_( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowercase , _lowercase , _lowercase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowercase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) datasets.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowercase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _lowercase : str = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowercase : List[str] = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : str = train_dataset.features['label'].names if training_args.do_eval: _lowercase : Optional[int] = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : List[Any] = eval_dataset.features['label'].names if training_args.do_predict: _lowercase : int = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : str = predict_dataset.features['label'].names # Labels _lowercase : Dict = len(lowerCamelCase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , idalabel={str(lowerCamelCase_ ): label for i, label in enumerate(lowerCamelCase_ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase_ )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _lowercase : List[Any] = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowercase : Optional[Any] = False def preprocess_function(lowerCamelCase_ ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowerCamelCase_ , max_length=data_args.max_seq_length , truncation=lowerCamelCase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: _lowercase : List[Any] = min(len(lowerCamelCase_ ) , data_args.max_train_samples ) _lowercase : str = train_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowercase : Optional[Any] = train_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase_ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowercase : Optional[Any] = min(len(lowerCamelCase_ ) , data_args.max_eval_samples ) _lowercase : Optional[int] = eval_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowercase : int = eval_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _lowercase : int = min(len(lowerCamelCase_ ) , data_args.max_predict_samples ) _lowercase : str = predict_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _lowercase : Tuple = predict_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _lowercase : List[Any] = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ ): _lowercase : List[str] = p.predictions[0] if isinstance(p.predictions , lowerCamelCase_ ) else p.predictions _lowercase : List[Any] = np.argmax(lowerCamelCase_ , axis=1 ) return metric.compute(predictions=lowerCamelCase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowercase : str = default_data_collator elif training_args.fpaa: _lowercase : Optional[int] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) else: _lowercase : Any = None # Initialize our Trainer _lowercase : str = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: _lowercase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: _lowercase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase : int = last_checkpoint _lowercase : List[str] = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) _lowercase : Tuple = train_result.metrics _lowercase : List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_ ) ) _lowercase : int = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCamelCase_ ) trainer.save_metrics('train' , lowerCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowercase : List[Any] = trainer.evaluate(eval_dataset=lowerCamelCase_ ) _lowercase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase_ ) _lowercase : int = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('eval' , lowerCamelCase_ ) trainer.save_metrics('eval' , lowerCamelCase_ ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _lowercase , _lowercase , _lowercase : List[Any] = trainer.predict(lowerCamelCase_ , metric_key_prefix='predict' ) _lowercase : Tuple = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('predict' , lowerCamelCase_ ) trainer.save_metrics('predict' , lowerCamelCase_ ) _lowercase : List[str] = np.argmax(lowerCamelCase_ , axis=1 ) _lowercase : Optional[Any] = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCamelCase_ ): _lowercase : Union[str, Any] = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
21
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = "gpt_neox" def __init__( self , A_=50_432 , A_=6_144 , A_=44 , A_=64 , A_=24_576 , A_="gelu" , A_=0.25 , A_=10_000 , A_=0.0 , A_=0.0 , A_=0.1 , A_=2_048 , A_=0.02 , A_=1e-5 , A_=True , A_=0 , A_=2 , A_=False , A_=True , A_=None , **A_ , ) -> Tuple: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = rotary_pct UpperCamelCase = rotary_emb_base UpperCamelCase = attention_dropout UpperCamelCase = hidden_dropout UpperCamelCase = classifier_dropout UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = use_cache UpperCamelCase = tie_word_embeddings UpperCamelCase = use_parallel_residual UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F'''got {self.rope_scaling}''' ) UpperCamelCase = self.rope_scaling.get('type' , A_ ) UpperCamelCase = self.rope_scaling.get('factor' , A_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(A_ , A_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
222
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger('transformers.models.speecht5') def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: hf_model.apply_weight_norm() UpperCamelCase = checkpoint["""input_conv.weight_g"""] UpperCamelCase = checkpoint["""input_conv.weight_v"""] UpperCamelCase = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): UpperCamelCase = checkpoint[F"upsamples.{i}.1.weight_g"] UpperCamelCase = checkpoint[F"upsamples.{i}.1.weight_v"] UpperCamelCase = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] UpperCamelCase = checkpoint["""output_conv.1.weight_g"""] UpperCamelCase = checkpoint["""output_conv.1.weight_v"""] UpperCamelCase = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , )-> List[Any]: if config_path is not None: UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase ) else: UpperCamelCase = SpeechTaHifiGanConfig() UpperCamelCase = SpeechTaHifiGan(__UpperCamelCase ) UpperCamelCase = torch.load(__UpperCamelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase = np.load(__UpperCamelCase ) UpperCamelCase = stats[0].reshape(-1 ) UpperCamelCase = stats[1].reshape(-1 ) UpperCamelCase = torch.from_numpy(__UpperCamelCase ).float() UpperCamelCase = torch.from_numpy(__UpperCamelCase ).float() model.save_pretrained(__UpperCamelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(__UpperCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
183
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = {'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :List[str] = logging.get_logger(__name__) _lowerCAmelCase :Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''falcon''' a__ =['''past_key_values'''] def __init__( self , A=6_5_0_2_4 , A=4_5_4_4 , A=3_2 , A=7_1 , A=1E-5 , A=0.02 , A=True , A=0.0 , A=0.0 , A=None , A=False , A=False , A=True , A=True , A=False , A=1_1 , A=1_1 , **A , ) -> Any: _UpperCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg _UpperCAmelCase : Optional[Any] = kwargs.pop('''n_embed''' , A ) _UpperCAmelCase : int = hidden_size if n_embed is None else n_embed _UpperCAmelCase : List[str] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Optional[int] = use_cache _UpperCAmelCase : Any = hidden_dropout _UpperCAmelCase : Dict = attention_dropout _UpperCAmelCase : Any = bos_token_id _UpperCAmelCase : List[Any] = eos_token_id _UpperCAmelCase : Tuple = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCAmelCase : Dict = alibi _UpperCAmelCase : Optional[int] = new_decoder_architecture _UpperCAmelCase : str = multi_query # Ignored when new_decoder_architecture is True _UpperCAmelCase : Optional[int] = parallel_attn _UpperCAmelCase : Optional[int] = bias super().__init__(bos_token_id=A , eos_token_id=A , **A ) @property def __lowerCAmelCase ( self ) -> List[str]: return self.hidden_size // self.num_attention_heads @property def __lowerCAmelCase ( self ) -> List[Any]: return not self.alibi
263
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'tokenizer_file': 'tokenizer.json'} a_ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = ["""input_ids""", """attention_mask"""] snake_case_ = None def __init__( self : List[Any] , __lowercase : Optional[int]=None , __lowercase : Dict=None , __lowercase : Tuple=None , __lowercase : Optional[Any]="<unk>" , __lowercase : Dict="<s>" , __lowercase : List[Any]="</s>" , __lowercase : Optional[Any]="<pad>" , __lowercase : str=False , __lowercase : str=False , **__lowercase : str , ) -> Dict: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , add_prefix_space=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) SCREAMING_SNAKE_CASE__ : Tuple =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE__ : Optional[int] =getattr(__lowercase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ : List[Any] =add_prefix_space SCREAMING_SNAKE_CASE__ : Dict =pre_tok_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =add_prefix_space def __magic_name__ ( self : Union[str, Any] , *__lowercase : Optional[int] , **__lowercase : int ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ : Dict =kwargs.get('''is_split_into_words''' , __lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def __magic_name__ ( self : List[str] , *__lowercase : Dict , **__lowercase : List[str] ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ : str =kwargs.get('''is_split_into_words''' , __lowercase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" ''' pretokenized inputs.''' ) return super()._encode_plus(*__lowercase , **__lowercase ) def __magic_name__ ( self : Union[str, Any] , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ : Optional[Any] =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def __magic_name__ ( self : Union[str, Any] , __lowercase : "Conversation" ) -> List[int]: SCREAMING_SNAKE_CASE__ : Optional[int] =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase ) + [self.eos_token_id] ) if len(__lowercase ) > self.model_max_length: SCREAMING_SNAKE_CASE__ : Optional[int] =input_ids[-self.model_max_length :] return input_ids
222
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _a( UpperCamelCase__ : int ): '''simple docstring''' if not isinstance(UpperCamelCase__, UpperCamelCase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] =precision SCREAMING_SNAKE_CASE__ : int =ceil(precision / 1_4 ) SCREAMING_SNAKE_CASE__ : int =4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() SCREAMING_SNAKE_CASE__ : Tuple =1 SCREAMING_SNAKE_CASE__ : Any =1_3_5_9_1_4_0_9 SCREAMING_SNAKE_CASE__ : List[Any] =Decimal(UpperCamelCase__ ) for k in range(1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : str =factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCamelCase__ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ = 5_0 print(F'''The first {n} digits of pi is: {pi(n)}''')
222
1
'''simple docstring''' import os a_ : Optional[int] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 1_00, """D""": 5_00, """M""": 10_00} def a_ ( __snake_case : str ) -> int: """simple docstring""" lowerCamelCase_ =0 lowerCamelCase_ =0 while index < len(__snake_case ) - 1: lowerCamelCase_ =SYMBOLS[numerals[index]] lowerCamelCase_ =SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def a_ ( __snake_case : int ) -> str: """simple docstring""" lowerCamelCase_ ='''''' lowerCamelCase_ =num // 1000 numerals += m_count * "M" num %= 1000 lowerCamelCase_ =num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 lowerCamelCase_ =num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def a_ ( __snake_case : str = "/p089_roman.txt" ) -> int: """simple docstring""" lowerCamelCase_ =0 with open(os.path.dirname(__snake_case ) + roman_numerals_filename ) as filea: lowerCamelCase_ =filea.readlines() for line in lines: lowerCamelCase_ =line.strip() lowerCamelCase_ =parse_roman_numerals(__snake_case ) lowerCamelCase_ =generate_roman_numerals(__snake_case ) savings += len(__snake_case ) - len(__snake_case ) return savings if __name__ == "__main__": print(F"""{solution() = }""")
75
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Optional[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = ort.SessionOptions() SCREAMING_SNAKE_CASE_ = False return options def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) SCREAMING_SNAKE_CASE_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) SCREAMING_SNAKE_CASE_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'A red cat sitting on a park bench' SCREAMING_SNAKE_CASE_ = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_ = pipe( prompt=_lowerCAmelCase , image=_lowerCAmelCase , mask_image=_lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_lowerCAmelCase , output_type='np' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
225
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a (unittest.TestCase ): '''simple docstring''' def __init__( self , A__ , A__=7 , A__=3 , A__=18 , A__=30 , A__=400 , A__=True , A__=None , A__=True , A__=None , A__=True , ): A__ : int = size if size is not None else {"""shortest_edge""": 20} A__ : Optional[int] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A__ : List[str] = parent A__ : Union[str, Any] = batch_size A__ : Union[str, Any] = num_channels A__ : Any = image_size A__ : Tuple = min_resolution A__ : Dict = max_resolution A__ : List[Any] = do_resize A__ : Optional[int] = size A__ : str = do_center_crop A__ : List[Any] = crop_size A__ : Union[str, Any] = do_flip_channel_order def __A ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _a (__magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[str] = MobileViTImageProcessor if is_vision_available() else None def __A ( self ): A__ : List[str] = MobileViTImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): A__ : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_snake_case , """do_resize""" ) ) self.assertTrue(hasattr(_snake_case , """size""" ) ) self.assertTrue(hasattr(_snake_case , """do_center_crop""" ) ) self.assertTrue(hasattr(_snake_case , """center_crop""" ) ) self.assertTrue(hasattr(_snake_case , """do_flip_channel_order""" ) ) def __A ( self ): A__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) A__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ): pass def __A ( self ): A__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , Image.Image ) # Test not batched input A__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Any = image_processing(_snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): A__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , numpify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , np.ndarray ) # Test not batched input A__ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Optional[Any] = image_processing(_snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): A__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_snake_case , torchify=_snake_case ) for image in image_inputs: self.assertIsInstance(_snake_case , torch.Tensor ) # Test not batched input A__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Optional[Any] = image_processing(_snake_case , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
357
from argparse import ArgumentParser from . import BaseTransformersCLICommand def UpperCamelCase (lowercase_: int ) -> str: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _a (__magic_name__ ): '''simple docstring''' @staticmethod def __A ( A__ ): A__ : Any = parser.add_parser("""download""" ) download_parser.add_argument( """--cache-dir""" , type=A__ , default=A__ , help="""Path to location to store the models""" ) download_parser.add_argument( """--force""" , action="""store_true""" , help="""Force the model to be download even if already in cache-dir""" ) download_parser.add_argument( """--trust-remote-code""" , action="""store_true""" , help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine""" , ) download_parser.add_argument("""model""" , type=A__ , help="""Name of the model to download""" ) download_parser.set_defaults(func=A__ ) def __init__( self , A__ , A__ , A__ , A__ ): A__ : Union[str, Any] = model A__ : Dict = cache A__ : str = force A__ : Tuple = trust_remote_code def __A ( self ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
141
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __A ( nn.Module ): """simple docstring""" def __init__( self , __A = 16 , __A = 88 , __A = None , __A = 1 , __A = 0.0 , __A = 32 , __A = None , __A = False , __A = None , __A = None , __A = "geglu" , __A = None , ) -> Tuple: super().__init__() a =nn.ModuleList( [ TransformeraDModel( num_attention_heads=__A , attention_head_dim=__A , in_channels=__A , num_layers=__A , dropout=__A , norm_num_groups=__A , cross_attention_dim=__A , attention_bias=__A , sample_size=__A , num_vector_embeds=__A , activation_fn=__A , num_embeds_ada_norm=__A , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference a =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` a =[77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` a =[1, 0] def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=None , __A=None , __A=None , __A = True , ) -> List[Any]: a =hidden_states a =[] a =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens a =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] a =self.transformer_index_for_condition[i] a =self.transformers[transformer_index]( __A , encoder_hidden_states=__A , timestep=__A , cross_attention_kwargs=__A , return_dict=__A , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] a =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) a =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__A )
81
"""simple docstring""" def _A ( ): """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def _A ( lowercase ): """simple docstring""" a =1 a =2 while i * i <= n: a =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def _A ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(lowercase ) > 5_00 ) if __name__ == "__main__": print(solution())
81
1
"""simple docstring""" import functools def _snake_case ( lowercase__ , lowercase__ ): _lowerCamelCase : int = len(lowercase__ ) _lowerCamelCase : Any = len(lowercase__ ) @functools.cache def min_distance(lowercase__ , lowercase__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowerCamelCase : int = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , lowercase__ ) , 1 + min_distance(lowercase__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowercase__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowercase__ = [] lowercase__ = [] lowercase__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowercase__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", """emoji""": True, }, } ] lowercase__ = 0 for log in Path().glob("""*.log"""): lowercase__ = 0 with open(log, """r""") as f: for line in f: lowercase__ = json.loads(line) if line.get("""nodeid""", """""") != "": lowercase__ = line["""nodeid"""] if line.get("""duration""", None) is not None: lowercase__ = F"{line['duration']:.4f}" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowercase__ = [] log.unlink() lowercase__ = """""" lowercase__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowercase__ = [] lowercase__ = {} for test in failed_tests: lowercase__ = test[0].split("""::""") lowercase__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowercase__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowercase__ = [test[0] for test in failed_table] lowercase__ = list(set(files)) # Count number of instances in failed_tests lowercase__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowercase__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowercase__ = """Too many failed tests, please see the full report in the Action results.""" lowercase__ = len(err) + 10 lowercase__ = message[: 3000 - offset] + F"\n...\n```\n{err}" print(F"### {message}") else: lowercase__ = """No failed tests! 🤗""" print(F"## {message}") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowercase__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) lowercase__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) lowercase__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowercase__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowercase__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowercase__ = row[0] else: lowercase__ = """""" lowercase__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
12
0
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__lowerCAmelCase ) == len(__lowerCAmelCase ), F'''{len(__lowerCAmelCase )} != {len(__lowerCAmelCase )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) UpperCAmelCase = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } UpperCAmelCase = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: lowercase = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(__lowerCAmelCase ) ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(__lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "student" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): lowercase = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(__lowerCAmelCase , __lowerCAmelCase ): AutoTokenizer.from_pretrained(__lowerCAmelCase ).save_pretrained(__lowerCAmelCase ) # purely for convenience lowercase = AutoModelForSeqaSeqLM.from_pretrained(__lowerCAmelCase ).eval() else: assert isinstance(__lowerCAmelCase , __lowerCAmelCase ), F'''teacher must be a model or string got type {type(__lowerCAmelCase )}''' lowercase = teacher.config.to_diff_dict() try: lowercase , lowercase = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowercase = teacher_e if d is None: lowercase = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): lowercase , lowercase = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowercase , lowercase = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowercase = teacher_e if d is None: lowercase = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__lowerCAmelCase ) # Copy weights lowercase = teacher.config_class(**__lowerCAmelCase ) lowercase = AutoModelForSeqaSeqLM.from_config(__lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowercase = student.load_state_dict(teacher.state_dict() , strict=__lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowercase , lowercase = list(range(__lowerCAmelCase ) ), list(range(__lowerCAmelCase ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(__lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowercase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) if d_layers_to_copy is None: lowercase = pick_layers_to_copy(__lowerCAmelCase , __lowerCAmelCase ) try: if hasattr( __lowerCAmelCase , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , __lowerCAmelCase ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) lowercase = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(__lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
195
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _A = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = CpmAntTokenizer SCREAMING_SNAKE_CASE__ : Any = False def snake_case_ ( self ): super().setUp() _lowerCamelCase = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] _lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def snake_case_ ( self ): _lowerCamelCase = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) _lowerCamelCase = '今天天气真好!' _lowerCamelCase = ['今天', '天气', '真', '好', '!'] _lowerCamelCase = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCamelCase = '今天天气真好!' _lowerCamelCase = [tokenizer.bos_token] + tokens _lowerCamelCase = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ ) _lowerCamelCase = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ )
80
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor A_ : Union[str, Any] =logging.get_logger(__name__) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , a__ , ) super().__init__(*a__ , **a__ )
80
1
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) __a = len(bin(lowerCAmelCase__ )[3:] ) __a = bin(abs(lowerCAmelCase__ ) - (1 << binary_number_length) )[3:] __a = ( ( '''1''' + '''0''' * (binary_number_length - len(lowerCAmelCase__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
45
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" lowercase__ = "altclip_text_model" def __init__( self : Tuple ,lowercase_ : Dict=2_5_0_0_0_2 ,lowercase_ : Optional[int]=1_0_2_4 ,lowercase_ : int=2_4 ,lowercase_ : List[str]=1_6 ,lowercase_ : List[Any]=4_0_9_6 ,lowercase_ : str="gelu" ,lowercase_ : Tuple=0.1 ,lowercase_ : str=0.1 ,lowercase_ : Optional[Any]=5_1_4 ,lowercase_ : List[Any]=1 ,lowercase_ : Optional[int]=0.02 ,lowercase_ : Any=0.02 ,lowercase_ : Any=1E-05 ,lowercase_ : Optional[Any]=1 ,lowercase_ : Tuple=0 ,lowercase_ : Optional[int]=2 ,lowercase_ : str="absolute" ,lowercase_ : Tuple=True ,lowercase_ : List[Any]=7_6_8 ,**lowercase_ : Dict ,): super().__init__(pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,**a__ ) lowerCAmelCase__ : Any = vocab_size lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : str = num_attention_heads lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Union[str, Any] = initializer_factor lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = position_embedding_type lowerCAmelCase__ : Dict = use_cache lowerCAmelCase__ : Tuple = project_dim class SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" lowercase__ = "altclip_vision_model" def __init__( self : str ,lowercase_ : List[str]=7_6_8 ,lowercase_ : Dict=3_0_7_2 ,lowercase_ : Optional[Any]=5_1_2 ,lowercase_ : List[str]=1_2 ,lowercase_ : Optional[Any]=1_2 ,lowercase_ : Any=3 ,lowercase_ : str=2_2_4 ,lowercase_ : Union[str, Any]=3_2 ,lowercase_ : Dict="quick_gelu" ,lowercase_ : Optional[int]=1E-5 ,lowercase_ : int=0.0 ,lowercase_ : Optional[int]=0.02 ,lowercase_ : Dict=1.0 ,**lowercase_ : Tuple ,): super().__init__(**a__ ) lowerCAmelCase__ : Tuple = hidden_size lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : List[str] = projection_dim lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Optional[int] = image_size lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : Dict = initializer_factor lowerCAmelCase__ : List[str] = attention_dropout lowerCAmelCase__ : int = layer_norm_eps lowerCAmelCase__ : List[str] = hidden_act @classmethod def __lowerCAmelCase ( cls : List[str] ,lowercase_ : List[str] ,**lowercase_ : Optional[Any] ): cls._set_token_in_kwargs(a__ ) lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = cls.get_config_dict(a__ ,**a__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get('''model_type''' ) == "altclip": lowerCAmelCase__ : Dict = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls ,'''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(a__ ,**a__ ) class SCREAMING_SNAKE_CASE ( lowercase_ ): """simple docstring""" lowercase__ = "altclip" lowercase__ = True def __init__( self : List[str] ,lowercase_ : List[Any]=None ,lowercase_ : List[Any]=None ,lowercase_ : Dict=7_6_8 ,lowercase_ : str=2.6592 ,**lowercase_ : Optional[Any] ): lowerCAmelCase__ : List[Any] = kwargs.pop('''text_config_dict''' ,a__ ) lowerCAmelCase__ : List[str] = kwargs.pop('''vision_config_dict''' ,a__ ) super().__init__(**a__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowerCAmelCase__ : Tuple = {} # This is the complete result when using `text_config_dict`. lowerCAmelCase__ : Optional[Any] = AltCLIPTextConfig(**a__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowerCAmelCase__ : str = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowerCAmelCase__ : Dict = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(a__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowerCAmelCase__ : List[Any] = {} # This is the complete result when using `vision_config_dict`. lowerCAmelCase__ : Tuple = AltCLIPVisionConfig(**a__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowerCAmelCase__ : Dict = { str(a__ ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowerCAmelCase__ : Optional[Any] = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: lowerCAmelCase__ : Tuple = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(a__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowerCAmelCase__ : int = {} logger.info('''`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.''' ) if vision_config is None: lowerCAmelCase__ : Union[str, Any] = {} logger.info('''`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.''' ) lowerCAmelCase__ : Dict = AltCLIPTextConfig(**a__ ) lowerCAmelCase__ : Optional[Any] = AltCLIPVisionConfig(**a__ ) lowerCAmelCase__ : List[str] = projection_dim lowerCAmelCase__ : int = logit_scale_init_value lowerCAmelCase__ : Optional[int] = 1.0 @classmethod def __lowerCAmelCase ( cls : str ,lowercase_ : Optional[int] ,lowercase_ : Any ,**lowercase_ : Union[str, Any] ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**a__ ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : Any = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : int = self.text_config.to_dict() lowerCAmelCase__ : Optional[Any] = self.vision_config.to_dict() lowerCAmelCase__ : Dict = self.__class__.model_type return output
353
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : int = 0 for ch in input_str: lowerCAmelCase__ : Any = ord(A_ ) lowerCAmelCase__ : Any = pow(2 , A_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
74
0
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers A : int = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
6
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __A( a , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class __A( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = ort.SessionOptions() __a = False return options def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) __a = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) __a = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_snake_case ) __a = '''A red cat sitting on a park bench''' __a = np.random.RandomState(0 ) __a = pipe( prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type='''np''' , ) __a = output.images __a = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __a = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
6
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase : int = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A_ ( A__ ) -> Dict: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A_ ( A__ , A__ , A__ ) -> Optional[int]: return max(metric_fn(lowerCAmelCase__ , lowerCAmelCase__ ) for gt in ground_truths ) def A_ ( A__ , A__ , A__ ) -> Any: a__ : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , 'r' ).readlines()] a__ : Union[str, Any] = [] if args.gold_data_mode == "qa": a__ : Tuple = pd.read_csv(lowerCAmelCase__ , sep='\t' , header=lowerCAmelCase__ ) for answer_list in data[1]: a__ : Optional[int] = ast.literal_eval(lowerCAmelCase__ ) answers.append(lowerCAmelCase__ ) else: a__ : Optional[int] = [line.strip() for line in open(lowerCAmelCase__ , 'r' ).readlines()] a__ : str = [[reference] for reference in references] a__ : Optional[int] = 0 for prediction, ground_truths in zip(lowerCAmelCase__ , lowerCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) fa += metric_max_over_ground_truths(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int = 1_00.0 * em / total a__ : Dict = 1_00.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def A_ ( A__ , A__ , A__ ) -> Dict: a__ : Tuple = args.k a__ : Dict = [line.strip() for line in open(lowerCAmelCase__ , 'r' ).readlines()] a__ : Dict = [line.strip() for line in open(lowerCAmelCase__ , 'r' ).readlines()] a__ : Union[str, Any] = 0 for hypo, reference in zip(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[str] = set(hypo.split('\t' )[:k] ) a__ : List[Any] = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ : List[str] = 1_00.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def A_ ( A__ , A__ , A__ ) -> Tuple: def strip_title(A__ ): if title.startswith('\"' ): a__ : List[Any] = title[1:] if title.endswith('\"' ): a__ : int = title[:-1] return title a__ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='pt' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , )["""input_ids"""].to(args.device ) a__ : str = rag_model.rag.question_encoder(lowerCAmelCase__ ) a__ : int = question_enc_outputs[0] a__ : Dict = rag_model.retriever( lowerCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) a__ : Union[str, Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ : Union[str, Any] = [] for docs in all_docs: a__ : int = [strip_title(lowerCAmelCase__ ) for title in docs["""title"""]] provenance_strings.append('\t'.join(lowerCAmelCase__ ) ) return provenance_strings def A_ ( A__ , A__ , A__ ) -> Tuple: with torch.no_grad(): a__ : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase__ , return_tensors='pt' , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) a__ : List[str] = inputs_dict.input_ids.to(args.device ) a__ : List[Any] = inputs_dict.attention_mask.to(args.device ) a__ : List[str] = rag_model.generate( # rag_model overwrites generate lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ : str = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) if args.print_predictions: for q, a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info('Q: {} - A: {}'.format(lowerCAmelCase__ , lowerCAmelCase__ ) ) return answers def A_ ( ) -> Union[str, Any]: a__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=lowerCAmelCase__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=lowerCAmelCase__ , choices=['exact', 'compressed', 'legacy'] , type=lowerCAmelCase__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=lowerCAmelCase__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=lowerCAmelCase__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=lowerCAmelCase__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=lowerCAmelCase__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=lowerCAmelCase__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=lowerCAmelCase__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=lowerCAmelCase__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=lowerCAmelCase__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=lowerCAmelCase__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) a__ : str = parser.parse_args() a__ : Optional[Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def A_ ( A__ ) -> str: a__ : Optional[Any] = {} if args.model_type is None: a__ : str = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): a__ : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration a__ : Dict = args.n_docs if args.index_name is not None: a__ : Union[str, Any] = args.index_name if args.index_path is not None: a__ : Dict = args.index_path else: a__ : str = BartForConditionalGeneration a__ : str = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , lowerCAmelCase__ ) a__ : Optional[int] = get_scores if args.eval_mode == """e2e""" else get_precision_at_k a__ : Any = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(lowerCAmelCase__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): a__ : Optional[int] = RagRetriever.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) a__ : Any = model_class.from_pretrained(lowerCAmelCase__ , retriever=lowerCAmelCase__ , **lowerCAmelCase__ ) model.retriever.init_retrieval() else: a__ : Tuple = model_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: a__ : Union[str, Any] = [] for line in tqdm(lowerCAmelCase__ ): questions.append(line.strip() ) if len(lowerCAmelCase__ ) == args.eval_batch_size: a__ : Any = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('\n'.join(lowerCAmelCase__ ) + '\n' ) preds_file.flush() a__ : List[str] = [] if len(lowerCAmelCase__ ) > 0: a__ : Optional[Any] = evaluate_batch_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) preds_file.write('\n'.join(lowerCAmelCase__ ) ) preds_file.flush() score_fn(lowerCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowercase : Dict = get_args() main(args)
366
def A_ ( A__ , A__ , A__ ) -> float: if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate a__ : str = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly a__ : List[Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
225
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def _lowerCamelCase ( *_UpperCamelCase , **_UpperCamelCase ): """simple docstring""" pass def _A ( snake_case ) -> str: _lowercase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _A ( snake_case ) -> Dict: _lowercase : str = np.array(snake_case ) _lowercase : Optional[int] = npimg.shape return {"hash": hashimage(snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class a__ ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _SCREAMING_SNAKE_CASE : List[Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Optional[Any] = MaskGenerationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def _lowerCamelCase ( self ): """simple docstring""" pass @slow @require_torch def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) _lowercase : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing _lowercase : Any = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCamelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "facebook/sam-vit-huge" _lowercase : Any = pipeline("mask-generation" , model=_UpperCamelCase ) _lowercase : List[str] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _lowercase : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(_UpperCamelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_0_5_3}, ] , )
250
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> float: _lowercase : Optional[Any] = 0.00 _lowercase : Dict = 0 for resistor in resistors: if resistor <= 0: _lowercase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def _A ( snake_case ) -> float: _lowercase : Dict = 0.00 _lowercase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowercase : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
250
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __snake_case = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def a ( ) -> Any: '''simple docstring''' UpperCamelCase__ :Any = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase__ :List[Any] = parser.parse_args() return args.f def a ( __a , __a="eval" ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ :Union[str, Any] = os.path.join(__a , f'''{split}_results.json''' ) if os.path.exists(__a ): with open(__a , '''r''' ) as f: return json.load(__a ) raise ValueError(f'''can\'t find {path}''' ) __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.get_auto_remove_tmp_dir() UpperCamelCase__ :Optional[int] = F''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): run_flax_glue.main() UpperCamelCase__ :Optional[int] = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.get_auto_remove_tmp_dir() UpperCamelCase__ :int = F''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): run_clm_flax.main() UpperCamelCase__ :Dict = get_results(UpperCamelCase_ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase__ :List[Any] = F''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): run_summarization_flax.main() UpperCamelCase__ :List[str] = get_results(UpperCamelCase_ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ :Optional[Any] = F''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): run_mlm_flax.main() UpperCamelCase__ :Union[str, Any] = get_results(UpperCamelCase_ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.get_auto_remove_tmp_dir() UpperCamelCase__ :Union[str, Any] = F''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): run_ta_mlm_flax.main() UpperCamelCase__ :List[Any] = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = 7 if get_gpu_count() > 1 else 2 UpperCamelCase__ :Union[str, Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ :Union[str, Any] = F''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): run_flax_ner.main() UpperCamelCase__ :Union[str, Any] = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_auto_remove_tmp_dir() UpperCamelCase__ :List[str] = F''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(UpperCamelCase_ , '''argv''' , UpperCamelCase_ ): run_qa.main() UpperCamelCase__ :Optional[int] = get_results(UpperCamelCase_ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
219
'''simple docstring''' from __future__ import annotations import math def a ( __a ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( __a ) -> list[int]: '''simple docstring''' UpperCamelCase__ :List[Any] = str(__a ) UpperCamelCase__ :Dict = [n] for i in range(1 , len(__a ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def a ( __a ) -> bool: '''simple docstring''' if len(str(__a ) ) > 3: if not is_prime(int(str(__a )[-3:] ) ) or not is_prime(int(str(__a )[:3] ) ): return False return True def a ( __a = 11 ) -> list[int]: '''simple docstring''' UpperCamelCase__ :list[int] = [] UpperCamelCase__ :int = 13 while len(__a ) != count: if validate(__a ): UpperCamelCase__ :Optional[int] = list_truncated_nums(__a ) if all(is_prime(__a ) for i in list_nums ): list_truncated_primes.append(__a ) num += 2 return list_truncated_primes def a ( ) -> int: '''simple docstring''' return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F"""{sum(compute_truncated_primes(11)) = }""")
219
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def UpperCamelCase ( __lowercase : str ): '''simple docstring''' A_ : Any = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowercase ,__lowercase ) def UpperCamelCase ( __lowercase : List[str] ): '''simple docstring''' A_ : int = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A_ : int = s_dict.pop(__lowercase ) elif "subsample" in key: A_ : Dict = s_dict.pop(__lowercase ) def UpperCamelCase ( __lowercase : List[str] ): '''simple docstring''' A_ , A_ : List[Any] = emb.weight.shape A_ : Dict = nn.Linear(__lowercase ,__lowercase ,bias=__lowercase ) A_ : str = emb.weight.data return lin_layer def UpperCamelCase ( __lowercase : Union[str, Any] ,__lowercase : Union[str, Any] ): '''simple docstring''' A_ : int = torch.load(__lowercase ,map_location='cpu' ) A_ : Optional[int] = mam_aaa['args'] A_ : Any = mam_aaa['model'] A_ : Tuple = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(__lowercase ) rename_keys(__lowercase ) A_ : Optional[Any] = state_dict['decoder.embed_tokens.weight'].shape[0] A_ : str = args.share_decoder_input_output_embed A_ : Optional[int] = [int(__lowercase ) for i in args.conv_kernel_sizes.split(',' )] A_ : List[str] = SpeechaTextConfig( vocab_size=__lowercase ,max_source_positions=args.max_source_positions ,max_target_positions=args.max_target_positions ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function='relu' ,num_conv_layers=len(__lowercase ) ,conv_channels=args.conv_channels ,conv_kernel_sizes=__lowercase ,input_feat_per_channel=args.input_feat_per_channel ,input_channels=args.input_channels ,tie_word_embeddings=__lowercase ,num_beams=5 ,max_length=2_00 ,use_cache=__lowercase ,decoder_start_token_id=2 ,early_stopping=__lowercase ,) A_ : Tuple = SpeechaTextForConditionalGeneration(__lowercase ) A_ , A_ : Union[str, Any] = model.model.load_state_dict(__lowercase ,strict=__lowercase ) if len(__lowercase ) > 0 and not set(__lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f''' but all the following weights are missing {missing}''' ) if tie_embeds: A_ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A_ : Optional[Any] = lm_head_weights model.save_pretrained(__lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("""--fairseq_path""", type=str, help="""Path to the fairseq model (.pt) file.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
140
def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : int ,__lowercase : int ,__lowercase : list[int] ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : list[int] ,__lowercase : int ): '''simple docstring''' if curr_ind == len(__lowercase ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 ,len(__lowercase ) ): if valid_connection(__lowercase ,__lowercase ,__lowercase ,__lowercase ): # Insert current vertex into path as next transition A_ : Tuple = next_ver # Validate created path if util_hamilton_cycle(__lowercase ,__lowercase ,curr_ind + 1 ): return True # Backtrack A_ : Tuple = -1 return False def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : int = 0 ): '''simple docstring''' A_ : Any = [-1] * (len(__lowercase ) + 1) # initialize start and end of path with starting index A_ : Dict = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(__lowercase ,__lowercase ,1 ) else []
140
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging snake_case__ : str = logging.get_logger(__name__) def _lowerCamelCase ( lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = R'\w+[.]\d+' UpperCAmelCase_ : List[Any] = re.findall(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for pat in pats: UpperCAmelCase_ : Any = key.replace(SCREAMING_SNAKE_CASE_ , '_'.join(pat.split('.' ) ) ) return key def _lowerCamelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCAmelCase_ : Optional[int] = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : Dict = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : int = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : Any = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : List[str] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : str = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any]=42 ): """simple docstring""" UpperCAmelCase_ : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : Optional[int] = flax_model.init_weights(PRNGKey(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_ : Union[str, Any] = flatten_dict(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : Dict = rename_key(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ : Union[str, Any] = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ : List[str] = rename_key_and_reshape_tensor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : int = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ )
366
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig snake_case__ : Dict = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :str = '''albert''' def __init__( self , snake_case_=3_0_0_0_0 , snake_case_=1_2_8 , snake_case_=4_0_9_6 , snake_case_=1_2 , snake_case_=1 , snake_case_=6_4 , snake_case_=1_6_3_8_4 , snake_case_=1 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=0 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0.1 , snake_case_="absolute" , snake_case_=0 , snake_case_=2 , snake_case_=3 , **snake_case_ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : Dict = embedding_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_hidden_groups UpperCAmelCase_ : List[str] = num_attention_heads UpperCAmelCase_ : Any = inner_group_num UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Dict = classifier_dropout_prob UpperCAmelCase_ : Tuple = position_embedding_type class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' @property def _UpperCamelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase_ : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
274
0
"""simple docstring""" import os import sys import unittest lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCAmelCase__ = os.path.join(git_repo_path, '''src''', '''transformers''') lowerCAmelCase__ = ''' {0} = None ''' lowerCAmelCase__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) ''' lowerCAmelCase__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(__lowerCAmelCase , '''tokenizers''' ) _lowerCamelCase : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(__lowerCAmelCase , '''tensorflow_text''' ) _lowerCamelCase : Optional[Any] = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(__lowerCAmelCase , '''sentencepiece_and_tokenizers''' ) _lowerCamelCase : Dict = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(__lowerCAmelCase , '''sentencepiece_and_tensorflow_text''' ) _lowerCamelCase : Tuple = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(__lowerCAmelCase , '''sentencepiece_and_tokenizers_and_vision''' ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __lowerCAmelCase ) self.assertIn('''tensorflow_text''' , __lowerCAmelCase ) self.assertIn('''sentencepiece_and_tokenizers''' , __lowerCAmelCase ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(__lowerCAmelCase , '''\nCONSTANT = None\n''' ) _lowerCamelCase : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( __lowerCAmelCase , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) _lowerCamelCase : List[Any] = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' _lowerCamelCase : Tuple = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' _lowerCamelCase : str = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , __lowerCAmelCase )
72
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __snake_case : def __init__( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any=2 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]=1_0 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : int=3_2 * 4 , __lowerCAmelCase : Dict=3_2 * 6 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : List[str]=3_2 , ): """simple docstring""" _lowerCamelCase : List[str] = parent _lowerCamelCase : str = batch_size _lowerCamelCase : Dict = is_training _lowerCamelCase : str = use_auxiliary_loss _lowerCamelCase : Any = num_queries _lowerCamelCase : List[Any] = num_channels _lowerCamelCase : int = min_size _lowerCamelCase : Any = max_size _lowerCamelCase : int = num_labels _lowerCamelCase : List[str] = mask_feature_size def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __lowerCAmelCase ) _lowerCamelCase : List[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__lowerCAmelCase ) > 0.5 ).float() _lowerCamelCase : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=__lowerCAmelCase ) > 0.5).long() _lowerCamelCase : Dict = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Dict = self.prepare_config_and_inputs() _lowerCamelCase : List[str] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCamelCase : List[str] = output.encoder_hidden_states _lowerCamelCase : Tuple = output.pixel_decoder_hidden_states _lowerCamelCase : Dict = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__lowerCAmelCase ) , config.decoder_config.decoder_layers ) def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any]=False ): """simple docstring""" with torch.no_grad(): _lowerCamelCase : Optional[int] = MaskFormerModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _lowerCamelCase : Tuple = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : List[str] = model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = MaskFormerForInstanceSegmentation(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() def comm_check_on_output(__lowerCAmelCase : Dict ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _lowerCamelCase : str = model(pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) _lowerCamelCase : List[str] = model( pixel_values=__lowerCAmelCase , pixel_mask=__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) comm_check_on_output(__lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __snake_case ( _lowercase , _lowercase , unittest.TestCase): snake_case__ : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () snake_case__ : Any = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) snake_case__ : List[str] = False snake_case__ : List[str] = False snake_case__ : Optional[int] = False snake_case__ : Dict = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Optional[int] = MaskFormerModelTester(self ) _lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__lowerCAmelCase ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase : Dict = [*signature.parameters.keys()] _lowerCamelCase : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: _lowerCamelCase : Union[str, Any] = MaskFormerModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 _lowerCamelCase : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=__lowerCAmelCase ), '''mask_labels''': torch.randn((2, 1_0, *size) , device=__lowerCAmelCase ), '''class_labels''': torch.zeros(2 , 1_0 , device=__lowerCAmelCase ).long(), } _lowerCamelCase : int = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__lowerCAmelCase , **__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ).to(__lowerCAmelCase ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase , output_attentions=__lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _lowerCamelCase : Union[str, Any] = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : Any = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : List[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ).loss loss.backward() def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : int = self.all_model_classes[1] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[int] = True _lowerCamelCase : Optional[Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , mask_labels=__lowerCAmelCase , class_labels=__lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _lowerCamelCase : Tuple = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _lowerCamelCase : List[str] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _lowerCamelCase : Optional[int] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase__ = 1E-4 def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __snake_case ( unittest.TestCase): @cached_property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : str = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = self.default_image_processor _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : Any = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : Any = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : int = model(**__lowerCAmelCase ) _lowerCamelCase : str = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]] ).to(__lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : str = prepare_img() _lowerCamelCase : int = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : str = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[int] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : List[str] = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] _lowerCamelCase : Any = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : List[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : str = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : Tuple = self.default_image_processor _lowerCamelCase : Tuple = prepare_img() _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) _lowerCamelCase : List[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(__lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**__lowerCAmelCase ) # masks_queries_logits _lowerCamelCase : List[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) _lowerCamelCase : int = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] _lowerCamelCase : List[Any] = torch.tensor(__lowerCAmelCase ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) # class_queries_logits _lowerCamelCase : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _lowerCamelCase : Any = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(__lowerCAmelCase ) .eval() ) _lowerCamelCase : int = self.default_image_processor _lowerCamelCase : List[str] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors='''pt''' , ) _lowerCamelCase : Union[str, Any] = inputs['''pixel_values'''].to(__lowerCAmelCase ) _lowerCamelCase : Dict = [el.to(__lowerCAmelCase ) for el in inputs['''mask_labels''']] _lowerCamelCase : Optional[Any] = [el.to(__lowerCAmelCase ) for el in inputs['''class_labels''']] with torch.no_grad(): _lowerCamelCase : Tuple = model(**__lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
72
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__UpperCamelCase , 2 ) - pow(__UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__UpperCamelCase , 2 ) + pow(__UpperCamelCase , 2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } SCREAMING_SNAKE_CASE__ = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def lowercase__ ( __UpperCamelCase )-> Any: with open(__UpperCamelCase , """r""" ) as f: UpperCamelCase = f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="<eos>" , **_SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = load_vocab_file(_SCREAMING_SNAKE_CASE ) UpperCamelCase = dict(enumerate(self.all_tokens ) ) UpperCamelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCamelCase = unk_token UpperCamelCase = cls_token UpperCamelCase = pad_token UpperCamelCase = mask_token UpperCamelCase = eos_token UpperCamelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def A__ ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return text.split() def A__ ( self , _SCREAMING_SNAKE_CASE=False ) -> Dict: """simple docstring""" return len(self._id_to_token ) def A__ ( self ) -> Tuple: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCamelCase = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(_SCREAMING_SNAKE_CASE ) + [1] return mask def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> int: """simple docstring""" return super()._add_tokens(_SCREAMING_SNAKE_CASE , special_tokens=_SCREAMING_SNAKE_CASE )
183
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['ViTFeatureExtractor'] __UpperCAmelCase = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __A : str = parser.parse_args() __A : List[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __A : Dict = CLIPImageProcessor() __A : Union[str, Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __A : List[str] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
33
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = tempfile.mkdtemp() # fmt: off __A : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on __A : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __A : List[str] = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } __A : Union[str, Any] = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase__( self , **__lowerCamelCase ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def UpperCamelCase__( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : List[str] = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__( self ): '''simple docstring''' __A : int = self.get_tokenizer() __A : Union[str, Any] = self.get_image_processor() __A : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) __A : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : Any = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : List[str] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __A : List[str] = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) __A : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : Tuple = self.get_image_processor() __A : Dict = self.get_tokenizer() __A : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __A : int = self.prepare_image_inputs() __A : List[str] = image_processor(lowerCamelCase_ , return_tensors='''np''' ) __A : Union[str, Any] = processor(images=lowerCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __A : Tuple = """lower newer""" __A : Tuple = processor(text=lowerCamelCase_ ) __A : Any = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __A : Optional[Any] = """lower newer""" __A : List[str] = self.prepare_image_inputs() __A : List[Any] = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(lowerCamelCase_ ): processor() def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : List[str] = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __A : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Optional[int] = processor.batch_decode(lowerCamelCase_ ) __A : Optional[Any] = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : str = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __A : int = """lower newer""" __A : str = self.prepare_image_inputs() __A : str = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
365
"""simple docstring""" from math import factorial def __lowercase ( snake_case_ : int ,snake_case_ : int ) ->int: '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(snake_case_ ) // (factorial(snake_case_ ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( """If a class of 40 students must be arranged into groups of""", f'''4 for group projects, there are {combinations(40, 4)} ways''', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", f'''are {combinations(10, 3)} ways that first, second and''', """third place can be awarded.""", )
291
0
from string import ascii_uppercase lowerCAmelCase : Union[str, Any] = {str(ord(c) - 55): c for c in ascii_uppercase} def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if isinstance(A__ , A__ ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(A__ , A__ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(A__ , A__ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 36: raise ValueError("base must be <= 36" ) SCREAMING_SNAKE_CASE_: int = "" SCREAMING_SNAKE_CASE_: int = 0 SCREAMING_SNAKE_CASE_: int = 0 while div != 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Union[str, Any] = divmod(A__ , A__ ) if base >= 11 and 9 < mod < 36: SCREAMING_SNAKE_CASE_: str = ALPHABET_VALUES[str(A__ )] else: SCREAMING_SNAKE_CASE_: Tuple = str(A__ ) new_value += actual_value SCREAMING_SNAKE_CASE_: Optional[Any] = num // base SCREAMING_SNAKE_CASE_: str = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(A__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
13
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ = get_tests_dir('fixtures') UpperCAmelCase_ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ = get_tests_dir('fixtures/dummy-config.json') class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = 0 def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Union[str, Any] ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ).to_dict() config_dict.pop("""feature_extractor_type""" ) __lowerCamelCase = WavaVecaFeatureExtractor(**UpperCamelCase_ ) # save in new folder model_config.save_pretrained(UpperCamelCase_ ) config.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) # make sure private variable is not incorrectly saved __lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int ): with self.assertRaisesRegex( UpperCamelCase_ , """bert-base is not a local folder and is not a valid model identifier""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def lowerCAmelCase__ ( self: Tuple ): with self.assertRaisesRegex( UpperCamelCase_ , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , revision="""aaaaaa""" ) def lowerCAmelCase__ ( self: Optional[Any] ): with self.assertRaisesRegex( UpperCamelCase_ , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCAmelCase__ ( self: Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ , trust_remote_code=UpperCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def lowerCAmelCase__ ( self: Any ): try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase_ ): AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API __lowerCamelCase = CustomFeatureExtractor.from_pretrained(UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(UpperCamelCase_ ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase__ ( self: Dict ): class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : str = True try: AutoConfig.register("""custom""" , UpperCamelCase_ ) AutoFeatureExtractor.register(UpperCamelCase_ , UpperCamelCase_ ) # If remote code is not set, the default is to use local __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __lowerCamelCase = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=UpperCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(UpperCamelCase_ , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
12
0
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=14 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : Dict = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Any = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : List[Any] = use_input_mask UpperCAmelCase : Optional[Any] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : str = vocab_size UpperCAmelCase : Dict = hidden_size UpperCAmelCase : Any = rotary_dim UpperCAmelCase : List[Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : str = intermediate_size UpperCAmelCase : str = hidden_act UpperCAmelCase : List[str] = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : int = initializer_range UpperCAmelCase : Any = None UpperCAmelCase : Any = vocab_size - 1 UpperCAmelCase : int = vocab_size - 1 UpperCAmelCase : List[str] = vocab_size - 1 def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=_SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = config_and_inputs UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : str = 20 UpperCAmelCase : int = model_class_name(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) UpperCAmelCase : Any = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : List[str] = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Optional[int] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Optional[Any] = model( input_ids[:, -1:] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , position_ids=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : List[str] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple = 20 UpperCAmelCase : Optional[int] = model_class_name(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Any = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Union[str, Any] = model.init_cache(input_ids.shape[0] , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Union[str, Any] = model( input_ids[:, :-1] , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) UpperCAmelCase : Any = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=_SCREAMING_SNAKE_CASE , position_ids=_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : List[Any] = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCAmelCase : Optional[int] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : str = FlaxGPTJModelTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @tooslow def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) UpperCAmelCase : Union[str, Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) UpperCAmelCase : List[str] = False UpperCAmelCase : Tuple = model.config.eos_token_id UpperCAmelCase : Optional[int] = jax.jit(model.generate ) UpperCAmelCase : Optional[Any] = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : Any = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[Any] = [ """Hello this is a long string of text.\n\nI\'m trying to get the text of the""", """Hey, I\'m a little late to the party. I\'m going to""", ] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Tuple = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : str = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Dict = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase , UpperCAmelCase : int = pt_inputs["""input_ids"""].shape UpperCAmelCase : Optional[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : Any = 1 UpperCAmelCase : Optional[int] = 0 UpperCAmelCase : Tuple = 1 UpperCAmelCase : Optional[int] = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) UpperCAmelCase : int = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = fx_state with torch.no_grad(): UpperCAmelCase : List[str] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() UpperCAmelCase : List[Any] = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Optional[int] = model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Tuple = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : List[Any] = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Tuple = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : Dict = pt_model_class(_SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase : str = model_class(_SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) UpperCAmelCase : List[str] = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = pt_inputs["""input_ids"""].shape UpperCAmelCase : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = 1 UpperCAmelCase : List[str] = 0 UpperCAmelCase : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : Any = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() UpperCAmelCase : int = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = pt_model_class.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) with torch.no_grad(): UpperCAmelCase : Union[str, Any] = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual( len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) UpperCAmelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
368
"""simple docstring""" import baseaa def _snake_case ( UpperCamelCase : str ): return baseaa.aaaencode(string.encode("""utf-8""" ) ) def _snake_case ( UpperCamelCase : bytes ): return baseaa.aaadecode(UpperCamelCase ).decode("""utf-8""" ) if __name__ == "__main__": import doctest doctest.testmod()
76
0
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a__ : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( _SCREAMING_SNAKE_CASE): """simple docstring""" def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Union[str, Any] ) -> int: if isinstance(A_ , A_ ): __SCREAMING_SNAKE_CASE = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] ) -> List[Any]: if len(A_ ) == 0 or len(A_ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(A_ ) ) if isinstance(A_ , A_ ): __SCREAMING_SNAKE_CASE = [sequences] __SCREAMING_SNAKE_CASE = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_SCREAMING_SNAKE_CASE) class UpperCamelCase_ ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : List[Any]=ZeroShotClassificationArgumentHandler() , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = args_parser super().__init__(*A_ , **A_ ) if self.entailment_id == -1: logger.warning( "Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Tuple=TruncationStrategy.ONLY_FIRST , **UpperCAmelCase__ : int ) -> Any: __SCREAMING_SNAKE_CASE = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) __SCREAMING_SNAKE_CASE = self.tokenizer.eos_token try: __SCREAMING_SNAKE_CASE = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=A_ , ) except Exception as e: if "too short" in str(A_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __SCREAMING_SNAKE_CASE = self.tokenizer( A_ , add_special_tokens=A_ , return_tensors=A_ , padding=A_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase_ ( self : List[Any] , **UpperCAmelCase__ : Any ) -> Tuple: if kwargs.get("multi_class" , A_ ) is not None: __SCREAMING_SNAKE_CASE = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) __SCREAMING_SNAKE_CASE = {} if "candidate_labels" in kwargs: __SCREAMING_SNAKE_CASE = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["hypothesis_template"] __SCREAMING_SNAKE_CASE = {} if "multi_label" in kwargs: __SCREAMING_SNAKE_CASE = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self : int , UpperCAmelCase__ : Tuple , *UpperCAmelCase__ : Any , **UpperCAmelCase__ : Any , ) -> Tuple: if len(A_ ) == 0: pass elif len(A_ ) == 1 and "candidate_labels" not in kwargs: __SCREAMING_SNAKE_CASE = args[0] else: raise ValueError(F"""Unable to understand extra arguments {args}""" ) return super().__call__(A_ , **A_ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[int]="This example is {}." ) -> Dict: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._args_parser(A_ , A_ , A_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(A_ , A_ ) ): __SCREAMING_SNAKE_CASE = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A_ ) - 1, **model_input, } def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = inputs["candidate_label"] __SCREAMING_SNAKE_CASE = inputs["sequence"] __SCREAMING_SNAKE_CASE = {k: inputs[k] for k in self.tokenizer.model_input_names} __SCREAMING_SNAKE_CASE = self.model(**A_ ) __SCREAMING_SNAKE_CASE = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = [outputs["candidate_label"] for outputs in model_outputs] __SCREAMING_SNAKE_CASE = [outputs["sequence"] for outputs in model_outputs] __SCREAMING_SNAKE_CASE = np.concatenate([output["logits"].numpy() for output in model_outputs] ) __SCREAMING_SNAKE_CASE = logits.shape[0] __SCREAMING_SNAKE_CASE = len(A_ ) __SCREAMING_SNAKE_CASE = N // n __SCREAMING_SNAKE_CASE = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently __SCREAMING_SNAKE_CASE = self.entailment_id __SCREAMING_SNAKE_CASE = -1 if entailment_id == 0 else 0 __SCREAMING_SNAKE_CASE = reshaped_outputs[..., [contradiction_id, entailment_id]] __SCREAMING_SNAKE_CASE = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) __SCREAMING_SNAKE_CASE = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __SCREAMING_SNAKE_CASE = reshaped_outputs[..., self.entailment_id] __SCREAMING_SNAKE_CASE = np.exp(A_ ) / np.exp(A_ ).sum(-1 , keepdims=A_ ) __SCREAMING_SNAKE_CASE = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
54
def A ( lowercase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
222
0
"""simple docstring""" from collections import defaultdict class snake_case__ : def __init__( self , lowerCamelCase , lowerCamelCase ): __a = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __a = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowerCamelCase ) ) ] __a = defaultdict(lowerCamelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __a = (1 << len(lowerCamelCase )) - 1 def a__ ( self , lowerCamelCase , lowerCamelCase ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __a = self.count_ways_until(lowerCamelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __a = total_ways_util return self.dp[mask][task_no] def a__ ( self , lowerCamelCase ): # Store the list of persons for each task for i in range(len(lowerCamelCase ) ): for j in task_performed[i]: self.task[j].append(lowerCamelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:str = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. SCREAMING_SNAKE_CASE__:int = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
358
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=snake_case_ ): _snake_case : Union[str, Any] = ["""onnx"""] def __init__( self , *lowerCamelCase , **lowerCamelCase ): requires_backends(self , ["onnx"] ) @classmethod def a__ ( cls , *lowerCamelCase , **lowerCamelCase ): requires_backends(cls , ["onnx"] ) @classmethod def a__ ( cls , *lowerCamelCase , **lowerCamelCase ): requires_backends(cls , ["onnx"] )
268
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __A ( unittest.TestCase ): def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def _lowercase (self : Any ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) return config, pixel_values def _lowercase (self : Dict , __a : Any , __a : List[Any] ): UpperCAmelCase_ = FlaxViTModel(config=__a ) UpperCAmelCase_ = model(__a ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ = (self.patch_size, self.patch_size) UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowercase (self : Tuple , __a : str , __a : Any ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = FlaxViTForImageClassification(config=__a ) UpperCAmelCase_ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = FlaxViTForImageClassification(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowercase (self : Any ): UpperCAmelCase_ = FlaxViTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Tuple ): self.config_tester.run_common_tests() def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) def _lowercase (self : Tuple ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : Optional[Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model_class(__a ) @jax.jit def model_jitted(__a : Tuple , **__a : List[Any] ): return model(pixel_values=__a , **__a ) with self.subTest("JIT Enabled" ): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCAmelCase_ = model_jitted(**__a ).to_tuple() self.assertEqual(len(__a ) , len(__a ) ) for jitted_output, output in zip(__a , __a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowercase (self : Tuple ): for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" ) UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(__a )
1
"""simple docstring""" import math def lowercase__ ( _UpperCAmelCase = 1_00 ) -> int: '''simple docstring''' lowercase : List[str] = sum(i * i for i in range(1 , n + 1 ) ) lowercase : Dict = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
255
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __A (snake_case__ , snake_case__ , snake_case__): '''simple docstring''' @register_to_config def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False , ) ->Any: """simple docstring""" super().__init__() snake_case_ = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = nn.Embedding(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = False snake_case_ = nn.Dropout(p=UpperCAmelCase_ ) snake_case_ = TaConfig( vocab_size=UpperCAmelCase_ , d_model=UpperCAmelCase_ , num_heads=UpperCAmelCase_ , d_kv=UpperCAmelCase_ , d_ff=UpperCAmelCase_ , dropout_rate=UpperCAmelCase_ , feed_forward_proj=UpperCAmelCase_ , is_decoder=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , ) snake_case_ = nn.ModuleList() for lyr_num in range(UpperCAmelCase_ ): snake_case_ = TaBlock(UpperCAmelCase_ ) self.encoders.append(UpperCAmelCase_ ) snake_case_ = TaLayerNorm(UpperCAmelCase_ ) snake_case_ = nn.Dropout(p=UpperCAmelCase_ ) def lowerCAmelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) ->str: """simple docstring""" snake_case_ = self.token_embedder(UpperCAmelCase_ ) snake_case_ = encoder_input_tokens.shape[1] snake_case_ = torch.arange(UpperCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(UpperCAmelCase_ ) snake_case_ = self.dropout_pre(UpperCAmelCase_ ) # inverted the attention mask snake_case_ = encoder_input_tokens.size() snake_case_ = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ ) for lyr in self.encoders: snake_case_ = lyr(UpperCAmelCase_ , UpperCAmelCase_ )[0] snake_case_ = self.layer_norm(UpperCAmelCase_ ) return self.dropout_post(UpperCAmelCase_ ), encoder_inputs_mask
347
"""simple docstring""" from __future__ import annotations def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = get_failure_array(_SCREAMING_SNAKE_CASE ) # 2) Step through text searching for pattern snake_case_ , snake_case_ = 0, 0 # index into text, pattern while i < len(_SCREAMING_SNAKE_CASE ): if pattern[j] == text[i]: if j == (len(_SCREAMING_SNAKE_CASE ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case_ = failure[j - 1] continue i += 1 return False def _a ( _SCREAMING_SNAKE_CASE ) -> list[int]: snake_case_ = [0] snake_case_ = 0 snake_case_ = 1 while j < len(_SCREAMING_SNAKE_CASE ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case_ = failure[i - 1] continue j += 1 failure.append(_SCREAMING_SNAKE_CASE ) return failure if __name__ == "__main__": # Test 1) __SCREAMING_SNAKE_CASE : Optional[int] = 'abc1abc12' __SCREAMING_SNAKE_CASE : Optional[int] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __SCREAMING_SNAKE_CASE : List[str] = 'alskfjaldsk23adsfabcabc' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __SCREAMING_SNAKE_CASE : int = 'ABABX' __SCREAMING_SNAKE_CASE : Optional[Any] = 'ABABZABABYABABX' assert kmp(pattern, text) # Test 3) __SCREAMING_SNAKE_CASE : Any = 'AAAB' __SCREAMING_SNAKE_CASE : List[Any] = 'ABAAAAAB' assert kmp(pattern, text) # Test 4) __SCREAMING_SNAKE_CASE : Optional[int] = 'abcdabcy' __SCREAMING_SNAKE_CASE : str = 'abcxabcdabxabcdabcdabcy' assert kmp(pattern, text) # Test 5) __SCREAMING_SNAKE_CASE : Any = 'aabaabaaa' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
347
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( a_, a_, unittest.TestCase ): '''simple docstring''' __A = StableDiffusionSAGPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = False def __UpperCAmelCase ( self : List[str]) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCamelCase = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase = CLIPTextModel(lowercase_) _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[int]=0) -> Any: """simple docstring""" if str(lowercase_).startswith("mps"): _UpperCamelCase = torch.manual_seed(lowercase_) else: _UpperCamelCase = torch.Generator(device=lowercase_).manual_seed(lowercase_) _UpperCamelCase = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def __UpperCAmelCase ( self : Dict) -> int: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" _UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") _UpperCamelCase = sag_pipe.to(lowercase_) sag_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = "." _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np") _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") _UpperCamelCase = sag_pipe.to(lowercase_) sag_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = "." _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = sag_pipe( [prompt] , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np") _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base") _UpperCamelCase = sag_pipe.to(lowercase_) sag_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = "." _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = sag_pipe( [prompt] , width=768 , height=512 , generator=lowercase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) _UpperCamelCase = output.images assert image.shape == (1, 512, 768, 3)
371
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } lowerCamelCase__ = {'''facebook/blenderbot_small-90M''': 512} def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' _UpperCamelCase = set() _UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCamelCase = char _UpperCamelCase = set(a__ ) return pairs class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self : str , lowercase_ : Any , lowercase_ : int , lowercase_ : List[Any]="__start__" , lowercase_ : Optional[int]="__end__" , lowercase_ : List[Any]="__unk__" , lowercase_ : List[str]="__null__" , **lowercase_ : Optional[int] , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_) with open(lowercase_ , encoding="utf-8") as vocab_handle: _UpperCamelCase = json.load(lowercase_) _UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(lowercase_ , encoding="utf-8") as merges_handle: _UpperCamelCase = merges_handle.read().split("\n")[1:-1] _UpperCamelCase = [tuple(merge.split()) for merge in merges] _UpperCamelCase = dict(zip(lowercase_ , range(len(lowercase_)))) _UpperCamelCase = {} @property def __UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return len(self.encoder) def __UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def __UpperCAmelCase ( self : Tuple , lowercase_ : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] _UpperCamelCase = re.sub("([.,!?()])" , R" \1" , lowercase_) _UpperCamelCase = re.sub("(')" , R" \1 " , lowercase_) _UpperCamelCase = re.sub(R"\s{2,}" , " " , lowercase_) if "\n" in token: _UpperCamelCase = token.replace("\n" , " __newln__") _UpperCamelCase = token.split(" ") _UpperCamelCase = [] for token in tokens: if not len(lowercase_): continue _UpperCamelCase = token.lower() _UpperCamelCase = tuple(lowercase_) _UpperCamelCase = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _UpperCamelCase = get_pairs(lowercase_) if not pairs: words.append(lowercase_) continue while True: _UpperCamelCase = min(lowercase_ , key=lambda lowercase_: self.bpe_ranks.get(lowercase_ , float("inf"))) if bigram not in self.bpe_ranks: break _UpperCamelCase , _UpperCamelCase = bigram _UpperCamelCase = [] _UpperCamelCase = 0 while i < len(lowercase_): try: _UpperCamelCase = word.index(lowercase_ , lowercase_) new_word.extend(word[i:j]) _UpperCamelCase = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowercase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _UpperCamelCase = tuple(lowercase_) _UpperCamelCase = new_word if len(lowercase_) == 1: break else: _UpperCamelCase = get_pairs(lowercase_) _UpperCamelCase = "@@ ".join(lowercase_) _UpperCamelCase = word[:-4] _UpperCamelCase = word words.append(lowercase_) return " ".join(lowercase_) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : str) -> List[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = re.findall(R"\S+\n?" , lowercase_) for token in words: split_tokens.extend(list(self.bpe(lowercase_).split(" "))) return split_tokens def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : str) -> int: """simple docstring""" _UpperCamelCase = token.lower() return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token)) def __UpperCAmelCase ( self : Any , lowercase_ : int) -> str: """simple docstring""" return self.decoder.get(lowercase_ , self.unk_token) def __UpperCAmelCase ( self : Any , lowercase_ : List[str]) -> str: """simple docstring""" _UpperCamelCase = " ".join(lowercase_).replace("@@ " , "").strip() return out_string def __UpperCAmelCase ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowercase_ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_) + "\n") _UpperCamelCase = 0 with open(lowercase_ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_: kv[1]): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!") _UpperCamelCase = token_index writer.write(" ".join(lowercase_) + "\n") index += 1 return vocab_file, merge_file
63
0
def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" if collection == []: return [] # get some information about the collection lowerCamelCase__: List[Any] =len(__a ) lowerCamelCase__: List[str] =max(__a ) lowerCamelCase__: Dict =min(__a ) # create the counting array lowerCamelCase__: Tuple =coll_max + 1 - coll_min lowerCamelCase__: Optional[int] =[0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , __a ): lowerCamelCase__: int =counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCamelCase__: Dict =[0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , __a ) ): lowerCamelCase__: int =collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase_ ( __a ) -> str: """simple docstring""" return "".join([chr(__a ) for i in counting_sort([ord(__a ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __A = input("Enter numbers separated by a comma:\n").strip() __A = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case : str = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Optional[int] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys snake_case : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
240
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) _UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCamelCase ( __lowercase : str ) -> int: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: A_ : Any = model_type_to_module_name(__SCREAMING_SNAKE_CASE ) A_ : Optional[int] = importlib.import_module(f'''.{module_name}''' ,'transformers.models' ) try: return getattr(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__SCREAMING_SNAKE_CASE ,'__name__' ,__SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A_ : str = importlib.import_module('transformers' ) if hasattr(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): return getattr(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) return None def UpperCamelCase ( __lowercase : Union[str, os.PathLike] ,__lowercase : Optional[Union[str, os.PathLike]] = None ,__lowercase : bool = False ,__lowercase : bool = False ,__lowercase : Optional[Dict[str, str]] = None ,__lowercase : Optional[Union[bool, str]] = None ,__lowercase : Optional[str] = None ,__lowercase : bool = False ,**__lowercase : Optional[Any] ,) -> List[str]: '''simple docstring''' A_ : Optional[int] = get_file_from_repo( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,cache_dir=__SCREAMING_SNAKE_CASE ,force_download=__SCREAMING_SNAKE_CASE ,resume_download=__SCREAMING_SNAKE_CASE ,proxies=__SCREAMING_SNAKE_CASE ,use_auth_token=__SCREAMING_SNAKE_CASE ,revision=__SCREAMING_SNAKE_CASE ,local_files_only=__SCREAMING_SNAKE_CASE ,) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(__SCREAMING_SNAKE_CASE ,encoding='utf-8' ) as reader: return json.load(__SCREAMING_SNAKE_CASE ) class UpperCAmelCase : '''simple docstring''' def __init__( self ): """simple docstring""" raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_lowerCAmelCase ) def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" A_ : int = kwargs.pop('config' , _lowerCAmelCase ) A_ : str = kwargs.pop('trust_remote_code' , _lowerCAmelCase ) A_ : Any = True A_ : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(_lowerCAmelCase , **_lowerCAmelCase ) A_ : List[str] = config_dict.get('image_processor_type' , _lowerCAmelCase ) A_ : Union[str, Any] = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): A_ : List[str] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: A_ : int = config_dict.pop('feature_extractor_type' , _lowerCAmelCase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) A_ : List[Any] = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): A_ : Tuple = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] A_ : Optional[Any] = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): A_ : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) # It could be in `config.image_processor_type`` A_ : Dict = getattr(_lowerCAmelCase , 'image_processor_type' , _lowerCAmelCase ) if hasattr(_lowerCAmelCase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: A_ : Tuple = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: A_ : Optional[int] = image_processor_class_from_name(_lowerCAmelCase ) A_ : Optional[Any] = image_processor_auto_map is not None A_ : Optional[Any] = image_processor_class is not None or type(_lowerCAmelCase ) in IMAGE_PROCESSOR_MAPPING A_ : List[str] = resolve_trust_remote_code( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if has_remote_code and trust_remote_code: A_ : Any = get_class_from_dynamic_module( _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) A_ : Union[str, Any] = kwargs.pop('code_revision' , _lowerCAmelCase ) if os.path.isdir(_lowerCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowerCAmelCase ) in IMAGE_PROCESSOR_MAPPING: A_ : Optional[Any] = IMAGE_PROCESSOR_MAPPING[type(_lowerCAmelCase )] return image_processor_class.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(_lowerCAmelCase , _lowerCAmelCase )
370
import math def UpperCamelCase ( __lowercase : int = 1_00 ): '''simple docstring''' A_ : List[Any] = sum(i * i for i in range(1 ,n + 1 ) ) A_ : int = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
192
0
import math class __lowerCamelCase : """simple docstring""" def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(UpperCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" for i in range(len(UpperCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __A ( )-> None: """simple docstring""" _UpperCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCAmelCase = SelfOrganizingMap() _UpperCAmelCase = 3 _UpperCAmelCase = 0.5 for _ in range(SCREAMING_SNAKE_CASE__ ): for j in range(len(SCREAMING_SNAKE_CASE__ ) ): # training sample _UpperCAmelCase = training_samples[j] # Compute the winning vector _UpperCAmelCase = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Update the winning vector _UpperCAmelCase = self_organizing_map.update(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # classify test sample _UpperCAmelCase = [0, 0, 0, 1] _UpperCAmelCase = self_organizing_map.get_winner(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
39
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration snake_case_ : Union[str, Any] = 50_00_00 snake_case_ ,snake_case_ : Optional[int] = os.path.split(__file__) snake_case_ : Optional[Any] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Dict ) -> str: UpperCAmelCase_ : List[str] = dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : datasets.Dataset, **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[int] = dataset.filter(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( ) -> Any: UpperCAmelCase_ : List[str] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : Dict = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__, '''dataset.arrow''' ), SCREAMING_SNAKE_CASE__, num_examples=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''', use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : List[str] = map(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : Dict = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : Union[str, Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''torch''', columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='''tensorflow''', columns='''numbers''' ): UpperCAmelCase_ : Optional[Any] = map(SCREAMING_SNAKE_CASE__, function=lambda SCREAMING_SNAKE_CASE__ : None, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = map(SCREAMING_SNAKE_CASE__, function=SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
125
0
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =CanineTokenizer a__ =False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _UpperCAmelCase : Union[str, Any] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self ) -> Optional[int]: return CanineTokenizer.from_pretrained('''google/canine-s''' ) def __lowerCAmelCase ( self , **A ) -> CanineTokenizer: _UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) _UpperCAmelCase : Dict = 1_0_2_4 return tokenizer @require_torch def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : List[Any] = self.canine_tokenizer _UpperCAmelCase : Union[str, Any] = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off _UpperCAmelCase : Tuple = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on _UpperCAmelCase : Optional[Any] = tokenizer(A , padding=A , return_tensors='''pt''' ) self.assertIsInstance(A , A ) _UpperCAmelCase : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(A , A ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[str] = self.canine_tokenizer _UpperCAmelCase : str = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] _UpperCAmelCase : List[Any] = tokenizer(A , padding=A , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , A ) self.assertIn('''attention_mask''' , A ) self.assertIn('''token_type_ids''' , A ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _UpperCAmelCase : str = self.canine_tokenizer _UpperCAmelCase : Tuple = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] _UpperCAmelCase : Any = tokenizer( text_target=A , max_length=3_2 , padding='''max_length''' , truncation=A , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def __lowerCAmelCase ( self ) -> Optional[Any]: # safety check on max_len default value so we are sure the test works _UpperCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _UpperCAmelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() _UpperCAmelCase : Optional[int] = ''' He is very happy, UNwant\u00E9d,running''' _UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) _UpperCAmelCase : str = tokenizer.__class__.from_pretrained(A ) _UpperCAmelCase : str = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) shutil.rmtree(A ) _UpperCAmelCase : List[Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() _UpperCAmelCase : Union[str, Any] = ''' He is very happy, UNwant\u00E9d,running''' _UpperCAmelCase : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _UpperCAmelCase : Tuple = chr(0xE007 ) additional_special_tokens.append(A ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _UpperCAmelCase : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A ) tokenizer.save_pretrained(A ) _UpperCAmelCase : str = tokenizer.__class__.from_pretrained(A ) _UpperCAmelCase : Dict = after_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) self.assertIn(A , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _UpperCAmelCase : List[Any] = tokenizer.__class__.from_pretrained(A , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(A ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase , _UpperCAmelCase : Optional[int] = self.get_clean_sequence(A ) # a special token for Canine can be defined as follows: _UpperCAmelCase : List[str] = 0xE005 _UpperCAmelCase : Dict = chr(A ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) _UpperCAmelCase : int = tokenizer.encode(A , add_special_tokens=A ) self.assertEqual(len(A ) , 1 ) _UpperCAmelCase : Optional[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=A ) _UpperCAmelCase : Tuple = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Optional[int] = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : List[Any] = tokenizer.encode(A , add_special_tokens=A ) self.assertEqual(A , input_encoded + special_token_id ) _UpperCAmelCase : Dict = tokenizer.decode(A , skip_special_tokens=A ) self.assertTrue(special_token not in decoded ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase : List[Any] = chr(0xE005 ) _UpperCAmelCase : str = chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=A ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) _UpperCAmelCase : List[str] = tokenizer.tokenize(A ) _UpperCAmelCase : List[Any] = tokenizer.tokenize(A ) self.assertEqual(len(A ) , 1 ) self.assertEqual(len(A ) , 1 ) self.assertEqual(token_a[0] , A ) self.assertEqual(token_a[0] , A ) @require_tokenizers def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Tuple = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _UpperCAmelCase : str = 0xE006 _UpperCAmelCase : Optional[int] = chr(A ) _UpperCAmelCase : Dict = AddedToken(A , lstrip=A ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(A ) tokenizer.from_pretrained(A ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A ) with open(os.path.join(A , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCAmelCase : str = json.load(A ) with open(os.path.join(A , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCAmelCase : Dict = json.load(A ) # a special token for Canine can be defined as follows: _UpperCAmelCase : Any = 0xE006 _UpperCAmelCase : int = chr(A ) _UpperCAmelCase : Any = [new_token_a] _UpperCAmelCase : Optional[int] = [new_token_a] with open(os.path.join(A , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A , A ) with open(os.path.join(A , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A , A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCAmelCase : str = tokenizer_class.from_pretrained(A , extra_ids=0 ) self.assertIn(A , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _UpperCAmelCase : List[str] = 0xE007 _UpperCAmelCase : str = chr(A ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCAmelCase : Union[str, Any] = [AddedToken(A , lstrip=A )] _UpperCAmelCase : Union[str, Any] = tokenizer_class.from_pretrained( A , additional_special_tokens=A , extra_ids=0 ) self.assertIn(A , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : int = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase : List[str] = '''hello world''' if self.space_between_special_tokens: _UpperCAmelCase : List[str] = '''[CLS] hello world [SEP]''' else: _UpperCAmelCase : str = input _UpperCAmelCase : str = tokenizer.encode(A , add_special_tokens=A ) _UpperCAmelCase : Optional[int] = tokenizer.decode(A , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(A , [output, output.lower()] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _UpperCAmelCase : Optional[int] = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] _UpperCAmelCase : List[Any] = '''a''' _UpperCAmelCase : Dict = ord(A ) for attr in attributes_list: setattr(A , attr + '''_id''' , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + '''_id''' ) , A ) setattr(A , attr + '''_id''' , A ) self.assertEqual(getattr(A , A ) , A ) self.assertEqual(getattr(A , attr + '''_id''' ) , A ) setattr(A , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(A , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(A , '''additional_special_tokens_ids''' ) , [] ) _UpperCAmelCase : int = 0xE006 _UpperCAmelCase : Any = chr(A ) setattr(A , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(A , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(A , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def __lowerCAmelCase ( self ) -> str: pass def __lowerCAmelCase ( self ) -> Optional[int]: pass def __lowerCAmelCase ( self ) -> Optional[Any]: pass def __lowerCAmelCase ( self ) -> List[Any]: pass def __lowerCAmelCase ( self ) -> Optional[Any]: pass def __lowerCAmelCase ( self ) -> List[Any]: pass def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: pass
68
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase_ (): _UpperCAmelCase : Optional[int] = [randint(-1000 , 1000 ) for i in range(10 )] _UpperCAmelCase : int = randint(-5000 , 5000 ) return (arr, r) _lowerCAmelCase :Optional[Any] = make_dataset() def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): for triplet in permutations(UpperCamelCase__ , 3 ): if sum(UpperCamelCase__ ) == target: return tuple(sorted(UpperCamelCase__ ) ) return (0, 0, 0) def lowerCamelCase_ (UpperCamelCase__ : list[int] , UpperCamelCase__ : int ): arr.sort() _UpperCAmelCase : Optional[int] = len(UpperCamelCase__ ) for i in range(n - 1 ): _UpperCAmelCase , _UpperCAmelCase : Any = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' _UpperCAmelCase : Any = ''' triplet_sum1(*dataset) ''' _UpperCAmelCase : List[Any] = ''' triplet_sum2(*dataset) ''' _UpperCAmelCase : List[Any] = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_0000 ) _UpperCAmelCase : List[Any] = repeat(setup=UpperCamelCase__ , stmt=UpperCamelCase__ , repeat=5 , number=1_0000 ) return (min(UpperCamelCase__ ), min(UpperCamelCase__ )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCAmelCase :List[str] = solution_times() print(f"The time for naive implementation is {times[0]}.") print(f"The time for optimized implementation is {times[1]}.")
68
1