code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : Dict = logging.get_logger(__name__) lowercase : Tuple = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCamelCase__ ( __lowercase , __lowercase): '''simple docstring''' _A = 'swin' _A = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :List[Any] , a :Union[str, Any]=2_2_4 , a :Any=4 , a :str=3 , a :str=9_6 , a :Optional[int]=[2, 2, 6, 2] , a :Optional[int]=[3, 6, 1_2, 2_4] , a :Optional[int]=7 , a :int=4.0 , a :Optional[Any]=True , a :int=0.0 , a :Dict=0.0 , a :List[Any]=0.1 , a :Union[str, Any]="gelu" , a :Any=False , a :List[str]=0.02 , a :int=1E-5 , a :Optional[Any]=3_2 , a :int=None , a :List[Any]=None , **a :Any , ) -> Union[str, Any]: super().__init__(**a ) __UpperCamelCase : List[str] = image_size __UpperCamelCase : Optional[Any] = patch_size __UpperCamelCase : List[str] = num_channels __UpperCamelCase : Dict = embed_dim __UpperCamelCase : Optional[int] = depths __UpperCamelCase : Union[str, Any] = len(a ) __UpperCamelCase : List[str] = num_heads __UpperCamelCase : List[Any] = window_size __UpperCamelCase : str = mlp_ratio __UpperCamelCase : Any = qkv_bias __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : str = attention_probs_dropout_prob __UpperCamelCase : Dict = drop_path_rate __UpperCamelCase : Optional[Any] = hidden_act __UpperCamelCase : str = use_absolute_embeddings __UpperCamelCase : List[str] = layer_norm_eps __UpperCamelCase : List[Any] = initializer_range __UpperCamelCase : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCamelCase : Union[str, Any] = int(embed_dim * 2 ** (len(a ) - 1) ) __UpperCamelCase : Any = ["stem"] + [f'stage{idx}' for idx in range(1 , len(a ) + 1 )] __UpperCamelCase , __UpperCamelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names ) class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = version.parse('1.11') @property def _lowerCamelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self :Dict ) -> float: return 1E-4
232
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( __lowercase , unittest.TestCase): '''simple docstring''' _A = KandinskyVaaPriorPipeline _A = ['prompt'] _A = ['prompt', 'negative_prompt'] _A = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] _A = False @property def _lowerCamelCase ( self :Tuple ) -> Optional[Any]: return 3_2 @property def _lowerCamelCase ( self :List[str] ) -> List[str]: return 3_2 @property def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: return self.time_input_dim @property def _lowerCamelCase ( self :Union[str, Any] ) -> Any: return self.time_input_dim * 4 @property def _lowerCamelCase ( self :Tuple ) -> str: return 1_0_0 @property def _lowerCamelCase ( self :Union[str, Any] ) -> Any: __UpperCamelCase : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowerCamelCase ( self :str ) -> int: torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self :int ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase : Optional[int] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } __UpperCamelCase : List[Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 __UpperCamelCase : Optional[int] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) __UpperCamelCase : int = CLIPVisionModelWithProjection(a ) return model @property def _lowerCamelCase ( self :Dict ) -> Optional[Any]: __UpperCamelCase : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_2_4 , ) return image_processor def _lowerCamelCase ( self :str ) -> Optional[int]: __UpperCamelCase : str = self.dummy_prior __UpperCamelCase : int = self.dummy_image_encoder __UpperCamelCase : Tuple = self.dummy_text_encoder __UpperCamelCase : int = self.dummy_tokenizer __UpperCamelCase : Optional[Any] = self.dummy_image_processor __UpperCamelCase : int = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) __UpperCamelCase : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def _lowerCamelCase ( self :Optional[Any] , a :int , a :Union[str, Any]=0 ) -> Any: if str(a ).startswith("mps" ): __UpperCamelCase : int = torch.manual_seed(a ) else: __UpperCamelCase : List[Any] = torch.Generator(device=a ).manual_seed(a ) __UpperCamelCase : int = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _lowerCamelCase ( self :List[Any] ) -> Dict: __UpperCamelCase : int = "cpu" __UpperCamelCase : List[str] = self.get_dummy_components() __UpperCamelCase : List[str] = self.pipeline_class(**a ) __UpperCamelCase : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __UpperCamelCase : int = pipe(**self.get_dummy_inputs(a ) ) __UpperCamelCase : int = output.image_embeds __UpperCamelCase : Optional[int] = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] __UpperCamelCase : Union[str, Any] = image[0, -1_0:] __UpperCamelCase : List[str] = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) __UpperCamelCase : List[Any] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self :int ) -> Union[str, Any]: __UpperCamelCase : str = torch_device == "cpu" __UpperCamelCase : List[str] = True __UpperCamelCase : List[Any] = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def _lowerCamelCase ( self :Any ) -> int: __UpperCamelCase : Optional[Any] = torch_device == "cpu" __UpperCamelCase : Dict = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
232
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowercase_ = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = 'albert' def __init__( self , _a=30_000 , _a=128 , _a=4_096 , _a=12 , _a=1 , _a=64 , _a=16_384 , _a=1 , _a="gelu_new" , _a=0 , _a=0 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0.1 , _a="absolute" , _a=0 , _a=2 , _a=3 , **_a , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) __a = vocab_size __a = embedding_size __a = hidden_size __a = num_hidden_layers __a = num_hidden_groups __a = num_attention_heads __a = inner_group_num __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = classifier_dropout_prob __a = position_embedding_type class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
11
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase__ ( *_UpperCAmelCase ) -> Dict: '''simple docstring''' if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase : str = list(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): lowercase : List[Any] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase__ ( _UpperCAmelCase ) -> bool: '''simple docstring''' lowercase : str = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase__ ( _UpperCAmelCase = None , _UpperCAmelCase = 1_28 ) -> int: '''simple docstring''' if function is None: return functools.partial(UpperCamelCase_ , starting_batch_size=UpperCamelCase_ ) lowercase : Any = starting_batch_size def decorator(*_UpperCAmelCase , **_UpperCAmelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowercase : List[str] = list(inspect.signature(UpperCamelCase_ ).parameters.keys() ) # Guard against user error if len(UpperCamelCase_ ) < (len(UpperCamelCase_ ) + 1): lowercase : List[Any] = ', '.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) except Exception as e: if should_reduce_batch_size(UpperCamelCase_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
255
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __snake_case = NewType("""DataClass""", Any) __snake_case = NewType("""DataClassType""", Any) def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def _lowercase ( UpperCamelCase_ ) -> Callable[[str], Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = {str(UpperCamelCase_ ): choice for choice in choices} return lambda UpperCamelCase_ : str_to_choice.get(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( *, UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = dataclasses.MISSING , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls SCREAMING_SNAKE_CASE__ = {} if aliases is not None: SCREAMING_SNAKE_CASE__ = aliases if help is not None: SCREAMING_SNAKE_CASE__ = help return dataclasses.field(metadata=UpperCamelCase_ , default=UpperCamelCase_ , default_factory=UpperCamelCase_ , **UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): A__ : Iterable[DataClassType] def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Optional[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: SCREAMING_SNAKE_CASE__ = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_ ) if dataclasses.is_dataclass(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [dataclass_types] SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_ ) @staticmethod def A_ ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field ): SCREAMING_SNAKE_CASE__ = F'--{field.name}' SCREAMING_SNAKE_CASE__ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_ ): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default' ) SCREAMING_SNAKE_CASE__ = kwargs.pop('aliases' , [] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = [aliases] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) if origin_type is Union or (hasattr(UpperCAmelCase_ , 'UnionType' ) and isinstance(UpperCAmelCase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(UpperCAmelCase_ ) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.' ) if type(UpperCAmelCase_ ) not in field.type.__args__: # filter `str` in Union SCREAMING_SNAKE_CASE__ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) SCREAMING_SNAKE_CASE__ = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1] ) else field.type.__args__[1] ) SCREAMING_SNAKE_CASE__ = getattr(field.type , '__origin__' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) SCREAMING_SNAKE_CASE__ = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_ ) and issubclass(field.type , UpperCAmelCase_ )): if origin_type is Literal: SCREAMING_SNAKE_CASE__ = field.type.__args__ else: SCREAMING_SNAKE_CASE__ = [x.value for x in field.type] SCREAMING_SNAKE_CASE__ = make_choice_type_function(kwargs['choices'] ) if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default else: SCREAMING_SNAKE_CASE__ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument SCREAMING_SNAKE_CASE__ = copy(UpperCAmelCase_ ) # Hack because type=bool in argparse does not behave as we want. SCREAMING_SNAKE_CASE__ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. SCREAMING_SNAKE_CASE__ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way SCREAMING_SNAKE_CASE__ = default # This tells argparse we accept 0 or 1 value after --field_name SCREAMING_SNAKE_CASE__ = '?' # This is the value that will get picked if we do --field_name (without value) SCREAMING_SNAKE_CASE__ = True elif isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = field.type.__args__[0] SCREAMING_SNAKE_CASE__ = '+' if field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() elif field.default is dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = True else: SCREAMING_SNAKE_CASE__ = field.type if field.default is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default elif field.default_factory is not dataclasses.MISSING: SCREAMING_SNAKE_CASE__ = field.default_factory() else: SCREAMING_SNAKE_CASE__ = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): SCREAMING_SNAKE_CASE__ = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : DataClassType ): if hasattr(UpperCAmelCase_ , '_argument_group_name' ): SCREAMING_SNAKE_CASE__ = self.add_argument_group(dtype._argument_group_name ) else: SCREAMING_SNAKE_CASE__ = self try: SCREAMING_SNAKE_CASE__ = get_type_hints(UpperCAmelCase_ ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '.'.join(map(UpperCAmelCase_ , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.' ) from ex raise for field in dataclasses.fields(UpperCAmelCase_ ): if not field.init: continue SCREAMING_SNAKE_CASE__ = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Dict , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : str=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): SCREAMING_SNAKE_CASE__ = [] if args_filename: args_files.append(Path(UpperCAmelCase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values SCREAMING_SNAKE_CASE__ = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action='append' ) # Use only remaining args for further parsing (remove the args_file_flag) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = args_file_parser.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = vars(UpperCAmelCase_ ).get(args_file_flag.lstrip('-' ) , UpperCAmelCase_ ) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_ ) for p in cmd_args_file_paths] ) SCREAMING_SNAKE_CASE__ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last SCREAMING_SNAKE_CASE__ = file_args + args if args is not None else file_args + sys.argv[1:] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.parse_known_args(args=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in vars(UpperCAmelCase_ ).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(UpperCAmelCase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def A_ ( self : str , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = set(args.keys() ) SCREAMING_SNAKE_CASE__ = [] for dtype in self.dataclass_types: SCREAMING_SNAKE_CASE__ = {f.name for f in dataclasses.fields(UpperCAmelCase_ ) if f.init} SCREAMING_SNAKE_CASE__ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) SCREAMING_SNAKE_CASE__ = dtype(**UpperCAmelCase_ ) outputs.append(UpperCAmelCase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_ )}' ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): with open(Path(UpperCAmelCase_ ) , encoding='utf-8' ) as open_json_file: SCREAMING_SNAKE_CASE__ = json.loads(open_json_file.read() ) SCREAMING_SNAKE_CASE__ = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False ): SCREAMING_SNAKE_CASE__ = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_ ).read_text() ) , allow_extra_keys=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ )
176
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class A ( lowerCAmelCase__ ): __UpperCAmelCase : int = "deta" __UpperCAmelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__(self : Any , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Tuple=9_0_0 , __UpperCAmelCase : int=2_0_4_8 , __UpperCAmelCase : Dict=6 , __UpperCAmelCase : Any=2_0_4_8 , __UpperCAmelCase : List[str]=8 , __UpperCAmelCase : Any=6 , __UpperCAmelCase : Tuple=1_0_2_4 , __UpperCAmelCase : Optional[Any]=8 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Union[str, Any]="relu" , __UpperCAmelCase : Any=2_5_6 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : str=0.0 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Union[str, Any]=1.0 , __UpperCAmelCase : int=True , __UpperCAmelCase : int=False , __UpperCAmelCase : Dict="sine" , __UpperCAmelCase : Dict=5 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=3_0_0 , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[int]=5 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : List[str]=1 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[Any]=5 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Tuple=0.25 , **__UpperCAmelCase : List[Any] , ) -> str: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase__ = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(a__ , a__ ): UpperCAmelCase__ = backbone_config.pop("model_type" ) UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ = config_class.from_dict(a__ ) UpperCAmelCase__ = backbone_config UpperCAmelCase__ = num_queries UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = d_model UpperCAmelCase__ = encoder_ffn_dim UpperCAmelCase__ = encoder_layers UpperCAmelCase__ = encoder_attention_heads UpperCAmelCase__ = decoder_ffn_dim UpperCAmelCase__ = decoder_layers UpperCAmelCase__ = decoder_attention_heads UpperCAmelCase__ = dropout UpperCAmelCase__ = attention_dropout UpperCAmelCase__ = activation_dropout UpperCAmelCase__ = activation_function UpperCAmelCase__ = init_std UpperCAmelCase__ = init_xavier_std UpperCAmelCase__ = encoder_layerdrop UpperCAmelCase__ = auxiliary_loss UpperCAmelCase__ = position_embedding_type # deformable attributes UpperCAmelCase__ = num_feature_levels UpperCAmelCase__ = encoder_n_points UpperCAmelCase__ = decoder_n_points UpperCAmelCase__ = two_stage UpperCAmelCase__ = two_stage_num_proposals UpperCAmelCase__ = with_box_refine UpperCAmelCase__ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher UpperCAmelCase__ = class_cost UpperCAmelCase__ = bbox_cost UpperCAmelCase__ = giou_cost # Loss coefficients UpperCAmelCase__ = mask_loss_coefficient UpperCAmelCase__ = dice_loss_coefficient UpperCAmelCase__ = bbox_loss_coefficient UpperCAmelCase__ = giou_loss_coefficient UpperCAmelCase__ = eos_coefficient UpperCAmelCase__ = focal_alpha super().__init__(is_encoder_decoder=a__ , **a__ ) @property def lowercase_ (self : Tuple ) -> List[str]: """simple docstring""" return self.encoder_attention_heads @property def lowercase_ (self : str ) -> List[str]: """simple docstring""" return self.d_model def lowercase_ (self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
364
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class A ( yaml.SafeLoader ): def lowercase_ (self : Tuple , __UpperCAmelCase : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCAmelCase__ = [tuple(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else key for key in keys] UpperCAmelCase__ = Counter(__UpperCAmelCase ) UpperCAmelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def lowercase_ (self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=False ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = super().construct_mapping(__UpperCAmelCase , deep=__UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(__UpperCAmelCase ) return mapping def lowerCAmelCase_ ( __A ) -> Tuple[Optional[str], str]: '''simple docstring''' UpperCAmelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCAmelCase__ = full_content[1:].index("---" ) + 1 UpperCAmelCase__ = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__A ) class A ( UpperCAmelCase_ ): # class attributes __UpperCAmelCase : Optional[Any] = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowercase_ (cls : List[str] , __UpperCAmelCase : Path ) -> "DatasetMetadata": """simple docstring""" with open(__UpperCAmelCase , encoding="utf-8" ) as readme_file: UpperCAmelCase__ , UpperCAmelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCAmelCase ) else: return cls() def lowercase_ (self : int , __UpperCAmelCase : Path ) -> str: """simple docstring""" if path.exists(): with open(__UpperCAmelCase , encoding="utf-8" ) as readme_file: UpperCAmelCase__ = readme_file.read() else: UpperCAmelCase__ = None UpperCAmelCase__ = self._to_readme(__UpperCAmelCase ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as readme_file: readme_file.write(__UpperCAmelCase ) def lowercase_ (self : str , __UpperCAmelCase : Optional[str] = None ) -> str: """simple docstring""" if readme_content is not None: UpperCAmelCase__ , UpperCAmelCase__ = _split_yaml_from_readme(__UpperCAmelCase ) UpperCAmelCase__ = "---\n" + self.to_yaml_string() + "---\n" + content else: UpperCAmelCase__ = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def lowercase_ (cls : Optional[int] , __UpperCAmelCase : str ) -> "DatasetMetadata": """simple docstring""" UpperCAmelCase__ = yaml.load(__UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCAmelCase__ = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__UpperCAmelCase , allow_unicode=__UpperCAmelCase , encoding="utf-8" , ).decode("utf-8" ) UpperCamelCase__ = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCamelCase__ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') UpperCamelCase__ = ap.parse_args() UpperCamelCase__ = Path(args.readme_filepath) UpperCamelCase__ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
143
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCamelCase = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCamelCase = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCamelCase = BeautifulSoup(res.text, 'html.parser') lowerCamelCase = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get("href")}""")
199
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class A : UpperCamelCase__ : Union[str, Any] =XGLMConfig UpperCamelCase__ : Dict ={} UpperCamelCase__ : Tuple ='gelu' def __init__( self : List[Any] , lowercase_ : List[str] , lowercase_ : Union[str, Any]=14 , lowercase_ : Dict=7 , lowercase_ : Union[str, Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Optional[int]=99 , lowercase_ : List[Any]=32 , lowercase_ : List[Any]=2 , lowercase_ : Dict=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : List[Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : List[str]=512 , lowercase_ : Union[str, Any]=0.02 , ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict =parent _lowerCamelCase : Optional[Any] =batch_size _lowerCamelCase : Optional[int] =seq_length _lowerCamelCase : Union[str, Any] =is_training _lowerCamelCase : Tuple =use_input_mask _lowerCamelCase : str =use_labels _lowerCamelCase : Any =vocab_size _lowerCamelCase : List[str] =d_model _lowerCamelCase : List[Any] =num_hidden_layers _lowerCamelCase : Union[str, Any] =num_attention_heads _lowerCamelCase : List[Any] =ffn_dim _lowerCamelCase : Optional[Any] =activation_function _lowerCamelCase : Dict =activation_dropout _lowerCamelCase : Tuple =attention_dropout _lowerCamelCase : List[str] =max_position_embeddings _lowerCamelCase : int =initializer_range _lowerCamelCase : Optional[int] =None _lowerCamelCase : Optional[Any] =0 _lowerCamelCase : List[str] =2 _lowerCamelCase : Any =1 def lowerCamelCase ( self : str ) -> int: """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) _lowerCamelCase : Any =None if self.use_input_mask: _lowerCamelCase : str =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : Optional[int] =self.get_config() _lowerCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowerCamelCase ( self : List[str] ) -> Dict: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowercase_ , ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : str =self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) : Any =config_and_inputs _lowerCamelCase : Union[str, Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class A ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : List[str] =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Any =( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : str =False UpperCamelCase__ : int =False UpperCamelCase__ : int =False def lowerCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _lowerCamelCase : Tuple =TFXGLMModelTester(self ) _lowerCamelCase : str =ConfigTester(self , config_class=lowercase_ , n_embd=37 ) def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @slow def lowerCamelCase ( self : Any ) -> int: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : int =TFXGLMModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" super().test_resize_token_embeddings() @require_tf class A ( unittest.TestCase ): @slow def lowerCamelCase ( self : str , lowercase_ : str=True ) -> Tuple: """simple docstring""" _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : List[Any] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off _lowerCamelCase : int =[2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on _lowerCamelCase : Dict =model.generate(lowercase_ , do_sample=lowercase_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_ ) @slow def lowerCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) _lowerCamelCase : Tuple =tokenizer('Today is a nice day and' , return_tensors='tf' ) _lowerCamelCase : Optional[int] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): _lowerCamelCase : List[Any] =model.generate(lowercase_ , do_sample=lowercase_ , seed=[7, 0] ) _lowerCamelCase : Union[str, Any] =tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : Union[str, Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowercase_ , lowercase_ ) @slow def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _lowerCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Any =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) _lowerCamelCase : Optional[Any] ='left' # use different length sentences to test batching _lowerCamelCase : int =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] _lowerCamelCase : List[Any] =tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) _lowerCamelCase : int =inputs['input_ids'] _lowerCamelCase : str =model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) _lowerCamelCase : Optional[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids _lowerCamelCase : List[str] =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : Tuple =tokenizer(sentences[1] , return_tensors='tf' ).input_ids _lowerCamelCase : Dict =model.generate(input_ids=lowercase_ , max_new_tokens=12 ) _lowerCamelCase : str =tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) _lowerCamelCase : str =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) _lowerCamelCase : List[str] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] )
199
1
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : List[Any] = (IPNDMScheduler,) __magic_name__ : Optional[Any] = (("num_inference_steps", 50),) def a__( self : Any , **lowerCAmelCase : Tuple )-> Optional[Any]: """simple docstring""" UpperCAmelCase = {'''num_train_timesteps''': 1000} config.update(**lowerCAmelCase ) return config def a__( self : List[Any] , lowerCAmelCase : int=0 , **lowerCAmelCase : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[:] if time_step is None: UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) UpperCAmelCase = scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" pass def a__( self : List[Any] , lowerCAmelCase : Dict=0 , **lowerCAmelCase : Any )-> str: """simple docstring""" UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[:] if time_step is None: UpperCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) UpperCAmelCase = scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def a__( self : List[str] , **lowerCAmelCase : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.scheduler_classes[0] UpperCAmelCase = self.get_scheduler_config(**lowerCAmelCase ) UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = 10 UpperCAmelCase = self.dummy_model() UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase = model(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def a__( self : Union[str, Any] )-> int: """simple docstring""" UpperCAmelCase = dict(self.forward_default_kwargs ) UpperCAmelCase = kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) for scheduler_class in self.scheduler_classes: UpperCAmelCase = self.get_scheduler_config() UpperCAmelCase = scheduler_class(**lowerCAmelCase ) UpperCAmelCase = self.dummy_sample UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase , '''set_timesteps''' ): UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase = dummy_past_residuals[:] UpperCAmelCase = scheduler.timesteps[5] UpperCAmelCase = scheduler.timesteps[6] UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample UpperCAmelCase = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a__( self : Any )-> Tuple: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase , time_step=lowerCAmelCase ) def a__( self : int )-> Optional[int]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=lowerCAmelCase ) def a__( self : Optional[Any] )-> Any: """simple docstring""" UpperCAmelCase = self.full_loop() UpperCAmelCase = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 2540529 ) < 10
91
'''simple docstring''' def lowerCamelCase__ ( A : int , A : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def lowerCamelCase__ ( ): '''simple docstring''' print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(f"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(f"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(f"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
91
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class A ( __UpperCAmelCase ): __snake_case = 'bridgetower_vision_model' def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=3, UpperCamelCase__=16, UpperCamelCase__=288, UpperCamelCase__=1, UpperCamelCase__=1E-05, UpperCamelCase__=False, UpperCamelCase__=True, UpperCamelCase__=False, **UpperCamelCase__, ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = initializer_factor lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = stop_gradient lowerCAmelCase_ = share_layernorm lowerCAmelCase_ = remove_last_layer @classmethod def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(UpperCamelCase__, **UpperCamelCase__ ) if config_dict.get('''model_type''' ) == "bridgetower": lowerCAmelCase_ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCamelCase__, **UpperCamelCase__ ) class A ( __UpperCAmelCase ): __snake_case = 'bridgetower_text_model' def __init__( self, UpperCamelCase__=5_0265, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=1, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=514, UpperCamelCase__=1, UpperCamelCase__=1E-05, UpperCamelCase__=1, UpperCamelCase__=0, UpperCamelCase__=2, UpperCamelCase__="absolute", UpperCamelCase__=True, **UpperCamelCase__, ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = hidden_act lowerCAmelCase_ = initializer_factor lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = position_embedding_type lowerCAmelCase_ = use_cache lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = eos_token_id @classmethod def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(UpperCamelCase__, **UpperCamelCase__ ) if config_dict.get('''model_type''' ) == "bridgetower": lowerCAmelCase_ = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls, '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(UpperCamelCase__, **UpperCamelCase__ ) class A ( __UpperCAmelCase ): __snake_case = 'bridgetower' def __init__( self, UpperCamelCase__=True, UpperCamelCase__="gelu", UpperCamelCase__=768, UpperCamelCase__=1, UpperCamelCase__=1E-05, UpperCamelCase__=False, UpperCamelCase__="add", UpperCamelCase__=12, UpperCamelCase__=6, UpperCamelCase__=False, UpperCamelCase__=False, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = kwargs.pop('''text_config_dict''', UpperCamelCase__ ) lowerCAmelCase_ = kwargs.pop('''vision_config_dict''', UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) lowerCAmelCase_ = share_cross_modal_transformer_layers lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_size lowerCAmelCase_ = initializer_factor lowerCAmelCase_ = layer_norm_eps lowerCAmelCase_ = share_link_tower_layers lowerCAmelCase_ = link_tower_type lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = tie_word_embeddings lowerCAmelCase_ = init_layernorm_from_vision_encoder if text_config is None: lowerCAmelCase_ = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: lowerCAmelCase_ = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) lowerCAmelCase_ = BridgeTowerTextConfig(**UpperCamelCase__ ) lowerCAmelCase_ = BridgeTowerVisionConfig(**UpperCamelCase__ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__, UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ = self.text_config.to_dict() lowerCAmelCase_ = self.vision_config.to_dict() lowerCAmelCase_ = self.__class__.model_type return output
278
import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput _A = '''scheduler_config.json''' class A ( __UpperCAmelCase ): __snake_case = 1 __snake_case = 2 __snake_case = 3 __snake_case = 4 __snake_case = 5 __snake_case = 6 __snake_case = 7 __snake_case = 8 __snake_case = 9 __snake_case = 10 __snake_case = 11 __snake_case = 12 __snake_case = 13 __snake_case = 14 @dataclass class A ( __UpperCAmelCase ): __snake_case = 42 class A : __snake_case = SCHEDULER_CONFIG_NAME __snake_case = [] __snake_case = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls, UpperCamelCase__ = None, UpperCamelCase__ = None, UpperCamelCase__=False, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = cls.load_config( pretrained_model_name_or_path=UpperCamelCase__, subfolder=UpperCamelCase__, return_unused_kwargs=UpperCamelCase__, return_commit_hash=UpperCamelCase__, **UpperCamelCase__, ) return cls.from_config(UpperCamelCase__, return_unused_kwargs=UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = False, **UpperCamelCase__ ): """simple docstring""" self.save_config(save_directory=UpperCamelCase__, push_to_hub=UpperCamelCase__, **UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE__ ( cls ): """simple docstring""" lowerCAmelCase_ = list(set([cls.__name__] + cls._compatibles ) ) lowerCAmelCase_ = importlib.import_module(__name__.split('''.''' )[0] ) lowerCAmelCase_ = [ getattr(UpperCamelCase__, UpperCamelCase__ ) for c in compatible_classes_str if hasattr(UpperCamelCase__, UpperCamelCase__ ) ] return compatible_classes
278
1
def lowerCAmelCase_ ( __UpperCAmelCase: int = 1000 ) -> int: UpperCamelCase__ : Tuple = 3 UpperCamelCase__ : str = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F'''{solution() = }''')
247
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> list[int]: if length <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(__UpperCAmelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
247
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_600, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A ( unittest.TestCase ): def _A (self ): if self.framework == "pytorch": subprocess.run( f'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=UpperCamelCase__ , ) assert hasattr(self , 'env' ) def _A (self , lowerCAmelCase ): __lowercase= { 'enabled': True, 'processes_per_host': 8, } __lowercase= { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __lowercase= {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __lowercase= 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_0_0, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version='py36' , ) def _A (self , lowerCAmelCase ): TrainingJobAnalytics(UpperCamelCase__ ).export_csv(f'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(1,)] ) def _A (self , lowerCAmelCase ): __lowercase= self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe __lowercase= TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __lowercase= list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) __lowercase= list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __lowercase= ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , UpperCamelCase__ )
295
'''simple docstring''' _lowerCamelCase : int = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
28
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = '''▁''' SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} SCREAMING_SNAKE_CASE : Optional[int] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } SCREAMING_SNAKE_CASE : str = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_0_2_4, } # fmt: off SCREAMING_SNAKE_CASE : Tuple = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowerCamelCase ( __lowercase ): __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = ['input_ids', 'attention_mask'] __UpperCamelCase = [] __UpperCamelCase = [] def __init__(self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase , tgt_lang=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase ) } _lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase = self.lang_code_to_id[self._src_lang] _lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A__ (self ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A__ (self ): '''simple docstring''' return self._src_lang @src_lang.setter def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self ): '''simple docstring''' _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ (self , lowerCamelCase ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ (self , lowerCamelCase ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = [] _lowerCAmelCase = """""" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(lowerCamelCase ) _lowerCAmelCase = False out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowerCAmelCase = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,) def A__ (self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) _lowerCAmelCase = [1] * len(self.prefix_tokens ) _lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase )) + ([0] * len(lowerCamelCase )) + suffix_ones def A__ (self , lowerCamelCase , lowerCamelCase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase = src_lang _lowerCAmelCase = self(lowerCamelCase , add_special_tokens=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) _lowerCAmelCase = self.convert_tokens_to_ids(lowerCamelCase ) _lowerCAmelCase = tgt_lang_id return inputs def A__ (self , lowerCamelCase , lowerCamelCase = "en_XX" , lowerCamelCase = None , lowerCamelCase = "ro_RO" , **lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase = src_lang _lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase , lowerCamelCase , **lowerCamelCase ) def A__ (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def A__ (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.lang_code_to_id[src_lang] _lowerCAmelCase = [self.cur_lang_code_id] _lowerCAmelCase = [self.eos_token_id] def A__ (self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = self.lang_code_to_id[tgt_lang] _lowerCAmelCase = [self.cur_lang_code_id] _lowerCAmelCase = [self.eos_token_id]
356
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
317
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def a_ ( _A=None , _A=None ) -> List[str]: """simple docstring""" return field(default_factory=lambda: default , metadata=_A ) @dataclass class __SCREAMING_SNAKE_CASE: _UpperCAmelCase = list_field( default=[] , metadata={ "help": ( "Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version" " of all available models" ) } , ) _UpperCAmelCase = list_field( default=[8] , metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"} ) _UpperCAmelCase = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"} , ) _UpperCAmelCase = field( default=a_ , metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."} , ) _UpperCAmelCase = field( default=a_ , metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."} , ) _UpperCAmelCase = field( default=a_ , metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."} ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Use FP16 to accelerate inference."} ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Benchmark training of model"} ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Verbose memory tracing"} ) _UpperCAmelCase = field( default=a_ , metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."} , ) _UpperCAmelCase = field( default=a_ , metadata={ "help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory" } , ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Trace memory line by line"} ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Save result to a CSV file"} ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Save all print statements in a log file"} ) _UpperCAmelCase = field(default=a_ , metadata={"help": "Whether to print environment information"} ) _UpperCAmelCase = field( default=a_ , metadata={ "help": ( "Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use" " multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled" " for debugging / testing and on TPU." ) } , ) _UpperCAmelCase = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv."} , ) _UpperCAmelCase = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv."} , ) _UpperCAmelCase = field( default=F'''train_time_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving time results to csv for training."} , ) _UpperCAmelCase = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving memory results to csv for training."} , ) _UpperCAmelCase = field( default=F'''env_info_{round(time() )}.csv''' , metadata={"help": "CSV filename used if saving environment information."} , ) _UpperCAmelCase = field( default=F'''log_{round(time() )}.csv''' , metadata={"help": "Log filename used if print statements are saved in log."} , ) _UpperCAmelCase = field(default=3 , metadata={"help": "Times an experiment will be run."} ) _UpperCAmelCase = field( default=a_ , metadata={ "help": ( "Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain" " model weights." ) } , ) def lowerCAmelCase_ ( self: Tuple ) -> str: warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ' are deprecated in general and it is advised to use external Benchmarking libraries ' ' to benchmark Transformer models.' , UpperCamelCase , ) def lowerCAmelCase_ ( self: Any ) -> List[str]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def lowerCAmelCase_ ( self: Dict ) -> List[str]: if len(self.models ) <= 0: raise ValueError( 'Please make sure you provide at least one model name / model identifier, *e.g.* `--models' ' bert-base-cased` or `args.models = [\'bert-base-cased\'].' ) return self.models @property def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]: if not self.multi_process: return False elif self.is_tpu: logger.info('Multiprocessing is currently not possible on TPU.' ) return False else: return True
307
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
307
1
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __magic_name__ ( _snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase = XLNetTokenizer __UpperCamelCase = XLNetTokenizerFast __UpperCamelCase = True __UpperCamelCase = True def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A_ : Dict = XLNetTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Tuple = "<s>" A_ : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<eod>" ) self.assertEqual(len(UpperCamelCase__ ) , 1_006 ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : Dict = XLNetTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A_ : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [285, 46, 10, 170, 382] ) A_ : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A_ : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) A_ : Optional[int] = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : str = XLNetTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) A_ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "", "i", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["▁he", "ll", "o"] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = XLNetTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) A_ : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "se", ".", ] , ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : str = XLNetTokenizer.from_pretrained("xlnet-base-cased" ) A_ : int = tokenizer.encode("sequence builders" , add_special_tokens=UpperCamelCase__ ) A_ : Any = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCamelCase__ ) A_ : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A_ : Any = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = {"input_ids": [[17, 21_442, 270, 17, 10, 14_645, 318, 34, 17, 4_546, 3_145, 787, 13, 7_752, 22_018, 23, 21, 17, 4_546, 3_145, 787, 13, 3_352, 14_431, 13, 5_500, 11, 1_176, 580, 13, 16_819, 4_797, 23, 17, 10, 17_135, 658, 19, 457, 7_932, 13, 184, 19, 3_154, 17_135, 6_468, 19, 1_404, 12_269, 19, 4_229, 5_356, 16_264, 46, 19, 17, 20_545, 10_395, 9, 9, 9, 11, 28, 6_421, 9_531, 20_729, 17, 10, 353, 17_022, 11, 21, 6_421, 9_531, 16_949, 17, 10, 11_509, 753, 11, 33, 95, 2_421, 7_385, 956, 14_431, 2_626, 25, 842, 7_385, 4_836, 21, 1_429, 2_272, 9_855, 3_120, 161, 24_738, 19, 13_203, 658, 218, 787, 21, 430, 18_482, 847, 2_637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22_178, 27, 1_064, 22, 956, 13, 11_101, 1_429, 5_854, 24_313, 18_953, 40, 422, 24_366, 68, 1_758, 37, 10_483, 14_257, 31, 207, 263, 21, 203, 3_773, 25, 71, 9_735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2_049, 3_442, 17, 13_894, 3_380, 23, 95, 18, 17_634, 2_288, 9, 4, 3]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="xlnet-base-cased" , revision="c841166438c31ec7ca9a106dee7bb312b73ae511" , )
362
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase : Union[str, Any] = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
70
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCAmelCase_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCAmelCase_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCAmelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = len([g for position, g in enumerate(A__ ) if g == main_target[position]] ) return (item, float(A__ )) def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = random.randint(0 , len(A__ ) - 1 ) __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] __lowerCamelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( A__ : str , A__ : list[str] ): '''simple docstring''' __lowerCamelCase = list(A__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __lowerCamelCase = random.choice(A__ ) return "".join(A__ ) def lowerCamelCase__ ( A__ : tuple[str, float] , A__ : list[tuple[str, float]] , A__ : list[str] , ): '''simple docstring''' __lowerCamelCase = [] # Generate more children proportionally to the fitness score. __lowerCamelCase = int(parent_a[1] * 100 ) + 1 __lowerCamelCase = 10 if child_n >= 10 else child_n for _ in range(A__ ): __lowerCamelCase = population_score[random.randint(0 , A__ )][0] __lowerCamelCase, __lowerCamelCase = crossover(parent_a[0] , A__ ) # Append new string to the population list. pop.append(mutate(A__ , A__ ) ) pop.append(mutate(A__ , A__ ) ) return pop def lowerCamelCase__ ( A__ : str , A__ : list[str] , A__ : bool = True ): '''simple docstring''' if N_POPULATION < N_SELECTED: __lowerCamelCase = f'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(A__ ) # Verify that the target contains no genes besides the ones inside genes variable. __lowerCamelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowerCamelCase = f'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(A__ ) # Generate random starting population. __lowerCamelCase = [] for _ in range(A__ ): population.append("""""".join([random.choice(A__ ) for i in range(len(A__ ) )] ) ) # Just some logs to know what the algorithms is doing. __lowerCamelCase, __lowerCamelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowerCamelCase = [evaluate(A__ , A__ ) for item in population] # Check if there is a matching evolution. __lowerCamelCase = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'\nGeneration: {generation}' f'\nTotal Population:{total_population}' f'\nBest score: {population_score[0][1]}' f'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowerCamelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A__ ) # Normalize population score to be between 0 and 1. __lowerCamelCase = [ (item, score / len(A__ )) for item, score in population_score ] # This is selection for i in range(A__ ): population.extend(select(population_score[int(A__ )] , A__ , A__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__ ) > N_POPULATION: break if __name__ == "__main__": UpperCAmelCase_ = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) UpperCAmelCase_ = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
12
import requests def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = {'''Content-Type''': '''application/json'''} __lowercase = requests.post(lowercase , json={'''text''': message_body} , headers=lowercase ) if response.status_code != 200: __lowercase = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(lowercase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
210
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2)) -> IIRFilter: a = tau * frequency / samplerate a = sin(__UpperCamelCase) a = cos(__UpperCamelCase) a = _sin / (2 * q_factor) a = (1 - _cos) / 2 a = 1 - _cos a = 1 + alpha a = -2 * _cos a = 1 - alpha a = IIRFilter(2) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba]) return filt def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2)) -> IIRFilter: a = tau * frequency / samplerate a = sin(__UpperCamelCase) a = cos(__UpperCamelCase) a = _sin / (2 * q_factor) a = (1 + _cos) / 2 a = -1 - _cos a = 1 + alpha a = -2 * _cos a = 1 - alpha a = IIRFilter(2) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba]) return filt def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2)) -> IIRFilter: a = tau * frequency / samplerate a = sin(__UpperCamelCase) a = cos(__UpperCamelCase) a = _sin / (2 * q_factor) a = _sin / 2 a = 0 a = -ba a = 1 + alpha a = -2 * _cos a = 1 - alpha a = IIRFilter(2) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba]) return filt def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2)) -> IIRFilter: a = tau * frequency / samplerate a = sin(__UpperCamelCase) a = cos(__UpperCamelCase) a = _sin / (2 * q_factor) a = 1 - alpha a = -2 * _cos a = 1 + alpha a = IIRFilter(2) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba]) return filt def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2) , ) -> IIRFilter: a = tau * frequency / samplerate a = sin(__UpperCamelCase) a = cos(__UpperCamelCase) a = _sin / (2 * q_factor) a = 10 ** (gain_db / 40) a = 1 + alpha * big_a a = -2 * _cos a = 1 - alpha * big_a a = 1 + alpha / big_a a = -2 * _cos a = 1 - alpha / big_a a = IIRFilter(2) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba]) return filt def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2) , ) -> IIRFilter: a = tau * frequency / samplerate a = sin(__UpperCamelCase) a = cos(__UpperCamelCase) a = _sin / (2 * q_factor) a = 10 ** (gain_db / 40) a = (big_a + 1) - (big_a - 1) * _cos a = (big_a + 1) + (big_a - 1) * _cos a = (big_a - 1) - (big_a + 1) * _cos a = (big_a - 1) + (big_a + 1) * _cos a = 2 * sqrt(__UpperCamelCase) * alpha a = big_a * (pmc + aaa) a = 2 * big_a * mpc a = big_a * (pmc - aaa) a = ppmc + aaa a = -2 * pmpc a = ppmc - aaa a = IIRFilter(2) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba]) return filt def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 1 / sqrt(2) , ) -> IIRFilter: a = tau * frequency / samplerate a = sin(__UpperCamelCase) a = cos(__UpperCamelCase) a = _sin / (2 * q_factor) a = 10 ** (gain_db / 40) a = (big_a + 1) - (big_a - 1) * _cos a = (big_a + 1) + (big_a - 1) * _cos a = (big_a - 1) - (big_a + 1) * _cos a = (big_a - 1) + (big_a + 1) * _cos a = 2 * sqrt(__UpperCamelCase) * alpha a = big_a * (ppmc + aaa) a = -2 * big_a * pmpc a = big_a * (ppmc - aaa) a = pmc + aaa a = 2 * mpc a = pmc - aaa a = IIRFilter(2) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba]) return filt
356
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : str = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class a__ ( UpperCamelCase__ ): a : Optional[int] = """table-transformer""" a : Tuple = ["""past_key_values"""] a : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) a = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A , A ): a = backbone_config.get("model_type" ) a = CONFIG_MAPPING[backbone_model_type] a = config_class.from_dict(A ) # set timm attributes to None a , a , a = None, None, None a = use_timm_backbone a = backbone_config a = num_channels a = num_queries a = d_model a = encoder_ffn_dim a = encoder_layers a = encoder_attention_heads a = decoder_ffn_dim a = decoder_layers a = decoder_attention_heads a = dropout a = attention_dropout a = activation_dropout a = activation_function a = init_std a = init_xavier_std a = encoder_layerdrop a = decoder_layerdrop a = encoder_layers a = auxiliary_loss a = position_embedding_type a = backbone a = use_pretrained_backbone a = dilation # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = mask_loss_coefficient a = dice_loss_coefficient a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.d_model class a__ ( UpperCamelCase__ ): a : Any = version.parse("""1.11""" ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' return 1e-5 @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return 12
180
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
68
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = SpeechTaTokenizer __lowerCamelCase = False __lowerCamelCase = True def UpperCamelCase ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = SpeechTaTokenizer(lowercase ) A__ = AddedToken("<mask>" , lstrip=lowercase , rstrip=lowercase ) A__ = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self , lowercase ) -> Union[str, Any]: '''simple docstring''' A__ = "this is a test" A__ = "this is a test" return input_text, output_text def UpperCamelCase ( self , lowercase , lowercase=False , lowercase=20 , lowercase=5 ) -> Optional[Any]: '''simple docstring''' A__ , A__ = self.get_input_output_texts(lowercase ) A__ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) A__ = tokenizer.decode(lowercase , clean_up_tokenization_spaces=lowercase ) return text, ids def UpperCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' A__ = "<pad>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(lowercase ) , 81 ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' A__ = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A__ = ["aaaaa bbbbbb", "cccccccccdddddddd"] A__ = tokenizer.add_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size + len(lowercase ) ) A__ = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A__ = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} A__ = tokenizer.add_special_tokens(lowercase ) A__ = tokenizer.vocab_size A__ = len(lowercase ) self.assertNotEqual(lowercase , 0 ) self.assertEqual(lowercase , lowercase ) self.assertEqual(lowercase , len(lowercase ) ) self.assertEqual(lowercase , all_size_a + len(lowercase ) ) A__ = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=lowercase ) self.assertGreaterEqual(len(lowercase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' pass def UpperCamelCase ( self ) -> Any: '''simple docstring''' pass def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = self.get_tokenizer() A__ = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(lowercase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) A__ = tokenizer.convert_tokens_to_ids(lowercase ) # fmt: off self.assertListEqual(lowercase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on A__ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off A__ = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=lowercase , )
68
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _UpperCamelCase = logging.get_logger(__name__) @add_end_docstrings( snake_case , R''' top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). ''' , ) class lowerCamelCase__ ( snake_case ): def _UpperCamelCase ( self ,A ): if self.framework == "tf": UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ) else: raise ValueError("""Unsupported framework""" ) return masked_index def _UpperCamelCase ( self ,A ): UpperCAmelCase = self.get_masked_index(A ) UpperCAmelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' ,) def _UpperCamelCase ( self ,A ): if isinstance(A ,A ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(A ) def _UpperCamelCase ( self ,A ,A=None ,**A ): if return_tensors is None: UpperCAmelCase = self.framework UpperCAmelCase = self.tokenizer(A ,return_tensors=A ) self.ensure_exactly_one_mask_token(A ) return model_inputs def _UpperCamelCase ( self ,A ): UpperCAmelCase = self.model(**A ) UpperCAmelCase = model_inputs["""input_ids"""] return model_outputs def _UpperCamelCase ( self ,A ,A=5 ,A=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase = target_ids.shape[0] UpperCAmelCase = model_outputs["""input_ids"""][0] UpperCAmelCase = model_outputs["""logits"""] if self.framework == "tf": UpperCAmelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase = outputs.numpy() UpperCAmelCase = outputs[0, masked_index, :] UpperCAmelCase = stable_softmax(A ,axis=-1 ) if target_ids is not None: UpperCAmelCase = tf.gather_nd(tf.squeeze(A ,0 ) ,target_ids.reshape(-1 ,1 ) ) UpperCAmelCase = tf.expand_dims(A ,0 ) UpperCAmelCase = tf.math.top_k(A ,k=A ) UpperCAmelCase , UpperCAmelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id ,as_tuple=A ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase = outputs[0, masked_index, :] UpperCAmelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase = probs[..., target_ids] UpperCAmelCase , UpperCAmelCase = probs.topk(A ) UpperCAmelCase = [] UpperCAmelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() ,predictions.tolist() ) ): UpperCAmelCase = [] for v, p in zip(_values ,_predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase = input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase = target_ids[p].tolist() UpperCAmelCase = p # Filter padding out: UpperCAmelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase = self.tokenizer.decode(A ,skip_special_tokens=A ) UpperCAmelCase = {"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(A ) result.append(A ) if single_mask: return result[0] return result def _UpperCamelCase ( self ,A ,A=None ): if isinstance(A ,A ): UpperCAmelCase = [targets] try: UpperCAmelCase = self.tokenizer.get_vocab() except Exception: UpperCAmelCase = {} UpperCAmelCase = [] for target in targets: UpperCAmelCase = vocab.get(A ,A ) if id_ is None: UpperCAmelCase = self.tokenizer( A ,add_special_tokens=A ,return_attention_mask=A ,return_token_type_ids=A ,max_length=1 ,truncation=A ,)["""input_ids"""] if len(A ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' """We cannot replace it with anything meaningful, ignoring it""" ) continue UpperCAmelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) UpperCAmelCase = list(set(A ) ) if len(A ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) UpperCAmelCase = np.array(A ) return target_ids def _UpperCamelCase ( self ,A=None ,A=None ): UpperCAmelCase = {} if targets is not None: UpperCAmelCase = self.get_target_ids(A ,A ) UpperCAmelCase = target_ids if top_k is not None: UpperCAmelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" ,self.model.base_model_prefix ,"""The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self ,A ,*A ,**A ): UpperCAmelCase = super().__call__(A ,**A ) if isinstance(A ,A ) and len(A ) == 1: return outputs[0] return outputs
234
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCamelCase = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
234
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase__ = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "albert" def __init__( self , __lowerCamelCase=3_0_0_0_0 , __lowerCamelCase=1_2_8 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase=1_2 , __lowerCamelCase=1 , __lowerCamelCase=6_4 , __lowerCamelCase=1_6_3_8_4 , __lowerCamelCase=1 , __lowerCamelCase="gelu_new" , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=5_1_2 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-12 , __lowerCamelCase=0.1 , __lowerCamelCase="absolute" , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase=3 , **__lowerCamelCase , ) -> Tuple: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase) _A : Optional[Any] = vocab_size _A : int = embedding_size _A : int = hidden_size _A : List[Any] = num_hidden_layers _A : Dict = num_hidden_groups _A : Optional[int] = num_attention_heads _A : int = inner_group_num _A : List[Any] = hidden_act _A : List[Any] = intermediate_size _A : Tuple = hidden_dropout_prob _A : Tuple = attention_probs_dropout_prob _A : Optional[Any] = max_position_embeddings _A : List[Any] = type_vocab_size _A : List[str] = initializer_range _A : List[Any] = layer_norm_eps _A : str = classifier_dropout_prob _A : Optional[Any] = position_embedding_type class lowerCAmelCase__ ( a): '''simple docstring''' @property def _lowerCamelCase ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : int = {0: "batch", 1: "choice", 2: "sequence"} else: _A : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
11
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
1
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE : Tuple = get_logger(__name__) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : Optional[Any] , snake_case : int , snake_case : List[Any]=0 ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' snake_case_ = os.path.join(snake_case , snake_case ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Saving model to {output_model_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = os.path.join(snake_case , f'{MODEL_NAME}_{model_index}' ) os.makedirs(snake_case , exist_ok=snake_case ) logger.info(f'Saving model to {ckpt_dir}' ) snake_case_ = {"model": state_dict} dist_cp.save_state_dict( state_dict=snake_case , storage_writer=dist_cp.FileSystemWriter(snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def UpperCamelCase_( snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : int , snake_case : Union[str, Any] , snake_case : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return snake_case_ = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading model from {input_model_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading model from {input_model_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ = ( os.path.join(snake_case , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) snake_case_ = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case , storage_reader=dist_cp.FileSystemReader(snake_case ) , planner=DefaultLoadPlanner() , ) snake_case_ = state_dict["model"] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(snake_case ) def UpperCamelCase_( snake_case : str , snake_case : List[str] , snake_case : Any , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Tuple=0 ): '''simple docstring''' os.makedirs(snake_case , exist_ok=snake_case ) with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ = FSDP.optim_state_dict(snake_case , snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(snake_case , snake_case ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: snake_case_ = os.path.join(snake_case , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(snake_case , exist_ok=snake_case ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(snake_case ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def UpperCamelCase_( snake_case : Optional[Any] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : int , snake_case : Optional[int] , snake_case : Union[str, Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) snake_case_ = os.path.join(snake_case , snake_case ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) snake_case_ = torch.load(snake_case ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: snake_case_ = ( os.path.join(snake_case , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) snake_case_ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(snake_case ) , ) snake_case_ = optim_state["optimizer"] logger.info(f'Optimizer loaded from {ckpt_dir}' ) snake_case_ = FSDP.optim_state_dict_to_load(snake_case , snake_case , snake_case ) optimizer.load_state_dict(snake_case )
351
'''simple docstring''' import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE : Optional[Any] = "docs/source/en/_toctree.yml" def UpperCamelCase_( snake_case : Optional[Any] ): '''simple docstring''' snake_case_ = defaultdict(snake_case ) for doc in model_doc: counts[doc["local"]] += 1 snake_case_ = [key for key, value in counts.items() if value > 1] snake_case_ = [] for duplicate_key in duplicates: snake_case_ = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(snake_case ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(snake_case , key=lambda snake_case : s["title"].lower() ) def UpperCamelCase_( snake_case : Optional[int]=False ): '''simple docstring''' with open(snake_case , encoding="utf-8" ) as f: snake_case_ = yaml.safe_load(f.read() ) # Get to the API doc snake_case_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ = content[api_idx]["sections"] # Then to the model doc snake_case_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case_ = api_doc[model_idx]["sections"] snake_case_ = [(idx, section) for idx, section in enumerate(snake_case ) if "sections" in section] snake_case_ = False for idx, modality_doc in modalities_docs: snake_case_ = modality_doc["sections"] snake_case_ = clean_model_doc_toc(snake_case ) if old_modality_doc != new_modality_doc: snake_case_ = True if overwrite: snake_case_ = new_modality_doc if diff: if overwrite: snake_case_ = model_doc snake_case_ = api_doc with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE : Any = parser.parse_args() check_model_doc(args.fix_and_overwrite)
92
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[Any] = logging.get_logger(__name__) A__ : List[str] = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[str] = 'switch_transformers' lowerCamelCase : Union[str, Any] = ['past_key_values'] lowerCamelCase : int = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , SCREAMING_SNAKE_CASE_=3_21_28 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_1 , SCREAMING_SNAKE_CASE_="float32" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-6 , SCREAMING_SNAKE_CASE_=0.0_0_1 , SCREAMING_SNAKE_CASE_=0.0_0_1 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , **SCREAMING_SNAKE_CASE_ , ) -> int: __lowerCamelCase : str = vocab_size __lowerCamelCase : Dict = d_model __lowerCamelCase : List[str] = d_kv __lowerCamelCase : Dict = d_ff __lowerCamelCase : Union[str, Any] = num_sparse_encoder_layers __lowerCamelCase : Optional[int] = num_layers __lowerCamelCase : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCamelCase : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowerCamelCase : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __lowerCamelCase : List[str] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowerCamelCase : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowerCamelCase : Optional[int] = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowerCamelCase : str = num_heads __lowerCamelCase : Tuple = num_experts __lowerCamelCase : str = expert_capacity __lowerCamelCase : Optional[Any] = router_bias __lowerCamelCase : int = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}' ) __lowerCamelCase : int = router_dtype __lowerCamelCase : int = router_ignore_padding_tokens __lowerCamelCase : Tuple = relative_attention_num_buckets __lowerCamelCase : Dict = relative_attention_max_distance __lowerCamelCase : Optional[Any] = dropout_rate __lowerCamelCase : List[str] = layer_norm_epsilon __lowerCamelCase : List[str] = initializer_factor __lowerCamelCase : Any = feed_forward_proj __lowerCamelCase : Any = use_cache __lowerCamelCase : Tuple = add_router_probs __lowerCamelCase : int = router_z_loss_coef __lowerCamelCase : Optional[int] = router_aux_loss_coef __lowerCamelCase : str = self.feed_forward_proj.split('-' ) __lowerCamelCase : Optional[int] = act_info[-1] __lowerCamelCase : Any = act_info[0] == 'gated' if len(SCREAMING_SNAKE_CASE_ ) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE_ ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCamelCase : List[str] = 'gelu_new' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
185
'''simple docstring''' from numpy import exp, pi, sqrt def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
185
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Union[str, Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE__ ( self ): a :Any = self.dummy_uncond_unet a :Tuple = PNDMScheduler() a :Dict = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) a :Dict = torch.manual_seed(0 ) a :List[Any] = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' ).images a :str = torch.manual_seed(0 ) a :Optional[int] = pndm(generator=_lowerCamelCase , num_inference_steps=20 , output_type='''numpy''' , return_dict=_lowerCamelCase )[0] a :Optional[Any] = image[0, -3:, -3:, -1] a :int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a :Tuple = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): a :str = '''google/ddpm-cifar10-32''' a :int = UNetaDModel.from_pretrained(_lowerCamelCase ) a :Optional[int] = PNDMScheduler() a :str = PNDMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) pndm.to(_lowerCamelCase ) pndm.set_progress_bar_config(disable=_lowerCamelCase ) a :Any = torch.manual_seed(0 ) a :List[Any] = pndm(generator=_lowerCamelCase , output_type='''numpy''' ).images a :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) a :Dict = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
350
def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" if n_term == "": return [] a :list = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": snake_case : Tuple = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
281
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : int = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
232
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = CanineTokenizer snake_case_ = False def __magic_name__ ( self : Any ) -> List[Any]: super().setUp() SCREAMING_SNAKE_CASE__ : int =CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __magic_name__ ( self : Optional[int] ) -> List[str]: return CanineTokenizer.from_pretrained('''google/canine-s''' ) def __magic_name__ ( self : Optional[int] , **__lowercase : int ) -> CanineTokenizer: SCREAMING_SNAKE_CASE__ : int =self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =10_24 return tokenizer @require_torch def __magic_name__ ( self : List[Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ : Optional[int] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] =['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] =[5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on SCREAMING_SNAKE_CASE__ : Union[str, Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) self.assertIsInstance(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowercase , __lowercase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def __magic_name__ ( self : Any ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : str =['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , __lowercase ) self.assertIn('''attention_mask''' , __lowercase ) self.assertIn('''token_type_ids''' , __lowercase ) @require_torch def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : List[str] =self.canine_tokenizer SCREAMING_SNAKE_CASE__ : Dict =[ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] SCREAMING_SNAKE_CASE__ : int =tokenizer( text_target=__lowercase , max_length=32 , padding='''max_length''' , truncation=__lowercase , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def __magic_name__ ( self : List[str] ) -> Any: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE__ : str =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : List[str] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) shutil.rmtree(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE__ : Union[str, Any] =tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Union[str, Any] =''' He is very happy, UNwant\u00E9d,running''' SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: SCREAMING_SNAKE_CASE__ : str =chr(0xE007 ) additional_special_tokens.append(__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) tokenizer.save_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.__class__.from_pretrained(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =after_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertIn(__lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) SCREAMING_SNAKE_CASE__ : List[str] =tokenizer.__class__.from_pretrained(__lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =self.get_clean_sequence(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[int] =0xE005 SCREAMING_SNAKE_CASE__ : Any =chr(__lowercase ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) SCREAMING_SNAKE_CASE__ : Tuple =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertEqual(__lowercase , input_encoded + special_token_id ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.decode(__lowercase , skip_special_tokens=__lowercase ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : Tuple =chr(0xE005 ) SCREAMING_SNAKE_CASE__ : List[Any] =chr(0xE006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.tokenize(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =tokenizer.tokenize(__lowercase ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(len(__lowercase ) , 1 ) self.assertEqual(token_a[0] , __lowercase ) self.assertEqual(token_a[0] , __lowercase ) @require_tokenizers def __magic_name__ ( self : List[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ : Tuple =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : int =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =AddedToken(__lowercase , lstrip=__lowercase ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowercase ) tokenizer.from_pretrained(__lowercase ) def __magic_name__ ( self : Optional[int] ) -> int: SCREAMING_SNAKE_CASE__ : int =[] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowercase ) with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : List[Any] =json.load(__lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: SCREAMING_SNAKE_CASE__ : Dict =json.load(__lowercase ) # a special token for Canine can be defined as follows: SCREAMING_SNAKE_CASE__ : Optional[Any] =0xE006 SCREAMING_SNAKE_CASE__ : Dict =chr(__lowercase ) SCREAMING_SNAKE_CASE__ : str =[new_token_a] SCREAMING_SNAKE_CASE__ : Optional[Any] =[new_token_a] with open(os.path.join(__lowercase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) with open(os.path.join(__lowercase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(__lowercase , __lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer_class.from_pretrained(__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) SCREAMING_SNAKE_CASE__ : str =0xE007 SCREAMING_SNAKE_CASE__ : Optional[int] =chr(__lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE__ : Tuple =[AddedToken(__lowercase , lstrip=__lowercase )] SCREAMING_SNAKE_CASE__ : Any =tokenizer_class.from_pretrained( __lowercase , additional_special_tokens=__lowercase , extra_ids=0 ) self.assertIn(__lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.get_tokenizers(do_lower_case=__lowercase ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : List[str] ='''hello world''' if self.space_between_special_tokens: SCREAMING_SNAKE_CASE__ : str ='''[CLS] hello world [SEP]''' else: SCREAMING_SNAKE_CASE__ : int =input SCREAMING_SNAKE_CASE__ : Optional[int] =tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) SCREAMING_SNAKE_CASE__ : str =tokenizer.decode(__lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowercase , [output, output.lower()] ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE__ : str =[ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] SCREAMING_SNAKE_CASE__ : Tuple ='''a''' SCREAMING_SNAKE_CASE__ : Tuple =ord(__lowercase ) for attr in attributes_list: setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , attr + '''_id''' , __lowercase ) self.assertEqual(getattr(__lowercase , __lowercase ) , __lowercase ) self.assertEqual(getattr(__lowercase , attr + '''_id''' ) , __lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [] ) SCREAMING_SNAKE_CASE__ : str =0xE006 SCREAMING_SNAKE_CASE__ : List[str] =chr(__lowercase ) setattr(__lowercase , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(__lowercase , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def __magic_name__ ( self : str ) -> Dict: pass def __magic_name__ ( self : List[Any] ) -> List[Any]: pass def __magic_name__ ( self : Any ) -> int: pass def __magic_name__ ( self : Union[str, Any] ) -> Union[str, Any]: pass def __magic_name__ ( self : List[Any] ) -> Optional[int]: pass def __magic_name__ ( self : Tuple ) -> Optional[Any]: pass def __magic_name__ ( self : Dict ) -> Dict: pass def __magic_name__ ( self : List[str] ) -> Dict: pass
152
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase__ : def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int]=14 , SCREAMING_SNAKE_CASE__ : Any=7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=99 , SCREAMING_SNAKE_CASE__ : Dict=32 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=5_12 , SCREAMING_SNAKE_CASE__ : Any=0.02 , ) -> Optional[int]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_input_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = rotary_dim __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = initializer_range __lowerCamelCase = None __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 __lowerCamelCase = vocab_size - 1 def __A ( self : int ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_input_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=SCREAMING_SNAKE_CASE__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __A ( self : List[str] ) -> Any: __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __A ( self : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: __lowerCamelCase = 20 __lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowerCamelCase = model( input_ids[:, -1:] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: __lowerCamelCase = 20 __lowerCamelCase = model_class_name(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCamelCase = model.init_cache(input_ids.shape[0] , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCamelCase = model( input_ids[:, :-1] , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) __lowerCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=SCREAMING_SNAKE_CASE__ , position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase__ ( __lowercase , __lowercase , unittest.TestCase ): a__ : Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () a__ : Union[str, Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __A ( self : Optional[Any] ) -> Tuple: __lowerCamelCase = FlaxGPTJModelTester(self ) def __A ( self : Union[str, Any] ) -> Any: for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __A ( self : List[str] ) -> Optional[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @tooslow def __A ( self : List[Any] ) -> Optional[Any]: __lowerCamelCase = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) __lowerCamelCase = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) __lowerCamelCase = False __lowerCamelCase = model.config.eos_token_id __lowerCamelCase = jax.jit(model.generate ) __lowerCamelCase = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @is_pt_flax_cross_test def __A ( self : Dict ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase , __lowerCamelCase = pt_inputs['''input_ids'''].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval() __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) __lowerCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = fx_state with torch.no_grad(): __lowerCamelCase = pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() __lowerCamelCase = fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , from_pt=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = fx_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def __A ( self : str ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCamelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pt_model_class(SCREAMING_SNAKE_CASE__ ).eval() __lowerCamelCase = model_class(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) __lowerCamelCase = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , fx_model.params ) __lowerCamelCase , __lowerCamelCase = pt_inputs['''input_ids'''].shape __lowerCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = 0 __lowerCamelCase = 1 __lowerCamelCase = 0 __lowerCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCamelCase = pt_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() __lowerCamelCase = fx_model(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = pt_model_class.from_pretrained(SCREAMING_SNAKE_CASE__ , from_flax=SCREAMING_SNAKE_CASE__ ) with torch.no_grad(): __lowerCamelCase = pt_model_loaded(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual( len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def __A ( self : Tuple ) -> Union[str, Any]: for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
360
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("KEY") SCREAMING_SNAKE_CASE__ : Dict = TypeVar("VAL") @dataclass(frozen=__lowercase , slots=__lowercase ) class lowerCAmelCase__ ( Generic[KEY, VAL] ): a__ : KEY a__ : VAL class lowerCAmelCase__ ( _Item ): def __init__( self : str ) -> None: super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __bool__( self : Tuple ) -> bool: return False SCREAMING_SNAKE_CASE__ : List[Any] = _DeletedItem() class lowerCAmelCase__ ( MutableMapping[KEY, VAL] ): def __init__( self : int , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : float = 0.75 ) -> None: __lowerCamelCase = initial_block_size __lowerCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCamelCase = capacity_factor __lowerCamelCase = 0 def __A ( self : Any , SCREAMING_SNAKE_CASE__ : KEY ) -> int: return hash(SCREAMING_SNAKE_CASE__ ) % len(self._buckets ) def __A ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> int: return (ind + 1) % len(self._buckets ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> bool: __lowerCamelCase = self._buckets[ind] if not stored: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self._len += 1 return True elif stored.key == key: __lowerCamelCase = _Item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return True else: return False def __A ( self : Any ) -> bool: __lowerCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> bool: if len(self._buckets ) <= self._initial_block_size: return False __lowerCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def __A ( self : int , SCREAMING_SNAKE_CASE__ : int ) -> None: __lowerCamelCase = self._buckets __lowerCamelCase = [None] * new_size __lowerCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def __A ( self : str ) -> None: self._resize(len(self._buckets ) * 2 ) def __A ( self : Dict ) -> None: self._resize(len(self._buckets ) // 2 ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY ) -> Iterator[int]: __lowerCamelCase = self._get_bucket_index(SCREAMING_SNAKE_CASE__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCamelCase = self._get_next_ind(SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): if self._try_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): break def __setitem__( self : Tuple , SCREAMING_SNAKE_CASE__ : KEY , SCREAMING_SNAKE_CASE__ : VAL ) -> None: if self._is_full(): self._size_up() self._add_item(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __delitem__( self : List[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> None: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: raise KeyError(SCREAMING_SNAKE_CASE__ ) if item is _deleted: continue if item.key == key: __lowerCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : KEY ) -> VAL: for ind in self._iterate_buckets(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(SCREAMING_SNAKE_CASE__ ) def __len__( self : int ) -> int: return self._len def __iter__( self : Tuple ) -> Iterator[KEY]: yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ) -> str: __lowerCamelCase = ''' ,'''.join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
339
0
'''simple docstring''' from math import factorial a__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(1_0)} def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if not isinstance(__A , __A ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(__A ) ) def _UpperCamelCase ( __A = 60 , __A = 1000000 ) -> int: '''simple docstring''' if not isinstance(__A , __A ) or not isinstance(__A , __A ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length UpperCamelCase__ = 0 # the cached sizes of the previous chains UpperCamelCase__ = {} for start_chain_element in range(1 , __A ): # The temporary set will contain the elements of the chain UpperCamelCase__ = set() UpperCamelCase__ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. UpperCamelCase__ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(__A ) chain_set_length += 1 UpperCamelCase__ = digit_factorial_sum(__A ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] UpperCamelCase__ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
80
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase : List[Any] =logging.get_logger(__name__) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): return [ int(10_00 * (box[0] / width)), int(10_00 * (box[1] / height)), int(10_00 * (box[2] / width)), int(10_00 * (box[3] / height)), ] def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None): UpperCamelCase_ = tesseract_config if tesseract_config is not None else "" # apply OCR UpperCamelCase_ = to_pil_image(_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ = pil_image.size UpperCamelCase_ = pytesseract.image_to_data(_lowerCAmelCase , lang=_lowerCAmelCase , output_type="dict" , config=_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates UpperCamelCase_ = [idx for idx, word in enumerate(_lowerCAmelCase) if not word.strip()] UpperCamelCase_ = [word for idx, word in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase_ = [] for x, y, w, h in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [x, y, x + w, y + h] actual_boxes.append(_lowerCAmelCase) # finally, normalize the bounding boxes UpperCamelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)) assert len(_lowerCAmelCase) == len(_lowerCAmelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowercase (a_ ): '''simple docstring''' lowercase__ = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = "" , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = apply_ocr UpperCamelCase_ = ocr_lang UpperCamelCase_ = tesseract_config def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = None , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCamelCase_ = (size["height"], size["width"]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase_ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(snake_case__ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) UpperCamelCase_ = [] UpperCamelCase_ = [] for image in images: UpperCamelCase_ , UpperCamelCase_ = apply_tesseract(snake_case__ , snake_case__ , snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: UpperCamelCase_ = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase_ = [flip_channel_order(snake_case__ ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCamelCase_ = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case__ ) if apply_ocr: UpperCamelCase_ = words_batch UpperCamelCase_ = boxes_batch return data
128
0
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a ( UpperCAmelCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_encoder_blocks" ) ) class a : def __init__( self , A_ , A_=13 , A_=64 , A_=3 , A_=4 , A_=[2, 2, 2, 2] , A_=[8, 4, 2, 1] , A_=[16, 32, 64, 128] , A_=[1, 4, 8, 16] , A_=[1, 2, 4, 8] , A_=True , A_=True , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.02 , A_=3 , A_=None , ): '''simple docstring''' _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Optional[Any] = batch_size _UpperCAmelCase : str = image_size _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : Any = num_encoder_blocks _UpperCAmelCase : int = sr_ratios _UpperCAmelCase : Dict = depths _UpperCAmelCase : int = hidden_sizes _UpperCAmelCase : List[Any] = downsampling_rates _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Dict = is_training _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : int = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Union[str, Any] = num_labels _UpperCAmelCase : Optional[Any] = scope def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ): '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = SegformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = self.num_labels _UpperCAmelCase : Optional[int] = SegformerForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : str = 1 _UpperCAmelCase : Dict = SegformerForSemanticSegmentation(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCAmelCase : Tuple = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() _UpperCAmelCase : Any = config_and_inputs _UpperCAmelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _lowercase = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) _lowercase = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = True _lowercase = False _lowercase = False _lowercase = False def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = SegformerModelTester(self ) _UpperCAmelCase : int = SegformerConfigTester(self , config_class=lowerCAmelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase__ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : int = model_class(lowerCAmelCase__ ) _UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : List[str] = [*signature.parameters.keys()] _UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: _UpperCAmelCase : str = True _UpperCAmelCase : Any = False _UpperCAmelCase : List[str] = True _UpperCAmelCase : Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : Tuple = outputs.attentions _UpperCAmelCase : str = sum(self.model_tester.depths ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase : int = True _UpperCAmelCase : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : str = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first attentions (first block, first layer) _UpperCAmelCase : List[Any] = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) _UpperCAmelCase : Any = (self.model_tester.image_size // 32) ** 2 _UpperCAmelCase : Union[str, Any] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) _UpperCAmelCase : Dict = len(lowerCAmelCase__ ) # Check attention is always last and order is fine _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) _UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first attentions (first block, first layer) _UpperCAmelCase : Dict = (self.model_tester.image_size // 4) ** 2 _UpperCAmelCase : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(A_ , A_ , A_ ): _UpperCAmelCase : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCAmelCase : str = outputs.hidden_states _UpperCAmelCase : int = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase__ ): continue _UpperCAmelCase : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _UpperCAmelCase : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = model(**lowerCAmelCase__ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCAmelCase ( self ): '''simple docstring''' pass @slow def _UpperCAmelCase ( self ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : str = SegformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class a ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = prepare_img() _UpperCAmelCase : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) _UpperCAmelCase : List[str] = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): _UpperCAmelCase : Dict = model(lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Tuple = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) _UpperCAmelCase : int = SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(lowerCAmelCase__ ) _UpperCAmelCase : Dict = prepare_img() _UpperCAmelCase : Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) _UpperCAmelCase : List[str] = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): _UpperCAmelCase : int = model(lowerCAmelCase__ ) _UpperCAmelCase : Dict = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-1 ) ) @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowerCAmelCase__ , align=lowerCAmelCase__ , do_random_crop=lowerCAmelCase__ ) _UpperCAmelCase : Any = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( lowerCAmelCase__ ) _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) _UpperCAmelCase : Any = encoded_inputs.pixel_values.to(lowerCAmelCase__ ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(lowerCAmelCase__ ) _UpperCAmelCase : Any = outputs.logits.detach().cpu() _UpperCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(500, 300)] ) _UpperCAmelCase : Dict = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) _UpperCAmelCase : int = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) _UpperCAmelCase : Any = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
367
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class a ( unittest.TestCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = "ZinengTang/tvlt-base" _UpperCAmelCase : int = tempfile.mkdtemp() def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' return TvltImageProcessor.from_pretrained(self.checkpoint , **A_ ) def _UpperCAmelCase ( self , **A_ ): '''simple docstring''' return TvltFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_feature_extractor() _UpperCAmelCase : Tuple = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : str = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , A_ ) self.assertIsInstance(processor.image_processor , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : Tuple = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : List[str] = np.ones([12000] ) _UpperCAmelCase : int = feature_extractor(A_ , return_tensors="np" ) _UpperCAmelCase : int = processor(audio=A_ , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : Optional[Any] = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : Union[str, Any] = np.ones([3, 224, 224] ) _UpperCAmelCase : Tuple = image_processor(A_ , return_tensors="np" ) _UpperCAmelCase : List[str] = processor(images=A_ , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.get_image_processor() _UpperCAmelCase : Any = self.get_feature_extractor() _UpperCAmelCase : Dict = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) _UpperCAmelCase : str = np.ones([12000] ) _UpperCAmelCase : Optional[Any] = np.ones([3, 224, 224] ) _UpperCAmelCase : List[Any] = processor(audio=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : int = self.get_feature_extractor() _UpperCAmelCase : str = TvltProcessor(image_processor=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
189
0
"""simple docstring""" UpperCamelCase : Any = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 1_0: "a", 1_1: "b", 1_2: "c", 1_3: "d", 1_4: "e", 1_5: "f", } def A ( snake_case :float ) -> str: assert type(snake_case ) in (int, float) and decimal == int(snake_case ) __UpperCamelCase = int(snake_case ) __UpperCamelCase = '' __UpperCamelCase = False if decimal < 0: __UpperCamelCase = True decimal *= -1 while decimal > 0: __UpperCamelCase , __UpperCamelCase = divmod(snake_case , 1_6 ) __UpperCamelCase = values[remainder] + hexadecimal __UpperCamelCase = '0x' + hexadecimal if negative: __UpperCamelCase = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __A = logging.get_logger("transformers.models.speecht5") def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: hf_model.apply_weight_norm() __lowerCAmelCase: str = checkpoint["input_conv.weight_g"] __lowerCAmelCase: List[str] = checkpoint["input_conv.weight_v"] __lowerCAmelCase: List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): __lowerCAmelCase: int = checkpoint[F"upsamples.{i}.1.weight_g"] __lowerCAmelCase: int = checkpoint[F"upsamples.{i}.1.weight_v"] __lowerCAmelCase: Optional[Any] = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __lowerCAmelCase: Optional[Any] = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] __lowerCAmelCase: Any = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] __lowerCAmelCase: Union[str, Any] = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] __lowerCAmelCase: int = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] __lowerCAmelCase: List[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] __lowerCAmelCase: Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] __lowerCAmelCase: Any = checkpoint["output_conv.1.weight_g"] __lowerCAmelCase: str = checkpoint["output_conv.1.weight_v"] __lowerCAmelCase: Dict = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ) -> Tuple: if config_path is not None: __lowerCAmelCase: Optional[int] = SpeechTaHifiGanConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase: str = SpeechTaHifiGanConfig() __lowerCAmelCase: Optional[int] = SpeechTaHifiGan(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[Any] = torch.load(__SCREAMING_SNAKE_CASE ) load_weights(orig_checkpoint["model"]["generator"] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: str = np.load(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[Any] = stats[0].reshape(-1 ) __lowerCAmelCase: Optional[int] = stats[1].reshape(-1 ) __lowerCAmelCase: str = torch.from_numpy(__SCREAMING_SNAKE_CASE ).float() __lowerCAmelCase: Optional[int] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).float() model.save_pretrained(__SCREAMING_SNAKE_CASE ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) __A = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
108
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class snake_case ( unittest.TestCase ): def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any=7 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[Any]=1_8 , UpperCamelCase__ : List[Any]=3_0 , UpperCamelCase__ : List[str]=4_0_0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=[0.48145466, 0.4578275, 0.40821073] , UpperCamelCase__ : str=[0.26862954, 0.26130258, 0.27577711] , UpperCamelCase__ : List[str]=True , )-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Dict = size if size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Union[str, Any] = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: Optional[Any] = image_size __lowerCAmelCase: Tuple = min_resolution __lowerCAmelCase: List[str] = max_resolution __lowerCAmelCase: List[Any] = do_resize __lowerCAmelCase: Union[str, Any] = size __lowerCAmelCase: List[Any] = do_center_crop __lowerCAmelCase: Optional[int] = crop_size __lowerCAmelCase: Dict = do_normalize __lowerCAmelCase: List[str] = image_mean __lowerCAmelCase: Optional[int] = image_std __lowerCAmelCase: str = do_convert_rgb def lowercase_ ( self : Tuple)-> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowercase_ ( self : Any , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Dict=False)-> List[str]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __lowerCAmelCase: Optional[int] = [] for i in range(self.batch_size): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: __lowerCAmelCase: List[str] = [] for i in range(self.batch_size): __lowerCAmelCase , __lowerCAmelCase: List[str] = np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __lowerCAmelCase: Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1)) for x in image_inputs] if torchify: __lowerCAmelCase: str = [torch.from_numpy(UpperCamelCase__) for x in image_inputs] return image_inputs @require_torch @require_vision class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase_ ( self : Any)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Tuple = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase__) @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Union[str, Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase__ , "size")) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase__ , "image_std")) self.assertTrue(hasattr(UpperCamelCase__ , "do_convert_rgb")) def lowercase_ ( self : List[Any])-> str: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 2_2_4, "width": 2_2_4}) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8}) __lowerCAmelCase: List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4) self.assertEqual(image_processor.size , {"shortest_edge": 4_2}) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4}) def lowercase_ ( self : List[str])-> Optional[int]: '''simple docstring''' pass def lowercase_ ( self : Any)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: int = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase: Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image) # Test not batched input __lowerCAmelCase: Optional[int] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: int = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase_ ( self : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowerCAmelCase: List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray) # Test not batched input __lowerCAmelCase: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Any = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowerCAmelCase: Dict = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor) # Test not batched input __lowerCAmelCase: Tuple = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Optional[int] = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase_ ( self : int)-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[int] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = 3 @property def lowercase_ ( self : Union[str, Any])-> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase__ , "size")) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase__ , "image_std")) self.assertTrue(hasattr(UpperCamelCase__ , "do_convert_rgb")) def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' pass def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase: int = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image) # Test not batched input __lowerCAmelCase: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Optional[int] = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
108
1
from collections.abc import Sequence def _UpperCAmelCase ( snake_case , snake_case = False ): """simple docstring""" if not arr: return 0 _lowerCAmelCase = 0 if allow_empty_subarrays else float("""-inf""" ) _lowerCAmelCase = 0.0 for num in arr: _lowerCAmelCase = max(0 if allow_empty_subarrays else num , curr_sum + num ) _lowerCAmelCase = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
82
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : Optional[int] = "informer" a : Tuple = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self, __magic_name__ = None, __magic_name__ = None, __magic_name__ = "student_t", __magic_name__ = "nll", __magic_name__ = 1, __magic_name__ = None, __magic_name__ = "mean", __magic_name__ = 0, __magic_name__ = 0, __magic_name__ = 0, __magic_name__ = 0, __magic_name__ = None, __magic_name__ = None, __magic_name__ = 64, __magic_name__ = 32, __magic_name__ = 32, __magic_name__ = 2, __magic_name__ = 2, __magic_name__ = 2, __magic_name__ = 2, __magic_name__ = True, __magic_name__ = "gelu", __magic_name__ = 0.05, __magic_name__ = 0.1, __magic_name__ = 0.1, __magic_name__ = 0.1, __magic_name__ = 0.1, __magic_name__ = 100, __magic_name__ = 0.02, __magic_name__=True, __magic_name__ = "prob", __magic_name__ = 5, __magic_name__ = True, **__magic_name__, ) -> Optional[int]: """simple docstring""" # time series specific configuration UpperCamelCase__ : List[Any] = prediction_length UpperCamelCase__ : Any = context_length or prediction_length UpperCamelCase__ : Optional[int] = distribution_output UpperCamelCase__ : Union[str, Any] = loss UpperCamelCase__ : Optional[Any] = input_size UpperCamelCase__ : Dict = num_time_features UpperCamelCase__ : Dict = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] UpperCamelCase__ : Optional[int] = scaling UpperCamelCase__ : Any = num_dynamic_real_features UpperCamelCase__ : Optional[int] = num_static_real_features UpperCamelCase__ : Optional[Any] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__magic_name__ ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) UpperCamelCase__ : str = cardinality else: UpperCamelCase__ : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__magic_name__ ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) UpperCamelCase__ : Any = embedding_dimension else: UpperCamelCase__ : Union[str, Any] = [min(50, (cat + 1) // 2 ) for cat in self.cardinality] UpperCamelCase__ : Optional[Any] = num_parallel_samples # Transformer architecture configuration UpperCamelCase__ : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCamelCase__ : Optional[Any] = d_model UpperCamelCase__ : Tuple = encoder_attention_heads UpperCamelCase__ : Any = decoder_attention_heads UpperCamelCase__ : Dict = encoder_ffn_dim UpperCamelCase__ : Optional[Any] = decoder_ffn_dim UpperCamelCase__ : str = encoder_layers UpperCamelCase__ : Optional[int] = decoder_layers UpperCamelCase__ : Optional[Any] = dropout UpperCamelCase__ : List[Any] = attention_dropout UpperCamelCase__ : Any = activation_dropout UpperCamelCase__ : Optional[int] = encoder_layerdrop UpperCamelCase__ : Union[str, Any] = decoder_layerdrop UpperCamelCase__ : Tuple = activation_function UpperCamelCase__ : List[str] = init_std UpperCamelCase__ : int = use_cache # Informer UpperCamelCase__ : Optional[int] = attention_type UpperCamelCase__ : Optional[int] = sampling_factor UpperCamelCase__ : Dict = distil super().__init__(is_encoder_decoder=__magic_name__, **__magic_name__ ) @property def UpperCamelCase__ ( self ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
201
0
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class _a : def __init__( self: Dict ) -> Optional[Any]: """simple docstring""" lowercase__ = {} def lowerCamelCase_ ( self: Dict , UpperCamelCase_: str ) -> None: """simple docstring""" lowercase__ = {} def lowerCamelCase_ ( self: str , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: float ) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(UpperCamelCase_ ) if nodea not in self.connections: self.add_node(UpperCamelCase_ ) lowercase__ = probability def lowerCamelCase_ ( self: List[str] ) -> list[str]: """simple docstring""" return list(self.connections ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str ) -> str: """simple docstring""" lowercase__ = 0 lowercase__ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = Counter(graph.get_nodes() ) lowercase__ = start for _ in range(SCREAMING_SNAKE_CASE ): lowercase__ = graph.transition(SCREAMING_SNAKE_CASE ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
355
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) lowercase__ = flatten_dict(SCREAMING_SNAKE_CASE ) return flax_params def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } lowercase__ = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key lowercase__ = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): lowercase__ = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number lowercase__ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE ) lowercase__ = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number lowercase__ = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE ) lowercase__ = flax_dict[key] lowercase__ = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): lowercase__ = torch.from_numpy(converted_dict[key].T ) else: lowercase__ = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = get_flax_param(SCREAMING_SNAKE_CASE ) if not use_large: lowercase__ = PixaStructVisionConfig() lowercase__ = PixaStructTextConfig() else: lowercase__ = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) lowercase__ = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) lowercase__ = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE ) lowercase__ = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE ) lowercase__ = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) lowercase__ = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) lowercase__ = PixaStructImageProcessor() lowercase__ = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) if use_large: lowercase__ = 40_96 lowercase__ = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') lowerCAmelCase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
93
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ : Any = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Dict = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : str = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Tuple = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
335
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: Optional[int] , *UpperCamelCase: Optional[Any] , UpperCamelCase: Tuple=None , UpperCamelCase: Tuple=None , **UpperCamelCase: Dict ): """simple docstring""" super().__init__(*UpperCamelCase , **UpperCamelCase ) A__ = eval_examples A__ = post_process_function def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Optional[Dataset] = None , UpperCamelCase: List[Any]=None , UpperCamelCase: Optional[List[str]] = None , UpperCamelCase: str = "eval" , **UpperCamelCase: Optional[int] , ): """simple docstring""" A__ = gen_kwargs.copy() A__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) A__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(UpperCamelCase ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase ) return metrics def UpperCamelCase ( self: List[Any] , UpperCamelCase: Dict , UpperCamelCase: List[str] , UpperCamelCase: Dict=None , UpperCamelCase: str = "test" , **UpperCamelCase: Optional[int] ): """simple docstring""" A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(UpperCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( UpperCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase , metric_key_prefix=UpperCamelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCamelCase , UpperCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(UpperCamelCase , UpperCamelCase , UpperCamelCase , """predict""" ) A__ = self.compute_metrics(UpperCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): A__ = metrics.pop(UpperCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase )
335
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a :int = logging.get_logger(__name__) a :str = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Any = """megatron-bert""" def __init__( self , _a=29_056 , _a=1_024 , _a=24 , _a=16 , _a=4_096 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-1_2 , _a=0 , _a="absolute" , _a=True , **_a , ) -> int: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : str = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Optional[int] = type_vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE__ : Optional[int] = position_embedding_type SCREAMING_SNAKE_CASE__ : Optional[Any] = use_cache
354
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __a (UpperCamelCase_): '''simple docstring''' def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=False , _a=True , _a="None" , _a=3 , _a=4 , _a=None , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : str = seq_length SCREAMING_SNAKE_CASE__ : str = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : str = use_token_type_ids SCREAMING_SNAKE_CASE__ : Tuple = use_labels SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : str = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_act SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = type_vocab_size SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : List[str] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = num_labels SCREAMING_SNAKE_CASE__ : Optional[int] = num_choices SCREAMING_SNAKE_CASE__ : List[str] = relative_attention SCREAMING_SNAKE_CASE__ : str = position_biased_input SCREAMING_SNAKE_CASE__ : List[str] = pos_att_type SCREAMING_SNAKE_CASE__ : Union[str, Any] = scope def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) SCREAMING_SNAKE_CASE__ : str = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Any = None if self.use_labels: SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> Tuple: """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() SCREAMING_SNAKE_CASE__ : Any = 300 return config def _a ( self , _a ) -> List[str]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = DebertaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , token_type_ids=_a )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForMaskedLM(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Tuple = DebertaForSequenceClassification(_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Any = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_a ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForTokenClassification(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = DebertaForQuestionAnswering(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model( _a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :str = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = True _SCREAMING_SNAKE_CASE :str = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Dict = False _SCREAMING_SNAKE_CASE :Union[str, Any] = False def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = DebertaModelTester(self ) SCREAMING_SNAKE_CASE__ : str = ConfigTester(self , config_class=_a , hidden_size=37 ) def _a ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_a ) def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_a ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_a ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_a ) @slow def _a ( self ) -> Optional[int]: """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Dict = DebertaModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def _a ( self ) -> Any: """simple docstring""" pass @slow def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) SCREAMING_SNAKE_CASE__ : Tuple = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a , attention_mask=_a )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
56
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Optional[Any] = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> str: '''simple docstring''' assert isinstance(__UpperCAmelCase, __UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> int: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case_ = SqlDatasetReader( '''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase, keep_in_memory=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase, __UpperCAmelCase ) @require_sqlalchemy @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case_ = features.copy() if features else default_expected_features snake_case_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, features=__UpperCAmelCase, cache_dir=__UpperCAmelCase ).read() _check_sql_dataset(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> List[str]: '''simple docstring''' with contextlib.closing(sqlitea.connect(__UpperCAmelCase ) ) as con: snake_case_ = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=1 ).write() snake_case_ = iter_sql_file(__UpperCAmelCase ) snake_case_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase, __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> Any: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=2 ).write() snake_case_ = iter_sql_file(__UpperCAmelCase ) snake_case_ = iter_sql_file(__UpperCAmelCase ) for rowa, rowa in zip(__UpperCAmelCase, __UpperCAmelCase ): assert rowa == rowa @require_sqlalchemy def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' snake_case_ = tmp_path / '''cache''' snake_case_ = os.path.join(__UpperCAmelCase, '''tmp.sql''' ) snake_case_ = SqlDatasetReader('''dataset''', '''sqlite:///''' + sqlite_path, cache_dir=__UpperCAmelCase ).read() with pytest.raises(__UpperCAmelCase ): SqlDatasetWriter(__UpperCAmelCase, '''dataset''', '''sqlite:///''' + output_sqlite_path, num_proc=0 ).write()
56
1
"""simple docstring""" # Lint as: python3 import itertools import os import re lowerCAmelCase : Any = re.compile(r"""([A-Z]+)([A-Z][a-z])""") lowerCAmelCase : int = re.compile(r"""([a-z\d])([A-Z])""") lowerCAmelCase : Dict = re.compile(r"""(?<!_)_(?!_)""") lowerCAmelCase : Tuple = re.compile(r"""(_{2,})""") lowerCAmelCase : int = r"""^\w+(\.\w+)*$""" lowerCAmelCase : Tuple = r"""<>:/\|?*""" def a__ ( snake_case__ ) -> Optional[int]: lowerCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , snake_case__ ) lowerCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , snake_case__ ) return name.lower() def a__ ( snake_case__ ) -> Dict: lowerCamelCase = _single_underscore_re.split(snake_case__ ) lowerCamelCase = [_multiple_underscores_re.split(snake_case__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(snake_case__ ) if n != """""" ) def a__ ( snake_case__ ) -> Union[str, Any]: if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(snake_case__ ) def a__ ( snake_case__ , snake_case__ ) -> Tuple: if os.path.basename(snake_case__ ) != name: raise ValueError(F'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , snake_case__ ): raise ValueError(F'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return F'{filename_prefix_for_name(snake_case__ )}-{split}' def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None ) -> Union[str, Any]: lowerCamelCase = filename_prefix_for_split(snake_case__ , snake_case__ ) if filetype_suffix: prefix += F'.{filetype_suffix}' lowerCamelCase = os.path.join(snake_case__ , snake_case__ ) return F'{filepath}*' def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ) -> Tuple: lowerCamelCase = filename_prefix_for_split(snake_case__ , snake_case__ ) lowerCamelCase = os.path.join(snake_case__ , snake_case__ ) if shard_lengths: lowerCamelCase = len(snake_case__ ) lowerCamelCase = [F'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(snake_case__ )] if filetype_suffix: lowerCamelCase = [filename + F'.{filetype_suffix}' for filename in filenames] return filenames else: lowerCamelCase = prefix if filetype_suffix: filename += F'.{filetype_suffix}' return [filename]
168
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = 0 def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowerCamelCase = AutoImageProcessor.from_pretrained(_a ).to_dict() config_dict.pop("""image_processor_type""" ) lowerCamelCase = CLIPImageProcessor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) # make sure private variable is not incorrectly saved lowerCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _a , """clip-base is not a local folder and is not a valid model identifier""" ): lowerCamelCase = AutoImageProcessor.from_pretrained("""clip-base""" ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _a , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): lowerCamelCase = AutoImageProcessor.from_pretrained(_a , revision="""aaaaaa""" ) def _lowerCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( _a , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _lowerCAmelCase ( self ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def _lowerCAmelCase ( self ): """simple docstring""" try: AutoConfig.register("""custom""" , _a ) AutoImageProcessor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoImageProcessor.register(_a , _a ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase = Path(_a ) / """preprocessor_config.json""" lowerCamelCase = Path(_a ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_a , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_a , """w""" ) ) lowerCamelCase = CustomImageProcessor.from_pretrained(_a ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_a ) lowerCamelCase = AutoImageProcessor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self ): """simple docstring""" class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = True try: AutoConfig.register("""custom""" , _a ) AutoImageProcessor.register(_a , _a ) # If remote code is not set, the default is to use local lowerCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowerCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_a ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_a , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
168
1
'''simple docstring''' from __future__ import annotations from statistics import mean def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: snake_case__ : Optional[Any] = [0] * no_of_processes snake_case__ : Union[str, Any] = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(SCREAMING_SNAKE_CASE_ ): snake_case__ : List[str] = burst_time[i] snake_case__ : List[Any] = [] snake_case__ : Tuple = 0 snake_case__ : List[str] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: snake_case__ : Dict = [] snake_case__ : Optional[Any] = -1 for i in range(SCREAMING_SNAKE_CASE_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: snake_case__ : Optional[int] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: snake_case__ : Union[str, Any] = i total_time += burst_time[target_process] completed += 1 snake_case__ : List[Any] = 0 snake_case__ : Tuple = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: snake_case__ : Any = [0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE_ ): snake_case__ : Optional[int] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __a = 4 __a = [2, 5, 3, 7] __a = [0, 0, 0, 0] __a = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __a = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
35
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __lowerCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __lowerCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __lowerCAmelCase = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _snake_case = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , _SCREAMING_SNAKE_CASE , ) is not None ): _snake_case = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _snake_case = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _snake_case = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] _snake_case = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed _snake_case = True if not attribute_used: _snake_case = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _snake_case = True elif attribute in ["tie_word_embeddings"] and default_value is False: _snake_case = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _snake_case = True elif attribute.endswith("""_token_id""" ): _snake_case = True # configuration class specific cases if not case_allowed: _snake_case = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _snake_case = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = dict(inspect.signature(config_class.__init__ ).parameters ) _snake_case = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] _snake_case = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _snake_case = {} if len(config_class.attribute_map ) > 0: _snake_case = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _snake_case = inspect.getsourcefile(_SCREAMING_SNAKE_CASE ) _snake_case = os.path.dirname(_SCREAMING_SNAKE_CASE ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _snake_case = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for fn in os.listdir(_SCREAMING_SNAKE_CASE ) if fn.startswith("""modeling_""" )] # Get the source code strings _snake_case = [] for path in modeling_paths: if os.path.isfile(_SCREAMING_SNAKE_CASE ): with open(_SCREAMING_SNAKE_CASE ) as fp: modeling_sources.append(fp.read() ) _snake_case = [] for config_param, default_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # `attributes` here is all the variant names for `config_param` _snake_case = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): unused_attributes.append(attributes[0] ) return sorted(_SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _snake_case = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda _SCREAMING_SNAKE_CASE : inspect.isclass(_SCREAMING_SNAKE_CASE ) and issubclass(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and inspect.getmodule(_SCREAMING_SNAKE_CASE ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _snake_case = check_config_attributes_being_used(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = unused_attributes if len(_SCREAMING_SNAKE_CASE ) > 0: _snake_case = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": check_config_attributes()
270
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) # We need to create solution object to save path. _snake_case = [[0 for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] _snake_case = run_maze(_SCREAMING_SNAKE_CASE , 0 , 0 , _SCREAMING_SNAKE_CASE ) if solved: print("""\n""".join(str(_SCREAMING_SNAKE_CASE ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) # Final check point. if i == j == (size - 1): _snake_case = 1 return True _snake_case = (not i < 0) and (not j < 0) # Check lower bounds _snake_case = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _snake_case = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _snake_case = 1 # check for directions if ( run_maze(_SCREAMING_SNAKE_CASE , i + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j + 1 , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , i - 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or run_maze(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , j - 1 , _SCREAMING_SNAKE_CASE ) ): return True _snake_case = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
270
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
from math import factorial def lowerCamelCase__ (_UpperCAmelCase = 100): return sum(int(_UpperCAmelCase) for x in str(factorial(_UpperCAmelCase))) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
137
0
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
368
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE_ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = [1, 1_0_8_8, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE_ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE_ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE_ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : Optional[str] = "relu" ,) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad( lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=lowerCamelCase__ ,stride=lowerCamelCase__ ,padding=kernel_size // 2 ,groups=lowerCamelCase__ ,bias=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,lowerCamelCase__ : RegNetConfig ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ) SCREAMING_SNAKE_CASE = config.num_channels def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ) -> List[str]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,stride=lowerCamelCase__ ,bias=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.BatchNormad(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Tensor ) -> Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE = self.convolution(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.normalization(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : int ) -> int: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) SCREAMING_SNAKE_CASE = nn.Sequential( nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.ReLU() ,nn.Convad(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ) ,nn.Sigmoid() ,) def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.attention(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_state * attention return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 1 ) -> Optional[int]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE = max(1 ,out_channels // config.groups_width ) SCREAMING_SNAKE_CASE = ( RegNetShortCut(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE = nn.Sequential( RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=config.hidden_act ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,groups=lowerCamelCase__ ,activation=config.hidden_act ) ,RegNetSELayer(lowerCamelCase__ ,reduced_channels=int(round(in_channels / 4 ) ) ) ,RegNetConvLayer(lowerCamelCase__ ,lowerCamelCase__ ,kernel_size=1 ,activation=lowerCamelCase__ ) ,) SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = hidden_state SCREAMING_SNAKE_CASE = self.layer(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.shortcut(lowerCamelCase__ ) hidden_state += residual SCREAMING_SNAKE_CASE = self.activation(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int ,lowerCamelCase__ : RegNetConfig ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : int = 2 ,lowerCamelCase__ : int = 2 ,) -> Tuple: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer SCREAMING_SNAKE_CASE = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,stride=lowerCamelCase__ ,) ,*[layer(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) for _ in range(depth - 1 )] ,) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.layers(lowerCamelCase__ ) return hidden_state class UpperCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : RegNetConfig ) -> str: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCamelCase__ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) SCREAMING_SNAKE_CASE = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCamelCase__ ,config.depths[1:] ): self.stages.append(RegNetStage(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,depth=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : int ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE = stage_module(lowerCamelCase__ ) if output_hidden_states: SCREAMING_SNAKE_CASE = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCamelCase__ ,hidden_states=lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : List[Any] = RegNetConfig __snake_case : Union[str, Any] = "regnet" __snake_case : Optional[Any] = "pixel_values" __snake_case : List[Any] = True def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : int ) -> Any: '''simple docstring''' if isinstance(lowerCamelCase__ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="""fan_out""" ,nonlinearity="""relu""" ) elif isinstance(lowerCamelCase__ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : str=False ) -> str: '''simple docstring''' if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE_ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE_ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : str ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config SCREAMING_SNAKE_CASE = RegNetEmbeddings(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = RegNetEncoder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Tensor ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.embedder(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.encoder( lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = encoder_outputs[0] SCREAMING_SNAKE_CASE = self.pooler(lowerCamelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCamelCase__ ,pooler_output=lowerCamelCase__ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase_ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Any ,lowerCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = config.num_labels SCREAMING_SNAKE_CASE = RegNetModel(lowerCamelCase__ ) # classification head SCREAMING_SNAKE_CASE = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCamelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=lowerCamelCase__ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : Optional[torch.FloatTensor] = None ,lowerCamelCase__ : Optional[torch.LongTensor] = None ,lowerCamelCase__ : Optional[bool] = None ,lowerCamelCase__ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.regnet(lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ,return_dict=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE = self.classifier(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE = """single_label_classification""" else: SCREAMING_SNAKE_CASE = """multi_label_classification""" if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() ,labels.squeeze() ) else: SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE = CrossEntropyLoss() SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE = loss_fct(lowerCamelCase__ ,lowerCamelCase__ ) if not return_dict: SCREAMING_SNAKE_CASE = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCamelCase__ ,logits=lowerCamelCase__ ,hidden_states=outputs.hidden_states )
193
0
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def lowerCamelCase__ ( _lowerCamelCase : str ) -> str: return "".join(sorted(_lowerCamelCase ) ) def lowerCamelCase__ ( _lowerCamelCase : str ) -> list[str]: return word_by_signature[signature(_lowerCamelCase )] _SCREAMING_SNAKE_CASE : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') _SCREAMING_SNAKE_CASE : List[Any] = sorted({word.strip().lower() for word in data.splitlines()}) _SCREAMING_SNAKE_CASE : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
183
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } _SCREAMING_SNAKE_CASE : Any = { '''unc-nlp/lxmert-base-uncased''': 512, } _SCREAMING_SNAKE_CASE : int = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class a ( __snake_case ): SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Any = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[Any] = LxmertTokenizer def __init__( self : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : List[Any]="[UNK]" , __SCREAMING_SNAKE_CASE : int="[SEP]" , __SCREAMING_SNAKE_CASE : int="[PAD]" , __SCREAMING_SNAKE_CASE : List[Any]="[CLS]" , __SCREAMING_SNAKE_CASE : Any="[MASK]" , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Any , ) -> Any: super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get('strip_accents' , __SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('type' ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = do_lower_case def UpperCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple=None ) -> Dict: lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: lowerCamelCase_ = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
183
1
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("""--model_ckpt""" , type=snake_case__ , default="""microsoft/unixcoder-base-nine""" ) parser.add_argument("""--num_epochs""" , type=snake_case__ , default=5 ) parser.add_argument("""--batch_size""" , type=snake_case__ , default=6 ) parser.add_argument("""--gradient_accumulation_steps""" , type=snake_case__ , default=1 ) parser.add_argument("""--freeze""" , type=snake_case__ , default=snake_case__ ) parser.add_argument("""--learning_rate""" , type=snake_case__ , default=5e-4 ) parser.add_argument("""--seed""" , type=snake_case__ , default=0 ) parser.add_argument("""--lr_scheduler_type""" , type=snake_case__ , default="""cosine""" ) parser.add_argument("""--num_warmup_steps""" , type=snake_case__ , default=10 ) parser.add_argument("""--weight_decay""" , type=snake_case__ , default=0.01 ) parser.add_argument("""--output_dir""" , type=snake_case__ , default="""./results""" ) return parser.parse_args() A_ = load('''accuracy''') def UpperCAmelCase__ (snake_case__ : Dict ): """simple docstring""" _snake_case : Optional[int] = eval_pred _snake_case : Tuple = np.argmax(snake_case__ , axis=1 ) return metric.compute(predictions=snake_case__ , references=snake_case__ ) class lowercase( __a ): '''simple docstring''' def __init__( self: List[Any], a_: Optional[int] ): '''simple docstring''' super().__init__() _snake_case : Dict = trainer def UpperCamelCase_ ( self: int, a_: Optional[Any], a_: Union[str, Any], a_: Any, **a_: Tuple ): '''simple docstring''' if control.should_evaluate: _snake_case : Dict = deepcopy(a_ ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset, metric_key_prefix="""train""" ) return control_copy def UpperCAmelCase__ (): """simple docstring""" _snake_case : List[Any] = get_args() set_seed(args.seed ) _snake_case : str = load_dataset("""codeparrot/codecomplex""" , split="""train""" ) _snake_case : str = dataset.train_test_split(test_size=0.2 ) _snake_case : str = train_test["""test"""].train_test_split(test_size=0.5 ) _snake_case : str = DatasetDict( { """train""": train_test["""train"""], """test""": test_validation["""train"""], """valid""": test_validation["""test"""], } ) print("""Loading tokenizer and model""" ) _snake_case : Union[str, Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _snake_case : Optional[Any] = tokenizer.eos_token _snake_case : List[str] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _snake_case : str = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _snake_case : Any = False _snake_case : List[Any] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["""train"""]["""complexity"""] ) ) ) def tokenize(snake_case__ : Union[str, Any] ): _snake_case : Dict = tokenizer(example["""src"""] , truncation=snake_case__ , max_length=10_24 ) _snake_case : List[Any] = labels.straint(example["""complexity"""] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _snake_case : Union[str, Any] = train_test_validation.map( snake_case__ , batched=snake_case__ , remove_columns=train_test_validation["""train"""].column_names , ) _snake_case : List[str] = DataCollatorWithPadding(tokenizer=snake_case__ ) _snake_case : List[Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="""epoch""" , save_strategy="""epoch""" , logging_strategy="""epoch""" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="""accuracy""" , run_name="""complexity-java""" , report_to="""wandb""" , ) _snake_case : int = Trainer( model=snake_case__ , args=snake_case__ , train_dataset=tokenized_datasets["""train"""] , eval_dataset=tokenized_datasets["""valid"""] , tokenizer=snake_case__ , data_collator=snake_case__ , compute_metrics=snake_case__ , ) print("""Training...""" ) trainer.add_callback(CustomCallback(snake_case__ ) ) trainer.train() if __name__ == "__main__": main()
359
"""simple docstring""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A_ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) A_ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ (): """simple docstring""" _snake_case : Tuple = """https://pypi.org/pypi/diffusers/json""" _snake_case : Optional[int] = json.loads(request.urlopen(snake_case__ ).read() )["""releases"""].keys() return sorted(snake_case__ , key=lambda snake_case__ : version.Version(snake_case__ ) ) def UpperCAmelCase__ (): """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(snake_case__ ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : str = Path(snake_case__ ) / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] ): """simple docstring""" init_hf_modules() _snake_case : List[Any] = Path(snake_case__ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) _snake_case : List[Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : Union[str, Any] = f.read() # Imports of the form `import .xxx` _snake_case : Tuple = re.findall("""^\s*import\s+\.(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Unique-ify return list(set(snake_case__ ) ) def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" _snake_case : Tuple = False _snake_case : Any = [module_file] _snake_case : str = [] # Let's recurse through all relative imports while not no_change: _snake_case : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(snake_case__ ) ) _snake_case : Dict = Path(snake_case__ ).parent _snake_case : Dict = [str(module_path / m ) for m in new_imports] _snake_case : Tuple = [f for f in new_import_files if f not in all_relative_imports] _snake_case : str = [F"{f}.py" for f in new_import_files] _snake_case : Dict = len(snake_case__ ) == 0 all_relative_imports.extend(snake_case__ ) return all_relative_imports def UpperCAmelCase__ (snake_case__ : Tuple ): """simple docstring""" with open(snake_case__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : int = f.read() # Imports of the form `import xxx` _snake_case : Tuple = re.findall("""^\s*import\s+(\S+)\s*$""" , snake_case__ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , snake_case__ , flags=re.MULTILINE ) # Only keep the top-level module _snake_case : Tuple = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all _snake_case : Any = list(set(snake_case__ ) ) _snake_case : int = [] for imp in imports: try: importlib.import_module(snake_case__ ) except ImportError: missing_packages.append(snake_case__ ) if len(snake_case__ ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ F"{', '.join(snake_case__ )}. Run `pip install {' '.join(snake_case__ )}`" ) return get_relative_imports(snake_case__ ) def UpperCAmelCase__ (snake_case__ : int , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = module_path.replace(os.path.sep , """.""" ) _snake_case : int = importlib.import_module(snake_case__ ) if class_name is None: return find_pipeline_class(snake_case__ ) return getattr(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : List[Any] ): """simple docstring""" from ..pipelines import DiffusionPipeline _snake_case : Tuple = dict(inspect.getmembers(snake_case__ , inspect.isclass ) ) _snake_case : Dict = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , snake_case__ ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" F" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" F" {loaded_module}." ) _snake_case : List[str] = cls return pipeline_class def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , ): """simple docstring""" _snake_case : List[str] = str(snake_case__ ) _snake_case : Optional[Any] = os.path.join(snake_case__ , snake_case__ ) if os.path.isfile(snake_case__ ): _snake_case : List[str] = module_file_or_url _snake_case : Optional[Any] = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: _snake_case : Tuple = get_diffusers_versions() # cut ".dev0" _snake_case : Union[str, Any] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: _snake_case : int = latest_version if latest_version[1:] in available_versions else """main""" logger.info(F"Defaulting to latest_version: {revision}." ) elif revision in available_versions: _snake_case : Optional[Any] = F"v{revision}" elif revision == "main": _snake_case : int = revision else: raise ValueError( F"`custom_revision`: {revision} does not exist. Please make sure to choose one of" F" {', '.join(available_versions + ['main'] )}." ) # community pipeline on GitHub _snake_case : List[str] = COMMUNITY_PIPELINES_URL.format(revision=snake_case__ , pipeline=snake_case__ ) try: _snake_case : Dict = cached_download( snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Union[str, Any] = """git""" _snake_case : str = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise else: try: # Load from URL or cache if already cached _snake_case : str = hf_hub_download( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , proxies=snake_case__ , resume_download=snake_case__ , local_files_only=snake_case__ , use_auth_token=snake_case__ , ) _snake_case : Optional[Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(F"Could not locate the {module_file} inside {pretrained_model_name_or_path}." ) raise # Check we have all the requirements in our environment _snake_case : int = check_imports(snake_case__ ) # Now we move the module inside our cached dynamic modules. _snake_case : Optional[int] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(snake_case__ ) _snake_case : Any = Path(snake_case__ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(snake_case__ , submodule_path / module_file ) for module_needed in modules_needed: _snake_case : Any = F"{module_needed}.py" shutil.copy(os.path.join(snake_case__ , snake_case__ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(snake_case__ , snake_case__ ): _snake_case : Any = use_auth_token elif use_auth_token is True: _snake_case : int = HfFolder.get_token() else: _snake_case : Optional[int] = None _snake_case : int = model_info(snake_case__ , revision=snake_case__ , token=snake_case__ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _snake_case : int = submodule_path / commit_hash _snake_case : Optional[int] = full_submodule + os.path.sep + commit_hash create_dynamic_module(snake_case__ ) if not (submodule_path / module_file).exists(): shutil.copy(snake_case__ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( snake_case__ , F"{module_needed}.py" , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return os.path.join(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, os.PathLike] , snake_case__ : str , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, os.PathLike]] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[Dict[str, str]] = None , snake_case__ : Optional[Union[bool, str]] = None , snake_case__ : Optional[str] = None , snake_case__ : bool = False , **snake_case__ : Tuple , ): """simple docstring""" _snake_case : Union[str, Any] = get_cached_module_file( snake_case__ , snake_case__ , cache_dir=snake_case__ , force_download=snake_case__ , resume_download=snake_case__ , proxies=snake_case__ , use_auth_token=snake_case__ , revision=snake_case__ , local_files_only=snake_case__ , ) return get_class_in_module(snake_case__ , final_module.replace(""".py""" , """""" ) )
132
0
"""simple docstring""" def _A (__a , __a ) -> Union[str, Any]: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def _A () -> str: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
91
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> Dict: UpperCamelCase :Any = parent UpperCamelCase :Dict = 13 UpperCamelCase :List[Any] = 7 UpperCamelCase :List[Any] = True UpperCamelCase :Dict = True UpperCamelCase :Union[str, Any] = True UpperCamelCase :List[str] = True UpperCamelCase :Dict = 99 UpperCamelCase :Any = 32 UpperCamelCase :Tuple = 2 UpperCamelCase :Union[str, Any] = 4 UpperCamelCase :List[str] = 37 UpperCamelCase :Dict = '''gelu''' UpperCamelCase :Dict = 0.1 UpperCamelCase :Tuple = 0.1 UpperCamelCase :Dict = 512 UpperCamelCase :str = 16 UpperCamelCase :Optional[Any] = 2 UpperCamelCase :Dict = 0.02 UpperCamelCase :Optional[int] = 3 UpperCamelCase :int = 4 UpperCamelCase :Dict = None def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Optional[int] = None if self.use_input_mask: UpperCamelCase :Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase :Dict = None if self.use_token_type_ids: UpperCamelCase :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase :Union[str, Any] = None UpperCamelCase :Optional[int] = None UpperCamelCase :Any = None if self.use_labels: UpperCamelCase :Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase :int = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase :Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=SCREAMING_SNAKE_CASE_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[Any] = TFRoFormerModel(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCamelCase :int = [input_ids, input_mask] UpperCamelCase :List[Any] = model(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :List[Any] = True UpperCamelCase :Union[str, Any] = TFRoFormerForCausalLM(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :Any = model(SCREAMING_SNAKE_CASE_ )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :str = TFRoFormerForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :List[Any] = self.num_labels UpperCamelCase :int = TFRoFormerForSequenceClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :List[Any] = self.num_choices UpperCamelCase :Any = TFRoFormerForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :int = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :Any = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase :List[Any] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCamelCase :Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :Union[str, Any] = self.num_labels UpperCamelCase :Dict = TFRoFormerForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase :Union[str, Any] = TFRoFormerForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCamelCase :List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) :Union[str, Any] = config_and_inputs UpperCamelCase :Any = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : str =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ : Tuple =( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ : Tuple =False UpperCamelCase_ : Optional[Any] =False def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Any = TFRoFormerModelTester(self ) UpperCamelCase :Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Dict = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Tuple = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCamelCase :Union[str, Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase :str = model(SCREAMING_SNAKE_CASE_ )[0] # TODO Replace vocab size UpperCamelCase :Tuple = 5_0000 UpperCamelCase :Optional[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCamelCase :int = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Optional[int] =1E-4 def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :str = tf.constant([[4, 10]] ) UpperCamelCase :List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCamelCase :str = emba(input_ids.shape ) UpperCamelCase :List[str] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=self.tolerance ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Dict = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCamelCase :Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCamelCase :Any = emba.weight[:3, :5] tf.debugging.assert_near(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] =1E-4 def UpperCAmelCase ( self ) -> List[str]: # 2,12,16,64 UpperCamelCase :List[Any] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase :List[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCamelCase :List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCamelCase :int = embed_positions([2, 16, 768] )[None, None, :, :] UpperCamelCase , UpperCamelCase :List[str] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCamelCase :Optional[int] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , SCREAMING_SNAKE_CASE_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , SCREAMING_SNAKE_CASE_ , atol=self.tolerance )
259
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar lowerCAmelCase_ = TypeVar('T') class __A ( Generic[T] ): '''simple docstring''' def __init__( self : List[Any] ,_snake_case : T ) -> Tuple: """simple docstring""" lowercase__ : Tuple = data lowercase__ : Node[T] | None = None def __str__( self : List[Any] ) -> str: """simple docstring""" return f"""{self.data}""" class __A ( Generic[T] ): '''simple docstring''' def __init__( self : int ) -> None: """simple docstring""" lowercase__ : Node[T] | None = None def __iter__( self : Tuple ) -> Iterator[T]: """simple docstring""" lowercase__ : Tuple = self.top while node: yield node.data lowercase__ : Optional[Any] = node.next def __str__( self : int ) -> str: """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __len__( self : Dict ) -> int: """simple docstring""" return len(tuple(iter(self ) ) ) def UpperCAmelCase ( self : List[str] ) -> bool: """simple docstring""" return self.top is None def UpperCAmelCase ( self : int ,_snake_case : T ) -> None: """simple docstring""" lowercase__ : Optional[int] = Node(_snake_case ) if not self.is_empty(): lowercase__ : Tuple = self.top lowercase__ : Union[str, Any] = node def UpperCAmelCase ( self : List[str] ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top ,_snake_case ) lowercase__ : List[str] = self.top lowercase__ : Union[str, Any] = self.top.next return pop_node.data def UpperCAmelCase ( self : Dict ) -> T: """simple docstring""" if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def UpperCAmelCase ( self : Tuple ) -> None: """simple docstring""" lowercase__ : Any = None if __name__ == "__main__": from doctest import testmod testmod()
302
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __A ( A_ ): '''simple docstring''' lowerCAmelCase : UNetaDModel lowerCAmelCase : ScoreSdeVeScheduler def __init__( self : Optional[Any] ,_snake_case : UNetaDModel ,_snake_case : ScoreSdeVeScheduler ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_snake_case ,scheduler=_snake_case ) @torch.no_grad() def __call__( self : Any ,_snake_case : int = 1 ,_snake_case : int = 2_000 ,_snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,_snake_case : Optional[str] = "pil" ,_snake_case : bool = True ,**_snake_case : Any ,) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" lowercase__ : Optional[Any] = self.unet.config.sample_size lowercase__ : Dict = (batch_size, 3, img_size, img_size) lowercase__ : Tuple = self.unet lowercase__ : Any = randn_tensor(_snake_case ,generator=_snake_case ) * self.scheduler.init_noise_sigma lowercase__ : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(_snake_case ) self.scheduler.set_sigmas(_snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase__ : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): lowercase__ : List[str] = self.unet(_snake_case ,_snake_case ).sample lowercase__ : Optional[Any] = self.scheduler.step_correct(_snake_case ,_snake_case ,generator=_snake_case ).prev_sample # prediction step lowercase__ : str = model(_snake_case ,_snake_case ).sample lowercase__ : List[Any] = self.scheduler.step_pred(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ) lowercase__ , lowercase__ : Optional[int] = output.prev_sample, output.prev_sample_mean lowercase__ : Union[str, Any] = sample_mean.clamp(0 ,1 ) lowercase__ : int = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase__ : Any = self.numpy_to_pil(_snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=_snake_case )
302
1
import unittest from knapsack import knapsack as k class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Dict = [0] SCREAMING_SNAKE_CASE_ : List[str] = [0] SCREAMING_SNAKE_CASE_ : int = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = [60] SCREAMING_SNAKE_CASE_ : List[Any] = [10] SCREAMING_SNAKE_CASE_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 0 ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : List[str] = [1, 2, 3] SCREAMING_SNAKE_CASE_ : Tuple = [3, 2, 1] SCREAMING_SNAKE_CASE_ : Tuple = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 5 ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 50 SCREAMING_SNAKE_CASE_ : List[Any] = [60, 100, 120] SCREAMING_SNAKE_CASE_ : List[Any] = [10, 20, 30] SCREAMING_SNAKE_CASE_ : str = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 220 ) if __name__ == "__main__": unittest.main()
253
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Any = {'vocab_file': 'spiece.model'} lowerCAmelCase : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowerCAmelCase : Optional[int] = {'bert_for_seq_generation': 5_12} class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[int] = [] SCREAMING_SNAKE_CASE : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = vocab_file SCREAMING_SNAKE_CASE_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Dict = {} SCREAMING_SNAKE_CASE_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [] SCREAMING_SNAKE_CASE_ : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : Optional[int] = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : List[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
253
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCAmelCase = Lock() def UpperCamelCase ( a , a , a , a , a , a , a ) -> int: '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __magic_name__ =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __magic_name__ =min(a , a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __magic_name__ =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __magic_name__ =max(a , a ) # after all swaps are performed, send the values back to main result_pipe[1].send(a ) def UpperCamelCase ( a ) -> int: '''simple docstring''' __magic_name__ =[] __magic_name__ =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __magic_name__ =Pipe() __magic_name__ =Pipe() process_array_.append( Process( target=a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __magic_name__ =temp_rs __magic_name__ =temp_rr for i in range(1 , len(a ) - 1 ): __magic_name__ =Pipe() __magic_name__ =Pipe() process_array_.append( Process( target=a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __magic_name__ =temp_rs __magic_name__ =temp_rr process_array_.append( Process( target=a , args=( len(a ) - 1, arr[len(a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(a ) ): __magic_name__ =result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase ( ) -> List[Any]: '''simple docstring''' __magic_name__ =list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*a ) __magic_name__ =odd_even_transposition(a ) print('''Sorted List\n''' ) print(*a ) if __name__ == "__main__": main()
351
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def UpperCamelCase ( a="ro" , a="en" , a="wmt16" , a=None ) -> None: '''simple docstring''' try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) __magic_name__ = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) __magic_name__ = datasets.load_dataset(a , a ) if save_dir is None: __magic_name__ = F'''{dataset}-{pair}''' __magic_name__ = Path(a ) save_dir.mkdir(exist_ok=a ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets __magic_name__ = '''val''' if split == '''validation''' else split __magic_name__ = save_dir.joinpath(F'''{fn}.source''' ) __magic_name__ = save_dir.joinpath(F'''{fn}.target''' ) __magic_name__ = src_path.open('''w+''' ) __magic_name__ = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): __magic_name__ = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
98
0
"""simple docstring""" from ... import PretrainedConfig _UpperCamelCase : List[str] = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class a ( a_ ): UpperCAmelCase_ : int =NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP UpperCAmelCase_ : List[str] ="nezha" def __init__( self , _lowerCamelCase=2_1_1_2_8 , _lowerCamelCase=7_6_8 , _lowerCamelCase=1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=3_0_7_2 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=6_4 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=1e-12 , _lowerCamelCase=0.1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = max_relative_position lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = classifier_dropout lowercase = use_cache
220
"""simple docstring""" # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__() self.register_modules(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) @torch.no_grad() def __call__( self , _lowerCamelCase = 1 , _lowerCamelCase = None , _lowerCamelCase = 5_0 , _lowerCamelCase = "pil" , _lowerCamelCase = True , **_lowerCamelCase , ): lowercase = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_lowerCamelCase , ) lowercase = image.to(self.device ) # set step values self.scheduler.set_timesteps(_lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase = self.unet(_lowerCamelCase , _lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase = self.scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ).prev_sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_lowerCamelCase ), "This is a local test"
220
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> None: """simple docstring""" _UpperCamelCase : Optional[Any] = generate_pascal_triangle(lowercase_ ) for row_idx in range(lowercase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] ,end=" " ) else: print(triangle[row_idx][col_idx] ,end="" ) print() def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCamelCase : list[list[int]] = [] for current_row_idx in range(lowercase_ ): _UpperCamelCase : Any = populate_current_row(lowercase_ ,lowercase_ ) triangle.append(lowercase_ ) return triangle def lowercase__ ( lowercase_ ,lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : str = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 _UpperCamelCase : Union[str, Any] = 1, 1 for current_col_idx in range(1 ,lowercase_ ): calculate_current_element( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) return current_row def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,) -> None: """simple docstring""" _UpperCamelCase : Tuple = triangle[current_row_idx - 1][current_col_idx - 1] _UpperCamelCase : Union[str, Any] = triangle[current_row_idx - 1][current_col_idx] _UpperCamelCase : str = above_to_left_elt + above_to_right_elt def lowercase__ ( lowercase_ ) -> list[list[int]]: """simple docstring""" if not isinstance(lowercase_ ,lowercase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) _UpperCamelCase : list[list[int]] = [[1]] for row_index in range(1 ,lowercase_ ): _UpperCamelCase : Tuple = [0] + result[-1] + [0] _UpperCamelCase : Union[str, Any] = row_index + 1 # Calculate the number of distinct elements in a row _UpperCamelCase : List[Any] = sum(divmod(lowercase_ ,2 ) ) _UpperCamelCase : Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 ,distinct_elements + 1 ) ] _UpperCamelCase : Any = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() _UpperCamelCase : int = row_first_half + row_second_half result.append(lowercase_ ) return result def lowercase__ ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ ,lowercase_ ) -> None: _UpperCamelCase : int = F'''{func.__name__}({value})''' _UpperCamelCase : Optional[int] = timeit(F'''__main__.{call}''' ,setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowercase_ ,lowercase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
355
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCamelCase__ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCamelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__ ( lowercase_ ) -> str: """simple docstring""" if "://" in dataset_path: _UpperCamelCase : List[Any] = dataset_path.split("://" )[1] return dataset_path def lowercase__ ( lowercase_ ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) ,fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ ,lowercase_ ,recursive=lowercase_ ) def lowercase__ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn ,"reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _UpperCamelCase : Dict = None _UpperCamelCase : str = None _UpperCamelCase : str = threading.Lock()
310
0
"""simple docstring""" import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowercase__ : Any , lowercase__ : int , lowercase__ : Tuple ) -> Any: '''simple docstring''' return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def _snake_case ( lowercase__ : Union[str, Any] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :Optional[Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) lowerCAmelCase_ :str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) lowerCAmelCase_ :Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) lowerCAmelCase_ :Tuple = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) lowerCAmelCase_ :str = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) lowerCAmelCase_ :Dict = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) lowerCAmelCase_ :Optional[Any] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) lowerCAmelCase_ :Optional[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _snake_case ( lowercase__ : Tuple , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : Optional[int]=False ) -> List[Any]: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ :Tuple = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] lowerCAmelCase_ :Optional[Any] = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] lowerCAmelCase_ :List[Any] = (wi_a, wi_a) else: lowerCAmelCase_ :List[str] = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] lowerCAmelCase_ :Union[str, Any] = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def _snake_case ( lowercase__ : int , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : Optional[int] ) -> List[str]: '''simple docstring''' return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def _snake_case ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool , lowercase__ : bool = False ) -> List[str]: '''simple docstring''' lowerCAmelCase_ :int = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ :Optional[int] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ :Union[str, Any] = """encoder/encoder/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ :List[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ :Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ :List[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Optional[Any] = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ :int = layer_norm lowerCAmelCase_ :Optional[int] = k.T lowerCAmelCase_ :List[Any] = o.T lowerCAmelCase_ :Dict = q.T lowerCAmelCase_ :List[str] = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ :Union[str, Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ :str = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ :List[str] = layer_norm if split_mlp_wi: lowerCAmelCase_ :Tuple = wi[0].T lowerCAmelCase_ :List[Any] = wi[1].T else: lowerCAmelCase_ :Dict = wi.T lowerCAmelCase_ :str = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ :Optional[Any] = tax_relpos_bias_lookup( lowercase__ , lowercase__ , """encoder""" ).T lowerCAmelCase_ :Tuple = old["""encoder/encoder_norm/scale"""] if not scalable_attention: lowerCAmelCase_ :List[str] = tax_relpos_bias_lookup( lowercase__ , 0 , """encoder""" ).T lowerCAmelCase_ :Dict = tax_relpos_bias_lookup( lowercase__ , 0 , """decoder""" ).T if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ :Union[str, Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Dict = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ :Any = layer_norm lowerCAmelCase_ :str = k.T lowerCAmelCase_ :str = o.T lowerCAmelCase_ :str = q.T lowerCAmelCase_ :List[Any] = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ :Tuple = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ :str = layer_norm lowerCAmelCase_ :Optional[int] = k.T lowerCAmelCase_ :Optional[int] = o.T lowerCAmelCase_ :Dict = q.T lowerCAmelCase_ :Union[str, Any] = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ :Optional[int] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ :str = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ :str = layer_norm if split_mlp_wi: lowerCAmelCase_ :Optional[int] = wi[0].T lowerCAmelCase_ :Tuple = wi[1].T else: lowerCAmelCase_ :str = wi.T lowerCAmelCase_ :Tuple = wo.T if scalable_attention: # convert the rel_embedding of each layer lowerCAmelCase_ :Dict = tax_relpos_bias_lookup(lowercase__ , lowercase__ , """decoder""" ).T lowerCAmelCase_ :int = old["""decoder/decoder_norm/scale"""] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ :Dict = old["""decoder/logits_dense/kernel"""].T return new def _snake_case ( lowercase__ : Any , lowercase__ : bool ) -> str: '''simple docstring''' lowerCAmelCase_ :str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ :Any = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ :Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ :Tuple = state_dict["""shared.weight"""] return state_dict def _snake_case ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : int , lowercase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ :List[Any] = convert_tax_to_pytorch( lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ , scalable_attention=lowercase__ ) lowerCAmelCase_ :Optional[Any] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def _snake_case ( lowercase__ : Any , lowercase__ : Dict , lowercase__ : Union[str, Any] , lowercase__ : bool = False , lowercase__ : bool = False , ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :Any = MTaConfig.from_json_file(lowercase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ :Tuple = UMTaEncoderModel(lowercase__ ) else: lowerCAmelCase_ :Union[str, Any] = UMTaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
84
"""simple docstring""" from __future__ import annotations def lowercase__( __SCREAMING_SNAKE_CASE : list ): if not nums: raise ValueError('List is empty' ) return sum(__SCREAMING_SNAKE_CASE ) / len(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
213
0
"""simple docstring""" import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch A_ = '''sshleifer/bart-tiny-random''' A_ = '''patrickvonplaten/t5-tiny-random''' @require_torch class lowercase( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return AutoConfig.from_pretrained(a_ ) def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : List[Any] = create_student_by_copying_alternating_layers(a_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.num_hidden_layers, 1 ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : Tuple = create_student_by_copying_alternating_layers(a_, tempfile.mkdtemp(), e=1, d=a_ ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[Any] = create_student_by_copying_alternating_layers(a_, tempfile.mkdtemp(), e=1, d=a_ ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Tuple = create_student_by_copying_alternating_layers(a_, tempfile.mkdtemp(), e=1, d=1 ) self.assertEqual(student.config.encoder_layers, 1 ) self.assertEqual(student.config.decoder_layers, 1 ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_, tempfile.mkdtemp(), e=a_, d=a_ )
358
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): _snake_case : List[Any] = np.full((len(snake_case__ ), sequence_length, 2) , snake_case__ ) else: _snake_case : Any = np.full((len(snake_case__ ), sequence_length) , snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ , snake_case__ ): _snake_case : Dict = tensor[:sequence_length] else: _snake_case : List[Any] = tensor[:sequence_length] else: if isinstance(snake_case__ , snake_case__ ): _snake_case : str = tensor[:sequence_length] else: _snake_case : Tuple = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" _snake_case : str = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _snake_case : Union[str, Any] = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -1_00 lowercase__ = "pt" def UpperCamelCase_ ( self: Any, a_: Union[str, Any] ): '''simple docstring''' import torch _snake_case : Optional[Any] = """label""" if """label""" in features[0].keys() else """labels""" _snake_case : str = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _snake_case : Any = self.tokenizer.pad( a_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="""pt""" if labels is None else None, ) if labels is None: return batch _snake_case : Optional[int] = torch.tensor(batch["""entity_ids"""] ).shape[1] _snake_case : Any = self.tokenizer.padding_side if padding_side == "right": _snake_case : Optional[int] = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: _snake_case : Union[str, Any] = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] _snake_case : List[Any] = [feature["""ner_tags"""] for feature in features] _snake_case : str = padding_tensor(a_, -1, a_, a_ ) _snake_case : Any = [feature["""original_entity_spans"""] for feature in features] _snake_case : int = padding_tensor(a_, (-1, -1), a_, a_ ) _snake_case : str = {k: torch.tensor(a_, dtype=torch.intaa ) for k, v in batch.items()} return batch
132
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCAmelCase : Tuple = { "bart": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), "bert": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-large-cased-whole-word-masking-finetuned-squad": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "bert-base-cased-finetuned-mrpc": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "dpr": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), "gpt2": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlnet": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "xlm-roberta": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "transfo-xl": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "openai-gpt": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "roberta": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "layoutlm": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), "roberta-large-mnli": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "camembert": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "flaubert": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "distilbert-base-distilled-squad": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "lxmert-visual-feature-encoder": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "ctrl": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "albert": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "t5": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "electra": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), "wav2vec2": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : Union[str, Any]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) lowerCamelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCamelCase = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) lowerCamelCase = config_class.from_json_file(lowerCamelCase__ ) lowerCamelCase = True lowerCamelCase = True print(f'Building TensorFlow model from configuration: {config}' ) lowerCamelCase = model_class(lowerCamelCase__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCamelCase = cached_file( lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCamelCase = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase__ , lowerCamelCase__ ) if compare_with_pt_model: lowerCamelCase = tf_model(tf_model.dummy_inputs , training=lowerCamelCase__ ) # build the network lowerCamelCase = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowerCamelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCamelCase__ , config=lowerCamelCase__ , state_dict=lowerCamelCase__ ) with torch.no_grad(): lowerCamelCase = pt_model(**pt_model.dummy_inputs ) lowerCamelCase = pto[0].numpy() lowerCamelCase = tfo[0].numpy() lowerCamelCase = np.amax(np.abs(np_pt - np_tf ) ) print(f'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, f'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(f'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(lowerCamelCase__ , save_format="""h5""" ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : int=False , lowerCamelCase__ : int=False , lowerCamelCase__ : int=False , lowerCamelCase__ : List[str]=False , ): '''simple docstring''' if args_model_type is None: lowerCamelCase = list(MODEL_CLASSES.keys() ) else: lowerCamelCase = [args_model_type] for j, model_type in enumerate(lowerCamelCase__ , start=1 ): print("""=""" * 100 ) print(f' Converting model type {j}/{len(lowerCamelCase__ )}: {model_type}' ) print("""=""" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) lowerCamelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCamelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCamelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCamelCase__ , lowerCamelCase__ ) , start=1 ): print("""-""" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f' Skipping finetuned checkpoint {model_shortcut_name}' ) continue lowerCamelCase = model_shortcut_name elif only_convert_finetuned_models: print(f' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( f' Converting checkpoint {i}/{len(lowerCamelCase__ )}: {model_shortcut_name} - model_type {model_type}' ) print("""-""" * 100 ) if config_shortcut_name in aws_config_map: lowerCamelCase = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: lowerCamelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCamelCase = cached_file(lowerCamelCase__ , lowerCamelCase__ , force_download=not use_cached_models ) else: lowerCamelCase = model_shortcut_name if os.path.isfile(lowerCamelCase__ ): lowerCamelCase = "converted_model" convert_pt_checkpoint_to_tf( model_type=lowerCamelCase__ , pytorch_checkpoint_path=lowerCamelCase__ , config_file=lowerCamelCase__ , tf_dump_path=os.path.join(lowerCamelCase__ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=lowerCamelCase__ , ) if remove_cached_files: os.remove(lowerCamelCase__ ) os.remove(lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file." ) parser.add_argument( "--model_type", default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ "convert all the models from AWS." ), ) parser.add_argument( "--pytorch_checkpoint_path", default=None, type=str, help=( "Path to the PyTorch checkpoint path or shortcut name to download from AWS. " "If not given, will download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--config_file", default=None, type=str, help=( "The config json file corresponding to the pre-trained model. \n" "This specifies the model architecture. If not given and " "--pytorch_checkpoint_path is not given or is a shortcut name " "use the configuration associated to the shortcut name on the AWS" ), ) parser.add_argument( "--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions." ) parser.add_argument( "--use_cached_models", action="store_true", help="Use cached models if possible instead of updating to latest checkpoint versions.", ) parser.add_argument( "--remove_cached_files", action="store_true", help="Remove pytorch models after conversion (save memory when converting in batches).", ) parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.") UpperCAmelCase : Tuple = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
252
'''simple docstring''' from collections.abc import Generator from math import sin def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) != 32: raise ValueError("Input must be of length 32" ) UpperCAmelCase : Union[str, Any] = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Dict = format(__magic_name__ , "08x" )[-8:] UpperCAmelCase : List[str] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = b"" for char in message: bit_string += format(__magic_name__ , "08b" ).encode("utf-8" ) UpperCAmelCase : List[Any] = format(len(__magic_name__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCAmelCase : Union[str, Any] = bit_string[pos : pos + 512] UpperCAmelCase : Tuple = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase ( __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) UpperCAmelCase : Any = format(__magic_name__ , "032b" ) UpperCAmelCase : int = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' return (a + b) % 2**32 def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Dict = preprocess(__magic_name__ ) UpperCAmelCase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCAmelCase : List[str] = 0X67452301 UpperCAmelCase : Tuple = 0XEFCDAB89 UpperCAmelCase : List[Any] = 0X98BADCFE UpperCAmelCase : List[str] = 0X10325476 UpperCAmelCase : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCAmelCase : Optional[Any] = aa UpperCAmelCase : List[Any] = ba UpperCAmelCase : Optional[Any] = ca UpperCAmelCase : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCAmelCase : Tuple = d ^ (b & (c ^ d)) UpperCAmelCase : List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCAmelCase : int = c ^ (d & (b ^ c)) UpperCAmelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: UpperCAmelCase : Any = b ^ c ^ d UpperCAmelCase : Union[str, Any] = (3 * i + 5) % 16 else: UpperCAmelCase : Dict = c ^ (b | not_aa(__magic_name__ )) UpperCAmelCase : Dict = (7 * i) % 16 UpperCAmelCase : List[str] = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCAmelCase : List[Any] = d UpperCAmelCase : Any = c UpperCAmelCase : Dict = b UpperCAmelCase : Union[str, Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCAmelCase : List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Any = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : Optional[int] = sum_aa(__magic_name__ , __magic_name__ ) UpperCAmelCase : List[str] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
311
0
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = question_encoder __SCREAMING_SNAKE_CASE = generator __SCREAMING_SNAKE_CASE = self.question_encoder def snake_case_ ( self , lowerCAmelCase__): if os.path.isfile(__lowerCamelCase): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase) __SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , """question_encoder_tokenizer""") __SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , """generator_tokenizer""") self.question_encoder.save_pretrained(__lowerCamelCase) self.generator.save_pretrained(__lowerCamelCase) @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): from ..auto.tokenization_auto import AutoTokenizer __SCREAMING_SNAKE_CASE = kwargs.pop("""config""" , __lowerCamelCase) if config is None: __SCREAMING_SNAKE_CASE = RagConfig.from_pretrained(__lowerCamelCase) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.question_encoder , subfolder="""question_encoder_tokenizer""") __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( __lowerCamelCase , config=config.generator , subfolder="""generator_tokenizer""") return cls(question_encoder=__lowerCamelCase , generator=__lowerCamelCase) def __call__( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.current_tokenizer(*__lowerCamelCase , **__lowerCamelCase) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.generator.batch_decode(*__lowerCamelCase , **__lowerCamelCase) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.generator.decode(*__lowerCamelCase , **__lowerCamelCase) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.question_encoder def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.generator def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "longest" , lowerCAmelCase__ = None , lowerCAmelCase__ = True , **lowerCAmelCase__ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , __lowerCamelCase , ) if max_length is None: __SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length __SCREAMING_SNAKE_CASE = self( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , max_length=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: __SCREAMING_SNAKE_CASE = self.current_tokenizer.model_max_length __SCREAMING_SNAKE_CASE = self( text_target=__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , **__lowerCamelCase , ) __SCREAMING_SNAKE_CASE = labels['''input_ids'''] return model_inputs
356
"""simple docstring""" import fire from utils import calculate_rouge, save_json def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , **UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [x.strip() for x in open(UpperCamelCase_ ).readlines()] __SCREAMING_SNAKE_CASE = [x.strip() for x in open(UpperCamelCase_ ).readlines()][: len(UpperCamelCase_ )] __SCREAMING_SNAKE_CASE = calculate_rouge(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) if save_path is not None: save_json(UpperCamelCase_ , UpperCamelCase_ , indent=UpperCamelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
255
0
import qiskit def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> qiskit.result.counts.Counts: __lowerCamelCase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __lowerCamelCase = qiskit.QuantumCircuit(__lowerCAmelCase , __lowerCAmelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __lowerCamelCase = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Dict = single_qubit_measure(2, 2) print(F'Total count for various states are: {counts}')
270
import argparse import collections import json import os import re import string import sys import numpy as np SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE) SCREAMING_SNAKE_CASE__ : int = None def __magic_name__ ( ) -> str: __lowerCamelCase = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__lowerCAmelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__lowerCAmelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Union[str, Any]: __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def __magic_name__ ( __lowerCAmelCase : Dict ) -> Optional[Any]: def remove_articles(__lowerCAmelCase : Optional[int] ): return ARTICLES_REGEX.sub(''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase : Optional[int] ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase : Union[str, Any] ): __lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def __magic_name__ ( __lowerCAmelCase : List[Any] ) -> Optional[int]: if not s: return [] return normalize_answer(__lowerCAmelCase ).split() def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> int: return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple ) -> str: __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = get_tokens(__lowerCAmelCase ) __lowerCamelCase = collections.Counter(__lowerCAmelCase ) & collections.Counter(__lowerCAmelCase ) __lowerCamelCase = sum(common.values() ) if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = 1.0 * num_same / len(__lowerCAmelCase ) __lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> Optional[Any]: __lowerCamelCase = {} __lowerCamelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: __lowerCamelCase = qa['''id'''] __lowerCamelCase = [t for t in qa['''answers''']['''text'''] if normalize_answer(__lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string __lowerCamelCase = [''''''] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue __lowerCamelCase = preds[qid] # Take max over all gold answers __lowerCamelCase = max(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) __lowerCamelCase = max(compute_fa(__lowerCAmelCase , __lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ) -> List[str]: __lowerCamelCase = {} for qid, s in scores.items(): __lowerCamelCase = na_probs[qid] > na_prob_thresh if pred_na: __lowerCamelCase = float(not qid_to_has_ans[qid] ) else: __lowerCamelCase = s return new_scores def __magic_name__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None ) -> Union[str, Any]: if not qid_list: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores.values() ) / total), ('''f1''', 100.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: __lowerCamelCase = len(__lowerCAmelCase ) return collections.OrderedDict( [ ('''exact''', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : str , __lowerCAmelCase : Optional[Any] ) -> int: for k in new_eval: __lowerCamelCase = new_eval[k] def __magic_name__ ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Optional[Any]: plt.step(__lowerCAmelCase , __lowerCAmelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__lowerCAmelCase , __lowerCAmelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__lowerCAmelCase ) plt.savefig(__lowerCAmelCase ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Tuple=None ) -> int: __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) __lowerCamelCase = 0.0 __lowerCamelCase = 1.0 __lowerCamelCase = 0.0 __lowerCamelCase = [1.0] __lowerCamelCase = [0.0] __lowerCamelCase = 0.0 for i, qid in enumerate(__lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] __lowerCamelCase = true_pos / float(i + 1 ) __lowerCamelCase = true_pos / float(__lowerCAmelCase ) if i == len(__lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__lowerCAmelCase ) recalls.append(__lowerCAmelCase ) if out_image: plot_pr_curve(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ) -> List[Any]: if out_image_dir and not os.path.exists(__lowerCAmelCase ): os.makedirs(__lowerCAmelCase ) __lowerCamelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) __lowerCamelCase = {k: float(__lowerCAmelCase ) for k, v in qid_to_has_ans.items()} __lowerCamelCase = make_precision_recall_eval( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , out_image=os.path.join(__lowerCAmelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_exact''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_f1''' ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''pr_oracle''' ) def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ) -> Optional[Any]: if not qid_list: return __lowerCamelCase = [na_probs[k] for k in qid_list] __lowerCamelCase = np.ones_like(__lowerCAmelCase ) / float(len(__lowerCAmelCase ) ) plt.hist(__lowerCAmelCase , weights=__lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__lowerCAmelCase , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def __magic_name__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] ) -> Optional[int]: __lowerCamelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) __lowerCamelCase = num_no_ans __lowerCamelCase = cur_score __lowerCamelCase = 0.0 __lowerCamelCase = sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(__lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: __lowerCamelCase = scores[qid] else: if preds[qid]: __lowerCamelCase = -1 else: __lowerCamelCase = 0 cur_score += diff if cur_score > best_score: __lowerCamelCase = cur_score __lowerCamelCase = na_probs[qid] return 100.0 * best_score / len(__lowerCAmelCase ), best_thresh def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> int: __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = find_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = best_exact __lowerCamelCase = exact_thresh __lowerCamelCase = best_fa __lowerCamelCase = fa_thresh def __magic_name__ ( ) -> Optional[int]: with open(OPTS.data_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) __lowerCamelCase = dataset_json['''data'''] with open(OPTS.pred_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: __lowerCamelCase = json.load(__lowerCAmelCase ) else: __lowerCamelCase = {k: 0.0 for k in preds} __lowerCamelCase = make_qid_to_has_ans(__lowerCAmelCase ) # maps qid to True/False __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if v] __lowerCamelCase = [k for k, v in qid_to_has_ans.items() if not v] __lowerCamelCase , __lowerCamelCase = get_raw_scores(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = apply_no_ans_threshold(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.na_prob_thresh ) __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase ) if has_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''HasAns''' ) if no_ans_qids: __lowerCamelCase = make_eval_dict(__lowerCAmelCase , __lowerCAmelCase , qid_list=__lowerCAmelCase ) merge_eval(__lowerCAmelCase , __lowerCAmelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__lowerCAmelCase , __lowerCAmelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) else: print(json.dumps(__lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
270
1
'''simple docstring''' from typing import Any def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not input_list: return [] A : Any = [input_list.count(snake_case__ ) for value in input_list] A : Any = max(snake_case__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(snake_case__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
311
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
1
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( _UpperCAmelCase): def __init__( self : int , lowercase_ : Any , lowercase_ : List[Any]=768 ): super().__init__(lowercase_ ) lowercase_ : Optional[Any] = proj_size lowercase_ : Any = CLIPVisionModel(lowercase_ ) lowercase_ : List[str] = PaintByExampleMapper(lowercase_ ) lowercase_ : Union[str, Any] = nn.LayerNorm(config.hidden_size ) lowercase_ : Dict = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowercase_ : Union[str, Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : str=False ): lowercase_ : Any = self.model(pixel_values=lowercase_ ) lowercase_ : Optional[Any] = clip_output.pooler_output lowercase_ : str = self.mapper(latent_states[:, None] ) lowercase_ : List[str] = self.final_layer_norm(lowercase_ ) lowercase_ : str = self.proj_out(lowercase_ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class __magic_name__ ( nn.Module): def __init__( self : List[Any] , lowercase_ : Optional[int] ): super().__init__() lowercase_ : Dict = (config.num_hidden_layers + 1) // 5 lowercase_ : Dict = config.hidden_size lowercase_ : List[str] = 1 lowercase_ : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(lowercase_ , lowercase_ , lowercase_ , activation_fn="""gelu""" , attention_bias=lowercase_ ) for _ in range(lowercase_ ) ] ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Optional[int] ): for block in self.blocks: lowercase_ : Optional[int] = block(lowercase_ ) return hidden_states
239
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : Tuple = { "BAAI/AltCLIP": "https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip_text_model''' def __init__( self : Union[str, Any] , lowercase_ : str=250002 , lowercase_ : Union[str, Any]=1024 , lowercase_ : Any=24 , lowercase_ : Union[str, Any]=16 , lowercase_ : Any=4096 , lowercase_ : Union[str, Any]="gelu" , lowercase_ : Union[str, Any]=0.1 , lowercase_ : Union[str, Any]=0.1 , lowercase_ : int=514 , lowercase_ : Union[str, Any]=1 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-05 , lowercase_ : List[str]=1 , lowercase_ : List[Any]=0 , lowercase_ : Dict=2 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : Any=True , lowercase_ : Union[str, Any]=768 , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_ ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : str = hidden_size lowercase_ : Optional[Any] = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : str = hidden_act lowercase_ : List[str] = intermediate_size lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : str = max_position_embeddings lowercase_ : List[str] = type_vocab_size lowercase_ : Union[str, Any] = initializer_range lowercase_ : List[Any] = initializer_factor lowercase_ : str = layer_norm_eps lowercase_ : Tuple = position_embedding_type lowercase_ : List[Any] = use_cache lowercase_ : Tuple = project_dim class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip_vision_model''' def __init__( self : Dict , lowercase_ : Any=768 , lowercase_ : Dict=3072 , lowercase_ : Optional[Any]=512 , lowercase_ : Dict=12 , lowercase_ : Optional[int]=12 , lowercase_ : Optional[Any]=3 , lowercase_ : str=224 , lowercase_ : List[Any]=32 , lowercase_ : Union[str, Any]="quick_gelu" , lowercase_ : Dict=1E-5 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[Any]=0.02 , lowercase_ : Optional[Any]=1.0 , **lowercase_ : Dict , ): super().__init__(**lowercase_ ) lowercase_ : Tuple = hidden_size lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[Any] = projection_dim lowercase_ : Tuple = num_hidden_layers lowercase_ : List[Any] = num_attention_heads lowercase_ : Any = num_channels lowercase_ : Any = patch_size lowercase_ : Dict = image_size lowercase_ : Optional[Any] = initializer_range lowercase_ : str = initializer_factor lowercase_ : Any = attention_dropout lowercase_ : Optional[int] = layer_norm_eps lowercase_ : int = hidden_act @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Any ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ , lowercase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("""model_type""" ) == "altclip": lowercase_ : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''altclip''' UpperCamelCase__ = True def __init__( self : Optional[int] , lowercase_ : Dict=None , lowercase_ : List[Any]=None , lowercase_ : Tuple=768 , lowercase_ : List[str]=2.65_92 , **lowercase_ : List[Any] ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase_ : Dict = kwargs.pop("""text_config_dict""" , lowercase_ ) lowercase_ : str = kwargs.pop("""vision_config_dict""" , lowercase_ ) super().__init__(**lowercase_ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase_ : Dict = {} # This is the complete result when using `text_config_dict`. lowercase_ : List[str] = AltCLIPTextConfig(**lowercase_ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase_ : Optional[Any] = ( f'''`{key}` is found in both `text_config_dict` and `text_config` but with different values. ''' f'''The value `text_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase_ : Tuple = ( f'''`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ''' f'''value `text_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase_ : int = {} # This is the complete result when using `vision_config_dict`. lowercase_ : List[str] = AltCLIPVisionConfig(**lowercase_ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase_ : List[str] = { str(lowercase_ ): value for key, value in _vision_config_dict["""id2label"""].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase_ : Any = ( f'''`{key}` is found in both `vision_config_dict` and `vision_config` but with different ''' f'''values. The value `vision_config_dict["{key}"]` will be used instead.''' ) # If inferred from default argument values (just to be super careful) else: lowercase_ : List[str] = ( f'''`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ''' f'''The value `vision_config["{key}"]` will be overriden.''' ) logger.warning(lowercase_ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase_ : int = {} logger.info("""`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.""" ) if vision_config is None: lowercase_ : Optional[int] = {} logger.info("""`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.""" ) lowercase_ : Optional[int] = AltCLIPTextConfig(**lowercase_ ) lowercase_ : Any = AltCLIPVisionConfig(**lowercase_ ) lowercase_ : List[Any] = projection_dim lowercase_ : Optional[Any] = logit_scale_init_value lowercase_ : int = 1.0 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict , lowercase_ : AltCLIPTextConfig , lowercase_ : AltCLIPVisionConfig , **lowercase_ : Optional[int] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase_ : Optional[int] = self.text_config.to_dict() lowercase_ : Any = self.vision_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output
239
1
'''simple docstring''' import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : str = RoCBertTokenizer A : int = None A : List[Any] = False A : str = True A : List[str] = filter_non_english def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : Optional[int] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : List[str] = {} for i, value in enumerate(A ): SCREAMING_SNAKE_CASE : str = i SCREAMING_SNAKE_CASE : List[str] = i SCREAMING_SNAKE_CASE : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['word_shape_file'] ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file, 'w', encoding='utf-8' ) as word_shape_writer: json.dump(A, A, ensure_ascii=A ) with open(self.word_pronunciation_file, 'w', encoding='utf-8' ) as word_pronunciation_writer: json.dump(A, A, ensure_ascii=A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A, ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A ), [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A ), [5, 6, 2, 5, 7, 8] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ), ['ah', '\u535A', '\u63A8', 'zz'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['h\u00E9llo'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = RoCBertBasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ), ['hello'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = RoCBertBasicTokenizer(do_lower_case=A ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=A, strip_accents=A ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ), ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=A, never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ), ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] SCREAMING_SNAKE_CASE : str = {} for i, token in enumerate(A ): SCREAMING_SNAKE_CASE : str = i SCREAMING_SNAKE_CASE : List[Any] = RoCBertWordpieceTokenizer(vocab=A, unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ), [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ), ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ), ['[UNK]', 'runn', '##ing'] ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: SCREAMING_SNAKE_CASE : Dict = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A ) for t in ['Test', '\xad', 'test']], [['[UNK]'], [], ['[UNK]']] ) def UpperCamelCase_ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : List[Any] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.encode_plus( A, return_attention_mask=A, return_token_type_ids=A, return_offsets_mapping=A, add_special_tokens=A, ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.do_lower_case if hasattr(A, 'do_lower_case' ) else False SCREAMING_SNAKE_CASE : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results], tokens['offset_mapping'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ['的', '人', '有'] SCREAMING_SNAKE_CASE : Dict = ''.join(A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.convert_ids_to_tokens(A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A, A ) self.assertListEqual(A, A ) SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(A, **A ) SCREAMING_SNAKE_CASE : str = tokenizer_r.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_p.encode(A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.convert_ids_to_tokens(A ) SCREAMING_SNAKE_CASE : str = tokenizer_p.convert_ids_to_tokens(A ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE : str = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A ) ] self.assertListEqual(A, A ) self.assertListEqual(A, A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class(self.vocab_file, self.word_shape_file, self.word_pronunciation_file ) SCREAMING_SNAKE_CASE : str = tokenizer.encode('你好', add_special_tokens=A ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.encode('你是谁', add_special_tokens=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.build_inputs_with_special_tokens(A ) SCREAMING_SNAKE_CASE : str = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): SCREAMING_SNAKE_CASE : Any = '你好,你是谁' SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(A ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_tokens_to_ids(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_shape_ids(A ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_pronunciation_ids(A ) SCREAMING_SNAKE_CASE : str = tokenizer.prepare_for_model( A, A, A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.encode_plus(A, add_special_tokens=A ) self.assertEqual(A, A )
246
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase_ = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
246
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase( __a ): '''simple docstring''' lowercase__ = ["image_processor", "tokenizer"] lowercase__ = "LayoutLMv2ImageProcessor" lowercase__ = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self: Optional[int], a_: Union[str, Any]=None, a_: Union[str, Any]=None, **a_: str ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""", a_, ) _snake_case : List[Any] = kwargs.pop("""feature_extractor""" ) _snake_case : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_, a_ ) def __call__( self: List[Any], a_: Union[str, Any], a_: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, a_: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, a_: Union[List[List[int]], List[List[List[int]]]] = None, a_: Optional[Union[List[int], List[List[int]]]] = None, a_: bool = True, a_: Union[bool, str, PaddingStrategy] = False, a_: Union[bool, str, TruncationStrategy] = None, a_: Optional[int] = None, a_: int = 0, a_: Optional[int] = None, a_: Optional[bool] = None, a_: Optional[bool] = None, a_: bool = False, a_: bool = False, a_: bool = False, a_: bool = False, a_: bool = True, a_: Optional[Union[str, TensorType]] = None, **a_: List[Any], ): '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor _snake_case : List[Any] = self.image_processor(images=a_, return_tensors=a_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(a_, a_ ): _snake_case : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) _snake_case : Union[str, Any] = features["""words"""] _snake_case : List[Any] = self.tokenizer( text=text if text is not None else features["""words"""], text_pair=text_pair if text_pair is not None else None, boxes=boxes if boxes is not None else features["""boxes"""], word_labels=a_, add_special_tokens=a_, padding=a_, truncation=a_, max_length=a_, stride=a_, pad_to_multiple_of=a_, return_token_type_ids=a_, return_attention_mask=a_, return_overflowing_tokens=a_, return_special_tokens_mask=a_, return_offsets_mapping=a_, return_length=a_, verbose=a_, return_tensors=a_, **a_, ) # add pixel values _snake_case : int = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: _snake_case : int = self.get_overflowing_images(a_, encoded_inputs["""overflow_to_sample_mapping"""] ) _snake_case : Optional[int] = images return encoded_inputs def UpperCamelCase_ ( self: List[Any], a_: List[Any], a_: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(a_ ) != len(a_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f" {len(a_ )} and {len(a_ )}" ) return images_with_overflow def UpperCamelCase_ ( self: Union[str, Any], *a_: List[str], **a_: Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*a_, **a_ ) def UpperCamelCase_ ( self: List[str], *a_: Tuple, **a_: Dict ): '''simple docstring''' return self.tokenizer.decode(*a_, **a_ ) @property def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCamelCase_ ( self: int ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""", a_, ) return self.image_processor_class @property def UpperCamelCase_ ( self: Dict ): '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""", a_, ) return self.image_processor
64
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : list[str] | None = None , UpperCAmelCase_ : dict[str, float] | None = None , UpperCAmelCase_ : bool = False , ): """simple docstring""" a :str = cipher_alphabet or [chr(UpperCAmelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) a :List[Any] = { '''a''': 0.08497, '''b''': 0.01492, '''c''': 0.02202, '''d''': 0.04253, '''e''': 0.11162, '''f''': 0.02228, '''g''': 0.02015, '''h''': 0.06094, '''i''': 0.07546, '''j''': 0.00153, '''k''': 0.01292, '''l''': 0.04025, '''m''': 0.02406, '''n''': 0.06749, '''o''': 0.07507, '''p''': 0.01929, '''q''': 0.00095, '''r''': 0.07587, '''s''': 0.06327, '''t''': 0.09356, '''u''': 0.02758, '''v''': 0.00978, '''w''': 0.02560, '''x''': 0.00150, '''y''': 0.01994, '''z''': 0.00077, } else: # Custom frequencies dictionary a :Dict = frequencies_dict if not case_sensitive: a :Union[str, Any] = ciphertext.lower() # Chi squared statistic values a :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(UpperCAmelCase_ ) ): a :int = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet a :Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCAmelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter a :List[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: a :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message a :List[Any] = decrypted_with_shift.lower().count(UpperCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a :Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula a :Any = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message a :int = decrypted_with_shift.count(UpperCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a :Tuple = frequencies[letter] * occurrences # Complete the chi squared statistic formula a :Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary a :Optional[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCAmelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] a :int = min( UpperCAmelCase_ , key=UpperCAmelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( a ) , ( a ) , ) :Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
94
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case__ : List[Any] = logging.get_logger(__name__) snake_case__ : Any = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) snake_case__ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _lowerCamelCase ( lowerCamelCase_ : str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase_ : int = model_type_to_module_name(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = importlib.import_module(F'''.{module_name}''' , 'transformers.models' ) try: return getattr(lowerCamelCase_ , lowerCamelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCamelCase_ , '__name__' , lowerCamelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase_ : Tuple = importlib.import_module('transformers' ) if hasattr(lowerCamelCase_ , lowerCamelCase_ ): return getattr(lowerCamelCase_ , lowerCamelCase_ ) return None def _lowerCamelCase ( lowerCamelCase_ : Union[str, os.PathLike] , lowerCamelCase_ : Optional[Union[str, os.PathLike]] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[Dict[str, str]] = None , lowerCamelCase_ : Optional[Union[bool, str]] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : bool = False , **lowerCamelCase_ : str , ): """simple docstring""" UpperCAmelCase_ : List[str] = get_file_from_repo( lowerCamelCase_ , lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , resume_download=lowerCamelCase_ , proxies=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , revision=lowerCamelCase_ , local_files_only=lowerCamelCase_ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowerCamelCase_ , encoding='utf-8' ) as reader: return json.load(lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): '''simple docstring''' raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(snake_case_ ) def _UpperCamelCase ( cls , snake_case_ , **snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Tuple = kwargs.pop('config' , snake_case_ ) UpperCAmelCase_ : List[str] = kwargs.pop('trust_remote_code' , snake_case_ ) UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = ImageProcessingMixin.get_image_processor_dict(snake_case_ , **snake_case_ ) UpperCAmelCase_ : Optional[Any] = config_dict.get('image_processor_type' , snake_case_ ) UpperCAmelCase_ : int = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): UpperCAmelCase_ : Dict = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase_ : Any = config_dict.pop('feature_extractor_type' , snake_case_ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) UpperCAmelCase_ : str = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): UpperCAmelCase_ : Union[str, Any] = config_dict['auto_map']['AutoFeatureExtractor'] UpperCAmelCase_ : Union[str, Any] = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(snake_case_ , **snake_case_ ) # It could be in `config.image_processor_type`` UpperCAmelCase_ : Any = getattr(snake_case_ , 'image_processor_type' , snake_case_ ) if hasattr(snake_case_ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase_ : Tuple = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: UpperCAmelCase_ : List[str] = image_processor_class_from_name(snake_case_ ) UpperCAmelCase_ : Tuple = image_processor_auto_map is not None UpperCAmelCase_ : Optional[int] = image_processor_class is not None or type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase_ : List[Any] = resolve_trust_remote_code( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if has_remote_code and trust_remote_code: UpperCAmelCase_ : List[str] = get_class_from_dynamic_module( snake_case_ , snake_case_ , **snake_case_ ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop('code_revision' , snake_case_ ) if os.path.isdir(snake_case_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case_ , **snake_case_ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case_ , **snake_case_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case_ ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase_ : List[Any] = IMAGE_PROCESSOR_MAPPING[type(snake_case_ )] return image_processor_class.from_dict(snake_case_ , **snake_case_ ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _UpperCamelCase ( snake_case_ , snake_case_ ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(snake_case_ , snake_case_ )
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
lowerCamelCase__ = {} def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __a = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __a = _calculate(days - 1 , _SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __a = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __a = _calculate(days - 1 , _SCREAMING_SNAKE_CASE , 0 ) __a = state_late + state_absent + state_ontime __a = prizestrings return prizestrings def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : int = 30 ): """simple docstring""" return _calculate(_SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
302
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = Dict[str, Any] lowerCamelCase__ = List[Prediction] @add_end_docstrings(lowerCamelCase__ ) class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): def __init__( self : Tuple , *__lowercase : Tuple , **__lowercase : Optional[int] ): '''simple docstring''' super().__init__(*__lowercase , **__lowercase ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase_ ( self : Optional[int] , **__lowercase : List[str] ): '''simple docstring''' __a = {} if "threshold" in kwargs: __a = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self : List[Any] , *__lowercase : Any , **__lowercase : Tuple ): '''simple docstring''' return super().__call__(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : str , __lowercase : Tuple ): '''simple docstring''' __a = load_image(__lowercase ) __a = torch.IntTensor([[image.height, image.width]] ) __a = self.image_processor(images=[image] , return_tensors="""pt""" ) if self.tokenizer is not None: __a = self.tokenizer(text=inputs["""words"""] , boxes=inputs["""boxes"""] , return_tensors="""pt""" ) __a = target_size return inputs def UpperCamelCase_ ( self : Dict , __lowercase : List[str] ): '''simple docstring''' __a = model_inputs.pop("""target_size""" ) __a = self.model(**__lowercase ) __a = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: __a = model_inputs["""bbox"""] return model_outputs def UpperCamelCase_ ( self : Optional[int] , __lowercase : List[Any] , __lowercase : List[Any]=0.9 ): '''simple docstring''' __a = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __a , __a = target_size[0].tolist() def unnormalize(__lowercase : Optional[Any] ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __a , __a = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __a = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __a = [unnormalize(__lowercase ) for bbox in model_outputs["""bbox"""].squeeze(0 )] __a = ["""score""", """label""", """box"""] __a = [dict(zip(__lowercase , __lowercase ) ) for vals in zip(scores.tolist() , __lowercase , __lowercase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __a = self.image_processor.post_process_object_detection(__lowercase , __lowercase , __lowercase ) __a = raw_annotations[0] __a = raw_annotation["""scores"""] __a = raw_annotation["""labels"""] __a = raw_annotation["""boxes"""] __a = scores.tolist() __a = [self.model.config.idalabel[label.item()] for label in labels] __a = [self._get_bounding_box(__lowercase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __a = ["""score""", """label""", """box"""] __a = [ dict(zip(__lowercase , __lowercase ) ) for vals in zip(raw_annotation["""scores"""] , raw_annotation["""labels"""] , raw_annotation["""boxes"""] ) ] return annotation def UpperCamelCase_ ( self : Optional[int] , __lowercase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) __a , __a , __a , __a = box.int().tolist() __a = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
302
1
from __future__ import annotations from functools import lru_cache from math import ceil _snake_case : Tuple = 100 _snake_case : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) _snake_case : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def __lowercase ( __lowerCamelCase ): if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case : set[int] = set() __snake_case : int __snake_case : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __lowercase ( __lowerCamelCase = 5_0_0_0 ): for number_to_partition in range(1 , __lowerCamelCase ): if len(partition(__lowerCamelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
355
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _snake_case : int = "scheduler_config.json" class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Tuple = 2 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Tuple = 5 @dataclass class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : jnp.ndarray class a : """simple docstring""" __UpperCAmelCase : Dict = SCHEDULER_CONFIG_NAME __UpperCAmelCase : Union[str, Any] = ["dtype"] __UpperCAmelCase : Tuple = [] __UpperCAmelCase : int = True @classmethod def __snake_case ( cls : List[str] , lowerCamelCase : Dict[str, Any] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : List[str]=False , **lowerCamelCase : Union[str, Any] , ) -> List[str]: __snake_case , __snake_case : List[str] = cls.load_config( pretrained_model_name_or_path=lowerCamelCase , subfolder=lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase , ) __snake_case , __snake_case : Dict = cls.from_config(lowerCamelCase , return_unused_kwargs=lowerCamelCase , **lowerCamelCase ) if hasattr(lowerCamelCase , "create_state" ) and getattr(lowerCamelCase , "has_state" , lowerCamelCase ): __snake_case : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __snake_case ( self : Any , lowerCamelCase : Union[str, os.PathLike] , lowerCamelCase : bool = False , **lowerCamelCase : List[Any] ) -> int: self.save_config(save_directory=lowerCamelCase , push_to_hub=lowerCamelCase , **lowerCamelCase ) @property def __snake_case ( self : Tuple ) -> List[Any]: return self._get_compatibles() @classmethod def __snake_case ( cls : int ) -> Dict: __snake_case : Tuple = list(set([cls.__name__] + cls._compatibles ) ) __snake_case : int = importlib.import_module(__name__.split("." )[0] ) __snake_case : Tuple = [ getattr(lowerCamelCase , lowerCamelCase ) for c in compatible_classes_str if hasattr(lowerCamelCase , lowerCamelCase ) ] return compatible_classes def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): assert len(__lowerCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__lowerCamelCase ) - x.ndim) ) , __lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase=0.9_9_9 , __lowerCamelCase=jnp.floataa ): def alpha_bar(__lowerCamelCase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 __snake_case : List[Any] = [] for i in range(__lowerCamelCase ): __snake_case : Dict = i / num_diffusion_timesteps __snake_case : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__lowerCamelCase ) / alpha_bar(__lowerCamelCase ) , __lowerCamelCase ) ) return jnp.array(__lowerCamelCase , dtype=__lowerCamelCase ) @flax.struct.dataclass class a : """simple docstring""" __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray __UpperCAmelCase : jnp.ndarray @classmethod def __snake_case ( cls : Union[str, Any] , lowerCamelCase : int ) -> List[Any]: __snake_case : Dict = scheduler.config if config.trained_betas is not None: __snake_case : Dict = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": __snake_case : Optional[int] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Optional[Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) __snake_case : Any = 1.0 - betas __snake_case : int = jnp.cumprod(lowerCamelCase , axis=0 ) return cls( alphas=lowerCamelCase , betas=lowerCamelCase , alphas_cumprod=lowerCamelCase , ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = state.alphas_cumprod __snake_case : str = alphas_cumprod[timesteps] ** 0.5 __snake_case : Dict = sqrt_alpha_prod.flatten() __snake_case : str = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) __snake_case : Tuple = (1 - alphas_cumprod[timesteps]) ** 0.5 __snake_case : str = sqrt_one_minus_alpha_prod.flatten() __snake_case : Tuple = broadcast_to_shape_from_left(__lowerCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Union[str, Any] = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : List[str] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case , __snake_case : Dict = get_sqrt_alpha_prod(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __snake_case : Optional[int] = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
134
0
"""simple docstring""" import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCAmelCase_ : List[str] = logging.getLogger(__name__) class lowerCAmelCase__ ( __snake_case ): '''simple docstring''' __UpperCamelCase = """summarization""" __UpperCamelCase = ["""loss"""] __UpperCamelCase = ROUGE_KEYS __UpperCamelCase = """rouge2""" def __init__( self : Tuple , lowercase_ : Union[str, Any] , **lowercase_ : List[str]): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: SCREAMING_SNAKE_CASE_ : int = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''') if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''') super().__init__(UpperCamelCase__ , num_labels=UpperCamelCase__ , mode=self.mode , **UpperCamelCase__) use_task_specific_params(self.model , '''summarization''') save_git_info(self.hparams.output_dir) SCREAMING_SNAKE_CASE_ : Optional[int] = Path(self.output_dir) / "metrics.json" SCREAMING_SNAKE_CASE_ : str = Path(self.output_dir) / "hparams.pkl" pickle_save(self.hparams , self.hparams_save_path) SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : int = self.config.model_type SCREAMING_SNAKE_CASE_ : Tuple = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size SCREAMING_SNAKE_CASE_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } SCREAMING_SNAKE_CASE_ : Dict = { "train": self.hparams.n_train, "val": self.hparams.n_val, "test": self.hparams.n_test, } SCREAMING_SNAKE_CASE_ : Dict = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} SCREAMING_SNAKE_CASE_ : Optional[Any] = { "train": self.hparams.max_target_length, "val": self.hparams.val_max_target_length, "test": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder()) assert_all_frozen(self.model.get_encoder()) SCREAMING_SNAKE_CASE_ : str = get_git_info()["repo_sha"] SCREAMING_SNAKE_CASE_ : Optional[Any] = hparams.num_workers SCREAMING_SNAKE_CASE_ : List[str] = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , UpperCamelCase__): SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer.lang_code_to_id[hparams.tgt_lang] SCREAMING_SNAKE_CASE_ : List[Any] = self.decoder_start_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''') else LegacySeqaSeqDataset ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : int = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: SCREAMING_SNAKE_CASE_ : List[Any] = self.hparams.eval_max_gen_length else: SCREAMING_SNAKE_CASE_ : Dict = self.model.config.max_length SCREAMING_SNAKE_CASE_ : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : Dict[str, torch.Tensor]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = { k: self.tokenizer.batch_decode(v.tolist()) if "mask" not in k else v.shape for k, v in batch.items() } save_json(UpperCamelCase__ , Path(self.output_dir) / '''text_batch.json''') save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir) / '''tok_batch.json''') SCREAMING_SNAKE_CASE_ : Any = True return readable_batch def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , **lowercase_ : Optional[int]): '''simple docstring''' return self.model(UpperCamelCase__ , **UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.tokenizer.batch_decode( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__) return lmap(str.strip , UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.tokenizer.pad_token_id SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch["input_ids"], batch["attention_mask"] SCREAMING_SNAKE_CASE_ : Optional[Any] = batch["labels"] if isinstance(self.model , UpperCamelCase__): SCREAMING_SNAKE_CASE_ : List[Any] = self.model._shift_right(UpperCamelCase__) else: SCREAMING_SNAKE_CASE_ : Tuple = shift_tokens_right(UpperCamelCase__ , UpperCamelCase__) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero SCREAMING_SNAKE_CASE_ : Tuple = decoder_input_ids self.save_readable_batch(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[int] = self(UpperCamelCase__ , attention_mask=UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , use_cache=UpperCamelCase__) SCREAMING_SNAKE_CASE_ : str = outputs["logits"] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = nn.CrossEntropyLoss(ignore_index=UpperCamelCase__) assert lm_logits.shape[-1] == self.vocab_size SCREAMING_SNAKE_CASE_ : Tuple = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1]) , tgt_ids.view(-1)) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = nn.functional.log_softmax(UpperCamelCase__ , dim=-1) SCREAMING_SNAKE_CASE_ : int = label_smoothed_nll_loss( UpperCamelCase__ , UpperCamelCase__ , self.hparams.label_smoothing , ignore_index=UpperCamelCase__) return (loss,) @property def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return self.tokenizer.pad_token_id def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self._step(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Any = dict(zip(self.loss_names , UpperCamelCase__)) # tokens per batch SCREAMING_SNAKE_CASE_ : Any = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum() SCREAMING_SNAKE_CASE_ : List[Any] = batch["input_ids"].shape[0] SCREAMING_SNAKE_CASE_ : Optional[int] = batch["input_ids"].eq(self.pad).sum() SCREAMING_SNAKE_CASE_ : Any = batch["input_ids"].eq(self.pad).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : str): '''simple docstring''' return self._generative_step(UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Any , lowercase_ : List[str]="val"): '''simple docstring''' self.step_count += 1 SCREAMING_SNAKE_CASE_ : int = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} SCREAMING_SNAKE_CASE_ : Tuple = losses["loss"] SCREAMING_SNAKE_CASE_ : Any = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"] } SCREAMING_SNAKE_CASE_ : Tuple = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) SCREAMING_SNAKE_CASE_ : torch.FloatTensor = torch.tensor(UpperCamelCase__).type_as(UpperCamelCase__) generative_metrics.update({k: v.item() for k, v in losses.items()}) losses.update(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[Any] = {F'{prefix}_avg_{k}': x for k, x in losses.items()} SCREAMING_SNAKE_CASE_ : Tuple = self.step_count self.metrics[prefix].append(UpperCamelCase__) # callback writes this to self.metrics_save_path SCREAMING_SNAKE_CASE_ : Optional[int] = flatten_list([x['''preds'''] for x in outputs]) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : int , lowercase_ : List[Any]): '''simple docstring''' return calculate_rouge(UpperCamelCase__ , UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') SCREAMING_SNAKE_CASE_ : Dict = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=UpperCamelCase__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) SCREAMING_SNAKE_CASE_ : List[Any] = (time.time() - ta) / batch["input_ids"].shape[0] SCREAMING_SNAKE_CASE_ : List[str] = self.ids_to_clean_text(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : List[str] = self.ids_to_clean_text(batch['''labels''']) SCREAMING_SNAKE_CASE_ : Optional[Any] = self._step(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : int = dict(zip(self.loss_names , UpperCamelCase__)) SCREAMING_SNAKE_CASE_ : Dict = self.calc_generative_metrics(UpperCamelCase__ , UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.mean(lmap(UpperCamelCase__ , UpperCamelCase__)) base_metrics.update(gen_time=UpperCamelCase__ , gen_len=UpperCamelCase__ , preds=UpperCamelCase__ , target=UpperCamelCase__ , **UpperCamelCase__) return base_metrics def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Tuple , lowercase_ : Optional[Any]): '''simple docstring''' return self._generative_step(UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : List[str]): '''simple docstring''' return self.validation_epoch_end(UpperCamelCase__ , prefix='''test''') def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.n_obs[type_path] SCREAMING_SNAKE_CASE_ : List[str] = self.target_lens[type_path] SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dataset_class( self.tokenizer , type_path=UpperCamelCase__ , n_obs=UpperCamelCase__ , max_target_length=UpperCamelCase__ , **self.dataset_kwargs , ) return dataset def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str , lowercase_ : int , lowercase_ : bool = False): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.get_dataset(UpperCamelCase__) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ : Optional[Any] = dataset.make_sortish_sampler(UpperCamelCase__ , distributed=self.hparams.gpus > 1) return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": SCREAMING_SNAKE_CASE_ : List[Any] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1) return DataLoader( UpperCamelCase__ , batch_sampler=UpperCamelCase__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=dataset.collate_fn , shuffle=UpperCamelCase__ , num_workers=self.num_workers , sampler=UpperCamelCase__ , ) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=UpperCamelCase__) return dataloader def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size) @staticmethod def _SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Tuple): '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__) add_generic_args(UpperCamelCase__ , UpperCamelCase__) parser.add_argument( '''--max_source_length''' , default=1024 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=UpperCamelCase__ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''') parser.add_argument('''--freeze_embeds''' , action='''store_true''') parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=UpperCamelCase__) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=UpperCamelCase__) parser.add_argument('''--max_tokens_per_batch''' , type=UpperCamelCase__ , default=UpperCamelCase__) parser.add_argument('''--logger_name''' , type=UpperCamelCase__ , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''') parser.add_argument('''--n_train''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''') parser.add_argument('''--n_val''' , type=UpperCamelCase__ , default=500 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''') parser.add_argument('''--n_test''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='''# examples. -1 means use all.''') parser.add_argument( '''--task''' , type=UpperCamelCase__ , default='''summarization''' , required=UpperCamelCase__ , help='''# examples. -1 means use all.''') parser.add_argument('''--label_smoothing''' , type=UpperCamelCase__ , default=0.0 , required=UpperCamelCase__) parser.add_argument('''--src_lang''' , type=UpperCamelCase__ , default='''''' , required=UpperCamelCase__) parser.add_argument('''--tgt_lang''' , type=UpperCamelCase__ , default='''''' , required=UpperCamelCase__) parser.add_argument('''--eval_beams''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__) parser.add_argument( '''--val_metric''' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , choices=['''bleu''', '''rouge2''', '''loss''', None]) parser.add_argument('''--eval_max_gen_length''' , type=UpperCamelCase__ , default=UpperCamelCase__ , help='''never generate more than n tokens''') parser.add_argument('''--save_top_k''' , type=UpperCamelCase__ , default=1 , required=UpperCamelCase__ , help='''How many checkpoints to save''') parser.add_argument( '''--early_stopping_patience''' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class lowerCAmelCase__ ( __snake_case ): '''simple docstring''' __UpperCamelCase = """translation""" __UpperCamelCase = ["""loss"""] __UpperCamelCase = ["""bleu"""] __UpperCamelCase = """bleu""" def __init__( self : Dict , lowercase_ : List[Any] , **lowercase_ : int): '''simple docstring''' super().__init__(UpperCamelCase__ , **UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[Any] = hparams.src_lang SCREAMING_SNAKE_CASE_ : str = hparams.tgt_lang def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : List[str] , lowercase_ : Optional[int]): '''simple docstring''' return calculate_bleu(UpperCamelCase__ , UpperCamelCase__) def _A (__a , __a=None ) -> SummarizationModule: """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) check_output_dir(__SCREAMING_SNAKE_CASE , expected_items=3 ) if model is None: if "summarization" in args.task: SCREAMING_SNAKE_CASE_ : SummarizationModule = SummarizationModule(__SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : SummarizationModule = TranslationModule(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): SCREAMING_SNAKE_CASE_ : Optional[int] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ : str = os.environ.get('''WANDB_PROJECT''' , __SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = WandbLogger(name=model.output_dir.name , project=__SCREAMING_SNAKE_CASE ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger SCREAMING_SNAKE_CASE_ : Tuple = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' ) if args.early_stopping_patience >= 0: SCREAMING_SNAKE_CASE_ : Tuple = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = args.val_metric == "loss" SCREAMING_SNAKE_CASE_ : pl.Trainer = generic_train( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __SCREAMING_SNAKE_CASE ) , early_stopping_callback=__SCREAMING_SNAKE_CASE , logger=__SCREAMING_SNAKE_CASE , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model SCREAMING_SNAKE_CASE_ : Optional[Any] = "" SCREAMING_SNAKE_CASE_ : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=__SCREAMING_SNAKE_CASE ) ) if checkpoints: SCREAMING_SNAKE_CASE_ : List[str] = checkpoints[-1] SCREAMING_SNAKE_CASE_ : List[Any] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() UpperCAmelCase_ : int = pl.Trainer.add_argparse_args(parser) UpperCAmelCase_ : Optional[int] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCAmelCase_ : Any = parser.parse_args() main(args)
91
"""simple docstring""" import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: # Construct model if gpta_config_file == "": __lowerCAmelCase: Optional[int] = GPTaConfig() else: __lowerCAmelCase: List[str] = GPTaConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = GPTaModel(__SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model __lowerCAmelCase: str = pytorch_dump_folder_path + "/" + WEIGHTS_NAME __lowerCAmelCase: List[Any] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--gpt2_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) __A = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
217
0
"""simple docstring""" from __future__ import annotations class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase = 0 ): lowercase__: Union[str, Any] = key def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: str = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: int = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__: Union[str, Any] = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Dict = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__: Any = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
2
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __A = logging.get_logger(__name__) __A = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = "bloom" _UpperCAmelCase :List[str] = ["past_key_values"] _UpperCAmelCase :Optional[Any] = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , _UpperCAmelCase=250880 , _UpperCAmelCase=64 , _UpperCAmelCase=2 , _UpperCAmelCase=8 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1 , _UpperCAmelCase=False , **_UpperCAmelCase , ): lowercase__: Any = vocab_size # Backward compatibility with n_embed kwarg lowercase__: Optional[Any] = kwargs.pop('''n_embed''' , _UpperCAmelCase ) lowercase__: int = hidden_size if n_embed is None else n_embed lowercase__: int = n_layer lowercase__: int = n_head lowercase__: Optional[Any] = layer_norm_epsilon lowercase__: int = initializer_range lowercase__: List[Any] = use_cache lowercase__: str = pretraining_tp lowercase__: Tuple = apply_residual_connection_post_layernorm lowercase__: int = hidden_dropout lowercase__: Optional[Any] = attention_dropout lowercase__: int = bos_token_id lowercase__: Union[str, Any] = eos_token_id lowercase__: Any = slow_but_exact super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :int = version.parse("1.12" ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None , _UpperCAmelCase = False , ): super().__init__(_UpperCAmelCase , task=_UpperCAmelCase , patching_specs=_UpperCAmelCase , use_past=_UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , _UpperCAmelCase ): # TODO: how to do that better? lowercase__: Any = 0 @property def _snake_case ( self ): lowercase__: str = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(_UpperCAmelCase , direction='''inputs''' , inverted_values_shape=_UpperCAmelCase ) lowercase__: List[str] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowercase__: str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _snake_case ( self ): return self._config.n_layer @property def _snake_case ( self ): return self._config.n_head @property def _snake_case ( self ): return 1e-3 def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): lowercase__: str = super(_UpperCAmelCase , self ).generate_dummy_inputs( _UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowercase__: List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowercase__, lowercase__: Optional[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowercase__: Tuple = seqlen + 2 lowercase__: str = self._config.hidden_size // self.num_attention_heads lowercase__: Optional[int] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowercase__: Union[str, Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowercase__: str = [ (torch.zeros(_UpperCAmelCase ), torch.zeros(_UpperCAmelCase )) for _ in range(self.num_layers ) ] lowercase__: Tuple = common_inputs['''attention_mask'''] if self.use_past: lowercase__: int = ordered_inputs['''attention_mask'''].dtype lowercase__: List[str] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_UpperCAmelCase , _UpperCAmelCase , dtype=_UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _snake_case ( self ): return 13
2
1
import numpy as np def UpperCamelCase__( UpperCamelCase__ : np.array )->np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
193
a__: Dict = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} a__: str = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase__( UpperCamelCase__ : dict[int, list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : list[bool] )->list[int]: A__ = True A__ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) order.append(UpperCamelCase__ ) return order def UpperCamelCase__( UpperCamelCase__ : dict[int, list[int]] , UpperCamelCase__ : int , UpperCamelCase__ : list[bool] )->list[int]: A__ = True A__ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return component def UpperCamelCase__( UpperCamelCase__ : dict[int, list[int]] )->list[list[int]]: A__ = len(UpperCamelCase__ ) * [False] A__ = {vert: [] for vert in range(len(UpperCamelCase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCamelCase__ ) A__ = [] for i, was_visited in enumerate(UpperCamelCase__ ): if not was_visited: order += topology_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A__ = [] A__ = len(UpperCamelCase__ ) * [False] for i in range(len(UpperCamelCase__ ) ): A__ = order[len(UpperCamelCase__ ) - i - 1] if not visited[vert]: A__ = find_components(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) components_list.append(UpperCamelCase__ ) return components_list
193
1
import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowerCamelCase : str = "src/transformers" _lowerCamelCase : Union[str, Any] = "docs/source/en" _lowerCamelCase : int = "." def a__ ( UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : int ) -> Optional[int]: with open(UpperCAmelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: UpperCAmelCase : Dict = f.readlines() # Find the start prompt. UpperCAmelCase : List[str] = 0 while not lines[start_index].startswith(UpperCAmelCase ): start_index += 1 start_index += 1 UpperCAmelCase : Any = start_index while not lines[end_index].startswith(UpperCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowerCamelCase : Optional[Any] = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowerCamelCase : List[str] = re.compile(R"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowerCamelCase : List[str] = re.compile(R"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowerCamelCase : Any = re.compile(R"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : Any = direct_transformers_import(TRANSFORMERS_PATH) def a__ ( UpperCAmelCase : Dict ) -> Any: UpperCAmelCase : List[str] = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , UpperCAmelCase ) return [m.group(0 ) for m in matches] def a__ ( UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> List[str]: UpperCAmelCase : Any = 2 if text == '''✅''' or text == '''❌''' else len(UpperCAmelCase ) UpperCAmelCase : str = (width - text_length) // 2 UpperCAmelCase : int = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def a__ ( ) -> List[str]: UpperCAmelCase : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase : Optional[int] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } UpperCAmelCase : Optional[int] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. UpperCAmelCase : Optional[int] = collections.defaultdict(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = collections.defaultdict(UpperCAmelCase ) UpperCAmelCase : str = collections.defaultdict(UpperCAmelCase ) UpperCAmelCase : List[Any] = collections.defaultdict(UpperCAmelCase ) UpperCAmelCase : str = collections.defaultdict(UpperCAmelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase ): UpperCAmelCase : Any = None if attr_name.endswith('''Tokenizer''' ): UpperCAmelCase : Any = slow_tokenizers UpperCAmelCase : str = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): UpperCAmelCase : List[Any] = fast_tokenizers UpperCAmelCase : str = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase ) is not None: UpperCAmelCase : Optional[int] = tf_models UpperCAmelCase : Dict = _re_tf_models.match(UpperCAmelCase ).groups()[0] elif _re_flax_models.match(UpperCAmelCase ) is not None: UpperCAmelCase : Optional[int] = flax_models UpperCAmelCase : str = _re_flax_models.match(UpperCAmelCase ).groups()[0] elif _re_pt_models.match(UpperCAmelCase ) is not None: UpperCAmelCase : Tuple = pt_models UpperCAmelCase : Union[str, Any] = _re_pt_models.match(UpperCAmelCase ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase ) > 0: if attr_name in model_name_to_prefix.values(): UpperCAmelCase : Union[str, Any] = True break # Try again after removing the last word in the name UpperCAmelCase : Any = ''''''.join(camel_case_split(UpperCAmelCase )[:-1] ) # Let's build that table! UpperCAmelCase : List[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) UpperCAmelCase : Optional[int] = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). UpperCAmelCase : Any = [len(UpperCAmelCase ) + 2 for c in columns] UpperCAmelCase : List[str] = max([len(UpperCAmelCase ) for name in model_names] ) + 2 # Build the table per se UpperCAmelCase : List[Any] = '''|''' + '''|'''.join([_center_text(UpperCAmelCase , UpperCAmelCase ) for c, w in zip(UpperCAmelCase , UpperCAmelCase )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" UpperCAmelCase : Tuple = {True: '''✅''', False: '''❌'''} for name in model_names: UpperCAmelCase : str = model_name_to_prefix[name] UpperCAmelCase : List[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase , UpperCAmelCase ) for l, w in zip(UpperCAmelCase , UpperCAmelCase )] ) + "|\n" return table def a__ ( UpperCAmelCase : int=False ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = _find_text_in_file( filename=os.path.join(UpperCAmelCase , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) UpperCAmelCase : int = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowerCamelCase : str = parser.parse_args() check_model_table(args.fix_and_overwrite)
99
from __future__ import annotations import queue class __UpperCAmelCase : def __init__( self : str, __A : Union[str, Any] ): UpperCAmelCase : Dict = data UpperCAmelCase : Tuple = None UpperCAmelCase : Any = None def a__ ( ) -> TreeNode: print('''\n********Press N to stop entering at any point of time********\n''' ) UpperCAmelCase : Any = input('''Enter the value of the root node: ''' ).strip().lower() UpperCAmelCase : queue.Queue = queue.Queue() UpperCAmelCase : Tuple = TreeNode(int(UpperCAmelCase ) ) q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = q.get() UpperCAmelCase : Union[str, Any] = f'''Enter the left node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : List[str] = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : List[str] = left_node q.put(UpperCAmelCase ) UpperCAmelCase : List[Any] = f'''Enter the right node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : Dict = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : Dict = right_node q.put(UpperCAmelCase ) raise def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : List[Any] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = [] while not q.empty(): UpperCAmelCase : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCAmelCase ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child UpperCAmelCase : Union[str, Any] = stack.pop() # start to traverse its right child UpperCAmelCase : List[str] = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : Any = node while n or stack: while n: stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left UpperCAmelCase : Optional[int] = stack.pop() print(n.data , end=''',''' ) UpperCAmelCase : Any = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase , UpperCAmelCase : Dict = [], [] UpperCAmelCase : Any = node stacka.append(UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def a__ ( UpperCAmelCase : str = "" , UpperCAmelCase : int=50 , UpperCAmelCase : Union[str, Any]="*" ) -> str: if not s: return "\n" + width * char UpperCAmelCase , UpperCAmelCase : int = divmod(width - len(UpperCAmelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowerCamelCase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
99
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : Optional[Any] = model.config __magic_name__ : List[str] = DonutSwinConfig( image_size=original_config.input_size, patch_size=4, depths=original_config.encoder_layer, num_heads=[4, 8, 16, 32], window_size=original_config.window_size, embed_dim=128, ) __magic_name__ : Tuple = MBartConfig( is_decoder=_A, is_encoder_decoder=_A, add_cross_attention=_A, decoder_layers=original_config.decoder_layer, max_position_embeddings=original_config.max_position_embeddings, vocab_size=len( model.decoder.tokenizer ), scale_embedding=_A, add_final_layer_norm=_A, ) return encoder_config, decoder_config def UpperCamelCase ( _A ): """simple docstring""" if "encoder.model" in name: __magic_name__ : Dict = name.replace("""encoder.model""", """encoder""" ) if "decoder.model" in name: __magic_name__ : List[str] = name.replace("""decoder.model""", """decoder""" ) if "patch_embed.proj" in name: __magic_name__ : str = name.replace("""patch_embed.proj""", """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __magic_name__ : int = name.replace("""patch_embed.norm""", """embeddings.norm""" ) if name.startswith("""encoder""" ): if "layers" in name: __magic_name__ : Dict = """encoder.""" + name if "attn.proj" in name: __magic_name__ : str = name.replace("""attn.proj""", """attention.output.dense""" ) if "attn" in name and "mask" not in name: __magic_name__ : str = name.replace("""attn""", """attention.self""" ) if "norm1" in name: __magic_name__ : str = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: __magic_name__ : Optional[int] = name.replace("""norm2""", """layernorm_after""" ) if "mlp.fc1" in name: __magic_name__ : Union[str, Any] = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: __magic_name__ : int = name.replace("""mlp.fc2""", """output.dense""" ) if name == "encoder.norm.weight": __magic_name__ : List[str] = """encoder.layernorm.weight""" if name == "encoder.norm.bias": __magic_name__ : Union[str, Any] = """encoder.layernorm.bias""" return name def UpperCamelCase ( _A, _A ): """simple docstring""" for key in orig_state_dict.copy().keys(): __magic_name__ : Any = orig_state_dict.pop(_A ) if "qkv" in key: __magic_name__ : Any = key.split(""".""" ) __magic_name__ : str = int(key_split[3] ) __magic_name__ : int = int(key_split[5] ) __magic_name__ : Tuple = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ : Tuple = val[:dim, :] __magic_name__ : Dict = val[dim : dim * 2, :] __magic_name__ : Optional[int] = val[-dim:, :] else: __magic_name__ : int = val[:dim] __magic_name__ : Optional[Any] = val[dim : dim * 2] __magic_name__ : Dict = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __magic_name__ : Optional[Any] = val return orig_state_dict def UpperCamelCase ( _A, _A=None, _A=False ): """simple docstring""" __magic_name__ : List[str] = DonutModel.from_pretrained(_A ).eval() # load HuggingFace model __magic_name__ ,__magic_name__ : List[str] = get_configs(_A ) __magic_name__ : Any = DonutSwinModel(_A ) __magic_name__ : Any = MBartForCausalLM(_A ) __magic_name__ : List[Any] = VisionEncoderDecoderModel(encoder=_A, decoder=_A ) model.eval() __magic_name__ : Dict = original_model.state_dict() __magic_name__ : str = convert_state_dict(_A, _A ) model.load_state_dict(_A ) # verify results on scanned document __magic_name__ : Union[str, Any] = load_dataset("""hf-internal-testing/example-documents""" ) __magic_name__ : List[Any] = dataset["""test"""][0]["""image"""].convert("""RGB""" ) __magic_name__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(_A, from_slow=_A ) __magic_name__ : Dict = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis, size=original_model.config.input_size[::-1] ) __magic_name__ : Union[str, Any] = DonutProcessor(_A, _A ) __magic_name__ : Union[str, Any] = processor(_A, return_tensors="""pt""" ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __magic_name__ : Optional[int] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" __magic_name__ : Tuple = """When is the coffee break?""" __magic_name__ : Tuple = task_prompt.replace("""{user_input}""", _A ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __magic_name__ : Tuple = """<s_rvlcdip>""" elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __magic_name__ : List[Any] = """<s_cord>""" elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __magic_name__ : str = """s_cord-v2>""" elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __magic_name__ : List[Any] = """<s_zhtrainticket>""" elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __magic_name__ : Any = """hello world""" else: raise ValueError("""Model name not supported""" ) __magic_name__ : List[str] = original_model.decoder.tokenizer(_A, add_special_tokens=_A, return_tensors="""pt""" )[ """input_ids""" ] __magic_name__ : int = original_model.encoder.model.patch_embed(_A ) __magic_name__ ,__magic_name__ : List[str] = model.encoder.embeddings(_A ) assert torch.allclose(_A, _A, atol=1e-3 ) # verify encoder hidden states __magic_name__ : Optional[Any] = original_model.encoder(_A ) __magic_name__ : List[str] = model.encoder(_A ).last_hidden_state assert torch.allclose(_A, _A, atol=1e-2 ) # verify decoder hidden states __magic_name__ : str = original_model(_A, _A, _A ).logits __magic_name__ : Union[str, Any] = model(_A, decoder_input_ids=_A ).logits assert torch.allclose(_A, _A, atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1], commit_message="""Update model""" ) processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1], commit_message="""Update model""" ) if __name__ == "__main__": __magic_name__: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) __magic_name__: Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
1
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = { 'configuration_distilbert': [ 'DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DistilBertConfig', 'DistilBertOnnxConfig', ], 'tokenization_distilbert': ['DistilBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['DistilBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DistilBertForMaskedLM', 'DistilBertForMultipleChoice', 'DistilBertForQuestionAnswering', 'DistilBertForSequenceClassification', 'DistilBertForTokenClassification', 'DistilBertModel', 'DistilBertPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDistilBertForMaskedLM', 'TFDistilBertForMultipleChoice', 'TFDistilBertForQuestionAnswering', 'TFDistilBertForSequenceClassification', 'TFDistilBertForTokenClassification', 'TFDistilBertMainLayer', 'TFDistilBertModel', 'TFDistilBertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'FlaxDistilBertForMaskedLM', 'FlaxDistilBertForMultipleChoice', 'FlaxDistilBertForQuestionAnswering', 'FlaxDistilBertForSequenceClassification', 'FlaxDistilBertForTokenClassification', 'FlaxDistilBertModel', 'FlaxDistilBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
65
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : torch.FloatTensor UpperCAmelCase__ : torch.FloatTensor class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): UpperCAmelCase__ : int = 1 @register_to_config def __init__( self :Optional[Any] , _A :int = 2_000 , _A :float = 0.15 , _A :float = 0.01 , _A :float = 1_348.0 , _A :float = 1E-5 , _A :int = 1 , ) -> Optional[Any]: '''simple docstring''' __A = sigma_max # setable values __A = None self.set_sigmas(_A , _A , _A , _A ) def lowercase_ ( self :Optional[int] , _A :torch.FloatTensor , _A :Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase_ ( self :Tuple , _A :int , _A :float = None , _A :Union[str, torch.device] = None ) -> Optional[int]: '''simple docstring''' __A = sampling_eps if sampling_eps is not None else self.config.sampling_eps __A = torch.linspace(1 , _A , _A , device=_A ) def lowercase_ ( self :Any , _A :int , _A :float = None , _A :float = None , _A :float = None ) -> Optional[int]: '''simple docstring''' __A = sigma_min if sigma_min is not None else self.config.sigma_min __A = sigma_max if sigma_max is not None else self.config.sigma_max __A = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_A , _A ) __A = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) __A = torch.exp(torch.linspace(math.log(_A ) , math.log(_A ) , _A ) ) __A = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowercase_ ( self :List[Any] , _A :Any , _A :Optional[Any] ) -> str: '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowercase_ ( self :List[str] , _A :torch.FloatTensor , _A :int , _A :torch.FloatTensor , _A :Optional[torch.Generator] = None , _A :bool = True , ) -> Union[SdeVeOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) __A = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) __A = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda __A = timesteps.to(self.discrete_sigmas.device ) __A = self.discrete_sigmas[timesteps].to(sample.device ) __A = self.get_adjacent_sigma(_A , _A ).to(sample.device ) __A = torch.zeros_like(_A ) __A = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods __A = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): __A = diffusion.unsqueeze(-1 ) __A = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of __A = randn_tensor( sample.shape , layout=sample.layout , generator=_A , device=sample.device , dtype=sample.dtype ) __A = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? __A = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_A , prev_sample_mean=_A ) def lowercase_ ( self :str , _A :torch.FloatTensor , _A :torch.FloatTensor , _A :Optional[torch.Generator] = None , _A :bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction __A = randn_tensor(sample.shape , layout=sample.layout , generator=_A ).to(sample.device ) # compute step size from the model_output, the noise, and the snr __A = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() __A = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() __A = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 __A = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term __A = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): __A = step_size.unsqueeze(-1 ) __A = sample + step_size * model_output __A = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_A ) def lowercase_ ( self :Any , _A :torch.FloatTensor , _A :torch.FloatTensor , _A :torch.FloatTensor , ) -> torch.FloatTensor: '''simple docstring''' __A = timesteps.to(original_samples.device ) __A = self.discrete_sigmas.to(original_samples.device )[timesteps] __A = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_A ) * sigmas[:, None, None, None] ) __A = noise + original_samples return noisy_samples def __len__( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.config.num_train_timesteps
161
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : int = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowercase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
355
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __lowercase : str = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def lowerCamelCase (_SCREAMING_SNAKE_CASE : str = "dhaka" , _SCREAMING_SNAKE_CASE : int = 5 ): __a : Optional[Any] = min(_SCREAMING_SNAKE_CASE , 50 ) # Prevent abuse! __a : Optional[Any] = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } __a : Tuple = requests.get('https://www.google.com/search' , params=_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ) __a : Dict = BeautifulSoup(html.text , 'html.parser' ) __a : List[str] = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) __a : Optional[Any] = json.dumps(_SCREAMING_SNAKE_CASE ) __a : List[str] = json.loads(_SCREAMING_SNAKE_CASE ) __a : List[Any] = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , _SCREAMING_SNAKE_CASE , ) if not matched_google_image_data: return 0 __a : Tuple = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(_SCREAMING_SNAKE_CASE ) , ) __a : Optional[Any] = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , _SCREAMING_SNAKE_CASE , ) for index, fixed_full_res_image in enumerate(_SCREAMING_SNAKE_CASE ): if index >= max_images: return index __a : List[str] = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Tuple = bytes(_SCREAMING_SNAKE_CASE , 'ascii' ).decode( 'unicode-escape' ) __a : Dict = urllib.request.build_opener() __a : Union[str, Any] = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(_SCREAMING_SNAKE_CASE ) __a : List[Any] = F"""query_{query.replace(" " , "_" )}""" if not os.path.exists(_SCREAMING_SNAKE_CASE ): os.makedirs(_SCREAMING_SNAKE_CASE ) urllib.request.urlretrieve( # noqa: S310 _SCREAMING_SNAKE_CASE , F"""{path_name}/original_size_img_{index}.jpg""" ) return index if __name__ == "__main__": try: __lowercase : Optional[int] = download_images_from_google_query(sys.argv[1]) print(f'''{image_count} images were downloaded to disk.''') except IndexError: print('Please provide a search term.') raise
294
0
'''simple docstring''' from typing import Any def lowercase ( __magic_name__ ): '''simple docstring''' if not input_list: return [] UpperCAmelCase : Tuple = [input_list.count(__magic_name__ ) for value in input_list] UpperCAmelCase : Union[str, Any] = max(__magic_name__ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__magic_name__ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
311
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer a : Tuple = ["gpt2"] a : Dict = "gpt2" if is_tf_available(): class UpperCamelCase__ ( tf.Module ): """simple docstring""" def __init__( self , snake_case ): '''simple docstring''' super().__init__() UpperCAmelCase : Tuple = tokenizer UpperCAmelCase : List[str] = AutoConfig.from_pretrained(snake_case ) UpperCAmelCase : int = TFGPTaLMHeadModel.from_config(snake_case ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.tokenizer(snake_case ) UpperCAmelCase : Optional[int] = tokenized["input_ids"].to_tensor() UpperCAmelCase : Optional[int] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) UpperCAmelCase : List[Any] = self.model(input_ids=snake_case , attention_mask=snake_case )["logits"] return outputs @require_tf @require_keras_nlp class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' super().setUp() UpperCAmelCase : Any = [GPTaTokenizer.from_pretrained(snake_case ) for checkpoint in (TOKENIZER_CHECKPOINTS)] UpperCAmelCase : Optional[Any] = [TFGPTaTokenizer.from_pretrained(snake_case ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase : Tuple = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCAmelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A_ ( self ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: UpperCAmelCase : List[Any] = tokenizer([test_inputs] , return_tensors="tf" ) UpperCAmelCase : Any = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors UpperCAmelCase : Dict = python_outputs[key].numpy() UpperCAmelCase : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(snake_case , tf.intaa ) == tf_outputs_values ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Optional[Any] = tf.function(snake_case ) for test_inputs in self.test_sentences: UpperCAmelCase : List[str] = tf.constant(snake_case ) UpperCAmelCase : Dict = compiled_tokenizer(snake_case ) UpperCAmelCase : Union[str, Any] = tf_tokenizer(snake_case ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : int = ModelToSave(tokenizer=snake_case ) UpperCAmelCase : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : str = model.serving(snake_case ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase : Optional[int] = Path(snake_case ) / "saved.model" tf.saved_model.save(snake_case , snake_case , signatures={"serving_default": model.serving} ) UpperCAmelCase : int = tf.saved_model.load(snake_case ) UpperCAmelCase : str = loaded_model.signatures["serving_default"](snake_case )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case ) # Build model with some sample inputs UpperCAmelCase : Union[str, Any] = tf_tokenizer.get_config() UpperCAmelCase : str = TFGPTaTokenizer.from_config(snake_case ) UpperCAmelCase : Tuple = model_from_config(snake_case ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A_ ( self ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run UpperCAmelCase : List[str] = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) UpperCAmelCase : Tuple = tf_tokenizer(snake_case , max_length=snake_case ) UpperCAmelCase : Union[str, Any] = out["input_ids"].numpy().shape[1] assert out_length == max_length
311
1
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): a_ : Any = 'pt' elif is_tf_available(): a_ : Union[str, Any] = 'tf' else: a_ : Tuple = 'jax' class _snake_case ( A__ , unittest.TestCase ): _lowercase : Any = ByTaTokenizer _lowercase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: super().setUp() SCREAMING_SNAKE_CASE = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: return ByTaTokenizer.from_pretrained('google/byt5-small') def SCREAMING_SNAKE_CASE__ ( self , **a) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a=False , a=20 , a=5) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. SCREAMING_SNAKE_CASE = [] for i in range(len(a)): try: SCREAMING_SNAKE_CASE = tokenizer.decode([i] , clean_up_tokenization_spaces=a) except UnicodeDecodeError: pass toks.append((i, tok)) SCREAMING_SNAKE_CASE = list(filter(lambda a: re.match(R'^[ a-zA-Z]+$' , t[1]) , a)) SCREAMING_SNAKE_CASE = list(filter(lambda a: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a) , a)) if max_length is not None and len(a) > max_length: SCREAMING_SNAKE_CASE = toks[:max_length] if min_length is not None and len(a) < min_length and len(a) > 0: while len(a) < min_length: SCREAMING_SNAKE_CASE = toks + toks # toks_str = [t[1] for t in toks] SCREAMING_SNAKE_CASE = [t[0] for t in toks] # Ensure consistency SCREAMING_SNAKE_CASE = tokenizer.decode(a , clean_up_tokenization_spaces=a) if " " not in output_txt and len(a) > 1: SCREAMING_SNAKE_CASE = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a) ) if with_prefix_space: SCREAMING_SNAKE_CASE = ' ' + output_txt SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a) return output_txt, output_ids def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.ta_base_tokenizer SCREAMING_SNAKE_CASE = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>']) SCREAMING_SNAKE_CASE = tokenizer(['hi', 'I went to the gym', '']) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids']) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.ta_base_tokenizer SCREAMING_SNAKE_CASE = 'Unicode €.' SCREAMING_SNAKE_CASE = tokenizer(a) SCREAMING_SNAKE_CASE = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , a) # decoding SCREAMING_SNAKE_CASE = tokenizer.decode(a) self.assertEqual(a , 'Unicode €.</s>') SCREAMING_SNAKE_CASE = tokenizer('e è é ê ë') SCREAMING_SNAKE_CASE = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , a) # decoding SCREAMING_SNAKE_CASE = tokenizer.decode(a) self.assertEqual(a , 'e è é ê ë</s>') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , 'e è é ê ë</s>') def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.ta_base_tokenizer SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off SCREAMING_SNAKE_CASE = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on SCREAMING_SNAKE_CASE = tokenizer(a , padding=a , return_tensors=a) self.assertIsInstance(a , a) if FRAMEWORK != "jax": SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0]) else: SCREAMING_SNAKE_CASE = list(batch.input_ids.tolist()[0]) self.assertListEqual(a , a) self.assertEqual((2, 37) , batch.input_ids.shape) self.assertEqual((2, 37) , batch.attention_mask.shape) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.ta_base_tokenizer SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] SCREAMING_SNAKE_CASE = tokenizer(a , padding=a , return_tensors=a) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , a) self.assertIn('attention_mask' , a) self.assertNotIn('decoder_input_ids' , a) self.assertNotIn('decoder_attention_mask' , a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self.ta_base_tokenizer SCREAMING_SNAKE_CASE = [ 'Summary of the text.', 'Another summary.', ] SCREAMING_SNAKE_CASE = tokenizer( text_target=a , max_length=32 , padding='max_length' , truncation=a , return_tensors=a) self.assertEqual(32 , targets['input_ids'].shape[1]) def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = self.ta_base_tokenizer SCREAMING_SNAKE_CASE = ['A long paragraph for summarization. </s>'] SCREAMING_SNAKE_CASE = ['Summary of the text. </s>'] # fmt: off SCREAMING_SNAKE_CASE = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] SCREAMING_SNAKE_CASE = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on SCREAMING_SNAKE_CASE = tokenizer(a , text_target=a) self.assertEqual(a , batch['input_ids'][0]) self.assertEqual(a , batch['labels'][0]) def SCREAMING_SNAKE_CASE__ ( self) -> str: # safety check on max_len default value so we are sure the test works SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running' SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a) tokenizer.save_pretrained(a) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a) SCREAMING_SNAKE_CASE = after_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) shutil.rmtree(a) SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): # Isolate this from the other tests because we save additional tokens/etc SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam']) SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token') tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens}) SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a) tokenizer.save_pretrained(a) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a) SCREAMING_SNAKE_CASE = after_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(a) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a) with open(os.path.join(a , 'special_tokens_map.json') , encoding='utf-8') as json_file: SCREAMING_SNAKE_CASE = json.load(a) with open(os.path.join(a , 'tokenizer_config.json') , encoding='utf-8') as json_file: SCREAMING_SNAKE_CASE = json.load(a) SCREAMING_SNAKE_CASE = [f'''<extra_id_{i}>''' for i in range(125)] SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ 'an_additional_special_token' ] SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(a , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile: json.dump(a , a) with open(os.path.join(a , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile: json.dump(a , a) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( a , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=a)] SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( a , additional_special_tokens=a , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , ) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a) SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(a) self.assertTrue(tokenizer.decode([255]) == '') def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: pass def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: pass def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: pass def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: pass def SCREAMING_SNAKE_CASE__ ( self) -> str: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens SCREAMING_SNAKE_CASE = self.get_tokenizers(fast=a , do_lower_case=a) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): SCREAMING_SNAKE_CASE = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(a) self.assertIsInstance(a , a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}'''): SCREAMING_SNAKE_CASE = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens( a , skip_special_tokens=a) for attr in attributes_list: setattr(a , attr + '_id' , a) self.assertEqual(getattr(a , a) , a) self.assertEqual(getattr(a , attr + '_id') , a) setattr(a , attr + '_id' , a) self.assertEqual(getattr(a , a) , a) self.assertEqual(getattr(a , attr + '_id') , a) setattr(a , 'additional_special_tokens_ids' , []) self.assertListEqual(getattr(a , 'additional_special_tokens') , []) self.assertListEqual(getattr(a , 'additional_special_tokens_ids') , []) setattr(a , 'additional_special_tokens_ids' , [token_id_to_test_setters]) self.assertListEqual(getattr(a , 'additional_special_tokens') , [token_to_test_setters]) self.assertListEqual(getattr(a , 'additional_special_tokens_ids') , [token_id_to_test_setters])
357
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a_ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Dict = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
327
0
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=64 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=10 , snake_case=0.02 , snake_case=[1, 16, 4, 4] , snake_case=None , ): lowercase = parent lowercase = batch_size lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = scope lowercase = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowercase = (self.image_size // 32) ** 2 lowercase = num_patches + 1 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): lowercase = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=snake_case , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = ViTHybridModel(config=snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): lowercase = self.type_sequence_label_size lowercase = ViTHybridForImageClassification(snake_case ) model.to(snake_case ) model.eval() lowercase = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () _UpperCamelCase : str = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) _UpperCamelCase : Dict = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ViTHybridModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(snake_case ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(snake_case ) for model_class in self.all_model_classes: lowercase = model_class(config=snake_case ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowercase = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = ViTHybridModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def UpperCAmelCase_ ( ): lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( snake_case ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): lowercase = model(**snake_case ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) lowercase = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) lowercase = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) lowercase = prepare_img() lowercase = image_processor(images=snake_case , return_tensors='pt' ) lowercase = model(**snake_case ) lowercase = outputs.logits # model predicts one of the 1000 ImageNet classes lowercase = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
195
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = to_pil_image(__SCREAMING_SNAKE_CASE ) lowercase , lowercase = pil_image.size lowercase = pytesseract.image_to_data(__SCREAMING_SNAKE_CASE , lang=__SCREAMING_SNAKE_CASE , output_type='dict' , config=__SCREAMING_SNAKE_CASE ) lowercase , lowercase , lowercase , lowercase , lowercase = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates lowercase = [idx for idx, word in enumerate(__SCREAMING_SNAKE_CASE ) if not word.strip()] lowercase = [word for idx, word in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] lowercase = [coord for idx, coord in enumerate(__SCREAMING_SNAKE_CASE ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase = [] for x, y, w, h in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [x, y, x + w, y + h] actual_boxes.append(__SCREAMING_SNAKE_CASE ) # finally, normalize the bounding boxes lowercase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict = ["""pixel_values"""] def __init__( self , snake_case = True , snake_case = None , snake_case = PILImageResampling.BILINEAR , snake_case = True , snake_case = 1 / 255 , snake_case = True , snake_case = None , snake_case = None , snake_case = True , snake_case = None , snake_case = "" , **snake_case , ): super().__init__(**snake_case ) lowercase = size if size is not None else {'height': 224, 'width': 224} lowercase = get_size_dict(snake_case ) lowercase = do_resize lowercase = size lowercase = resample lowercase = do_rescale lowercase = rescale_value lowercase = do_normalize lowercase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase = image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase = apply_ocr lowercase = ocr_lang lowercase = tesseract_config def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = PILImageResampling.BILINEAR , snake_case = None , **snake_case , ): lowercase = get_size_dict(snake_case ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowercase = (size['height'], size['width']) return resize(snake_case , size=snake_case , resample=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case = None , **snake_case , ): return rescale(snake_case , scale=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case = None , **snake_case , ): return normalize(snake_case , mean=snake_case , std=snake_case , data_format=snake_case , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , snake_case=None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = None , snake_case = ChannelDimension.FIRST , **snake_case , ): lowercase = do_resize if do_resize is not None else self.do_resize lowercase = size if size is not None else self.size lowercase = get_size_dict(snake_case ) lowercase = resample if resample is not None else self.resample lowercase = do_rescale if do_rescale is not None else self.do_rescale lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase = do_normalize if do_normalize is not None else self.do_normalize lowercase = image_mean if image_mean is not None else self.image_mean lowercase = image_std if image_std is not None else self.image_std lowercase = apply_ocr if apply_ocr is not None else self.apply_ocr lowercase = ocr_lang if ocr_lang is not None else self.ocr_lang lowercase = tesseract_config if tesseract_config is not None else self.tesseract_config lowercase = make_list_of_images(snake_case ) if not valid_images(snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. lowercase = [to_numpy_array(snake_case ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract' ) lowercase = [] lowercase = [] for image in images: lowercase , lowercase = apply_tesseract(snake_case , snake_case , snake_case ) words_batch.append(snake_case ) boxes_batch.append(snake_case ) if do_resize: lowercase = [self.resize(image=snake_case , size=snake_case , resample=snake_case ) for image in images] if do_rescale: lowercase = [self.rescale(image=snake_case , scale=snake_case ) for image in images] if do_normalize: lowercase = [self.normalize(image=snake_case , mean=snake_case , std=snake_case ) for image in images] lowercase = [to_channel_dimension_format(snake_case , snake_case ) for image in images] lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=snake_case ) if apply_ocr: lowercase = words_batch lowercase = boxes_batch return data
195
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __lowerCamelCase = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
361
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=2 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=36 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=6 , UpperCamelCase__=6 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , UpperCamelCase__=1000 , ) -> Optional[int]: '''simple docstring''' A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = patch_size A_ = text_seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = coordinate_size A_ = shape_size A_ = num_labels A_ = num_choices A_ = scope A_ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A_ = text_seq_length A_ = (image_size // patch_size) ** 2 + 1 A_ = self.text_seq_length + self.image_seq_length def snake_case_ ( self ) -> Any: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ = bbox[i, j, 3] A_ = bbox[i, j, 1] A_ = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ = bbox[i, j, 2] A_ = bbox[i, j, 0] A_ = t A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.text_seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A_ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image A_ = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A_ = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A_ = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = self.num_labels A_ = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = self.num_labels A_ = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , unittest.TestCase ): lowercase = False lowercase = False lowercase = False lowercase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowercase = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def snake_case_ ( self ) -> str: '''simple docstring''' A_ = LayoutLMvaModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Union[str, Any]: '''simple docstring''' A_ = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): A_ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): A_ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: A_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( ) -> Dict: A_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class A__ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(UpperCamelCase__ ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) A_ = torch.tensor([[1, 2]] ) A_ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A_ = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits A_ = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) A_ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
101
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : str , **_lowerCamelCase : Dict): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase) lowercase__ : int = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase) model.save_pretrained(__UpperCamelCase) AutoTokenizer.from_pretrained(__UpperCamelCase).save_pretrained(__UpperCamelCase) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
87
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __a :int = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
312
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __A = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Dict: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> Any: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> str: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] ) class __lowerCAmelCase ( metaclass=__magic_name__ ): """simple docstring""" snake_case_ = ['''sentencepiece'''] def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' requires_backends(self , ['sentencepiece'] )
348
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger() @dataclass class _a : _a : nn.Module _a : List[nn.Module] = field(default_factory=_lowercase) _a : list = field(default_factory=_lowercase) def UpperCAmelCase__( self : Tuple , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tensor , _SCREAMING_SNAKE_CASE : Tensor )-> Any: lowerCAmelCase__ : str = len(list(m.modules() ) ) == 1 or isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(_SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(_SCREAMING_SNAKE_CASE ) def __call__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tensor )-> str: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def UpperCAmelCase__( self : Any )-> Union[str, Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _a : _a : nn.Module _a : nn.Module _a : int = 1 _a : List = field(default_factory=_lowercase) _a : List = field(default_factory=_lowercase) _a : bool = True def __call__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Tensor )-> str: lowerCAmelCase__ : List[Any] = Tracker(self.dest )(_SCREAMING_SNAKE_CASE ).parametrized lowerCAmelCase__ : str = Tracker(self.src )(_SCREAMING_SNAKE_CASE ).parametrized lowerCAmelCase__ : List[str] = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.src_skip , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : str = list(filter(lambda _SCREAMING_SNAKE_CASE : type(_SCREAMING_SNAKE_CASE ) not in self.dest_skip , _SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(_SCREAMING_SNAKE_CASE )} operations while' F' destination module has {len(_SCREAMING_SNAKE_CASE )}.' ) for dest_m, src_m in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) class _a ( nn.Module): def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : nn.Module )-> Optional[int]: super().__init__() lowerCAmelCase__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), F'Unexpected layer name {k}' lowerCAmelCase__ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) + 1 feature_blocks.append((F'res{block_index}', v) ) lowerCAmelCase__ : List[str] = nn.ModuleDict(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : Tensor )-> List[str]: return get_trunk_forward_outputs( _SCREAMING_SNAKE_CASE , out_feat_keys=_SCREAMING_SNAKE_CASE , feature_blocks=self._feature_blocks , ) class _a ( _lowercase): def UpperCAmelCase__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : str )-> str: lowerCAmelCase__ : int = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str )-> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: lowerCAmelCase__ : Optional[Any] = self.convert_name_to_timm(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[str] = partial(lambda: (timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ).eval(), None) ) else: lowerCAmelCase__ : Any = super().__getitem__(_SCREAMING_SNAKE_CASE ) return val class _a ( _lowercase): def __getitem__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str )-> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: lowerCAmelCase__ : int = RegNetModel else: lowerCAmelCase__ : List[str] = RegNetForImageClassification return val def lowerCamelCase_ ( _a , _a , _a ): """simple docstring""" for from_key, to_key in keys: lowerCAmelCase__ : Optional[Any] = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def lowerCamelCase_ ( _a , _a , _a , _a , _a , _a = True , ): """simple docstring""" print(f'Converting {name}...' ) with torch.no_grad(): lowerCAmelCase__ , lowerCAmelCase__ : int = from_model_func() lowerCAmelCase__ : Optional[Any] = our_model_func(_a ).eval() lowerCAmelCase__ : int = ModuleTransfer(src=_a , dest=_a , raise_if_mismatch=_a ) lowerCAmelCase__ : str = torch.randn((1, 3, 224, 224) ) module_transfer(_a ) if from_state_dict is not None: lowerCAmelCase__ : Any = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: lowerCAmelCase__ : List[Any] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] lowerCAmelCase__ : int = manually_copy_vissl_head(_a , our_model.state_dict() , _a ) our_model.load_state_dict(_a ) lowerCAmelCase__ : List[str] = our_model(_a , output_hidden_states=_a ) lowerCAmelCase__ : Dict = ( our_outputs.logits if isinstance(_a , _a ) else our_outputs.last_hidden_state ) lowerCAmelCase__ : Tuple = from_model(_a ) lowerCAmelCase__ : int = from_output[-1] if type(_a ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: lowerCAmelCase__ : Optional[int] = our_outputs.hidden_states[-1] assert torch.allclose(_a , _a ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_a , ) lowerCAmelCase__ : Optional[int] = 224 if '''seer''' not in name else 384 # we can use the convnext one lowerCAmelCase__ : int = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_a ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_a , ) print(f'Pushed {name}' ) def lowerCamelCase_ ( _a , _a = None , _a = True ): """simple docstring""" lowerCAmelCase__ : str = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : Dict = 1_000 lowerCAmelCase__ : Optional[int] = (1, num_labels) lowerCAmelCase__ : Optional[int] = '''huggingface/label-files''' lowerCAmelCase__ : Tuple = num_labels lowerCAmelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(_a , _a , repo_type='''dataset''' ) ) , '''r''' ) ) lowerCAmelCase__ : Dict = {int(_a ): v for k, v in idalabel.items()} lowerCAmelCase__ : List[Any] = idalabel lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Dict = partial(_a , num_labels=_a , idalabel=_a , labelaid=_a ) lowerCAmelCase__ : Tuple = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010 ), } lowerCAmelCase__ : Optional[Any] = NameToOurModelFuncMap() lowerCAmelCase__ : Optional[Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_a , _a ) -> Tuple[nn.Module, Dict]: lowerCAmelCase__ : Tuple = torch.hub.load_state_dict_from_url(_a , model_dir=str(_a ) , map_location='''cpu''' ) lowerCAmelCase__ : int = model_func() # check if we have a head, if yes add it lowerCAmelCase__ : int = files['''classy_state_dict''']['''base_model''']['''model'''] lowerCAmelCase__ : Tuple = model_state_dict['''trunk'''] model.load_state_dict(_a ) return model.eval(), model_state_dict["heads"] # pretrained lowerCAmelCase__ : int = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Optional[int] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Optional[int] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowerCAmelCase__ : Tuple = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned lowerCAmelCase__ : List[Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Optional[int] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) lowerCAmelCase__ : Union[str, Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) lowerCAmelCase__ : Union[str, Any] = partial( _a , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _a , _a , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _a , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _a , _a , _a , ) return config, expected_shape if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
131
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCamelCase = logging.get_logger(__name__) class _a ( _lowercase): _a : Optional[Any] = ['''pixel_values'''] def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **_SCREAMING_SNAKE_CASE : int , )-> None: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Dict = size if size is not None else {'''shortest_edge''': 256} lowerCAmelCase__ : Tuple = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} lowerCAmelCase__ : Optional[Any] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Any = resample lowerCAmelCase__ : str = do_center_crop lowerCAmelCase__ : Dict = crop_size lowerCAmelCase__ : str = do_rescale lowerCAmelCase__ : List[str] = rescale_factor lowerCAmelCase__ : int = do_normalize lowerCAmelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Dict , )-> np.ndarray: lowerCAmelCase__ : str = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase__ : List[str] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : List[str] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Dict[str, int] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : List[str] , )-> np.ndarray: lowerCAmelCase__ : Dict = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : Optional[int] )-> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[int] , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Union[float, List[float]] , _SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE : str , )-> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Any , _SCREAMING_SNAKE_CASE : ImageInput , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : PILImageResampling = None , _SCREAMING_SNAKE_CASE : bool = None , _SCREAMING_SNAKE_CASE : Dict[str, int] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[float] = None , _SCREAMING_SNAKE_CASE : Optional[bool] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE : Tuple , )-> Optional[Any]: lowerCAmelCase__ : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ : List[str] = size if size is not None else self.size lowerCAmelCase__ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = resample if resample is not None else self.resample lowerCAmelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ : Dict = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ : Any = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) lowerCAmelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ : List[Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ : List[str] = image_std if image_std is not None else self.image_std lowerCAmelCase__ : Optional[int] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. lowerCAmelCase__ : List[Any] = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCAmelCase__ : Dict = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCAmelCase__ : Dict = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCAmelCase__ : List[Any] = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCAmelCase__ : Tuple = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ : Dict = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase__ : Dict = {'''pixel_values''': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : int , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Tuple] = None )-> List[Any]: lowerCAmelCase__ : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ : Tuple = target_sizes.numpy() lowerCAmelCase__ : Tuple = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase__ : Any = logits.argmax(dim=1 ) lowerCAmelCase__ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
131
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def a__ ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
108
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class snake_case ( unittest.TestCase ): def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any=7 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[Any]=1_8 , UpperCamelCase__ : List[Any]=3_0 , UpperCamelCase__ : List[str]=4_0_0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=[0.48145466, 0.4578275, 0.40821073] , UpperCamelCase__ : str=[0.26862954, 0.26130258, 0.27577711] , UpperCamelCase__ : List[str]=True , )-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Dict = size if size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase: Union[str, Any] = crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} __lowerCAmelCase: Optional[int] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Union[str, Any] = num_channels __lowerCAmelCase: Optional[Any] = image_size __lowerCAmelCase: Tuple = min_resolution __lowerCAmelCase: List[str] = max_resolution __lowerCAmelCase: List[Any] = do_resize __lowerCAmelCase: Union[str, Any] = size __lowerCAmelCase: List[Any] = do_center_crop __lowerCAmelCase: Optional[int] = crop_size __lowerCAmelCase: Dict = do_normalize __lowerCAmelCase: List[str] = image_mean __lowerCAmelCase: Optional[int] = image_std __lowerCAmelCase: str = do_convert_rgb def lowercase_ ( self : Tuple)-> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowercase_ ( self : Any , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Dict=False)-> List[str]: '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __lowerCAmelCase: Optional[int] = [] for i in range(self.batch_size): image_inputs.append( np.random.randint( 2_5_5 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta)) else: __lowerCAmelCase: List[str] = [] for i in range(self.batch_size): __lowerCAmelCase , __lowerCAmelCase: List[str] = np.random.choice(np.arange(self.min_resolution , self.max_resolution) , 2) image_inputs.append(np.random.randint(2_5_5 , size=(self.num_channels, width, height) , dtype=np.uinta)) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __lowerCAmelCase: Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1)) for x in image_inputs] if torchify: __lowerCAmelCase: str = [torch.from_numpy(UpperCamelCase__) for x in image_inputs] return image_inputs @require_torch @require_vision class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : str = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase_ ( self : Any)-> List[Any]: '''simple docstring''' __lowerCAmelCase: Tuple = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase__) @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Union[str, Any])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase__ , "size")) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase__ , "image_std")) self.assertTrue(hasattr(UpperCamelCase__ , "do_convert_rgb")) def lowercase_ ( self : List[Any])-> str: '''simple docstring''' __lowerCAmelCase: Tuple = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"height": 2_2_4, "width": 2_2_4}) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8}) __lowerCAmelCase: List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4) self.assertEqual(image_processor.size , {"shortest_edge": 4_2}) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4}) def lowercase_ ( self : List[str])-> Optional[int]: '''simple docstring''' pass def lowercase_ ( self : Any)-> Optional[int]: '''simple docstring''' __lowerCAmelCase: int = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase: Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image) # Test not batched input __lowerCAmelCase: Optional[int] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: int = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase_ ( self : int)-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __lowerCAmelCase: List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray) # Test not batched input __lowerCAmelCase: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Any = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __lowerCAmelCase: Dict = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor) # Test not batched input __lowerCAmelCase: Tuple = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Optional[int] = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[str] = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase_ ( self : int)-> Dict: '''simple docstring''' __lowerCAmelCase: Optional[int] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = 3 @property def lowercase_ ( self : Union[str, Any])-> Any: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize")) self.assertTrue(hasattr(UpperCamelCase__ , "size")) self.assertTrue(hasattr(UpperCamelCase__ , "do_center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "center_crop")) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize")) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean")) self.assertTrue(hasattr(UpperCamelCase__ , "image_std")) self.assertTrue(hasattr(UpperCamelCase__ , "do_convert_rgb")) def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' pass def lowercase_ ( self : Tuple)-> Union[str, Any]: '''simple docstring''' __lowerCAmelCase: Any = self.image_processing_class(**self.image_processor_dict) # create random PIL images __lowerCAmelCase: int = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image) # Test not batched input __lowerCAmelCase: List[Any] = image_processing(image_inputs[0] , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCAmelCase: Optional[int] = image_processing(UpperCamelCase__ , return_tensors="pt").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
108
1
'''simple docstring''' from __future__ import annotations class __lowerCAmelCase : '''simple docstring''' def __init__(self : Any , UpperCamelCase : int = 0 ): '''simple docstring''' lowercase__ = key def UpperCamelCase__ (self : str , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCamelCase ) ^ key ) for ch in content] def UpperCamelCase__ (self : List[Any] , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCamelCase ) ^ key ) for ch in content] def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : str , UpperCamelCase : int = 0 ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__ = '''''' for ch in content: ans += chr(ord(UpperCamelCase ) ^ key ) return ans def UpperCamelCase__ (self : Any , UpperCamelCase : str , UpperCamelCase : int = 0 ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) lowercase__ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowercase__ = '''''' for ch in content: ans += chr(ord(UpperCamelCase ) ^ key ) return ans def UpperCamelCase__ (self : str , UpperCamelCase : str , UpperCamelCase : int = 0 ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) try: with open(UpperCamelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(UpperCamelCase , UpperCamelCase ) ) except OSError: return False return True def UpperCamelCase__ (self : Dict , UpperCamelCase : str , UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(UpperCamelCase , UpperCamelCase ) try: with open(UpperCamelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(UpperCamelCase , UpperCamelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
2
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" return len(set(A ) ) == len(A ) if __name__ == "__main__": import doctest doctest.testmod()
2
1
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "" ) -> dict[str, float]: lowercase__: List[str] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__: int = BeautifulSoup(requests.get(__UpperCAmelCase ).text , '''html.parser''' ) lowercase__: List[str] = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__: Optional[int] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__UpperCAmelCase , __UpperCAmelCase ) } def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase = "IMDb_Top_250_Movies.csv" ) -> None: lowercase__: Optional[int] = get_imdb_top_aaa_movies() with open(__UpperCAmelCase , '''w''' , newline='''''' ) as out_file: lowercase__: str = csv.writer(__UpperCAmelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
2
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __A = "<<<<<<< This should probably be modified because it mentions: " __A = "=======\n>>>>>>>\n" __A = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] __A = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Tuple: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" @staticmethod def _snake_case ( _UpperCAmelCase ): lowercase__: int = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): lowercase__: List[str] = get_logger('''datasets-cli/converting''' ) lowercase__: Optional[Any] = tfds_path lowercase__: Dict = datasets_directory def _snake_case ( self ): if os.path.isdir(self._tfds_path ): lowercase__: Optional[Any] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__: int = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowercase__: Tuple = [] lowercase__: Dict = [] lowercase__: Any = {} if os.path.isdir(self._tfds_path ): lowercase__: Dict = os.listdir(_UpperCAmelCase ) else: lowercase__: Dict = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowercase__: Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: lowercase__: Tuple = f.readlines() lowercase__: Optional[Any] = [] lowercase__: Dict = False lowercase__: List[str] = False lowercase__: List[Any] = [] for line in lines: lowercase__: List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: Optional[int] = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__: Dict = '''''' continue elif "from absl import logging" in out_line: lowercase__: Tuple = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__: Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Any = True lowercase__: str = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Any = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__: List[str] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: Optional[Any] = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('''.py''' , '''''' ) lowercase__: Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase__: Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(_UpperCAmelCase ) lowercase__: Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
2
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _SCREAMING_SNAKE_CASE ( a = 3 ) -> qiskit.result.counts.Counts: if isinstance(a , a ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(a ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) __A : str = QuantumRegister(a , 'qr' ) __A : int = ClassicalRegister(a , 'cr' ) __A : Any = QuantumCircuit(a , a ) __A : str = number_of_qubits for i in range(a ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , a , a ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a , a ) # simulate with 10000 shots __A : int = Aer.get_backend('qasm_simulator' ) __A : Optional[int] = execute(a , a , shots=1_00_00 ) return job.result().get_counts(a ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
280
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _A( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : List[Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : Union[str, Any] = parent __A : Optional[int] = batch_size __A : int = num_channels __A : int = min_resolution __A : Any = max_resolution __A : List[Any] = do_resize __A : List[Any] = size __A : Union[str, Any] = do_normalize __A : Optional[int] = image_mean __A : Optional[int] = image_std __A : int = do_rescale __A : str = rescale_factor __A : Tuple = do_pad def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , _A , _A=False ): if not batched: __A : List[str] = image_inputs[0] if isinstance(_A , Image.Image ): __A , __A : int = image.size else: __A , __A : Any = image.shape[1], image.shape[2] if w < h: __A : List[Any] = int(self.size['shortest_edge'] * h / w ) __A : List[Any] = self.size['shortest_edge'] elif w > h: __A : Union[str, Any] = self.size['shortest_edge'] __A : str = int(self.size['shortest_edge'] * w / h ) else: __A : Dict = self.size['shortest_edge'] __A : str = self.size['shortest_edge'] else: __A : int = [] for image in image_inputs: __A , __A : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : List[str] = max(_A , key=lambda _A : item[0] )[0] __A : str = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): __A : Dict = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): __A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) __A : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) __A : str = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Optional[int] = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processings __A : Tuple = self.image_processing_class(**self.image_processor_dict ) __A : Any = self.image_processing_class(do_resize=_A , do_normalize=_A , do_rescale=_A ) # create random PyTorch tensors __A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __A : Optional[int] = image_processing_a.pad(_A , return_tensors='pt' ) __A : Optional[int] = image_processing_a(_A , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ): # prepare image and target __A : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __A : Optional[Any] = json.loads(f.read() ) __A : Optional[Any] = {'image_id': 39769, 'annotations': target} # encode them __A : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __A : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values __A : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size __A : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self ): # prepare image, target and masks_path __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __A : Tuple = json.loads(f.read() ) __A : Any = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} __A : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __A : Any = YolosImageProcessor(format='coco_panoptic' ) __A : List[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values __A : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks __A : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
280
1
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = '''▁''' _SCREAMING_SNAKE_CASE = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowercase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' a : Optional[int] = BigBirdTokenizer a : Union[str, Any] = BigBirdTokenizerFast a : Union[str, Any] = True a : Dict = True def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' super().setUp() __lowercase = self.tokenizer_class(_lowerCamelCase ,keep_accents=_lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = '''<s>''' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) ,_lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<unk>''' ) self.assertEqual(vocab_keys[1] ,'''<s>''' ) self.assertEqual(vocab_keys[-1] ,'''[MASK]''' ) self.assertEqual(len(_lowerCamelCase ) ,1004 ) def _UpperCAmelCase (self ) -> List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,1000 ) def _UpperCAmelCase (self ) -> str: '''simple docstring''' if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = '''I was born in 92000, and this is falsé.''' __lowercase = tokenizer.tokenize(_lowerCamelCase ) __lowercase = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) __lowercase = rust_tokenizer.encode(_lowerCamelCase ,add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(_lowerCamelCase ) __lowercase = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase ,_lowerCamelCase ) def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = BigBirdTokenizer(_lowerCamelCase ,keep_accents=_lowerCamelCase ) __lowercase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCamelCase ) ,[285, 46, 10, 170, 382] ,) __lowercase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) __lowercase = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase ,[8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] ,) __lowercase = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) @cached_property def _UpperCAmelCase (self ) -> Tuple: '''simple docstring''' return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def _UpperCAmelCase (self ) -> Dict: '''simple docstring''' __lowercase = '''Hello World!''' __lowercase = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowerCamelCase ,self.big_tokenizer.encode(_lowerCamelCase ) ) @slow def _UpperCAmelCase (self ) -> List[Any]: '''simple docstring''' __lowercase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off __lowercase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowerCamelCase ,self.big_tokenizer.encode(_lowerCamelCase ) ) @require_torch @slow def _UpperCAmelCase (self ) -> str: '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence __lowercase = list(self.big_tokenizer.get_vocab().keys() )[:10] __lowercase = ''' '''.join(_lowerCamelCase ) __lowercase = self.big_tokenizer.encode_plus(_lowerCamelCase ,return_tensors='''pt''' ,return_token_type_ids=_lowerCamelCase ) __lowercase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] ,return_tensors='''pt''' ,return_token_type_ids=_lowerCamelCase ) __lowercase = BigBirdConfig(attention_type='''original_full''' ) __lowercase = BigBirdModel(_lowerCamelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCamelCase ) model(**_lowerCamelCase ) @slow def _UpperCAmelCase (self ) -> int: '''simple docstring''' __lowercase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) __lowercase = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def _UpperCAmelCase (self ) -> Optional[Any]: '''simple docstring''' __lowercase = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase ,model_name='''google/bigbird-roberta-base''' ,revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' ,)
217
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _SCREAMING_SNAKE_CASE = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } _SCREAMING_SNAKE_CASE = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = list(state_dict.keys() ) for name in state_dict_keys: __lowercase = state_dict.pop(lowerCamelCase_ ) # emb -> embedding if name.startswith('''emb.''' ): __lowercase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): __lowercase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention __lowercase = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , lowerCamelCase_ ) # ffn -> feed_forward __lowercase = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , lowerCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): __lowercase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): __lowercase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): __lowercase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": __lowercase = '''rwkv.''' + name __lowercase = weight return state_dict def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : int=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) __lowercase = 5_0_2_7_7 __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: __lowercase = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) # 2. Build the config __lowercase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowercase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) __lowercase = RwkvConfig( vocab_size=lowerCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCamelCase_ ) # 3. Download model file then convert state_dict __lowercase = hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = convert_state_dict(lowerCamelCase_ ) # 4. Split in shards and save __lowercase , __lowercase = shard_checkpoint(lowerCamelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if index is not None: __lowercase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # Save the index as well with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '''\n''' f.write(lowerCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) __lowercase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowercase = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) __lowercase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
217
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor SCREAMING_SNAKE_CASE_: int =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def __init__(self : Optional[int] , *__a : Optional[Any] , **__a : Dict ): warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _UpperCamelCase = (3, 9, -11, 0, 7, 5, 1, -1) _UpperCamelCase = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 class lowercase : '''simple docstring''' def __init__(self , __a ) -> None: """simple docstring""" UpperCAmelCase__ = None for i in sorted(__a , reverse=__a ): UpperCAmelCase__ = Node(__a , self.head ) def __iter__(self ) -> Iterator[int]: """simple docstring""" UpperCAmelCase__ = self.head while node: yield node.data UpperCAmelCase__ = node.next_node def __len__(self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__(self ) -> str: """simple docstring""" return " -> ".join([str(__a ) for node in self] ) def UpperCamelCase_( snake_case__: SortedLinkedList , snake_case__: SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(snake_case__ ) + list(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
335
from dataclasses import dataclass, field from typing import Optional @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be trained."""} ) __SCREAMING_SNAKE_CASE = field( default="""./""" , metadata={"""help""": """Save dir where model repo is cloned and models updates are saved to."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path of training dataset."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for training."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size for evaluation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"""help""": """Value of weight decay."""} ) __SCREAMING_SNAKE_CASE = field( default=10000 , metadata={"""help""": """Size of buffer used to shuffle streaming dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"""help""": """Learning rate fo training."""} ) __SCREAMING_SNAKE_CASE = field(default="""cosine""" , metadata={"""help""": """Learning rate."""} ) __SCREAMING_SNAKE_CASE = field( default=750 , metadata={"""help""": """Number of warmup steps in the learning rate schedule."""} ) __SCREAMING_SNAKE_CASE = field( default=16 , metadata={"""help""": """Number of gradient accumulation steps."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Use gradient checkpointing to reduce memory footprint."""} ) __SCREAMING_SNAKE_CASE = field(default=50000 , metadata={"""help""": """Maximum number of training steps."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Sequence lengths used for training."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Training seed."""} ) __SCREAMING_SNAKE_CASE = field( default=1024 , metadata={"""help""": """Interval to save checkpoints. Measured as number of forward passes not training steps."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """States path if the training should continue from a checkpoint folder."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """If True the data is pretokenized."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-valid""" , metadata={"""help""": """Name or path of validation dataset."""} ) __SCREAMING_SNAKE_CASE = field(default=2 , metadata={"""help""": """Batch size used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"""help""": """Maximum number of evaluation steps. If -1 the full dataset is evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1024 , metadata={"""help""": """Length of sequences to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Model name or path of model to be evaluated."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """The number of human-eval tasks to run. If not included all tasks are evaluated."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """Sample from the language model's output distribution."""} ) __SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"""help""": """Sampling temperature used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=256 , metadata={"""help""": """Maximum number of newly generated tokens."""} ) __SCREAMING_SNAKE_CASE = field(default=0 , metadata={"""help""": """Top-k parameter used for generation."""} ) __SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"""help""": """Top-p parameter used for nucleus sampling."""} ) __SCREAMING_SNAKE_CASE = field(default=10 , metadata={"""help""": """Number of generations to run in parallel."""} ) __SCREAMING_SNAKE_CASE = field( default=200 , metadata={"""help""": """Number of completions to generate for each sample."""} ) __SCREAMING_SNAKE_CASE = field(default=1 , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""eval_results.json""" , metadata={"""help""": """Random seed used for evaluation."""} ) __SCREAMING_SNAKE_CASE = field( default="""0""" , metadata={"""help""": """Allow `code_eval` to execute Python code on machine"""} ) __SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ """help""": ( """Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive""" """ number corresponds to which GPU device id to run on.""" ) } , ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={ """help""": """The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.""" } , ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot""" , metadata={"""help""": """Folder or name of dataset to process."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot-clean""" , metadata={"""help""": """Folder to save processed processed dataset."""} ) __SCREAMING_SNAKE_CASE = field( default=100000 , metadata={"""help""": """Number of files to save per JSON output file."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field( default=1000 , metadata={"""help""": """Maximum line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=100 , metadata={"""help""": """Maximum mean line length in file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"""help""": """Maximum fraction of non-alphanumeric characters, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"""help""": """Minimum character token ratio for the file, otherwise file is filtered."""} ) __SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"""help""": """Probability for filtering config, test and uncommon files."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} , ) __SCREAMING_SNAKE_CASE = field( default=_UpperCamelCase , metadata={"""help""": """If True, near-duplicate samples are removed."""} ) __SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"""help""": """Jaccard threshold for near-duplicate samples."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2""" , metadata={"""help""": """Base tokenizer to build new tokenizer from."""} ) __SCREAMING_SNAKE_CASE = field( default="""transformersbook/codeparrot-train""" , metadata={"""help""": """Dataset to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""content""" , metadata={"""help""": """Column containing text data to process."""} ) __SCREAMING_SNAKE_CASE = field(default=200000 , metadata={"""help""": """Number of examples to train tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field( default=32768 , metadata={"""help""": """Number of examples to train the tokenizer on."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of new tokenizer."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Name or path to the tokenizer."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot-clean-train""" , metadata={"""help""": """Name or path to the dataset to pretokenize."""} ) __SCREAMING_SNAKE_CASE = field( default="""tokenized-codeparrot-train""" , metadata={"""help""": """Repo name of the pretokenized data."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Number of workers used for code evaluation."""} ) @dataclass class lowercase : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( default="""gpt2-large""" , metadata={"""help""": """Configuration to use for model initialization."""} ) __SCREAMING_SNAKE_CASE = field( default="""codeparrot/codeparrot""" , metadata={"""help""": """Tokenizer attached to model."""} ) __SCREAMING_SNAKE_CASE = field(default="""codeparrot""" , metadata={"""help""": """Name of the created model."""} ) __SCREAMING_SNAKE_CASE = field(default=_UpperCamelCase , metadata={"""help""": """Push saved tokenizer to the hub."""} )
335
1
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCamelCase ( snake_case_ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = XLMTokenizer A_ : List[str] = False def _UpperCAmelCase ( self ) -> Union[str, Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] _a = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) _a = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCAmelCase__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCAmelCase__ ) ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _a = """lower newer""" _a = """lower newer""" return input_text, output_text def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = XLMTokenizer(self.vocab_file , self.merges_file ) _a = """lower""" _a = ["""low""", """er</w>"""] _a = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) _a = tokens + ["""<unk>"""] _a = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ ) @slow def _UpperCAmelCase ( self ) -> Dict: _a = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase__ ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase__ ) _a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) _a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
320
"""simple docstring""" from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(UpperCamelCase__ ): print(F"""{i}\t\t{d}""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for j in range(UpperCamelCase__ ): _a , _a , _a : List[str] = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Dict = [float("""inf""" )] * vertex_count _a : Any = 0.0 for _ in range(vertex_count - 1 ): for j in range(UpperCamelCase__ ): _a , _a , _a : List[Any] = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _a : Any = distance[u] + w _a : Union[str, Any] = check_negative_cycle(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input('Enter number of vertices: ').strip()) _snake_case = int(input('Enter number of edges: ').strip()) _snake_case = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) _snake_case , _snake_case , _snake_case = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) _snake_case = {'src': src, 'dst': dest, 'weight': weight} _snake_case = int(input('\nEnter shortest path source:').strip()) _snake_case = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
294
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __lowercase = '''bert-base-cased''' __lowercase = '''google/pegasus-xsum''' __lowercase = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] __lowercase = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] __lowercase = '''patrickvonplaten/t5-tiny-random''' __lowercase = '''sshleifer/bart-tiny-random''' __lowercase = '''sshleifer/tiny-mbart''' __lowercase = '''sshleifer/tiny-marian-en-de''' def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = '''\n'''.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('''w''' ).writelines(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.source""" ) , SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , f"""{split}.target""" ) , SCREAMING_SNAKE_CASE ) return tmp_dir class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :List[Any] = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Optional[int] = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :int = 4 __UpperCamelCase :Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __UpperCamelCase , __UpperCamelCase :Tuple = '''ro_RO''', '''de_DE''' # ignored for all but mbart, but never causes error. __UpperCamelCase :str = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , ) __UpperCamelCase :Any = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(__lowercase , __lowercase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __UpperCamelCase :Optional[int] = shift_tokens_right(batch['''labels'''] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __UpperCamelCase :int = max(len(tokenizer.encode(__lowercase)) for a in ARTICLES) __UpperCamelCase :Dict = max(len(tokenizer.encode(__lowercase)) for a in SUMMARIES) __UpperCamelCase :Union[str, Any] = 4 __UpperCamelCase :List[str] = LegacySeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=20 , max_target_length=__lowercase , ) __UpperCamelCase :Dict = DataLoader(__lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained('''facebook/mbart-large-cc25''') __UpperCamelCase :Union[str, Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __UpperCamelCase :str = tmp_dir.joinpath('''train.source''').open().readlines() __UpperCamelCase :int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(__lowercase , __lowercase , 128 , __lowercase) __UpperCamelCase :Union[str, Any] = {x.name for x in tmp_dir.iterdir()} __UpperCamelCase :int = {x.name for x in save_dir.iterdir()} __UpperCamelCase :Optional[int] = save_dir.joinpath('''train.source''').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__lowercase) < len(__lowercase) assert len(__lowercase) == 1 assert len(packed_examples[0]) == sum(len(__lowercase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='''This test requires fairseq''') def UpperCamelCase__ ( self) -> List[Any]: if not FAIRSEQ_AVAILABLE: return __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Any = self._get_dataset(max_len=64) __UpperCamelCase :Union[str, Any] = 64 __UpperCamelCase :Tuple = ds.make_dynamic_sampler(__lowercase , required_batch_size_multiple=__lowercase) __UpperCamelCase :List[str] = [len(__lowercase) for x in batch_sampler] assert len(set(__lowercase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__lowercase) == len(__lowercase) # no dropped or added examples __UpperCamelCase :int = DataLoader(__lowercase , batch_sampler=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :List[str] = [] __UpperCamelCase :int = [] for batch in data_loader: __UpperCamelCase :List[Any] = batch['''input_ids'''].shape __UpperCamelCase :Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __UpperCamelCase :Optional[int] = np.product(batch['''input_ids'''].shape) num_src_per_batch.append(__lowercase) if num_src_tokens > (max_tokens * 1.1): failures.append(__lowercase) assert num_src_per_batch[0] == max(__lowercase) if failures: raise AssertionError(f"""too many tokens in {len(__lowercase)} batches""") def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :Optional[Any] = self._get_dataset(max_len=512) __UpperCamelCase :Any = 2 __UpperCamelCase :List[Any] = ds.make_sortish_sampler(__lowercase , shuffle=__lowercase) __UpperCamelCase :List[Any] = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2) __UpperCamelCase :Tuple = DataLoader(__lowercase , batch_size=__lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowercase) __UpperCamelCase :int = tokenizer.pad_token_id def count_pad_tokens(__lowercase , __lowercase="input_ids"): return [batch[k].eq(__lowercase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__lowercase , k='''labels''')) < sum(count_pad_tokens(__lowercase , k='''labels''')) assert sum(count_pad_tokens(__lowercase)) < sum(count_pad_tokens(__lowercase)) assert len(__lowercase) == len(__lowercase) def UpperCamelCase__ ( self , __lowercase=1_000 , __lowercase=128) -> List[Any]: if os.getenv('''USE_REAL_DATA''' , __lowercase): __UpperCamelCase :Optional[Any] = '''examples/seq2seq/wmt_en_ro''' __UpperCamelCase :Dict = max_len * 2 * 64 if not Path(__lowercase).joinpath('''train.len''').exists(): save_len_file(__lowercase , __lowercase) else: __UpperCamelCase :Union[str, Any] = '''examples/seq2seq/test_data/wmt_en_ro''' __UpperCamelCase :Optional[int] = max_len * 4 save_len_file(__lowercase , __lowercase) __UpperCamelCase :str = AutoTokenizer.from_pretrained(__lowercase) __UpperCamelCase :List[Any] = SeqaSeqDataset( __lowercase , data_dir=__lowercase , type_path='''train''' , max_source_length=__lowercase , max_target_length=__lowercase , n_obs=__lowercase , ) return ds, max_tokens, tokenizer def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase :List[Any] = self._get_dataset() __UpperCamelCase :List[str] = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowercase)) __UpperCamelCase :Tuple = set(DistributedSortishSampler(__lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowercase)) assert idsa.intersection(__lowercase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCamelCase__ ( self , __lowercase) -> List[Any]: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase) if tok_name == MBART_TINY: __UpperCamelCase :Optional[Any] = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , src_lang='''EN''' , tgt_lang='''FR''' , ) __UpperCamelCase :Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __UpperCamelCase :Tuple = SeqaSeqDataset( __lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='''train''' , max_source_length=4 , max_target_length=8 , ) __UpperCamelCase :Optional[int] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__lowercase) == 1 if tok_name == BART_TINY else len(__lowercase) == 0
105
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[str] = emb.weight.shape __UpperCamelCase :str = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = emb.weight.data return lin_layer def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCamelCase :Tuple = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __UpperCamelCase :Dict = mam_aaa['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = state_dict['''encoder.embed_tokens.weight'''].shape[0] __UpperCamelCase :Dict = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) __UpperCamelCase :Tuple = state_dict['''decoder.embed_tokens.weight'''] __UpperCamelCase :int = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE ) model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowercase = parser.parse_args() __lowercase = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
105
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = FunnelTokenizer lowerCamelCase__ = FunnelTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : Any = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def snake_case__ ( self, **__a): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, **__a): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "UNwant\u00E9d,running" _lowerCAmelCase : Tuple = "unwanted, running" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer_class(self.vocab_file) _lowerCAmelCase : Dict = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__a, ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), [7, 4, 5, 10, 8, 9]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__a) for tokenizer in tokenizers: _lowerCAmelCase : Optional[Any] = tokenizer("UNwant\u00E9d,running") _lowerCAmelCase : Union[str, Any] = len(inputs["input_ids"]) - 1 self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len) _lowerCAmelCase : Any = tokenizer("UNwant\u00E9d,running", "UNwant\u00E9d,running") self.assertListEqual(inputs["token_type_ids"], [2] + [0] * sentence_len + [1] * sentence_len)
36
import pickle import numpy as np from matplotlib import pyplot as plt class A__ : def __init__( self , A_ , A_ , A_ , A_ , A_ , A_=0.2 , A_=0.2 ): '''simple docstring''' UpperCamelCase : int = bp_numa UpperCamelCase : int = bp_numa UpperCamelCase : List[Any] = bp_numa UpperCamelCase : Optional[int] = conva_get[:2] UpperCamelCase : Optional[Any] = conva_get[2] UpperCamelCase : Dict = size_pa UpperCamelCase : Union[str, Any] = rate_w UpperCamelCase : Dict = rate_t UpperCamelCase : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCamelCase : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase : Optional[Any] = -2 * np.random.rand(self.conva[1] ) + 1 UpperCamelCase : Any = -2 * np.random.rand(self.num_bpa ) + 1 UpperCamelCase : int = -2 * np.random.rand(self.num_bpa ) + 1 def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(A_ , "wb" ) as f: pickle.dump(A_ , A_ ) print(F"""Model saved: {save_path}""" ) @classmethod def __UpperCamelCase( cls , A_ ): '''simple docstring''' with open(A_ , "rb" ) as f: UpperCamelCase : Optional[Any] = pickle.load(A_ ) # noqa: S301 UpperCamelCase : List[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) UpperCamelCase : Union[str, Any] = model_dic.get("size_pooling1" ) UpperCamelCase : List[Any] = model_dic.get("num_bp1" ) UpperCamelCase : Dict = model_dic.get("num_bp2" ) UpperCamelCase : Dict = model_dic.get("num_bp3" ) UpperCamelCase : Dict = model_dic.get("rate_weight" ) UpperCamelCase : str = model_dic.get("rate_thre" ) # create model instance UpperCamelCase : Any = CNN(A_ , A_ , A_ , A_ , A_ , A_ , A_ ) # modify model parameter UpperCamelCase : str = model_dic.get("w_conv1" ) UpperCamelCase : Optional[Any] = model_dic.get("wkj" ) UpperCamelCase : int = model_dic.get("vji" ) UpperCamelCase : Any = model_dic.get("thre_conv1" ) UpperCamelCase : Optional[int] = model_dic.get("thre_bp2" ) UpperCamelCase : Union[str, Any] = model_dic.get("thre_bp3" ) return conv_ins def __UpperCamelCase( self , A_ ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def __UpperCamelCase( self , A_ ): '''simple docstring''' return round(A_ , 3 ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = convs[0] UpperCamelCase : Optional[Any] = convs[1] UpperCamelCase : Optional[Any] = np.shape(A_ )[0] # get the data slice of original image data, data_focus UpperCamelCase : List[str] = [] for i_focus in range(0 , size_data - size_conv + 1 , A_ ): for j_focus in range(0 , size_data - size_conv + 1 , A_ ): UpperCamelCase : Union[str, Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(A_ ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(A_ ): UpperCamelCase : str = [] for i_focus in range(len(A_ ) ): UpperCamelCase : List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(A_ ) ) UpperCamelCase : Optional[int] = np.asmatrix(A_ ).reshape( A_ , A_ ) data_featuremap.append(A_ ) # expanding the data slice to One dimenssion UpperCamelCase : List[Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(A_ ) ) UpperCamelCase : Tuple = np.asarray(A_ ) return focus_list, data_featuremap def __UpperCamelCase( self , A_ , A_ , A_="average_pool" ): '''simple docstring''' UpperCamelCase : Any = len(featuremaps[0] ) UpperCamelCase : str = int(size_map / size_pooling ) UpperCamelCase : Optional[int] = [] for i_map in range(len(A_ ) ): UpperCamelCase : Tuple = featuremaps[i_map] UpperCamelCase : Any = [] for i_focus in range(0 , A_ , A_ ): for j_focus in range(0 , A_ , A_ ): UpperCamelCase : int = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(A_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(A_ ) ) UpperCamelCase : Optional[Any] = np.asmatrix(A_ ).reshape(A_ , A_ ) featuremap_pooled.append(A_ ) return featuremap_pooled def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = [] for i in range(len(A_ ) ): UpperCamelCase : List[Any] = np.shape(data[i] ) UpperCamelCase : str = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCamelCase : Optional[int] = data_listed.getA().tolist()[0] data_expanded.extend(A_ ) UpperCamelCase : Any = np.asarray(A_ ) return data_expanded def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = np.asarray(A_ ) UpperCamelCase : List[Any] = np.shape(A_ ) UpperCamelCase : Any = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = [] UpperCamelCase : Optional[int] = 0 for i_map in range(A_ ): UpperCamelCase : int = np.ones((size_map, size_map) ) for i in range(0 , A_ , A_ ): for j in range(0 , A_ , A_ ): UpperCamelCase : str = pd_pool[ i_pool ] UpperCamelCase : str = i_pool + 1 UpperCamelCase : str = np.multiply( A_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(A_ ) return pd_all def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_=bool ): '''simple docstring''' print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(A_ )) ) print((" - - Shape: Teach_Data ", np.shape(A_ )) ) UpperCamelCase : List[str] = 0 UpperCamelCase : Union[str, Any] = [] UpperCamelCase : int = 1_0000 while rp < n_repeat and mse >= error_accuracy: UpperCamelCase : Tuple = 0 print(F"""-------------Learning Time {rp}--------------""" ) for p in range(len(A_ ) ): # print('------------Learning Image: %d--------------'%p) UpperCamelCase : Any = np.asmatrix(datas_train[p] ) UpperCamelCase : List[str] = np.asarray(datas_teach[p] ) UpperCamelCase , UpperCamelCase : Dict = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : Tuple = self.pooling(A_ , self.size_poolinga ) UpperCamelCase : int = np.shape(A_ ) UpperCamelCase : List[str] = self._expand(A_ ) UpperCamelCase : Optional[int] = data_bp_input UpperCamelCase : str = np.dot(A_ , self.vji.T ) - self.thre_bpa UpperCamelCase : Optional[int] = self.sig(A_ ) UpperCamelCase : List[Any] = np.dot(A_ , self.wkj.T ) - self.thre_bpa UpperCamelCase : Dict = self.sig(A_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCamelCase : List[Any] = np.multiply( (data_teach - bp_outa) , np.multiply(A_ , (1 - bp_outa) ) ) UpperCamelCase : str = np.multiply( np.dot(A_ , self.wkj ) , np.multiply(A_ , (1 - bp_outa) ) ) UpperCamelCase : Any = np.dot(A_ , self.vji ) UpperCamelCase : Dict = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCamelCase : List[Any] = pd_conva_pooled.T.getA().tolist() UpperCamelCase : List[Any] = self._calculate_gradient_from_pool( A_ , A_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCamelCase : List[Any] = self._expand_mat(pd_conva_all[k_conv] ) UpperCamelCase : List[Any] = self.rate_weight * np.dot(A_ , A_ ) UpperCamelCase : str = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCamelCase : Dict = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCamelCase : Optional[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCamelCase : List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCamelCase : Optional[Any] = self.thre_bpa - pd_k_all * self.rate_thre UpperCamelCase : List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCamelCase : List[Any] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCamelCase : Any = rp + 1 UpperCamelCase : Union[str, Any] = error_count / patterns all_mse.append(A_ ) def draw_error(): UpperCamelCase : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(A_ , "+-" ) plt.plot(A_ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(A_ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, F""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(A_ )) ) for p in range(len(A_ ) ): UpperCamelCase : int = np.asmatrix(datas_test[p] ) UpperCamelCase , UpperCamelCase : Any = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : List[str] = self.pooling(A_ , self.size_poolinga ) UpperCamelCase : Dict = self._expand(A_ ) UpperCamelCase : List[Any] = data_bp_input UpperCamelCase : Any = bp_outa * self.vji.T - self.thre_bpa UpperCamelCase : List[Any] = self.sig(A_ ) UpperCamelCase : int = bp_outa * self.wkj.T - self.thre_bpa UpperCamelCase : Optional[int] = self.sig(A_ ) produce_out.extend(bp_outa.getA().tolist() ) UpperCamelCase : List[str] = [list(map(self.do_round , A_ ) ) for each in produce_out] return np.asarray(A_ ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Union[str, Any] = np.asmatrix(A_ ) UpperCamelCase , UpperCamelCase : List[Any] = self.convolute( A_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase : str = self.pooling(A_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
52
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process lowercase : Union[str, Any] = logging.getLogger(__name__) lowercase : Optional[Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) lowercase : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A__ : """simple docstring""" __A : Optional[str] = field( default=__lowercase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(__lowercase )} , ) __A : Optional[str] = field( default=__lowercase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A : bool = field( default=__lowercase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __A : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __A : bool = field( default=__lowercase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def __lowercase ( self) -> Any: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path') @dataclass class A__ : """simple docstring""" __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The input training data file (a text file).'''} ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) __A : Optional[str] = field( default=__lowercase , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) __A : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) __A : Optional[int] = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) __A : Optional[int] = field( default=__lowercase , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) __A : Optional[int] = field( default=__lowercase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __A : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) __A : bool = field( default=__lowercase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def __lowercase ( self) -> int: '''simple docstring''' if self.train_file is not None: a__ : Optional[int] = self.train_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: a__ : List[Any] = self.validation_file.split('.')[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def A_ ( A__ , A__ ) -> str: with open(A__ , 'r' , encoding='utf-8' ) as f: a__ : str = [json.loads(A__ ) for line in f.read().splitlines() if (len(A__ ) > 0 and not line.isspace())] assert len(A__ ) == len(A__ ) a__ : Optional[int] = {c: dataset[c] for c in dataset.column_names} a__ : Any = refs return Dataset.from_dict(A__ ) def A_ ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. a__ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a__ : Optional[int] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. a__ : Any = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): a__ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) a__ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: a__ : Any = {} if data_args.train_file is not None: a__ : int = data_args.train_file if data_args.validation_file is not None: a__ : Tuple = data_args.validation_file a__ : Optional[Any] = data_args.train_file.split('.' )[-1] if extension == "txt": a__ : Optional[Any] = 'text' a__ : int = load_dataset(A__ , data_files=A__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Tuple = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: a__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name , **A__ ) elif model_args.model_name_or_path: a__ : Any = AutoConfig.from_pretrained(model_args.model_name_or_path , **A__ ) else: a__ : Optional[int] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) a__ : Optional[Any] = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: a__ : int = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **A__ ) elif model_args.model_name_or_path: a__ : str = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **A__ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: a__ : Union[str, Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) a__ : Optional[Any] = AutoModelForMaskedLM.from_config(A__ ) model.resize_token_embeddings(len(A__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: a__ : Dict = datasets['train'].column_names else: a__ : Dict = datasets['validation'].column_names a__ : List[Any] = 'text' if 'text' in column_names else column_names[0] a__ : List[str] = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(A__ ): # Remove empty lines a__ : Optional[int] = [line for line in examples['text'] if len(A__ ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=A__ , truncation=A__ , max_length=data_args.max_seq_length ) a__ : int = datasets.map( A__ , batched=A__ , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: a__ : Any = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: a__ : Union[str, Any] = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer a__ : Optional[int] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: a__ : Any = False # Data collator # This one will take care of randomly masking the tokens. a__ : int = DataCollatorForWholeWordMask(tokenizer=A__ , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer a__ : Optional[int] = Trainer( model=A__ , args=A__ , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=A__ , data_collator=A__ , ) # Training if training_args.do_train: if last_checkpoint is not None: a__ : Dict = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): a__ : Any = model_args.model_name_or_path else: a__ : Dict = None a__ : Optional[int] = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() # Saves the tokenizer too for easy upload a__ : Dict = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation a__ : Optional[int] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ : Optional[Any] = trainer.evaluate() a__ : int = math.exp(eval_output['eval_loss'] ) a__ : Any = perplexity a__ : Union[str, Any] = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def A_ ( A__ ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
361
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["""CLIPFeatureExtractor"""] lowercase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Dict = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
225
0
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if isinstance(__lowercase , torch.Tensor ): return image elif isinstance(__lowercase , PIL.Image.Image ): SCREAMING_SNAKE_CASE : str = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE : int = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE : Tuple = np.concatenate(__lowercase , axis=0 ) SCREAMING_SNAKE_CASE : str = np.array(__lowercase ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE : Optional[Any] = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE : List[Any] = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE : Optional[int] = torch.from_numpy(__lowercase ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(__lowercase , dim=0 ) return image def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=0.9_995 ): """simple docstring""" if not isinstance(__lowercase , np.ndarray ): SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Any = va.device SCREAMING_SNAKE_CASE : str = va.cpu().numpy() SCREAMING_SNAKE_CASE : Tuple = va.cpu().numpy() SCREAMING_SNAKE_CASE : int = np.sum(va * va / (np.linalg.norm(__lowercase ) * np.linalg.norm(__lowercase )) ) if np.abs(__lowercase ) > DOT_THRESHOLD: SCREAMING_SNAKE_CASE : Dict = (1 - t) * va + t * va else: SCREAMING_SNAKE_CASE : int = np.arccos(__lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = np.sin(__lowercase ) SCREAMING_SNAKE_CASE : int = theta_a * t SCREAMING_SNAKE_CASE : List[Any] = np.sin(__lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.sin(theta_a - theta_t ) / sin_theta_a SCREAMING_SNAKE_CASE : str = sin_theta_t / sin_theta_a SCREAMING_SNAKE_CASE : Any = sa * va + sa * va if inputs_are_torch: SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(__lowercase ).to(__lowercase ) return va def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = F.normalize(__lowercase , dim=-1 ) SCREAMING_SNAKE_CASE : List[str] = F.normalize(__lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for param in model.parameters(): SCREAMING_SNAKE_CASE : str = value class UpperCamelCase__ ( snake_case_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : AutoencoderKL , lowerCamelCase_ : CLIPTextModel , lowerCamelCase_ : CLIPModel , lowerCamelCase_ : CLIPTokenizer , lowerCamelCase_ : UNetaDConditionModel , lowerCamelCase_ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , lowerCamelCase_ : CLIPFeatureExtractor , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Tuple=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , clip_model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , coca_model=__UpperCAmelCase , coca_tokenizer=__UpperCAmelCase , coca_transform=__UpperCAmelCase , ) SCREAMING_SNAKE_CASE : Optional[Any] = ( feature_extractor.size if isinstance(feature_extractor.size , __UpperCAmelCase ) else feature_extractor.size["""shortest_edge"""] ) SCREAMING_SNAKE_CASE : int = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __UpperCAmelCase ) set_requires_grad(self.clip_model , __UpperCAmelCase ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.enable_attention_slicing(__UpperCAmelCase ) def lowerCamelCase_ ( self : int ): '''simple docstring''' set_requires_grad(self.vae , __UpperCAmelCase ) def lowerCamelCase_ ( self : int ): '''simple docstring''' set_requires_grad(self.vae , __UpperCAmelCase ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' set_requires_grad(self.unet , __UpperCAmelCase ) def lowerCamelCase_ ( self : int ): '''simple docstring''' set_requires_grad(self.unet , __UpperCAmelCase ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = min(int(num_inference_steps * strength ) , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Dict=None ): '''simple docstring''' if not isinstance(__UpperCAmelCase , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(__UpperCAmelCase )}''' ) SCREAMING_SNAKE_CASE : Optional[Any] = image.to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE : int = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCAmelCase ) ] SCREAMING_SNAKE_CASE : int = torch.cat(__UpperCAmelCase , dim=0 ) else: SCREAMING_SNAKE_CASE : List[str] = self.vae.encode(__UpperCAmelCase ).latent_dist.sample(__UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE : Any = 0.18_215 * init_latents SCREAMING_SNAKE_CASE : Optional[Any] = init_latents.repeat_interleave(__UpperCAmelCase , dim=0 ) SCREAMING_SNAKE_CASE : str = randn_tensor(init_latents.shape , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) # get latents SCREAMING_SNAKE_CASE : int = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = init_latents return latents def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.coca_transform(__UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE : Dict = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) SCREAMING_SNAKE_CASE : int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor.preprocess(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() SCREAMING_SNAKE_CASE : Any = self.clip_model.get_image_features(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = image_embeddings_clip.repeat_interleave(__UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCamelCase_ ( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = latents.detach().requires_grad_() SCREAMING_SNAKE_CASE : Any = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE : Optional[int] = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): SCREAMING_SNAKE_CASE : int = self.scheduler.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE : int = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE : Optional[Any] = torch.sqrt(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __UpperCAmelCase ): SCREAMING_SNAKE_CASE : str = self.scheduler.sigmas[index] SCREAMING_SNAKE_CASE : str = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE : Union[str, Any] = 1 / 0.18_215 * sample SCREAMING_SNAKE_CASE : int = self.vae.decode(__UpperCAmelCase ).sample SCREAMING_SNAKE_CASE : Dict = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Tuple = transforms.Resize(self.feature_extractor_size )(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = self.normalize(__UpperCAmelCase ).to(latents.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.clip_model.get_image_features(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = spherical_dist_loss(__UpperCAmelCase , __UpperCAmelCase ).mean() * clip_guidance_scale SCREAMING_SNAKE_CASE : List[Any] = -torch.autograd.grad(__UpperCAmelCase , __UpperCAmelCase )[0] if isinstance(self.scheduler , __UpperCAmelCase ): SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach() + grads * (sigma**2) SCREAMING_SNAKE_CASE : List[Any] = noise_pred_original else: SCREAMING_SNAKE_CASE : Any = noise_pred_original - torch.sqrt(__UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Union[str, Any] , lowerCamelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCamelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[str] = None , lowerCamelCase_ : Optional[int] = 5_12 , lowerCamelCase_ : Optional[int] = 5_12 , lowerCamelCase_ : float = 0.6 , lowerCamelCase_ : Optional[int] = 50 , lowerCamelCase_ : Optional[float] = 7.5 , lowerCamelCase_ : Optional[int] = 1 , lowerCamelCase_ : float = 0.0 , lowerCamelCase_ : Optional[float] = 1_00 , lowerCamelCase_ : Optional[torch.Generator] = None , lowerCamelCase_ : Optional[str] = "pil" , lowerCamelCase_ : bool = True , lowerCamelCase_ : float = 0.8 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , ): '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(__UpperCAmelCase )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(__UpperCAmelCase , torch.Generator ) and batch_size > 1: SCREAMING_SNAKE_CASE : List[Any] = [generator] + [None] * (batch_size - 1) SCREAMING_SNAKE_CASE : List[Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] SCREAMING_SNAKE_CASE : Dict = [x[0] for x in coca_is_none if x[1]] SCREAMING_SNAKE_CASE : str = """, """.join(__UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__UpperCAmelCase ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) SCREAMING_SNAKE_CASE : Any = self.get_image_description(__UpperCAmelCase ) if style_prompt is None: if len(__UpperCAmelCase ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) SCREAMING_SNAKE_CASE : Tuple = self.get_image_description(__UpperCAmelCase ) # get prompt text embeddings for content and style SCREAMING_SNAKE_CASE : Dict = self.tokenizer( __UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE : int = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( __UpperCAmelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE : Optional[int] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE : List[str] = slerp(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE : int = text_embeddings.repeat_interleave(__UpperCAmelCase , dim=0 ) # set timesteps SCREAMING_SNAKE_CASE : int = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) SCREAMING_SNAKE_CASE : Optional[Any] = {} if accepts_offset: SCREAMING_SNAKE_CASE : List[str] = 1 self.scheduler.set_timesteps(__UpperCAmelCase , **__UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.get_timesteps(__UpperCAmelCase , __UpperCAmelCase , self.device ) SCREAMING_SNAKE_CASE : Tuple = timesteps[:1].repeat(__UpperCAmelCase ) # Preprocess image SCREAMING_SNAKE_CASE : Dict = preprocess(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = self.prepare_latents( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , text_embeddings.dtype , self.device , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = preprocess(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.prepare_latents( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , text_embeddings.dtype , self.device , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = slerp(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_clip_image_embeddings(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_clip_image_embeddings(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = slerp( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE : Union[str, Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : Union[str, Any] = content_text_input.input_ids.shape[-1] SCREAMING_SNAKE_CASE : Tuple = self.tokenizer([""""""] , padding="""max_length""" , max_length=__UpperCAmelCase , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt SCREAMING_SNAKE_CASE : Tuple = uncond_embeddings.repeat_interleave(__UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE : Tuple = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE : List[str] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps SCREAMING_SNAKE_CASE : List[str] = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device="""cpu""" , dtype=__UpperCAmelCase ).to( self.device ) else: SCREAMING_SNAKE_CASE : Dict = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) SCREAMING_SNAKE_CASE : Dict = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE : Dict = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE : Tuple = {} if accepts_eta: SCREAMING_SNAKE_CASE : Union[str, Any] = eta # check if the scheduler accepts generator SCREAMING_SNAKE_CASE : int = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: SCREAMING_SNAKE_CASE : int = generator with self.progress_bar(total=__UpperCAmelCase ): for i, t in enumerate(__UpperCAmelCase ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE : Dict = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE : Any = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.cond_fn( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : Tuple = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE : Dict = 1 / 0.18_215 * latents SCREAMING_SNAKE_CASE : Tuple = self.vae.decode(__UpperCAmelCase ).sample SCREAMING_SNAKE_CASE : Optional[int] = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Dict = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase )
323
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : Optional[int]=7 , __UpperCAmelCase : int=True , __UpperCAmelCase : str=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : str=True , __UpperCAmelCase : List[str]=99 , __UpperCAmelCase : List[str]=32 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : List[str]=4 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Dict=512 , __UpperCAmelCase : List[Any]=16 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Optional[Any]=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Dict=4 , __UpperCAmelCase : str=None , ): '''simple docstring''' _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = True _A = 99 _A = 32 _A = 2 _A = 4 _A = 37 _A = "gelu" _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = None def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = TFRoFormerModel(config=__UpperCAmelCase ) _A = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _A = [input_ids, input_mask] _A = model(__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = True _A = TFRoFormerForCausalLM(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowerCAmelCase ( self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ): '''simple docstring''' _A = TFRoFormerForMaskedLM(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] ): '''simple docstring''' _A = self.num_labels _A = TFRoFormerForSequenceClassification(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ): '''simple docstring''' _A = self.num_choices _A = TFRoFormerForMultipleChoice(config=__UpperCAmelCase ) _A = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ): '''simple docstring''' _A = self.num_labels _A = TFRoFormerForTokenClassification(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' _A = TFRoFormerForQuestionAnswering(config=__UpperCAmelCase ) _A = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) snake_case = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) snake_case = False snake_case = False def lowerCAmelCase ( self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = TFRoFormerModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(__UpperCAmelCase )[0] # TODO Replace vocab size _A = 50000 _A = [1, 6, vocab_size] self.assertEqual(output.shape , __UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _A = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = 1E-4 def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = tf.constant([[4, 10]] ) _A = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _A = emba(input_ids.shape ) _A = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , atol=self.tolerance ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _A = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) _A = emba.weight[:3, :5] tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , atol=self.tolerance ) @require_tf class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case = 1E-4 def lowerCAmelCase ( self : str ): '''simple docstring''' _A = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _A = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _A = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _A = embed_positions([2, 16, 768] )[None, None, :, :] _A , _A = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _A = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __UpperCAmelCase , atol=self.tolerance )
79
0
'''simple docstring''' import unittest from transformers import DonutProcessor a__ : Dict = 'naver-clova-ix/donut-base' class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = DonutProcessor.from_pretrained(lowercase ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = { """name""": """John Doe""", """age""": """99""", """city""": """Atlanta""", """state""": """GA""", """zip""": """30301""", """phone""": """123-4567""", """nicknames""": [{"""nickname""": """Johnny"""}, {"""nickname""": """JD"""}], } __UpperCamelCase = ( """<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>""" """<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>""" """<s_nicknames><s_nickname>Johnny</s_nickname>""" """<sep/><s_nickname>JD</s_nickname></s_nicknames>""" ) __UpperCamelCase = self.processor.tokenajson(lowercase ) self.assertDictEqual(lowercase , lowercase )
358
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a__ : Optional[int] = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a__ : Optional[int] = f'''https://www.google.com/search?q={query}&num=100''' a__ : Union[str, Any] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a__ : Optional[Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a__ : Union[str, Any] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
243
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' # Load configuration defined in the metadata file with open(UpperCamelCase_ ) as metadata_file: UpperCamelCase = json.load(UpperCamelCase_ ) UpperCamelCase = LukeConfig(use_entity_aware_attention=UpperCamelCase_ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path UpperCamelCase = torch.load(UpperCamelCase_ , map_location="""cpu""" ) # Load the entity vocab file UpperCamelCase = load_entity_vocab(UpperCamelCase_ ) UpperCamelCase = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase = AddedToken("""<ent>""" , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) UpperCamelCase = AddedToken("""<ent2>""" , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = LukeTokenizer.from_pretrained(UpperCamelCase_ ) # Initialize the embeddings of the special tokens UpperCamelCase = state_dict["""embeddings.word_embeddings.weight"""] UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) UpperCamelCase = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase = f"""encoder.layer.{layer_index}.attention.self.""" UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase = state_dict["""entity_embeddings.entity_embeddings.weight"""] UpperCamelCase = entity_emb[entity_vocab["""[MASK]"""]] UpperCamelCase = LukeModel(config=UpperCamelCase_ ).eval() UpperCamelCase , UpperCamelCase = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) if not (len(UpperCamelCase_ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f"""Missing keys {", ".join(UpperCamelCase_ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" f""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs UpperCamelCase = LukeTokenizer.from_pretrained(UpperCamelCase_ , task="""entity_classification""" ) UpperCamelCase = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) UpperCamelCase = (39, 42) UpperCamelCase = tokenizer(UpperCamelCase_ , entity_spans=[span] , add_prefix_space=UpperCamelCase_ , return_tensors="""pt""" ) UpperCamelCase = model(**UpperCamelCase_ ) # Verify word hidden states if model_size == "large": UpperCamelCase = torch.Size((1, 42, 1024) ) UpperCamelCase = torch.tensor( [[0.0_1_3_3, 0.0_8_6_5, 0.0_0_9_5], [0.3_0_9_3, -0.2_5_7_6, -0.7_4_1_8], [-0.1_7_2_0, -0.2_1_1_7, -0.2_8_6_9]] ) else: # base UpperCamelCase = torch.Size((1, 42, 768) ) UpperCamelCase = torch.tensor([[0.0_0_3_7, 0.1_3_6_8, -0.0_0_9_1], [0.1_0_9_9, 0.3_3_2_9, -0.1_0_9_5], [0.0_7_6_5, 0.5_3_3_5, 0.1_1_7_9]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": UpperCamelCase = torch.Size((1, 1, 1024) ) UpperCamelCase = torch.tensor([[0.0_4_6_6, -0.0_1_0_6, -0.0_1_7_9]] ) else: # base UpperCamelCase = torch.Size((1, 1, 768) ) UpperCamelCase = torch.tensor([[0.1_4_5_7, 0.1_0_4_4, 0.0_1_7_4]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" f""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(UpperCamelCase_ ) ) model.save_pretrained(UpperCamelCase_ ) def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = {} with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(UpperCamelCase_ ): UpperCamelCase , UpperCamelCase = line.rstrip().split("""\t""" ) UpperCamelCase = index return entity_vocab if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
343
def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase_ ) ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: '''simple docstring''' # Base Case if index == len(UpperCamelCase_ ): return True # Recursive Step for i in range(UpperCamelCase_ ): if valid_coloring(graph[index] , UpperCamelCase_ , UpperCamelCase_ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: '''simple docstring''' UpperCamelCase = [-1] * len(UpperCamelCase_ ) if util_color(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , 0 ): return colored_vertices return []
343
1
"""simple docstring""" def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =0 for ch in input_str: lowerCamelCase__ : List[str] =ord(__lowerCamelCase ) lowerCamelCase__ : Any =pow(2 , __lowerCamelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
272
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings _lowercase : Tuple = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(lowerCAmelCase_ ) class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'rag' _a = True def __init__( self : Optional[int], lowerCamelCase : Union[str, Any]=None, lowerCamelCase : Union[str, Any]=True, lowerCamelCase : Dict=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=None, lowerCamelCase : List[Any]=None, lowerCamelCase : Optional[Any]=None, lowerCamelCase : Any=" / ", lowerCamelCase : Union[str, Any]=" // ", lowerCamelCase : List[Any]=5, lowerCamelCase : int=300, lowerCamelCase : Optional[Any]=768, lowerCamelCase : Optional[Any]=8, lowerCamelCase : Tuple="wiki_dpr", lowerCamelCase : Tuple="train", lowerCamelCase : Union[str, Any]="compressed", lowerCamelCase : List[str]=None, lowerCamelCase : Any=None, lowerCamelCase : Union[str, Any]=False, lowerCamelCase : Dict=False, lowerCamelCase : Optional[int]=0.0, lowerCamelCase : Any=True, lowerCamelCase : Dict=False, lowerCamelCase : Tuple=False, lowerCamelCase : List[str]=False, lowerCamelCase : List[Any]=True, lowerCamelCase : Optional[Any]=None, **lowerCamelCase : str, )-> List[Any]: super().__init__( bos_token_id=lowerCamelCase, pad_token_id=lowerCamelCase, eos_token_id=lowerCamelCase, decoder_start_token_id=lowerCamelCase, forced_eos_token_id=lowerCamelCase, is_encoder_decoder=lowerCamelCase, prefix=lowerCamelCase, vocab_size=lowerCamelCase, **lowerCamelCase, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase__ : Tuple =kwargs.pop('''question_encoder''' ) lowerCamelCase__ : int =question_encoder_config.pop('''model_type''' ) lowerCamelCase__ : Dict =kwargs.pop('''generator''' ) lowerCamelCase__ : Tuple =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig lowerCamelCase__ : Tuple =AutoConfig.for_model(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Dict =AutoConfig.for_model(lowerCamelCase, **lowerCamelCase ) lowerCamelCase__ : Any =reduce_loss lowerCamelCase__ : Tuple =label_smoothing lowerCamelCase__ : List[str] =exclude_bos_score lowerCamelCase__ : Dict =do_marginalize lowerCamelCase__ : Union[str, Any] =title_sep lowerCamelCase__ : Dict =doc_sep lowerCamelCase__ : List[Any] =n_docs lowerCamelCase__ : List[str] =max_combined_length lowerCamelCase__ : List[Any] =dataset lowerCamelCase__ : int =dataset_split lowerCamelCase__ : List[Any] =index_name lowerCamelCase__ : int =retrieval_vector_size lowerCamelCase__ : Dict =retrieval_batch_size lowerCamelCase__ : str =passages_path lowerCamelCase__ : Any =index_path lowerCamelCase__ : List[Any] =use_dummy_dataset lowerCamelCase__ : Optional[int] =output_retrieved lowerCamelCase__ : List[str] =do_deduplication lowerCamelCase__ : Tuple =use_cache if self.forced_eos_token_id is None: lowerCamelCase__ : int =getattr(self.generator, '''forced_eos_token_id''', lowerCamelCase ) @classmethod def snake_case ( cls : List[str], lowerCamelCase : PretrainedConfig, lowerCamelCase : PretrainedConfig, **lowerCamelCase : int )-> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **lowerCamelCase ) def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ : Union[str, Any] =copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Optional[int] =self.question_encoder.to_dict() lowerCamelCase__ : Tuple =self.generator.to_dict() lowerCamelCase__ : Optional[Any] =self.__class__.model_type return output
272
1
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() _a = logging.get_logger(__name__) def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[str]: """simple docstring""" _UpperCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[Any]: """simple docstring""" for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCamelCase = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = dct.pop(__snake_case ) _UpperCamelCase = val def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" if "handwritten" in checkpoint_url: _UpperCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _UpperCamelCase = Image.open(requests.get(__snake_case, stream=__snake_case ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = ViTConfig(image_size=3_84, qkv_bias=__snake_case ) _UpperCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCamelCase = 7_68 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCamelCase = 10_24 _UpperCamelCase = 40_96 _UpperCamelCase = 24 _UpperCamelCase = 16 _UpperCamelCase = 10_24 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = False _UpperCamelCase = '''relu''' _UpperCamelCase = 10_24 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False # load HuggingFace model _UpperCamelCase = ViTModel(__snake_case, add_pooling_layer=__snake_case ) _UpperCamelCase = TrOCRForCausalLM(__snake_case ) _UpperCamelCase = VisionEncoderDecoderModel(encoder=__snake_case, decoder=__snake_case ) model.eval() # load state_dict of original model, rename some keys _UpperCamelCase = torch.hub.load_state_dict_from_url(__snake_case, map_location='''cpu''', check_hash=__snake_case )['''model'''] _UpperCamelCase = create_rename_keys(__snake_case, __snake_case ) for src, dest in rename_keys: rename_key(__snake_case, __snake_case, __snake_case ) read_in_q_k_v(__snake_case, __snake_case ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCamelCase = state_dict.pop(__snake_case ) if key.startswith('''decoder''' ) and "output_projection" not in key: _UpperCamelCase = val else: _UpperCamelCase = val # load state dict model.load_state_dict(__snake_case ) # Check outputs on an image _UpperCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _UpperCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _UpperCamelCase = TrOCRProcessor(__snake_case, __snake_case ) _UpperCamelCase = processor(images=prepare_img(__snake_case ), return_tensors='''pt''' ).pixel_values # verify logits _UpperCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCamelCase = model(pixel_values=__snake_case, decoder_input_ids=__snake_case ) _UpperCamelCase = outputs.logits _UpperCamelCase = torch.Size([1, 1, 5_02_65] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], __snake_case, atol=1e-3 ), "First elements of logits not as expected" Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) _a = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
194
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets _a = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ _a = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ _a = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase( datasets.Metric ): def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32'''), '''references''': datasets.Value('''int32'''), }) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def UpperCAmelCase ( self , __a , __a , __a=None) -> Dict: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__a , __a , sample_weight=__a)), }
194
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig): lowerCamelCase__ = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder): lowerCamelCase__ = PandasConfig def snake_case__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def snake_case__ ( self, __a): '''simple docstring''' if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") _lowerCAmelCase : str = dl_manager.download_and_extract(self.config.data_files) if isinstance(__a, (str, list, tuple)): _lowerCAmelCase : str = data_files if isinstance(__a, __a): _lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : Union[str, Any] = [dl_manager.iter_files(__a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] _lowerCAmelCase : str = [] for split_name, files in data_files.items(): if isinstance(__a, __a): _lowerCAmelCase : Optional[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _lowerCAmelCase : str = [dl_manager.iter_files(__a) for file in files] splits.append(datasets.SplitGenerator(name=__a, gen_kwargs={"files": files})) return splits def snake_case__ ( self, __a): '''simple docstring''' if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _lowerCAmelCase : str = table_cast(__a, self.config.features.arrow_schema) return pa_table def snake_case__ ( self, __a): '''simple docstring''' for i, file in enumerate(itertools.chain.from_iterable(__a)): with open(__a, "rb") as f: _lowerCAmelCase : Optional[Any] = pa.Table.from_pandas(pd.read_pickle(__a)) yield i, self._cast_table(__a)
300
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
1
'''simple docstring''' from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _SCREAMING_SNAKE_CASE (A = "" ) -> dict[str, float]: """simple docstring""" lowercase__ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' lowercase__ = BeautifulSoup(requests.get(A ).text , '''html.parser''' ) lowercase__ = soup.find_all('''td''' , attrs='''titleColumn''' ) lowercase__ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(A , A ) } def _SCREAMING_SNAKE_CASE (A = "IMDb_Top_250_Movies.csv" ) -> None: """simple docstring""" lowercase__ = get_imdb_top_aaa_movies() with open(A , '''w''' , newline='''''' ) as out_file: lowercase__ = csv.writer(A ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
2
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : Tuple , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[int]=13 , UpperCamelCase : Tuple=16 , UpperCamelCase : Union[str, Any]=7 , UpperCamelCase : List[Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : str=True , UpperCamelCase : Tuple=False , UpperCamelCase : str=True , UpperCamelCase : Tuple=2 , UpperCamelCase : Optional[int]=32 , UpperCamelCase : Any=4 , UpperCamelCase : Optional[int]=4 , UpperCamelCase : Tuple=30 , UpperCamelCase : str=0 , UpperCamelCase : Tuple=1 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=None , ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = decoder_seq_length # For common tests lowercase__ = self.decoder_seq_length lowercase__ = is_training lowercase__ = use_attention_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_model lowercase__ = decoder_layers lowercase__ = decoder_layers lowercase__ = decoder_ffn_dim lowercase__ = decoder_attention_heads lowercase__ = decoder_attention_heads lowercase__ = eos_token_id lowercase__ = bos_token_id lowercase__ = pad_token_id lowercase__ = decoder_start_token_id lowercase__ = use_cache lowercase__ = max_position_embeddings lowercase__ = None lowercase__ = decoder_seq_length lowercase__ = 2 lowercase__ = 1 def UpperCamelCase__ (self : str ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = None if self.use_attention_mask: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) lowercase__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCamelCase__ (self : Tuple , UpperCamelCase : List[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , ): '''simple docstring''' lowercase__ = True lowercase__ = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() lowercase__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) lowercase__ = model(UpperCamelCase ) lowercase__ = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) lowercase__ = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase__ = model(UpperCamelCase )['''last_hidden_state'''] lowercase__ = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() lowercase__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase (lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : List[str] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase__ : List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase__ : Optional[Any] = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : List[str] = False def UpperCamelCase__ (self : Any ): '''simple docstring''' lowercase__ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) lowercase__ = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' pass def UpperCamelCase__ (self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' pass
2
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase_ = logging.get_logger(__name__) # General docstring lowercase_ = '''ResNetConfig''' # Base docstring lowercase_ = '''microsoft/resnet-50''' lowercase_ = [1, 2_048, 7, 7] # Image classification docstring lowercase_ = '''microsoft/resnet-50''' lowercase_ = '''tiger cat''' lowercase_ = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Union[str, Any] , a : List[Any] , a : int , a : List[Any] = 3 , a : Union[str, Any] = 1 , a : str = "relu" )-> str: """simple docstring""" super().__init__() lowercase__ = nn.Convad( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) lowercase__ = ACTaFN[activation] if activation is not None else nn.Identity() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : List[str] )-> Tensor: """simple docstring""" lowercase__ = self.convolution(_SCREAMING_SNAKE_CASE ) lowercase__ = self.normalization(_SCREAMING_SNAKE_CASE ) lowercase__ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : List[Any] , a : int )-> Optional[Any]: """simple docstring""" super().__init__() lowercase__ = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) lowercase__ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) lowercase__ = config.num_channels def SCREAMING_SNAKE_CASE_ ( self : Any , a : Union[str, Any] )-> Tensor: """simple docstring""" lowercase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) lowercase__ = self.embedder(_SCREAMING_SNAKE_CASE ) lowercase__ = self.pooler(_SCREAMING_SNAKE_CASE ) return embedding class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Optional[Any] , a : Optional[int] , a : Tuple , a : int = 2 )-> List[Any]: """simple docstring""" super().__init__() lowercase__ = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , stride=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) lowercase__ = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : int )-> Tensor: """simple docstring""" lowercase__ = self.convolution(_SCREAMING_SNAKE_CASE ) lowercase__ = self.normalization(_SCREAMING_SNAKE_CASE ) return hidden_state class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Optional[int] , a : List[Any] , a : Optional[Any] , a : List[str] = 1 , a : str = "relu" )-> Tuple: """simple docstring""" super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = ( ResNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , activation=_SCREAMING_SNAKE_CASE ) , ) lowercase__ = ACTaFN[activation] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Any )-> int: """simple docstring""" lowercase__ = hidden_state lowercase__ = self.layer(_SCREAMING_SNAKE_CASE ) lowercase__ = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual lowercase__ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Optional[int] , a : Dict , a : Union[str, Any] , a : Optional[Any] = 1 , a : Dict = "relu" , a : Optional[Any] = 4 )-> Dict: """simple docstring""" super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = out_channels // reduction lowercase__ = ( ResNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) lowercase__ = ACTaFN[activation] def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Optional[int] )-> int: """simple docstring""" lowercase__ = hidden_state lowercase__ = self.layer(_SCREAMING_SNAKE_CASE ) lowercase__ = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual lowercase__ = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : Any , a : int , a : Optional[int] , a : List[Any] , a : Dict = 2 , a : Tuple = 2 , )-> Tuple: """simple docstring""" super().__init__() lowercase__ = ResNetBottleNeckLayer if config.layer_type == "bottleneck" else ResNetBasicLayer lowercase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : Any )-> Tensor: """simple docstring""" lowercase__ = input for layer in self.layers: lowercase__ = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self : str , a : List[Any] )-> Dict: """simple docstring""" super().__init__() lowercase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(ResNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Tuple , a : int = False , a : Tuple = True )-> BaseModelOutputWithNoAttention: """simple docstring""" lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE , ) class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): _UpperCamelCase : Tuple = ResNetConfig _UpperCamelCase : List[Any] = 'resnet' _UpperCamelCase : Dict = 'pixel_values' _UpperCamelCase : Optional[int] = True def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Optional[int] )-> Optional[int]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : Any , a : Tuple=False )-> Optional[int]: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowercase__ = value lowercase_ = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' lowercase_ = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def __init__( self : List[str] , a : Optional[Any] )-> Optional[Any]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) lowercase__ = config lowercase__ = ResNetEmbeddings(_SCREAMING_SNAKE_CASE ) lowercase__ = ResNetEncoder(_SCREAMING_SNAKE_CASE ) lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , a : Tuple , a : Any = None , a : List[str] = None )-> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(_SCREAMING_SNAKE_CASE ) lowercase__ = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(_SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def __init__( self : Union[str, Any] , a : List[str] )-> Dict: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) lowercase__ = config.num_labels lowercase__ = ResNetModel(_SCREAMING_SNAKE_CASE ) # classification head lowercase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : Union[str, Any] = None , a : int = None , a : Dict = None , a : List[str] = None , )-> ImageClassifierOutputWithNoAttention: """simple docstring""" lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.resnet(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier(_SCREAMING_SNAKE_CASE ) lowercase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ = "single_label_classification" else: lowercase__ = "multi_label_classification" if self.config.problem_type == "regression": lowercase__ = MSELoss() if self.num_labels == 1: lowercase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ = BCEWithLogitsLoss() lowercase__ = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , SCREAMING_SNAKE_CASE__ , ) class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Dict , a : List[str] )-> int: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) super()._init_backbone(_SCREAMING_SNAKE_CASE ) lowercase__ = [config.embedding_size] + config.hidden_sizes lowercase__ = ResNetEmbeddings(_SCREAMING_SNAKE_CASE ) lowercase__ = ResNetEncoder(_SCREAMING_SNAKE_CASE ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : Optional[Any] , a : Any = None , a : List[str] = None )-> BackboneOutput: """simple docstring""" lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = self.embedder(_SCREAMING_SNAKE_CASE ) lowercase__ = self.encoder(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) lowercase__ = outputs.hidden_states lowercase__ = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowercase__ = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_SCREAMING_SNAKE_CASE , )
364
import sys lowercase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE = N ) -> int: lowercase__ = -sys.maxsize - 1 for i in range(len(_SCREAMING_SNAKE_CASE ) - 12 ): lowercase__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase__ = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
269
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : int = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A : Optional[Any] = s_dict.pop(a__ ) elif "subsample" in key: A : Optional[Any] = s_dict.pop(a__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A, A : List[Any] = emb.weight.shape A : str = nn.Linear(a__ , a__ , bias=a__ ) A : Union[str, Any] = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Tuple = torch.load(a__ , map_location='''cpu''' ) A : Dict = mam_aaa['''args'''] A : List[str] = mam_aaa['''model'''] A : Optional[int] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(a__ ) rename_keys(a__ ) A : Any = state_dict['''decoder.embed_tokens.weight'''].shape[0] A : str = args.share_decoder_input_output_embed A : List[str] = [int(a__ ) for i in args.conv_kernel_sizes.split(''',''' )] A : Union[str, Any] = SpeechaTextConfig( vocab_size=a__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(a__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=a__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=a__ , num_beams=5 , max_length=200 , use_cache=a__ , decoder_start_token_id=2 , early_stopping=a__ , ) A : Optional[int] = SpeechaTextForConditionalGeneration(a__ ) A, A : Tuple = model.model.load_state_dict(a__ , strict=a__ ) if len(a__ ) > 0 and not set(a__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F' but all the following weights are missing {missing}' ) if tie_embeds: A : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A : int = lm_head_weights model.save_pretrained(a__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowercase : List[str] = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
3
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCAmelCase : Tuple = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a__ ( a__ , a__ , a__ , a__ , a__=False , a__=True ): """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) __SCREAMING_SNAKE_CASE = config_class.from_json_file(a__ ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True print(F'Building TensorFlow model from configuration: {config}' ) __SCREAMING_SNAKE_CASE = model_class(a__ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __SCREAMING_SNAKE_CASE = cached_file( a__ , a__ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __SCREAMING_SNAKE_CASE = load_pytorch_checkpoint_in_tfa_model(a__ , a__ ) if compare_with_pt_model: __SCREAMING_SNAKE_CASE = tf_model(tf_model.dummy_inputs , training=a__ ) # build the network __SCREAMING_SNAKE_CASE = torch.load(a__ , map_location="""cpu""" ) __SCREAMING_SNAKE_CASE = pt_model_class.from_pretrained( pretrained_model_name_or_path=a__ , config=a__ , state_dict=a__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = pt_model(**pt_model.dummy_inputs ) __SCREAMING_SNAKE_CASE = pto[0].numpy() __SCREAMING_SNAKE_CASE = tfo[0].numpy() __SCREAMING_SNAKE_CASE = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(a__ , save_format="""h5""" ) def a__ ( a__ , a__ , a__=None , a__=None , a__=False , a__=False , a__=False , a__=False , ): """simple docstring""" if args_model_type is None: __SCREAMING_SNAKE_CASE = list(MODEL_CLASSES.keys() ) else: __SCREAMING_SNAKE_CASE = [args_model_type] for j, model_type in enumerate(a__ , start=1 ): print("""=""" * 1_00 ) print(F' Converting model type {j}/{len(a__ )}: {model_type}' ) print("""=""" * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __SCREAMING_SNAKE_CASE = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __SCREAMING_SNAKE_CASE = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(a__ , a__ ) , start=1 ): print("""-""" * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue __SCREAMING_SNAKE_CASE = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(a__ )}: {model_shortcut_name} - model_type {model_type}' ) print("""-""" * 1_00 ) if config_shortcut_name in aws_config_map: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) else: __SCREAMING_SNAKE_CASE = config_shortcut_name if model_shortcut_name in aws_model_maps: __SCREAMING_SNAKE_CASE = cached_file(a__ , a__ , force_download=not use_cached_models ) else: __SCREAMING_SNAKE_CASE = model_shortcut_name if os.path.isfile(a__ ): __SCREAMING_SNAKE_CASE = """converted_model""" convert_pt_checkpoint_to_tf( model_type=a__ , pytorch_checkpoint_path=a__ , config_file=a__ , tf_dump_path=os.path.join(a__ , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=a__ , ) if remove_cached_files: os.remove(a__ ) os.remove(a__ ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') UpperCAmelCase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
267
0
a__ : Dict = [ '''Audio''', '''Array2D''', '''Array3D''', '''Array4D''', '''Array5D''', '''ClassLabel''', '''Features''', '''Sequence''', '''Value''', '''Image''', '''Translation''', '''TranslationVariableLanguages''', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
354
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' a__ : str = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' a__ : Union[str, Any] = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[str]: return { "matthews_correlation": float(matthews_corrcoef(_lowerCamelCase , _lowerCamelCase , sample_weight=_lowerCamelCase ) ), }
19
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : int = 'hf-internal-testing/tiny-random-t5' __A : List[str] = AutoTokenizer.from_pretrained(_A ) __A : Dict = AutoModelForSeqaSeqLM.from_pretrained(_A ) __A : str = tokenizer('This is me' , return_tensors='pt' ) __A : str = model.to_bettertransformer() self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __A : Any = model.generate(**_A ) __A : Any = model.reverse_bettertransformer() self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) __A : Dict = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __A : Optional[Any] = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase_ ( self ): __A : List[Any] = 'hf-internal-testing/tiny-random-t5' __A : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_A ) __A : Tuple = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) __A : List[Any] = model.reverse_bettertransformer() model.save_pretrained(_A )
280
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self ): __A : List[Any] = tempfile.mkdtemp() # fmt: off __A : List[str] = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) __A : Optional[int] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : int = {'unk_token': '<unk>'} __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_A ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_A ) ) __A : List[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __A : Optional[int] = os.path.join(self.tmpdirname , _A ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_A , _A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **_A ) def UpperCAmelCase_ ( self , **_A ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_A ) def UpperCAmelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase_ ( self ): __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Optional[int] = [Image.fromarray(np.moveaxis(_A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase_ ( self ): __A : List[Any] = self.get_tokenizer() __A : str = self.get_rust_tokenizer() __A : List[str] = self.get_image_processor() __A : Optional[int] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_slow.save_pretrained(self.tmpdirname ) __A : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_A ) __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) processor_fast.save_pretrained(self.tmpdirname ) __A : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _A ) self.assertIsInstance(processor_fast.tokenizer , _A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _A ) self.assertIsInstance(processor_fast.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : List[str] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __A : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __A : Optional[int] = self.get_image_processor(do_normalize=_A ) __A : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Union[str, Any] = self.prepare_image_inputs() __A : int = image_processor(_A , return_tensors='np' ) __A : str = processor(images=_A , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase_ ( self ): __A : str = self.get_image_processor() __A : str = self.get_tokenizer() __A : Tuple = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : str = 'lower newer' __A : str = processor(text=_A , return_tensors='np' ) __A : List[str] = tokenizer(_A , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def UpperCAmelCase_ ( self ): __A : int = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : List[str] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Any = 'lower newer' __A : Optional[Any] = self.prepare_image_inputs() __A : List[Any] = processor(text=_A , images=_A ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Any = 'google/owlvit-base-patch32' __A : int = OwlViTProcessor.from_pretrained(_A ) __A : Dict = ['cat', 'nasa badge'] __A : Optional[Any] = processor(text=_A ) __A : Optional[int] = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Tuple = 'google/owlvit-base-patch32' __A : Any = OwlViTProcessor.from_pretrained(_A ) __A : Dict = [['cat', 'nasa badge'], ['person']] __A : Dict = processor(text=_A ) __A : Optional[int] = 16 __A : Any = len(_A ) __A : Union[str, Any] = max([len(_A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : List[Any] = 'google/owlvit-base-patch32' __A : str = OwlViTProcessor.from_pretrained(_A ) __A : Union[str, Any] = ['cat', 'nasa badge'] __A : Tuple = processor(text=_A ) __A : str = 16 __A : int = inputs['input_ids'] __A : List[Any] = [ [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = self.prepare_image_inputs() __A : Optional[int] = processor(images=_A , query_images=_A ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_A ): processor() def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : str = OwlViTProcessor(tokenizer=_A , image_processor=_A ) __A : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Any = processor.batch_decode(_A ) __A : Tuple = tokenizer.batch_decode(_A ) self.assertListEqual(_A , _A )
280
1
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[int] ='''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _a ( self , _lowerCamelCase=0 ): UpperCamelCase_: Any = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(_lowerCamelCase ) ) UpperCamelCase_: List[Any] = np.random.RandomState(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.7_5, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _a ( self ): UpperCamelCase_: List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: int = self.get_dummy_inputs() UpperCamelCase_: Dict = pipe(**_lowerCamelCase ).images UpperCamelCase_: Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCamelCase_: List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _a ( self ): UpperCamelCase_: Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_: Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.get_dummy_inputs() UpperCamelCase_: Dict = pipe(**_lowerCamelCase ).images UpperCamelCase_: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCamelCase_: Optional[Any] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self ): UpperCamelCase_: List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_: str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # warmup pass to apply optimizations UpperCamelCase_: List[str] = pipe(**self.get_dummy_inputs() ) UpperCamelCase_: Optional[Any] = self.get_dummy_inputs() UpperCamelCase_: int = pipe(**_lowerCamelCase ).images UpperCamelCase_: str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCamelCase_: Dict = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self ): UpperCamelCase_: int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_: int = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = self.get_dummy_inputs() UpperCamelCase_: Dict = pipe(**_lowerCamelCase ).images UpperCamelCase_: str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCamelCase_: Optional[int] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self ): UpperCamelCase_: str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_: List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: List[str] = self.get_dummy_inputs() UpperCamelCase_: List[str] = pipe(**_lowerCamelCase ).images UpperCamelCase_: int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCamelCase_: List[str] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _a ( self ): UpperCamelCase_: str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) UpperCamelCase_: Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: Dict = self.get_dummy_inputs() UpperCamelCase_: int = pipe(**_lowerCamelCase ).images UpperCamelCase_: int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) UpperCamelCase_: Dict = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @property def _a ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self ): UpperCamelCase_: Union[str, Any] = ort.SessionOptions() UpperCamelCase_: Optional[int] = False return options def _a ( self ): UpperCamelCase_: List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase_: str = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default UpperCamelCase_: Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: List[str] = 'A fantasy landscape, trending on artstation' UpperCamelCase_: Tuple = np.random.RandomState(0 ) UpperCamelCase_: List[str] = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowerCamelCase , output_type='np' , ) UpperCamelCase_: Dict = output.images UpperCamelCase_: int = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) UpperCamelCase_: Dict = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _a ( self ): UpperCamelCase_: Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase_: Dict = init_image.resize((7_6_8, 5_1_2) ) UpperCamelCase_: int = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) UpperCamelCase_: Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_: List[str] = 'A fantasy landscape, trending on artstation' UpperCamelCase_: int = np.random.RandomState(0 ) UpperCamelCase_: Dict = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowerCamelCase , output_type='np' , ) UpperCamelCase_: Optional[int] = output.images UpperCamelCase_: Optional[int] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) UpperCamelCase_: str = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
364
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A_ : Any = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def snake_case () -> Union[str, Any]: UpperCamelCase_: Tuple = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase_: List[str] = get_sagemaker_input() else: UpperCamelCase_: List[str] = get_cluster_input() return config def snake_case (UpperCAmelCase__=None ) -> Union[str, Any]: if subparsers is not None: UpperCamelCase_: List[Any] = subparsers.add_parser('config' , description=UpperCAmelCase__ ) else: UpperCamelCase_: List[Any] = argparse.ArgumentParser('Accelerate config command' , description=UpperCAmelCase__ ) parser.add_argument( '--config_file' , default=UpperCAmelCase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def snake_case (UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: Union[str, Any] = get_user_input() if args.config_file is not None: UpperCamelCase_: Tuple = args.config_file else: if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) UpperCamelCase_: Dict = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(UpperCAmelCase__ ) else: config.to_yaml_file(UpperCAmelCase__ ) print(F'''accelerate configuration saved at {config_file}''' ) def snake_case () -> str: UpperCamelCase_: Tuple = config_command_parser() UpperCamelCase_: int = parser.parse_args() config_command(UpperCAmelCase__ ) if __name__ == "__main__": main()
292
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Optional[int] = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
52
def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Optional[int] = int(_lowerCAmelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(_lowerCAmelCase ) UpperCamelCase , UpperCamelCase : Dict = divmod(_lowerCAmelCase , 2 ) return binary_recursive(_lowerCAmelCase ) + str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase ) -> str: UpperCamelCase : Tuple = str(_lowerCAmelCase ).strip() if not number: raise ValueError("No input value was provided" ) UpperCamelCase : Optional[int] = "-" if number.startswith("-" ) else "" UpperCamelCase : Any = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F"""{negative}0b{binary_recursive(int(_lowerCAmelCase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
52
1
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCamelCase_ = 'sshleifer/bart-tiny-random' lowerCamelCase_ = 'patrickvonplaten/t5-tiny-random' @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(UpperCamelCase__ ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE, *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE, *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCamelCase__ ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE, *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=UpperCamelCase__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE, *_SCREAMING_SNAKE_CASE = create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" with self.assertRaises(UpperCamelCase__ ): create_student_by_copying_alternating_layers(UpperCamelCase__ , tempfile.mkdtemp() , e=UpperCamelCase__ , d=UpperCamelCase__ )
363
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCamelCase_ = '<<<<<<< This should probably be modified because it mentions: ' lowerCamelCase_ = '=======\n>>>>>>>\n' lowerCamelCase_ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCamelCase_ = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def SCREAMING_SNAKE_CASE_ ( __A : Namespace ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowercase_ ( A ): """simple docstring""" @staticmethod def lowerCAmelCase_ ( __lowerCamelCase : ArgumentParser ): """simple docstring""" _SCREAMING_SNAKE_CASE = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowerCamelCase ) def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str , *__lowerCamelCase : Tuple ): """simple docstring""" _SCREAMING_SNAKE_CASE = get_logger("datasets-cli/converting" ) _SCREAMING_SNAKE_CASE = tfds_path _SCREAMING_SNAKE_CASE = datasets_directory def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) _SCREAMING_SNAKE_CASE = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = {} if os.path.isdir(self._tfds_path ): _SCREAMING_SNAKE_CASE = os.listdir(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) if not os.path.isfile(__lowerCamelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowerCamelCase , encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE = f.readlines() _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = [] for line in lines: _SCREAMING_SNAKE_CASE = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: _SCREAMING_SNAKE_CASE = "import datasets\n" elif "import tensorflow" in out_line: # order is important here _SCREAMING_SNAKE_CASE = "" continue elif "from absl import logging" in out_line: _SCREAMING_SNAKE_CASE = "from datasets import logging\n" elif "getLogger" in out_line: _SCREAMING_SNAKE_CASE = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = list(filter(lambda __lowerCamelCase : e in out_line , __lowerCamelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCamelCase ) + "\n" ) out_lines.append(__lowerCamelCase ) out_lines.append(__lowerCamelCase ) continue else: for pattern, replacement in TO_CONVERT: _SCREAMING_SNAKE_CASE = re.sub(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: _SCREAMING_SNAKE_CASE = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __lowerCamelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) _SCREAMING_SNAKE_CASE = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: _SCREAMING_SNAKE_CASE = True out_lines.append(__lowerCamelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset _SCREAMING_SNAKE_CASE = f_name.replace(".py" , "" ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCamelCase ) if needs_manual_update: with_manual_update.append(__lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.writelines(__lowerCamelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: _SCREAMING_SNAKE_CASE = os.path.basename(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__lowerCamelCase , __lowerCamelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
111
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = ShapEImgaImgPipeline UpperCamelCase = ['''image'''] UpperCamelCase = ['''image'''] UpperCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : int) -> str: """simple docstring""" return 32 @property def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" return 8 @property def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _UpperCAmelCase = CLIPVisionModel(A) return model @property def _lowerCamelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCAmelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , resample=3 , size=2_24 , ) return image_processor @property def _lowerCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _UpperCAmelCase = PriorTransformer(**A) return model @property def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _UpperCAmelCase = ShapERenderer(**A) return model def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.dummy_prior _UpperCAmelCase = self.dummy_image_encoder _UpperCAmelCase = self.dummy_image_processor _UpperCAmelCase = self.dummy_renderer _UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=10_24 , prediction_type='sample' , use_karras_sigmas=A , clip_sample=A , clip_sample_range=1.0 , ) _UpperCAmelCase = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , A : Optional[Any] , A : List[str]=0) -> int: """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A)).to(A) if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = pipe(**self.get_dummy_inputs(A)) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCAmelCase = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2]) def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = torch_device == 'cpu' _UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A , relax_max_difference=A , ) def _lowerCamelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = 1 _UpperCAmelCase = 2 _UpperCAmelCase = self.get_dummy_inputs(A) for key in inputs.keys(): if key in self.batch_params: _UpperCAmelCase = batch_size * [inputs[key]] _UpperCAmelCase = pipe(**A , num_images_per_prompt=A)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Dict) -> int: """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png') _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy') _UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img') _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = torch.Generator(device=A).manual_seed(0) _UpperCAmelCase = pipe( A , generator=A , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A , A)
339
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class __lowerCAmelCase ( A ): UpperCamelCase = '''open-llama''' def __init__( self : str , A : List[Any]=10_00_00 , A : Tuple=40_96 , A : Tuple=1_10_08 , A : List[str]=32 , A : Tuple=32 , A : Optional[Any]="silu" , A : int=20_48 , A : Optional[Any]=0.0_2 , A : Dict=1E-6 , A : Optional[Any]=True , A : List[Any]=0 , A : Dict=1 , A : int=2 , A : Dict=False , A : Optional[int]=True , A : List[Any]=0.1 , A : str=0.1 , A : Dict=True , A : Optional[Any]=True , A : Dict=None , **A : Union[str, Any] , ) -> Dict: """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , A) _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_dropout_prob _UpperCAmelCase = use_stable_embedding _UpperCAmelCase = shared_input_output_embedding _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A , ) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , A) or len(self.rope_scaling) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}") _UpperCAmelCase = self.rope_scaling.get('type' , A) _UpperCAmelCase = self.rope_scaling.get('factor' , A) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(A , A) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
339
1
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCamelCase :Tuple = '''http://www.mocksite.com/file1.txt''' lowerCamelCase :str = '''"text": ["foo", "foo"]''' lowerCamelCase :Optional[int] = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class _lowerCAmelCase : __SCREAMING_SNAKE_CASE : List[Any] = 200 __SCREAMING_SNAKE_CASE : Any = {'Content-Length': '100'} __SCREAMING_SNAKE_CASE : Dict = {} def _a (self , **lowercase ): return [bytes(lowercase , """utf-8""" )] def a ( *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' import requests monkeypatch.setattr(lowerCamelCase__ , """request""" , lowerCamelCase__ ) A_ : Tuple = URL if issubclass(lowerCamelCase__ , lowerCamelCase__ ): A_ : Any = url elif issubclass(lowerCamelCase__ , lowerCamelCase__ ): A_ : int = [url] elif issubclass(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[int] = {"""train""": url} A_ : Union[str, Any] = """dummy""" A_ : str = """downloads""" A_ : Optional[int] = tmp_path A_ : str = DownloadConfig( cache_dir=os.path.join(lowerCamelCase__ , lowerCamelCase__ ) , use_etag=lowerCamelCase__ , ) A_ : int = DownloadManager(dataset_name=lowerCamelCase__ , download_config=lowerCamelCase__ ) A_ : Tuple = dl_manager.download(lowerCamelCase__ ) A_ : Any = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[int] = [downloaded_paths] A_ : Union[str, Any] = [urls] elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): assert "train" in downloaded_paths.keys() A_ : Any = downloaded_paths.values() A_ : int = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCamelCase__ , lowerCamelCase__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] A_ : int = Path(lowerCamelCase__ ) A_ : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() A_ : List[str] = downloaded_path.read_text() assert content == CONTENT A_ : Union[str, Any] = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() A_ : List[Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Union[str, Any] = str(lowerCamelCase__ ) if issubclass(lowerCamelCase__ , lowerCamelCase__ ): A_ : str = filename elif issubclass(lowerCamelCase__ , lowerCamelCase__ ): A_ : Optional[int] = [filename] elif issubclass(lowerCamelCase__ , lowerCamelCase__ ): A_ : str = {"""train""": filename} A_ : int = """dummy""" A_ : Tuple = xz_file.parent A_ : Optional[Any] = """extracted""" A_ : Union[str, Any] = DownloadConfig( cache_dir=lowerCamelCase__ , use_etag=lowerCamelCase__ , ) A_ : Dict = DownloadManager(dataset_name=lowerCamelCase__ , download_config=lowerCamelCase__ ) A_ : List[Any] = dl_manager.extract(lowerCamelCase__ ) A_ : Optional[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): A_ : Tuple = [extracted_paths] A_ : int = [paths] elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): assert "train" in extracted_paths.keys() A_ : int = extracted_paths.values() A_ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCamelCase__ , lowerCamelCase__ ): assert extracted_path == dl_manager.extracted_paths[input_path] A_ : Dict = Path(lowerCamelCase__ ) A_ : Tuple = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCamelCase__ , etag=lowerCamelCase__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() A_ : int = extracted_path.read_text() A_ : Optional[int] = text_file.read_text() assert extracted_file_content == expected_file_content def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(lowerCamelCase__ , start=1 ): A_ : Optional[Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = request.getfixturevalue(lowerCamelCase__ ) A_ : List[str] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase__ ) , start=1 ): _test_jsonl(lowerCamelCase__ , lowerCamelCase__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = request.getfixturevalue(lowerCamelCase__ ) A_ : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCamelCase__ ) , start=1 ): _test_jsonl(lowerCamelCase__ , lowerCamelCase__ ) assert num_tar == 1 assert num_jsonl == 2 def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Dict = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCamelCase__ ) , start=1 ): assert os.path.basename(lowerCamelCase__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
361
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
135
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy UpperCAmelCase = logging.getLogger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , ): lowercase = bnb_quantization_config.load_in_abit lowercase = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) lowercase = [] # custom device map if isinstance(_snake_case , _snake_case ) and len(device_map.keys() ) > 1: lowercase = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowercase = get_keys_to_not_convert(_snake_case ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_snake_case ) lowercase = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowercase = [] lowercase = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_snake_case ) # compatibility with peft lowercase = load_in_abit lowercase = load_in_abit lowercase = get_parameter_device(_snake_case ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) lowercase = replace_with_bnb_layers(_snake_case , _snake_case , modules_to_not_convert=_snake_case ) # convert param to the right dtype lowercase = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowercase = name.replace('.weight' , '' ).replace('.bias' , '' ) lowercase = getattr(_snake_case , _snake_case , _snake_case ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_snake_case ): param.to(_snake_case ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): lowercase = replace_with_bnb_layers( _snake_case , _snake_case , modules_to_not_convert=_snake_case ) lowercase = get_quantized_model_device_map( _snake_case , _snake_case , _snake_case , max_memory=_snake_case , no_split_module_classes=_snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowercase = True lowercase = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( _snake_case , _snake_case , _snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=_snake_case , offload_state_dict=_snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_snake_case , device_map=_snake_case , offload_dir=_snake_case ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): if device_map is None: if torch.cuda.is_available(): lowercase = {'''''': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(_snake_case , _snake_case ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) lowercase = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowercase = {} lowercase = special_dtypes lowercase = no_split_module_classes lowercase = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowercase = get_balanced_memory( _snake_case , low_zero=(device_map == 'balanced_low_0') , max_memory=_snake_case , **_snake_case , ) lowercase = max_memory lowercase = infer_auto_device_map(_snake_case , **_snake_case ) if isinstance(_snake_case , _snake_case ): # check if don't have any quantized module on the cpu lowercase = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowercase = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): if modules_to_not_convert is None: lowercase = [] lowercase = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ): lowercase = False for name, module in model.named_children(): if current_key_name is None: lowercase = [] current_key_name.append(_snake_case ) if isinstance(_snake_case , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowercase = '''.'''.join(_snake_case ) lowercase = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowercase = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowercase = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowercase = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) lowercase = module.weight.data if module.bias is not None: lowercase = module.bias.data bnb_module.requires_grad_(_snake_case ) setattr(_snake_case , _snake_case , _snake_case ) lowercase = True if len(list(module.children() ) ) > 0: lowercase = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case ) lowercase = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): # Create a copy of the model with init_empty_weights(): lowercase = deepcopy(_snake_case ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowercase = find_tied_parameters(_snake_case ) # For compatibility with Accelerate < 0.18 if isinstance(_snake_case , _snake_case ): lowercase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase = sum(_snake_case , [] ) lowercase = len(_snake_case ) > 0 # Check if it is a base model lowercase = False if hasattr(_snake_case , 'base_model_prefix' ): lowercase = not hasattr(_snake_case , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase = list(model.named_children() ) lowercase = [list_modules[-1][0]] # add last module together with tied weights lowercase = set(_snake_case ) - set(_snake_case ) lowercase = list(set(_snake_case ) ) + list(_snake_case ) # remove ".weight" from the keys lowercase = ['''.weight''', '''.bias'''] lowercase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase = name.replace(_snake_case , '' ) filtered_module_names.append(_snake_case ) return filtered_module_names def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): for m in model.modules(): if isinstance(_snake_case , bnb.nn.Linearabit ): return True return False def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): return next(parameter.parameters() ).device def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(_snake_case , _snake_case , 0 , dtype=_snake_case , value=_snake_case ) lowercase = param_name lowercase = model if "." in tensor_name: lowercase = tensor_name.split('.' ) for split in splits[:-1]: lowercase = getattr(_snake_case , _snake_case ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) lowercase = new_module lowercase = splits[-1] # offload weights lowercase = False offload_weight(module._parameters[tensor_name] , _snake_case , _snake_case , index=_snake_case ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , _snake_case , index=_snake_case , ) else: offload_weight(_snake_case , _snake_case , _snake_case , index=_snake_case ) offload_weight(_snake_case , param_name.replace('weight' , 'SCB' ) , _snake_case , index=_snake_case ) set_module_tensor_to_device(_snake_case , _snake_case , 'meta' , dtype=_snake_case , value=torch.empty(*param.size() ) )
195
"""simple docstring""" import numpy as np def _snake_case ( _snake_case : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
60
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class A ( UpperCAmelCase_ ): __UpperCAmelCase : Dict = 'convbert' def __init__(self : Dict , __UpperCAmelCase : int=3_0_5_2_2 , __UpperCAmelCase : str=7_6_8 , __UpperCAmelCase : Optional[Any]=1_2 , __UpperCAmelCase : int=1_2 , __UpperCAmelCase : Tuple=3_0_7_2 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Dict=5_1_2 , __UpperCAmelCase : Union[str, Any]=2 , __UpperCAmelCase : Optional[int]=0.02 , __UpperCAmelCase : List[str]=1E-12 , __UpperCAmelCase : Union[str, Any]=1 , __UpperCAmelCase : str=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : List[Any]=7_6_8 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : List[Any]=9 , __UpperCAmelCase : List[Any]=1 , __UpperCAmelCase : Any=None , **__UpperCAmelCase : str , ) -> Union[str, Any]: """simple docstring""" super().__init__( pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = embedding_size UpperCAmelCase__ = head_ratio UpperCAmelCase__ = conv_kernel_size UpperCAmelCase__ = num_groups UpperCAmelCase__ = classifier_dropout class A ( UpperCAmelCase_ ): @property def lowercase_ (self : Any ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
364
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class A ( yaml.SafeLoader ): def lowercase_ (self : Tuple , __UpperCAmelCase : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCAmelCase__ = [tuple(__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else key for key in keys] UpperCAmelCase__ = Counter(__UpperCAmelCase ) UpperCAmelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"""Got duplicate yaml keys: {duplicate_keys}""" ) def lowercase_ (self : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=False ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = super().construct_mapping(__UpperCAmelCase , deep=__UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(__UpperCAmelCase ) return mapping def lowerCAmelCase_ ( __A ) -> Tuple[Optional[str], str]: '''simple docstring''' UpperCAmelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCAmelCase__ = full_content[1:].index("---" ) + 1 UpperCAmelCase__ = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__A ) class A ( UpperCAmelCase_ ): # class attributes __UpperCAmelCase : Optional[Any] = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def lowercase_ (cls : List[str] , __UpperCAmelCase : Path ) -> "DatasetMetadata": """simple docstring""" with open(__UpperCAmelCase , encoding="utf-8" ) as readme_file: UpperCAmelCase__ , UpperCAmelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(__UpperCAmelCase ) else: return cls() def lowercase_ (self : int , __UpperCAmelCase : Path ) -> str: """simple docstring""" if path.exists(): with open(__UpperCAmelCase , encoding="utf-8" ) as readme_file: UpperCAmelCase__ = readme_file.read() else: UpperCAmelCase__ = None UpperCAmelCase__ = self._to_readme(__UpperCAmelCase ) with open(__UpperCAmelCase , "w" , encoding="utf-8" ) as readme_file: readme_file.write(__UpperCAmelCase ) def lowercase_ (self : str , __UpperCAmelCase : Optional[str] = None ) -> str: """simple docstring""" if readme_content is not None: UpperCAmelCase__ , UpperCAmelCase__ = _split_yaml_from_readme(__UpperCAmelCase ) UpperCAmelCase__ = "---\n" + self.to_yaml_string() + "---\n" + content else: UpperCAmelCase__ = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def lowercase_ (cls : Optional[int] , __UpperCAmelCase : str ) -> "DatasetMetadata": """simple docstring""" UpperCAmelCase__ = yaml.load(__UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCAmelCase__ = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__UpperCAmelCase , allow_unicode=__UpperCAmelCase , encoding="utf-8" , ).decode("utf-8" ) UpperCamelCase__ = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCamelCase__ = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') UpperCamelCase__ = ap.parse_args() UpperCamelCase__ = Path(args.readme_filepath) UpperCamelCase__ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
143
0