code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor _A = logging.get_logger(__name__) class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
171
"""simple docstring""" from __future__ import annotations def a__ ( lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None ) -> None: if start is None: UpperCAmelCase__ : Dict = 0 if end is None: UpperCAmelCase__ : List[str] = len(lowerCAmelCase ) - 1 if start >= end: return UpperCAmelCase__ : int = (start + end) // 2 slowsort(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) slowsort(lowerCAmelCase , mid + 1 , lowerCAmelCase ) if sequence[end] < sequence[mid]: UpperCAmelCase__ , UpperCAmelCase__ : Tuple = sequence[mid], sequence[end] slowsort(lowerCAmelCase , lowerCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
171
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __UpperCamelCase :List[str] = FlaxDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase , cache_dir=__lowercase) __UpperCamelCase :int = [t[-1] for t in os.walk(os.path.join(__lowercase , os.listdir(__lowercase)[0] , '''snapshots'''))] __UpperCamelCase :Any = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('''.bin''') for f in files) @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase :int = FlaxStableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-pipe''' , safety_checker=__lowercase) __UpperCamelCase :Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Any = jax.random.PRNGKey(0) __UpperCamelCase :Dict = 4 __UpperCamelCase :int = jax.device_count() __UpperCamelCase :Any = num_samples * [prompt] __UpperCamelCase :List[str] = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :Union[str, Any] = replicate(__lowercase) __UpperCamelCase :str = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :int = shard(__lowercase) __UpperCamelCase :str = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3 assert np.abs(np.abs(__lowercase , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1 __UpperCamelCase :Union[str, Any] = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(__lowercase) == num_samples def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase :Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''flax''' , safety_checker=__lowercase) __UpperCamelCase :Optional[Any] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Any = jax.random.PRNGKey(0) __UpperCamelCase :Union[str, Any] = 50 __UpperCamelCase :Union[str, Any] = jax.device_count() __UpperCamelCase :int = num_samples * [prompt] __UpperCamelCase :Dict = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :Any = replicate(__lowercase) __UpperCamelCase :Optional[Any] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :str = shard(__lowercase) __UpperCamelCase :Optional[int] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1 def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase , __UpperCamelCase :Any = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase) __UpperCamelCase :Optional[int] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Union[str, Any] = jax.random.PRNGKey(0) __UpperCamelCase :Optional[int] = 50 __UpperCamelCase :Optional[int] = jax.device_count() __UpperCamelCase :int = num_samples * [prompt] __UpperCamelCase :str = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :Dict = replicate(__lowercase) __UpperCamelCase :Optional[int] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :List[str] = shard(__lowercase) __UpperCamelCase :int = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def UpperCamelCase__ ( self) -> str: __UpperCamelCase , __UpperCamelCase :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa) __UpperCamelCase :Any = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Any = jax.random.PRNGKey(0) __UpperCamelCase :Dict = 50 __UpperCamelCase :Union[str, Any] = jax.device_count() __UpperCamelCase :str = num_samples * [prompt] __UpperCamelCase :Tuple = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :Optional[int] = replicate(__lowercase) __UpperCamelCase :int = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :List[str] = shard(__lowercase) __UpperCamelCase :int = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[str] = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , set_alpha_to_one=__lowercase , steps_offset=1 , ) __UpperCamelCase , __UpperCamelCase :List[str] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , scheduler=__lowercase , safety_checker=__lowercase , ) __UpperCamelCase :Dict = scheduler.create_state() __UpperCamelCase :Optional[Any] = scheduler_state __UpperCamelCase :List[str] = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :int = jax.random.PRNGKey(0) __UpperCamelCase :List[Any] = 50 __UpperCamelCase :Optional[int] = jax.device_count() __UpperCamelCase :int = num_samples * [prompt] __UpperCamelCase :Dict = pipeline.prepare_inputs(__lowercase) # shard inputs and rng __UpperCamelCase :Dict = replicate(__lowercase) __UpperCamelCase :Optional[int] = jax.random.split(__lowercase , __lowercase) __UpperCamelCase :List[str] = shard(__lowercase) __UpperCamelCase :Optional[Any] = pipeline(__lowercase , __lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3 assert np.abs((np.abs(__lowercase , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1 def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = ( '''A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of''' ''' field, close up, split lighting, cinematic''' ) __UpperCamelCase :Any = jax.device_count() __UpperCamelCase :Dict = num_samples * [prompt] __UpperCamelCase :List[Any] = jax.random.split(jax.random.PRNGKey(0) , __lowercase) __UpperCamelCase , __UpperCamelCase :List[Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , ) __UpperCamelCase :str = replicate(__lowercase) __UpperCamelCase :str = pipeline.prepare_inputs(__lowercase) __UpperCamelCase :Union[str, Any] = shard(__lowercase) __UpperCamelCase :Union[str, Any] = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images.shape == (num_samples, 1, 512, 512, 3) __UpperCamelCase :List[Any] = images[2, 0, 256, 10:17, 1] # With memory efficient attention __UpperCamelCase , __UpperCamelCase :Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''bf16''' , dtype=jnp.bfloataa , safety_checker=__lowercase , use_memory_efficient_attention=__lowercase , ) __UpperCamelCase :Optional[int] = replicate(__lowercase) __UpperCamelCase :List[str] = pipeline.prepare_inputs(__lowercase) __UpperCamelCase :Any = shard(__lowercase) __UpperCamelCase :Any = pipeline(__lowercase , __lowercase , __lowercase , jit=__lowercase).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __UpperCamelCase :List[str] = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
105
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __lowercase = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[str] = list(s_dict.keys() ) for key in keys: __UpperCamelCase :Dict = key for k, v in WHISPER_MAPPING.items(): if k in key: __UpperCamelCase :str = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f"""{key} -> {new_key}""" ) __UpperCamelCase :Any = s_dict.pop(SCREAMING_SNAKE_CASE ) return s_dict def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[Any] = emb.weight.shape __UpperCamelCase :Any = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = emb.weight.data return lin_layer def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = os.path.basename(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = url.split('''/''' )[-2] __UpperCamelCase :Tuple = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ) and not os.path.isfile(SCREAMING_SNAKE_CASE ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[str] = open(SCREAMING_SNAKE_CASE , '''rb''' ).read() if hashlib.shaaaa(SCREAMING_SNAKE_CASE ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(SCREAMING_SNAKE_CASE ) as source, open(SCREAMING_SNAKE_CASE , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=SCREAMING_SNAKE_CASE , unit_divisor=1_024 ) as loop: while True: __UpperCamelCase :Optional[Any] = source.read(8_192 ) if not buffer: break output.write(SCREAMING_SNAKE_CASE ) loop.update(len(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :str = open(SCREAMING_SNAKE_CASE , '''rb''' ).read() if hashlib.shaaaa(SCREAMING_SNAKE_CASE ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if ".pt" not in checkpoint_path: __UpperCamelCase :Tuple = _download(_MODELS[checkpoint_path] ) else: __UpperCamelCase :Optional[int] = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) __UpperCamelCase :Union[str, Any] = original_checkpoint['''dims'''] __UpperCamelCase :List[Any] = original_checkpoint['''model_state_dict'''] __UpperCamelCase :Optional[Any] = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) rename_keys(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = True __UpperCamelCase :Tuple = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] __UpperCamelCase :Dict = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=SCREAMING_SNAKE_CASE , decoder_ffn_dim=SCREAMING_SNAKE_CASE , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) __UpperCamelCase :str = WhisperForConditionalGeneration(SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :Any = model.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0 and not set(SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: __UpperCamelCase :Optional[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __UpperCamelCase :Union[str, Any] = proj_out_weights model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __lowercase = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
105
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' if isinstance(A_, collections.abc.Iterable ): return x return (x, x) @require_flax class __snake_case : def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : str ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float ): """simple docstring""" _lowerCamelCase : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(__lowerCAmelCase , __lowerCAmelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int=None , **__lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = FlaxVisionTextDualEncoderModel(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(input_ids=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Any=None , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Any = self.get_vision_text_model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = {'''vision_model''': vision_model, '''text_model''': text_model} _lowerCamelCase : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model(input_ids=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[int] = self.get_vision_text_model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} _lowerCamelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model(input_ids=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : Dict = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Any = model(input_ids=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = after_output[0] _lowerCamelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase , 1E-3 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any]=None , **__lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Dict = self.get_vision_text_model(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[Any] = {'''vision_model''': vision_model, '''text_model''': text_model} _lowerCamelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCAmelCase ) _lowerCamelCase : Any = model( input_ids=__lowerCAmelCase , pixel_values=__lowerCAmelCase , attention_mask=__lowerCAmelCase , output_attentions=__lowerCAmelCase ) _lowerCamelCase : str = output.vision_model_output.attentions self.assertEqual(len(__lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase : str = to_atuple(vision_model.config.image_size ) _lowerCamelCase : List[Any] = to_atuple(vision_model.config.patch_size ) _lowerCamelCase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCamelCase : Optional[int] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCamelCase : Optional[Any] = output.text_model_output.attentions self.assertEqual(len(__lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ): """simple docstring""" pt_model.to(__lowerCAmelCase ) pt_model.eval() # prepare inputs _lowerCamelCase : str = inputs_dict _lowerCamelCase : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _lowerCamelCase : List[Any] = pt_model(**__lowerCAmelCase ).to_tuple() _lowerCamelCase : List[Any] = fx_model(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(__lowerCAmelCase , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : int = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCAmelCase , from_pt=__lowerCAmelCase ) _lowerCamelCase : List[Any] = fx_model_loaded(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(__lowerCAmelCase , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[Any] = VisionTextDualEncoderModel.from_pretrained(__lowerCAmelCase , from_flax=__lowerCAmelCase ) pt_model_loaded.to(__lowerCAmelCase ) pt_model_loaded.eval() with torch.no_grad(): _lowerCamelCase : Dict = pt_model_loaded(**__lowerCAmelCase ).to_tuple() self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(__lowerCAmelCase , pt_output_loaded.numpy() , 4E-2 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any ): """simple docstring""" _lowerCamelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = VisionTextDualEncoderModel(__lowerCAmelCase ) _lowerCamelCase : int = FlaxVisionTextDualEncoderModel(__lowerCAmelCase ) _lowerCamelCase : Any = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __lowerCAmelCase ) _lowerCamelCase : Tuple = fx_state self.check_pt_flax_equivalence(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[str] = VisionTextDualEncoderModel(__lowerCAmelCase ) _lowerCamelCase : str = FlaxVisionTextDualEncoderModel(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase , fx_model.params ) self.check_pt_flax_equivalence(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : str = self.prepare_config_and_inputs() self.check_save_load(**__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowerCAmelCase ) @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : List[str] = self.prepare_config_and_inputs() _lowerCamelCase : Optional[Any] = config_inputs_dict.pop('''vision_config''' ) _lowerCamelCase : Dict = config_inputs_dict.pop('''text_config''' ) _lowerCamelCase : Tuple = config_inputs_dict self.check_equivalence_pt_to_flax(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.check_equivalence_flax_to_pt(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase , _lowerCamelCase : Optional[int] = self.get_pretrained_model_and_inputs() _lowerCamelCase : int = model_a(**__lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model_a(**__lowerCAmelCase ) _lowerCamelCase : Tuple = after_outputs[0] _lowerCamelCase : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCAmelCase , 1E-5 ) @require_flax class __snake_case ( _lowercase , unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__lowerCAmelCase , text_from_pt=__lowerCAmelCase , ) _lowerCamelCase : Optional[Any] = 1_3 _lowerCamelCase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _lowerCamelCase : Optional[int] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _lowerCamelCase : Tuple = random_attention_mask([batch_size, 4] ) _lowerCamelCase : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = FlaxViTModel(__lowerCAmelCase ) _lowerCamelCase : List[str] = FlaxBertModel(__lowerCAmelCase ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[int] = FlaxViTModelTester(self ) _lowerCamelCase : Optional[Any] = FlaxBertModelTester(self ) _lowerCamelCase : Optional[int] = vit_model_tester.prepare_config_and_inputs() _lowerCamelCase : Optional[Any] = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase : List[Any] = vision_config_and_inputs _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __snake_case ( _lowercase , unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__lowerCAmelCase , text_from_pt=__lowerCAmelCase , ) _lowerCamelCase : List[str] = 1_3 _lowerCamelCase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _lowerCamelCase : List[str] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _lowerCamelCase : str = random_attention_mask([batch_size, 4] ) _lowerCamelCase : List[Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[str] = FlaxCLIPVisionModel(__lowerCAmelCase ) _lowerCamelCase : str = FlaxBertModel(__lowerCAmelCase ) return vision_model, text_model def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : str = FlaxCLIPVisionModelTester(self ) _lowerCamelCase : str = FlaxBertModelTester(self ) _lowerCamelCase : Dict = clip_model_tester.prepare_config_and_inputs() _lowerCamelCase : List[Any] = bert_model_tester.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase : Optional[int] = vision_config_and_inputs _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __snake_case ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _lowerCamelCase : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _lowerCamelCase : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _lowerCamelCase : Union[str, Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__lowerCAmelCase , padding=__lowerCAmelCase , return_tensors='''np''' ) _lowerCamelCase : List[str] = model(**__lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCamelCase : List[str] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image , __lowerCAmelCase , atol=1E-3 ) )
72
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = """char""" UpperCAmelCase_ = """bpe""" UpperCAmelCase_ = """wp""" _lowerCAmelCase : Optional[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""image_processor""", """char_tokenizer"""] UpperCAmelCase_ = """ViTImageProcessor""" UpperCAmelCase_ = """MgpstrTokenizer""" def __init__( self :List[str] , lowerCamelCase :Dict=None , lowerCamelCase :Optional[int]=None , **lowerCamelCase :List[str] ) -> Optional[Any]: UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) UpperCAmelCase__ = kwargs.pop("feature_extractor" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) UpperCAmelCase__ = tokenizer UpperCAmelCase__ = AutoTokenizer.from_pretrained("gpt2" ) UpperCAmelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self :Optional[Any] , lowerCamelCase :List[str]=None , lowerCamelCase :Any=None , lowerCamelCase :Optional[Any]=None , **lowerCamelCase :Optional[int] ) -> Union[str, Any]: if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: UpperCAmelCase__ = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None: UpperCAmelCase__ = self.char_tokenizer(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif images is None: return encodings else: UpperCAmelCase__ = encodings["input_ids"] return inputs def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Optional[Any] ) -> Optional[Any]: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = sequences UpperCAmelCase__ = char_preds.size(0 ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "char" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "bpe" ) UpperCAmelCase__ , UpperCAmelCase__ = self._decode_helper(lowerCamelCase , "wp" ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i in range(lowerCamelCase ): UpperCAmelCase__ = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCAmelCase__ = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCAmelCase__ = scores.index(max(lowerCamelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCAmelCase__ = {} UpperCAmelCase__ = final_strs UpperCAmelCase__ = final_scores UpperCAmelCase__ = char_strs UpperCAmelCase__ = bpe_strs UpperCAmelCase__ = wp_strs return out def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int , lowerCamelCase :List[str] ) -> Union[str, Any]: if format == DecodeType.CHARACTER: UpperCAmelCase__ = self.char_decode UpperCAmelCase__ = 1 UpperCAmelCase__ = "[s]" elif format == DecodeType.BPE: UpperCAmelCase__ = self.bpe_decode UpperCAmelCase__ = 2 UpperCAmelCase__ = "#" elif format == DecodeType.WORDPIECE: UpperCAmelCase__ = self.wp_decode UpperCAmelCase__ = 102 UpperCAmelCase__ = "[SEP]" else: raise ValueError(f'''Format {format} is not supported.''' ) UpperCAmelCase__ , UpperCAmelCase__ = [], [] UpperCAmelCase__ = pred_logits.size(0 ) UpperCAmelCase__ = pred_logits.size(1 ) UpperCAmelCase__ , UpperCAmelCase__ = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase , sorted=lowerCamelCase ) UpperCAmelCase__ = preds_index.view(-1 , lowerCamelCase )[:, 1:] UpperCAmelCase__ = decoder(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = torch.nn.functional.softmax(lowerCamelCase , dim=2 ).max(dim=2 ) UpperCAmelCase__ = preds_max_prob[:, 1:] for index in range(lowerCamelCase ): UpperCAmelCase__ = preds_str[index].find(lowerCamelCase ) UpperCAmelCase__ = preds_str[index][:pred_eos] UpperCAmelCase__ = preds_index[index].cpu().tolist() UpperCAmelCase__ = pred_index.index(lowerCamelCase ) if eos_token in pred_index else -1 UpperCAmelCase__ = preds_max_prob[index][: pred_eos_index + 1] UpperCAmelCase__ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase ) conf_scores.append(lowerCamelCase ) return dec_strs, conf_scores def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int ) -> List[str]: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase )] return decode_strs def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :Dict ) -> Dict: return self.bpe_tokenizer.batch_decode(lowerCamelCase ) def UpperCAmelCase_ ( self :str , lowerCamelCase :str ) -> Tuple: UpperCAmelCase__ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase )] return decode_strs
169
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( "The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , snake_case__ , ) class lowercase ( snake_case__): """simple docstring""" a__ : Optional[Any] = RobertaConfig a__ : Optional[Any] = "roberta" def __init__( self : Any , __UpperCAmelCase : str ) -> Union[str, Any]: super().__init__(__UpperCAmelCase ) UpperCAmelCase_= RobertaEmbeddings(__UpperCAmelCase ) self.init_weights() @add_start_docstrings( "RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , snake_case__ , ) class lowercase ( snake_case__): """simple docstring""" a__ : Optional[Any] = RobertaConfig a__ : List[Any] = "roberta" def __init__( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) -> List[str]: super().__init__(__UpperCAmelCase ) UpperCAmelCase_= config.num_labels UpperCAmelCase_= config.num_hidden_layers UpperCAmelCase_= DeeRobertaModel(__UpperCAmelCase ) UpperCAmelCase_= nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase_= nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=-1 , __UpperCAmelCase : str=False , ) -> Dict: UpperCAmelCase_= self.num_layers try: UpperCAmelCase_= self.roberta( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , position_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase , inputs_embeds=__UpperCAmelCase , ) UpperCAmelCase_= outputs[1] UpperCAmelCase_= self.dropout(__UpperCAmelCase ) UpperCAmelCase_= self.classifier(__UpperCAmelCase ) UpperCAmelCase_= (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase_= e.message UpperCAmelCase_= e.exit_layer UpperCAmelCase_= outputs[0] if not self.training: UpperCAmelCase_= entropy(__UpperCAmelCase ) UpperCAmelCase_= [] UpperCAmelCase_= [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase_= MSELoss() UpperCAmelCase_= loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_= CrossEntropyLoss() UpperCAmelCase_= loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase_= [] for highway_exit in outputs[-1]: UpperCAmelCase_= highway_exit[0] if not self.training: highway_logits_all.append(__UpperCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase_= MSELoss() UpperCAmelCase_= loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_= CrossEntropyLoss() UpperCAmelCase_= loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__UpperCAmelCase ) if train_highway: UpperCAmelCase_= (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase_= (loss,) + outputs if not self.training: UpperCAmelCase_= outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase_= ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
277
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : """simple docstring""" def __init__( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=13 , __UpperCAmelCase : Dict=32 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : Any=[10, 20, 30, 40] , __UpperCAmelCase : int=[2, 2, 3, 2] , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Union[str, Any]=37 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Dict=10 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : List[str]=["stage2", "stage3", "stage4"] , __UpperCAmelCase : Dict=[2, 3, 4] , __UpperCAmelCase : List[str]=None , ) -> List[Any]: UpperCAmelCase_= parent UpperCAmelCase_= batch_size UpperCAmelCase_= image_size UpperCAmelCase_= num_channels UpperCAmelCase_= num_stages UpperCAmelCase_= hidden_sizes UpperCAmelCase_= depths UpperCAmelCase_= is_training UpperCAmelCase_= use_labels UpperCAmelCase_= intermediate_size UpperCAmelCase_= hidden_act UpperCAmelCase_= num_labels UpperCAmelCase_= initializer_range UpperCAmelCase_= out_features UpperCAmelCase_= out_indices UpperCAmelCase_= scope def _SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: UpperCAmelCase_= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_= None if self.use_labels: UpperCAmelCase_= ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_= self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Dict ) -> int: UpperCAmelCase_= ConvNextModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Dict ) -> List[str]: UpperCAmelCase_= ConvNextForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ) -> Optional[Any]: UpperCAmelCase_= ConvNextBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase_= None UpperCAmelCase_= ConvNextBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= self.prepare_config_and_inputs() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= config_and_inputs UpperCAmelCase_= {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" a__ : Tuple = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) a__ : Union[str, Any] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) a__ : Optional[int] = True a__ : Optional[Any] = False a__ : str = False a__ : str = False a__ : List[str] = False def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_= ConvNextModelTester(self ) UpperCAmelCase_= ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Dict: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Union[str, Any]: pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_= model_class(__UpperCAmelCase ) UpperCAmelCase_= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_= [*signature.parameters.keys()] UpperCAmelCase_= ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: def check_hidden_states_output(__UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any ): UpperCAmelCase_= model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_= model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase_= outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_= self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_= True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_= True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Tuple: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_= ConvNextModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __a ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_= Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: UpperCAmelCase_= ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(__UpperCAmelCase ) UpperCAmelCase_= self.default_image_processor UpperCAmelCase_= prepare_img() UpperCAmelCase_= image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_= model(**__UpperCAmelCase ) # verify the logits UpperCAmelCase_= torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) UpperCAmelCase_= torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @require_torch class lowercase ( unittest.TestCase , snake_case__): """simple docstring""" a__ : List[str] = (ConvNextBackbone,) if is_torch_available() else () a__ : Dict = ConvNextConfig a__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: UpperCAmelCase_= ConvNextModelTester(self )
277
1
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( A__ ): """simple docstring""" _a = (DDPMScheduler,) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Tuple = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**UpperCamelCase_ ) return config def lowerCAmelCase__ ( self ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def lowerCAmelCase__ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.scheduler_classes[0] UpperCamelCase__ :Tuple = self.get_scheduler_config() UpperCamelCase__ :Union[str, Any] = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.scheduler_classes[0] UpperCamelCase__ :Any = self.get_scheduler_config() UpperCamelCase__ :int = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ :Dict = len(UpperCamelCase_ ) UpperCamelCase__ :Tuple = self.dummy_model() UpperCamelCase__ :int = self.dummy_sample_deter UpperCamelCase__ :Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual UpperCamelCase__ :Dict = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase__ :Any = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase__ :Optional[int] = pred_prev_sample UpperCamelCase__ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ :Optional[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.scheduler_classes[0] UpperCamelCase__ :Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCamelCase__ :List[Any] = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = len(UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.dummy_model() UpperCamelCase__ :Optional[int] = self.dummy_sample_deter UpperCamelCase__ :Tuple = torch.manual_seed(0 ) for t in reversed(range(UpperCamelCase_ ) ): # 1. predict noise residual UpperCamelCase__ :Tuple = model(UpperCamelCase_ , UpperCamelCase_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase__ :Optional[int] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase__ :List[str] = pred_prev_sample UpperCamelCase__ :List[str] = torch.sum(torch.abs(UpperCamelCase_ ) ) UpperCamelCase__ :Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.scheduler_classes[0] UpperCamelCase__ :Optional[Any] = self.get_scheduler_config() UpperCamelCase__ :List[Any] = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ :List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=UpperCamelCase_ ) UpperCamelCase__ :Tuple = scheduler.timesteps for i, timestep in enumerate(UpperCamelCase_ ): if i == len(UpperCamelCase_ ) - 1: UpperCamelCase__ :List[str] = -1 else: UpperCamelCase__ :List[str] = timesteps[i + 1] UpperCamelCase__ :Optional[int] = scheduler.previous_timestep(UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = prev_t.item() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.scheduler_classes[0] UpperCamelCase__ :List[Any] = self.get_scheduler_config() UpperCamelCase__ :Union[str, Any] = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ :List[str] = [100, 87, 50, 51, 0] with self.assertRaises(UpperCamelCase_ , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.scheduler_classes[0] UpperCamelCase__ :Union[str, Any] = self.get_scheduler_config() UpperCamelCase__ :Union[str, Any] = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ :Tuple = [100, 87, 50, 1, 0] UpperCamelCase__ :List[Any] = len(UpperCamelCase_ ) with self.assertRaises(UpperCamelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.scheduler_classes[0] UpperCamelCase__ :Any = self.get_scheduler_config() UpperCamelCase__ :Dict = scheduler_class(**UpperCamelCase_ ) UpperCamelCase__ :Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( UpperCamelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=UpperCamelCase_ )
97
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np _UpperCamelCase : Any = re.compile(r"\b(a|an|the)\b", re.UNICODE) _UpperCamelCase : Union[str, Any] = None def a_ ( ): '''simple docstring''' lowercase__ : Optional[int] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=_lowerCAmelCase , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=_lowerCAmelCase , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Optional[int] = bool(qa['answers']['text'] ) return qid_to_has_ans def a_ ( _lowerCAmelCase : Any ): '''simple docstring''' def remove_articles(_lowerCAmelCase : int ): return ARTICLES_REGEX.sub(' ' , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : str ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : List[Any] ): lowercase__ : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def a_ ( _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' if not s: return [] return normalize_answer(_lowerCAmelCase ).split() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): '''simple docstring''' return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): '''simple docstring''' lowercase__ : Dict = get_tokens(_lowerCAmelCase ) lowercase__ : List[str] = get_tokens(_lowerCAmelCase ) lowercase__ : List[Any] = collections.Counter(_lowerCAmelCase ) & collections.Counter(_lowerCAmelCase ) lowercase__ : int = sum(common.values() ) if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase__ : Any = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : Dict = 1.0 * num_same / len(_lowerCAmelCase ) lowercase__ : Any = (2 * precision * recall) / (precision + recall) return fa def a_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Optional[int] = {} lowercase__ : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__ : Any = qa['id'] lowercase__ : Union[str, Any] = [t for t in qa['answers']['text'] if normalize_answer(_lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase__ : Dict = [''] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue lowercase__ : Optional[int] = preds[qid] # Take max over all gold answers lowercase__ : int = max(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) lowercase__ : Optional[Any] = max(compute_fa(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def a_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] ): '''simple docstring''' lowercase__ : str = {} for qid, s in scores.items(): lowercase__ : int = na_probs[qid] > na_prob_thresh if pred_na: lowercase__ : Optional[Any] = float(not qid_to_has_ans[qid] ) else: lowercase__ : Optional[Any] = s return new_scores def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=None ): '''simple docstring''' if not qid_list: lowercase__ : Optional[Any] = len(_lowerCAmelCase ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores.values() ) / total), ('f1', 1_0_0.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowercase__ : Optional[Any] = len(_lowerCAmelCase ) return collections.OrderedDict( [ ('exact', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' for k in new_eval: lowercase__ : int = new_eval[k] def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): '''simple docstring''' plt.step(_lowerCAmelCase , _lowerCAmelCase , color='b' , alpha=0.2 , where='post' ) plt.fill_between(_lowerCAmelCase , _lowerCAmelCase , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(_lowerCAmelCase ) plt.savefig(_lowerCAmelCase ) plt.clf() def a_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : int , _lowerCAmelCase : str , _lowerCAmelCase : Any=None , _lowerCAmelCase : List[str]=None ): '''simple docstring''' lowercase__ : Optional[int] = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) lowercase__ : Tuple = 0.0 lowercase__ : List[str] = 1.0 lowercase__ : List[str] = 0.0 lowercase__ : Union[str, Any] = [1.0] lowercase__ : List[Any] = [0.0] lowercase__ : Optional[int] = 0.0 for i, qid in enumerate(_lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase__ : Tuple = true_pos / float(i + 1 ) lowercase__ : Union[str, Any] = true_pos / float(_lowerCAmelCase ) if i == len(_lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowerCAmelCase ) recalls.append(_lowerCAmelCase ) if out_image: plot_pr_curve(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return {"ap": 1_0_0.0 * avg_prec} def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple ): '''simple docstring''' if out_image_dir and not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) lowercase__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase__ : Dict = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowercase__ : Tuple = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowercase__ : List[Any] = {k: float(_lowerCAmelCase ) for k, v in qid_to_has_ans.items()} lowercase__ : Any = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_exact' ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_f1' ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'pr_oracle' ) def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): '''simple docstring''' if not qid_list: return lowercase__ : List[str] = [na_probs[k] for k in qid_list] lowercase__ : Tuple = np.ones_like(_lowerCAmelCase ) / float(len(_lowerCAmelCase ) ) plt.hist(_lowerCAmelCase , weights=_lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(_lowerCAmelCase , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def a_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] ): '''simple docstring''' lowercase__ : Tuple = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase__ : int = num_no_ans lowercase__ : Optional[int] = cur_score lowercase__ : Tuple = 0.0 lowercase__ : Dict = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(_lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase__ : Optional[int] = scores[qid] else: if preds[qid]: lowercase__ : List[Any] = -1 else: lowercase__ : Optional[int] = 0 cur_score += diff if cur_score > best_score: lowercase__ : Dict = cur_score lowercase__ : Optional[int] = na_probs[qid] return 1_0_0.0 * best_score / len(_lowerCAmelCase ), best_thresh def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ , lowercase__ : List[Any] = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ , lowercase__ : Dict = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Any = best_exact lowercase__ : Tuple = exact_thresh lowercase__ : Optional[Any] = best_fa lowercase__ : Any = fa_thresh def a_ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: lowercase__ : List[Any] = json.load(_lowerCAmelCase ) lowercase__ : Union[str, Any] = dataset_json['data'] with open(OPTS.pred_file ) as f: lowercase__ : str = json.load(_lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase__ : Union[str, Any] = json.load(_lowerCAmelCase ) else: lowercase__ : str = {k: 0.0 for k in preds} lowercase__ : int = make_qid_to_has_ans(_lowerCAmelCase ) # maps qid to True/False lowercase__ : List[str] = [k for k, v in qid_to_has_ans.items() if v] lowercase__ : Any = [k for k, v in qid_to_has_ans.items() if not v] lowercase__ , lowercase__ : Any = get_raw_scores(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : Optional[Any] = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) lowercase__ : Union[str, Any] = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) lowercase__ : Tuple = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase ) if has_ans_qids: lowercase__ : int = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'HasAns' ) if no_ans_qids: lowercase__ : Optional[Any] = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) else: print(json.dumps(_lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": _UpperCamelCase : Optional[int] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
77
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCamelCase : Dict = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
140
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Tuple = logging.get_logger(__name__) class A__ ( __snake_case ): _UpperCAmelCase :List[Any] = 'timm_backbone' def __init__( self , A_=None , A_=3 , A_=True , A_=True , A_=None , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Tuple = backbone UpperCamelCase : Dict = num_channels UpperCamelCase : Tuple = features_only UpperCamelCase : Optional[int] = use_pretrained_backbone UpperCamelCase : Dict = True UpperCamelCase : List[str] = out_indices if out_indices is not None else (-1,)
140
1
def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = [1] for i in range(2 , snake_case ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" _lowerCAmelCase = [] _lowerCAmelCase = list(range(snake_case ) ) # Find permutation while factorials: _lowerCAmelCase = factorials.pop() _lowerCAmelCase , _lowerCAmelCase = divmod(snake_case , snake_case ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
82
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : list ): """simple docstring""" if len(snake_case__ ) <= 1: return [tuple(snake_case__ )] _snake_case : List[Any] = [] def generate(snake_case__ : int , snake_case__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even _snake_case , _snake_case : Optional[Any] = arr[k - 1], arr[i] else: # k is odd _snake_case , _snake_case : List[str] = arr[k - 1], arr[0] generate(k - 1 , snake_case__ ) generate(len(snake_case__ ) , snake_case__ ) return res if __name__ == "__main__": A_ = input('''Enter numbers separated by a comma:\n''').strip() A_ = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
64
0
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> Optional[Any]: if any(not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or x < 0 for x in sequence ): raise TypeError("""Sequence must be list of non-negative integers""" ) for _ in range(len(_UpperCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(_UpperCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
365
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = MvpTokenizer lowercase = MvpTokenizerFast lowercase = True lowercase = filter_roberta_detectors def lowerCamelCase ( self : Union[str, Any] ): super().setUp() snake_case__ : List[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case__ : Union[str, Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) snake_case__ : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case__ : Tuple = {"""unk_token""": """<unk>"""} snake_case__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case_ ) ) def lowerCamelCase ( self : Optional[Any] , **snake_case_ : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : List[str] , **snake_case_ : List[str] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCamelCase ( self : List[Any] , snake_case_ : List[str] ): return "lower newer", "lower newer" @cached_property def lowerCamelCase ( self : int ): return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCamelCase ( self : Tuple ): return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCamelCase ( self : Any ): snake_case__ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] snake_case__ : Dict = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : List[Any] = tokenizer(snake_case_ , max_length=len(snake_case_ ) , padding=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) snake_case__ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(snake_case_ , snake_case_ ) # Test that special tokens are reset @require_torch def lowerCamelCase ( self : Dict ): snake_case__ : List[str] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : List[Any] = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , snake_case_ ) self.assertIn("""attention_mask""" , snake_case_ ) self.assertNotIn("""labels""" , snake_case_ ) self.assertNotIn("""decoder_attention_mask""" , snake_case_ ) @require_torch def lowerCamelCase ( self : Tuple ): snake_case__ : Any = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : str = tokenizer(text_target=snake_case_ , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase ( self : List[str] ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : Optional[Any] = tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=snake_case_ , truncation=snake_case_ , return_tensors="""pt""" ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowerCamelCase ( self : str ): snake_case__ : Optional[Any] = ["""A long paragraph for summarization."""] snake_case__ : Optional[Any] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case__ : int = tokenizer(snake_case_ , text_target=snake_case_ , return_tensors="""pt""" ) snake_case__ : int = inputs["""input_ids"""] snake_case__ : str = inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCamelCase ( self : int ): pass def lowerCamelCase ( self : str ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): snake_case__ : int = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) snake_case__ : Optional[int] = self.tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) snake_case__ : Optional[Any] = """A, <mask> AllenNLP sentence.""" snake_case__ : List[str] = tokenizer_r.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) snake_case__ : int = tokenizer_p.encode_plus(snake_case_ , add_special_tokens=snake_case_ , return_token_type_ids=snake_case_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case__ : Any = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( snake_case_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
43
0
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( a_: List[Any] ): if number < 0: raise ValueError("the value of input must not be negative" ) _UpperCAmelCase : str = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( a_: List[Any] ): if number < 0: raise ValueError("the value of input must not be negative" ) _UpperCAmelCase : Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ): def do_benchmark(a_: Union[str, Any] ) -> None: _UpperCAmelCase : List[str] = '''import __main__ as z''' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(a_ ) = }""" ) _UpperCAmelCase : Optional[int] = timeit("z.get_set_bits_count_using_modulo_operator(25)", setup=a_ ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(a_ ) = }""" ) _UpperCAmelCase : Union[str, Any] = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)", setup=a_, ) print(f"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(a_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
145
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = AlbertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) __UpperCamelCase :List[str] = AlbertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_albert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
43
0
'''simple docstring''' from importlib import import_module from .logging import get_logger A__ : Dict = get_logger(__name__) class snake_case__ : def __init__( self : Union[str, Any] , __a : int , __a : Tuple=None ) -> int: '''simple docstring''' __snake_case : List[Any] = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , __a , getattr(__a , __a ) ) __snake_case : Optional[int] = module._original_module if isinstance(__a , _PatchedModuleObj ) else module class snake_case__ : A__ = [] def __init__( self : List[str] , __a : str , __a : str , __a : Any , __a : Optional[int]=None ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = obj __snake_case : Tuple = target __snake_case : List[str] = new __snake_case : int = target.split('.' )[0] __snake_case : Dict = {} __snake_case : Union[str, Any] = attrs or [] def __enter__( self : List[str] ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__a ) ): try: __snake_case : Union[str, Any] = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __snake_case : Any = getattr(self.obj , __a ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__a , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __snake_case : Optional[Any] = obj_attr # patch at top level setattr(self.obj , __a , _PatchedModuleObj(__a , attrs=self.attrs ) ) __snake_case : Optional[int] = getattr(self.obj , __a ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__a , __a , _PatchedModuleObj(getattr(__a , __a , __a ) , attrs=self.attrs ) ) __snake_case : Dict = getattr(__a , __a ) # finally set the target attribute setattr(__a , __a , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __snake_case : str = getattr(import_module('.'.join(__a ) ) , __a ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __a ) is attr_value: __snake_case : List[str] = getattr(self.obj , __a ) setattr(self.obj , __a , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __snake_case : Union[str, Any] = globals()['__builtins__'][target_attr] setattr(self.obj , __a , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : int , *__a : Optional[int] ) -> str: '''simple docstring''' for attr in list(self.original ): setattr(self.obj , __a , self.original.pop(__a ) ) def A_ ( self : Any ) -> Dict: '''simple docstring''' self.__enter__() self._active_patches.append(self ) def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
367
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer A__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} A__ : List[Any] = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } A__ : List[Any] = { '''google/electra-small-generator''': 5_1_2, '''google/electra-base-generator''': 5_1_2, '''google/electra-large-generator''': 5_1_2, '''google/electra-small-discriminator''': 5_1_2, '''google/electra-base-discriminator''': 5_1_2, '''google/electra-large-discriminator''': 5_1_2, } A__ : Optional[Any] = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ElectraTokenizer def __init__( self : int , __a : List[Any]=None , __a : int=None , __a : List[str]=True , __a : Any="[UNK]" , __a : Any="[SEP]" , __a : Union[str, Any]="[PAD]" , __a : Dict="[CLS]" , __a : List[Any]="[MASK]" , __a : str=True , __a : Optional[int]=None , **__a : Optional[int] , ) -> str: '''simple docstring''' super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) __snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __a ) != do_lower_case or normalizer_state.get('strip_accents' , __a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __a ) != tokenize_chinese_chars ): __snake_case : List[Any] = getattr(__a , normalizer_state.pop('type' ) ) __snake_case : str = do_lower_case __snake_case : Optional[int] = strip_accents __snake_case : Any = tokenize_chinese_chars __snake_case : Union[str, Any] = normalizer_class(**__a ) __snake_case : Any = do_lower_case def A_ ( self : Any , __a : List[str] , __a : Optional[Any]=None ) -> Dict: '''simple docstring''' __snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A_ ( self : List[Any] , __a : List[int] , __a : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A_ ( self : Optional[int] , __a : str , __a : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __snake_case : Tuple = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
0
0
def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = len(snake_case ) for i in range(length - 1 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = i for k in range(i + 1 , snake_case ): if collection[k] < collection[least]: __SCREAMING_SNAKE_CASE : Optional[int] = k if least != i: __SCREAMING_SNAKE_CASE : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": lowercase_ = input("""Enter numbers separated by a comma:\n""").strip() lowercase_ = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
303
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Dict = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
18
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'xlm-roberta-xl' def __init__( self , __snake_case=2_5_0_8_8_0 , __snake_case=2_5_6_0 , __snake_case=3_6 , __snake_case=3_2 , __snake_case=1_0_2_4_0 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_1_4 , __snake_case=1 , __snake_case=0.02 , __snake_case=1E-05 , __snake_case=1 , __snake_case=0 , __snake_case=2 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ): super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) snake_case = vocab_size snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = hidden_act snake_case = intermediate_size snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = max_position_embeddings snake_case = type_vocab_size snake_case = initializer_range snake_case = layer_norm_eps snake_case = position_embedding_type snake_case = use_cache snake_case = classifier_dropout class A__ ( snake_case__ ): """simple docstring""" @property def a_ ( self ): if self.task == "multiple-choice": snake_case = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
213
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _SCREAMING_SNAKE_CASE : str = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def UpperCAmelCase__ (UpperCamelCase_ = "mumbai" ): """simple docstring""" snake_case = BeautifulSoup(requests.get(url + location ).content ,'''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' ,attrs={'''data-tn-component''': '''organicJob'''} ): snake_case = job.find('''a''' ,attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() snake_case = job.find('''span''' ,{'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
213
1
import os snake_case__ : Any = {'I': 1, 'V': 5, 'X': 10, 'L': 50, 'C': 100, 'D': 500, 'M': 1000} def _a ( lowerCamelCase: str ) -> int: '''simple docstring''' __A = 0 __A = 0 while index < len(lowerCamelCase ) - 1: __A = SYMBOLS[numerals[index]] __A = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _a ( lowerCamelCase: int ) -> str: '''simple docstring''' __A = '''''' __A = num // 10_00 numerals += m_count * "M" num %= 10_00 __A = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 __A = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _a ( lowerCamelCase: str = "/p089_roman.txt" ) -> int: '''simple docstring''' __A = 0 with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea: __A = filea.readlines() for line in lines: __A = line.strip() __A = parse_roman_numerals(lowerCamelCase ) __A = generate_roman_numerals(lowerCamelCase ) savings += len(lowerCamelCase ) - len(lowerCamelCase ) return savings if __name__ == "__main__": print(f'{solution() = }')
117
import argparse import copy def _a ( lowerCamelCase: List[Any] ) -> List[str]: '''simple docstring''' __A = {} with open(lowerCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __A = [] _list.append([line.split()[1], line.split()[2]] ) __A = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __A = [] _list.append([line.split()[0], line.split()[2]] ) __A = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _a ( lowerCamelCase: Any , lowerCamelCase: Optional[Any] ) -> Dict: '''simple docstring''' with open(lowerCamelCase ) as f: __A = f.read(1 ) __A = start_node __A = [] __A = start_node __A = 0 while visiting not in first_solution: __A = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase ) and k[0] not in first_solution: __A = k[1] __A = k[0] first_solution.append(lowerCamelCase ) __A = distance_of_first_solution + int(lowerCamelCase ) __A = best_node first_solution.append(lowerCamelCase ) __A = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __A = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def _a ( lowerCamelCase: List[str] , lowerCamelCase: Any ) -> Any: '''simple docstring''' __A = [] for n in solution[1:-1]: __A = solution.index(lowerCamelCase ) for kn in solution[1:-1]: __A = solution.index(lowerCamelCase ) if n == kn: continue __A = copy.deepcopy(lowerCamelCase ) __A = kn __A = n __A = 0 for k in _tmp[:-1]: __A = _tmp[_tmp.index(lowerCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __A = distance + int(i[1] ) _tmp.append(lowerCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __A = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _a ( lowerCamelCase: Optional[int] , lowerCamelCase: Dict , lowerCamelCase: Any , lowerCamelCase: Optional[int] , lowerCamelCase: Union[str, Any] ) -> Any: '''simple docstring''' __A = 1 __A = first_solution __A = [] __A = distance_of_first_solution __A = solution while count <= iters: __A = find_neighborhood(lowerCamelCase , lowerCamelCase ) __A = 0 __A = neighborhood[index_of_best_solution] __A = len(lowerCamelCase ) - 1 __A = False while not found: __A = 0 while i < len(lowerCamelCase ): if best_solution[i] != solution[i]: __A = best_solution[i] __A = solution[i] break __A = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __A = True __A = best_solution[:-1] __A = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __A = cost __A = solution else: __A = index_of_best_solution + 1 __A = neighborhood[index_of_best_solution] if len(lowerCamelCase ) >= size: tabu_list.pop(0 ) __A = count + 1 return best_solution_ever, best_cost def _a ( lowerCamelCase: List[str]=None ) -> str: '''simple docstring''' __A = generate_neighbours(args.File ) __A , __A = generate_first_solution( args.File , lowerCamelCase ) __A , __A = tabu_search( lowerCamelCase , lowerCamelCase , lowerCamelCase , args.Iterations , args.Size , ) print(F"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
117
1
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( lowerCAmelCase__): def __init__( self : List[Any] , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[Any] , ): super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) snake_case_ : List[Any] = path_or_paths if isinstance(lowercase_ , lowercase_ ) else {self.split: path_or_paths} snake_case_ : str = Text( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , **lowercase_ , ) def _snake_case ( self : Any ): # Build iterable dataset if self.streaming: snake_case_ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: snake_case_ : List[Any] = None snake_case_ : Optional[Any] = None snake_case_ : str = None snake_case_ : Optional[int] = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) snake_case_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory ) return dataset
155
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ : Any = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Tuple = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : Union[str, Any] = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowercase__ : Any = { '''google/rembert''': 2_56, } lowercase__ : Optional[Any] = '''▁''' class _UpperCAmelCase ( lowerCAmelCase__): _lowerCAmelCase : Tuple = VOCAB_FILES_NAMES _lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Tuple = RemBertTokenizer def __init__( self : Union[str, Any] , lowercase_ : List[Any]=None , lowercase_ : Optional[int]=None , lowercase_ : List[Any]=True , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : List[Any]="[CLS]" , lowercase_ : Union[str, Any]="[SEP]" , lowercase_ : str="<unk>" , lowercase_ : Tuple="[SEP]" , lowercase_ : Optional[int]="<pad>" , lowercase_ : List[Any]="[CLS]" , lowercase_ : Union[str, Any]="[MASK]" , **lowercase_ : Dict , ): # Mask token behave like a normal word, i.e. include the space before it snake_case_ : List[str] = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) snake_case_ : Optional[int] = do_lower_case snake_case_ : List[Any] = remove_space snake_case_ : str = keep_accents snake_case_ : str = vocab_file snake_case_ : Optional[int] = False if not self.vocab_file else True def _snake_case ( self : Any , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self : str , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None , lowercase_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowercase_ )) + [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1] def _snake_case ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): snake_case_ : Union[str, Any] = [self.sep_token_id] snake_case_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : Optional[int] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowercase_ ) ) return snake_case_ : Optional[int] = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
155
1
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class __lowercase ( unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase : List[Any] = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def __A ( self , A , A , A ) -> List[str]: '''simple docstring''' lowerCamelCase = TextaTextGenerationPipeline(model=lowerCamelCase__ , tokenizer=lowerCamelCase__ ) return generator, ["Something to write", "Something else"] def __A ( self , A , A ) -> int: '''simple docstring''' lowerCamelCase = generator("""Something there""" ) self.assertEqual(lowerCamelCase__ , [{"""generated_text""": ANY(lowerCamelCase__ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowerCamelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ [{"""generated_text""": ANY(lowerCamelCase__ )}, {"""generated_text""": ANY(lowerCamelCase__ )}], [{"""generated_text""": ANY(lowerCamelCase__ )}, {"""generated_text""": ANY(lowerCamelCase__ )}], ] , ) lowerCamelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ [{"""generated_text""": ANY(lowerCamelCase__ )}, {"""generated_text""": ANY(lowerCamelCase__ )}], [{"""generated_text""": ANY(lowerCamelCase__ )}, {"""generated_text""": ANY(lowerCamelCase__ )}], ] , ) with self.assertRaises(lowerCamelCase__ ): generator(4 ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [{"""generated_text""": """"""}] ) lowerCamelCase = 3 lowerCamelCase = generator( """Something there""" , num_return_sequences=lowerCamelCase__ , num_beams=lowerCamelCase__ , ) lowerCamelCase = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = generator("""This is a test""" , do_sample=lowerCamelCase__ , num_return_sequences=2 , return_tensors=lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowerCamelCase = generator.model.config.eos_token_id lowerCamelCase = """<pad>""" lowerCamelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=lowerCamelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase__ , ) self.assertEqual( lowerCamelCase__ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowerCamelCase = generator("""Something there""" , do_sample=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [{"""generated_text""": """"""}] )
252
"""simple docstring""" import argparse lowerCAmelCase__ : List[str] = 'docs/source/_static/js/custom.js' def a_ ( lowerCamelCase ): with open(lowerCamelCase , encoding='utf-8' , newline='\n' ) as f: UpperCAmelCase__ = f.readlines() UpperCAmelCase__ = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 UpperCAmelCase__ = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowerCamelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase__ : Optional[int] = parser.parse_args() update_custom_js(args.version)
98
0
'''simple docstring''' import sys A__ : Any =( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCamelCase__ ( lowerCAmelCase = N ): """simple docstring""" _lowerCAmelCase = -sys.maxsize - 1 for i in range(len(lowerCAmelCase ) - 12 ): _lowerCAmelCase = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _lowerCAmelCase = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
220
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" if len(lowerCAmelCase ) != len(lowerCAmelCase ): raise ValueError("""String lengths must match!""" ) _lowerCAmelCase = 0 for chara, chara in zip(lowerCAmelCase , lowerCAmelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
220
1
def UpperCamelCase ( snake_case__ : list , snake_case__ : int , snake_case__ : int = 0 , snake_case__ : int = 0 ) -> int: UpperCamelCase : Dict = right or len(snake_case__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(snake_case__ , snake_case__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
119
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __UpperCAmelCase = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def UpperCamelCase ( snake_case__ : int ) -> Optional[int]: UpperCamelCase : str = EfficientNetConfig() UpperCamelCase : Union[str, Any] = CONFIG_MAP[model_name]['hidden_dim'] UpperCamelCase : Union[str, Any] = CONFIG_MAP[model_name]['width_coef'] UpperCamelCase : str = CONFIG_MAP[model_name]['depth_coef'] UpperCamelCase : List[str] = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[str] = CONFIG_MAP[model_name]['dropout_rate'] UpperCamelCase : str = CONFIG_MAP[model_name]['dw_padding'] UpperCamelCase : str = 'huggingface/label-files' UpperCamelCase : Optional[Any] = 'imagenet-1k-id2label.json' UpperCamelCase : Optional[Any] = 1000 UpperCamelCase : Dict = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Optional[int] = idalabel UpperCamelCase : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im def UpperCamelCase ( snake_case__ : List[str] ) -> List[Any]: UpperCamelCase : int = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=snake_case__ , ) return preprocessor def UpperCamelCase ( snake_case__ : Optional[int] ) -> Dict: UpperCamelCase : int = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] UpperCamelCase : str = sorted(set(snake_case__ ) ) UpperCamelCase : int = len(snake_case__ ) UpperCamelCase : str = {b: str(snake_case__ ) for b, i in zip(snake_case__ , range(snake_case__ ) )} UpperCamelCase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: UpperCamelCase : Union[str, Any] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) UpperCamelCase : List[str] = {} for item in rename_keys: if item[0] in original_param_names: UpperCamelCase : Dict = 'efficientnet.' + item[1] UpperCamelCase : Dict = 'classifier.weight' UpperCamelCase : Dict = 'classifier.bias' return key_mapping def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue UpperCamelCase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCamelCase : str = torch.from_numpy(snake_case__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCamelCase : Any = torch.from_numpy(snake_case__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCamelCase : str = torch.from_numpy(np.transpose(snake_case__ ) ) else: UpperCamelCase : str = torch.from_numpy(snake_case__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(snake_case__ ) @torch.no_grad() def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] ) -> Any: UpperCamelCase : Union[str, Any] = model_classes[model_name]( include_top=snake_case__ , weights='imagenet' , input_tensor=snake_case__ , input_shape=snake_case__ , pooling=snake_case__ , classes=1000 , classifier_activation='softmax' , ) UpperCamelCase : Optional[int] = original_model.trainable_variables UpperCamelCase : Optional[int] = original_model.non_trainable_variables UpperCamelCase : Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCamelCase : List[Any] = param.numpy() UpperCamelCase : List[str] = list(tf_params.keys() ) # Load HuggingFace model UpperCamelCase : str = get_efficientnet_config(snake_case__ ) UpperCamelCase : Any = EfficientNetForImageClassification(snake_case__ ).eval() UpperCamelCase : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) UpperCamelCase : List[Any] = rename_keys(snake_case__ ) replace_params(snake_case__ , snake_case__ , snake_case__ ) # Initialize preprocessor and preprocess input image UpperCamelCase : List[Any] = convert_image_processor(snake_case__ ) UpperCamelCase : Dict = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = hf_model(**snake_case__ ) UpperCamelCase : Dict = outputs.logits.detach().numpy() # Original model inference UpperCamelCase : Optional[int] = False UpperCamelCase : int = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCamelCase : List[Any] = image.img_to_array(snake_case__ ) UpperCamelCase : str = np.expand_dims(snake_case__ , axis=0 ) UpperCamelCase : Any = original_model.predict(snake_case__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(snake_case__ , snake_case__ , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(snake_case__ ): os.mkdir(snake_case__ ) # Save converted model and image processor hf_model.save_pretrained(snake_case__ ) preprocessor.save_pretrained(snake_case__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) UpperCamelCase : List[str] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(snake_case__ ) hf_model.push_to_hub(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __UpperCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
119
1
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) UpperCamelCase = "hf-internal-testing/tiny-random-bert" UpperCamelCase = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') UpperCamelCase = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class snake_case_ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Union[str, Any] = cached_file(lowercase_ , lowercase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowercase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowercase_ , lowercase_ ) ) ) with open(os.path.join(lowercase_ , "refs" , "main" ) ) as f: lowercase__ : str = f.read() self.assertEqual(lowercase_ , os.path.join(lowercase_ , "snapshots" , lowercase_ , lowercase_ ) ) self.assertTrue(os.path.isfile(lowercase_ ) ) # File is cached at the same place the second time. lowercase__ : str = cached_file(lowercase_ , lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) # Using a specific revision to test the full commit hash. lowercase__ : Optional[Any] = cached_file(lowercase_ , lowercase_ , revision="9b8c223" ) self.assertEqual(lowercase_ , os.path.join(lowercase_ , "snapshots" , lowercase_ , lowercase_ ) ) def __UpperCamelCase ( self : str ) -> List[str]: with self.assertRaisesRegex(lowercase_ , "is not a valid model identifier" ): lowercase__ : Optional[int] = cached_file("tiny-random-bert" , lowercase_ ) with self.assertRaisesRegex(lowercase_ , "is not a valid git identifier" ): lowercase__ : int = cached_file(lowercase_ , lowercase_ , revision="aaaa" ) with self.assertRaisesRegex(lowercase_ , "does not appear to have a file named" ): lowercase__ : Union[str, Any] = cached_file(lowercase_ , "conf" ) def __UpperCamelCase ( self : Tuple ) -> Tuple: with self.assertRaisesRegex(lowercase_ , "does not appear to have a file named" ): lowercase__ : Dict = cached_file(lowercase_ , "conf" ) with open(os.path.join(lowercase_ , "refs" , "main" ) ) as f: lowercase__ : int = f.read() self.assertTrue(os.path.isfile(os.path.join(lowercase_ , ".no_exist" , lowercase_ , "conf" ) ) ) lowercase__ : int = cached_file(lowercase_ , "conf" , _raise_exceptions_for_missing_entries=lowercase_ ) self.assertIsNone(lowercase_ ) lowercase__ : Dict = cached_file(lowercase_ , "conf" , local_files_only=lowercase_ , _raise_exceptions_for_missing_entries=lowercase_ ) self.assertIsNone(lowercase_ ) lowercase__ : Union[str, Any] = mock.Mock() lowercase__ : str = 5_00 lowercase__ : Tuple = {} lowercase__ : List[Any] = HTTPError lowercase__ : Any = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=lowercase_ ) as mock_head: lowercase__ : int = cached_file(lowercase_ , "conf" , _raise_exceptions_for_connection_errors=lowercase_ ) self.assertIsNone(lowercase_ ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self : Dict ) -> int: self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , lowercase_ ) ) def __UpperCamelCase ( self : str ) -> Dict: self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowercase_ , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , lowercase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowercase_ , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , lowercase_ , revision="ahaha" ) lowercase__ : Any = get_file_from_repo("bert-base-cased" , lowercase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. lowercase__ : int = json.loads(open(lowercase_ , "r" ).read() ) self.assertEqual(config["hidden_size"] , 7_68 ) def __UpperCamelCase ( self : Any ) -> int: with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Optional[Any] = Path(lowercase_ ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(lowercase_ , "a.txt" ) , str(lowercase_ ) ) self.assertIsNone(get_file_from_repo(lowercase_ , "b.txt" ) )
350
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase = 4 UpperCamelCase = 3 class snake_case_ ( __A ): pass def lowercase_ ( _lowerCamelCase : List[str]): for shard in shards: for i in range(_lowerCamelCase): yield {"i": i, "shard": shard} def lowercase_ ( ): lowercase__ : List[str] = int(os.environ["RANK"]) lowercase__ : Union[str, Any] = int(os.environ["WORLD_SIZE"]) lowercase__ : Union[str, Any] = ArgumentParser() parser.add_argument("--streaming" , type=_lowerCamelCase) parser.add_argument("--local_rank" , type=_lowerCamelCase) parser.add_argument("--num_workers" , type=_lowerCamelCase , default=0) lowercase__ : int = parser.parse_args() lowercase__ : Union[str, Any] = args.streaming lowercase__ : List[Any] = args.num_workers lowercase__ : Dict = {"shards": [f'''shard_{shard_idx}''' for shard_idx in range(_lowerCamelCase)]} lowercase__ : int = IterableDataset.from_generator(_lowerCamelCase , gen_kwargs=_lowerCamelCase) if not streaming: lowercase__ : str = Dataset.from_list(list(_lowerCamelCase)) lowercase__ : List[str] = split_dataset_by_node(_lowerCamelCase , rank=_lowerCamelCase , world_size=_lowerCamelCase) lowercase__ : Any = torch.utils.data.DataLoader(_lowerCamelCase , num_workers=_lowerCamelCase) lowercase__ : Dict = NUM_SHARDS * NUM_ITEMS_PER_SHARD lowercase__ : Any = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) lowercase__ : List[str] = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''') if __name__ == "__main__": main()
333
0
'''simple docstring''' import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A =16 A =32 def snake_case_ (_a : Accelerator , _a : int = 1_6 ): UpperCAmelCase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_a : Tuple ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_a , max_length=_a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCAmelCase = datasets.map( _a , batched=_a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_a : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCAmelCase = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCAmelCase = 1_6 elif accelerator.mixed_precision != "no": UpperCAmelCase = 8 else: UpperCAmelCase = None return tokenizer.pad( _a , padding='''longest''' , max_length=_a , pad_to_multiple_of=_a , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCAmelCase = DataLoader( tokenized_datasets['''train'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=_a ) UpperCAmelCase = DataLoader( tokenized_datasets['''validation'''] , shuffle=_a , collate_fn=_a , batch_size=_a , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def snake_case_ (_a : Optional[Any] , _a : Union[str, Any] ): # Initialize accelerator UpperCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase = config['''lr'''] UpperCAmelCase = int(config['''num_epochs'''] ) UpperCAmelCase = int(config['''seed'''] ) UpperCAmelCase = int(config['''batch_size'''] ) UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation UpperCAmelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCAmelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCAmelCase = MAX_GPU_BATCH_SIZE set_seed(_a ) UpperCAmelCase , UpperCAmelCase = get_dataloaders(_a , _a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCAmelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCAmelCase = AdamW(params=model.parameters() , lr=_a ) # Instantiate scheduler UpperCAmelCase = get_linear_schedule_with_warmup( optimizer=_a , num_warmup_steps=1_0_0 , num_training_steps=(len(_a ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = accelerator.prepare( _a , _a , _a , _a , _a ) # Now we train the model for epoch in range(_a ): model.train() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.loss UpperCAmelCase = loss / gradient_accumulation_steps accelerator.backward(_a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits.argmax(dim=-1 ) UpperCAmelCase , UpperCAmelCase = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_a , references=_a , ) UpperCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , _a ) def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_a , default=_a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(_a , _a ) if __name__ == "__main__": main()
34
from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
107
0
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowercase ( unittest.TestCase ): def a ( self , snake_case , snake_case , snake_case ): self.assertEqual(len(snake_case ) , len(snake_case ) ) for a, b in zip(snake_case , snake_case ): self.assertAlmostEqual(snake_case , snake_case , delta=snake_case ) def a ( self ): snake_case_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(snake_case ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def a ( self ): snake_case_ = None ops.enable_eager_execution_internal() snake_case_ = tf.config.list_physical_devices('CPU' ) if len(snake_case ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) snake_case_ = tf.config.list_logical_devices(device_type='CPU' ) snake_case_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): snake_case_ = GradientAccumulator() snake_case_ = tf.Variable([4.0, 3.0] ) snake_case_ , snake_case_ = create_optimizer(5e-5 , 10 , 5 ) snake_case_ = tf.Variable([0.0, 0.0] , trainable=snake_case ) def accumulate_on_replica(snake_case ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(snake_case , snake_case ): with strategy.scope(): snake_case_ = strategy.experimental_local_results(snake_case ) local_variables[0].assign(snake_case ) local_variables[1].assign(snake_case ) strategy.run(snake_case , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(snake_case ) def _check_local_values(snake_case , snake_case ): snake_case_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , snake_case , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , snake_case , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
370
from math import sqrt def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = 0 for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def __lowerCamelCase ( UpperCamelCase__ = 10000 ): '''simple docstring''' snake_case_ = sum( i for i in range(1 , UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
200
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _UpperCAmelCase : def __init__( self : List[str] , A : Any , ) -> Dict: lowercase_ : Tuple = parent lowercase_ : str = 13 lowercase_ : Optional[Any] = 7 lowercase_ : Any = True lowercase_ : str = True lowercase_ : List[str] = True lowercase_ : int = True lowercase_ : Dict = True lowercase_ : int = False lowercase_ : Dict = False lowercase_ : Union[str, Any] = False lowercase_ : List[Any] = 2 lowercase_ : Optional[int] = 99 lowercase_ : List[Any] = 0 lowercase_ : Dict = 32 lowercase_ : List[Any] = 2 lowercase_ : Tuple = 4 lowercase_ : List[Any] = 0.1 lowercase_ : List[Any] = 0.1 lowercase_ : Optional[Any] = 5_12 lowercase_ : Optional[Any] = 16 lowercase_ : List[str] = 2 lowercase_ : str = 0.02 lowercase_ : Any = 3 lowercase_ : List[str] = 4 lowercase_ : Dict = '''last''' lowercase_ : int = True lowercase_ : str = None lowercase_ : Dict = 0 def A ( self : List[str] ) -> List[Any]: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowercase_ : Any = None if self.use_input_lengths: lowercase_ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase_ : List[Any] = None if self.use_token_type_ids: lowercase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : Optional[Any] = None if self.use_labels: lowercase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Optional[int] = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowercase_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Any = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self : int , A : Dict , A : Dict , A : str , A : Tuple , A : Optional[Any] , A : str , A : Union[str, Any] , A : Dict , A : Optional[int] , ) -> int: lowercase_ : str = TFFlaubertModel(config=A ) lowercase_ : int = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} lowercase_ : int = model(A ) lowercase_ : Any = [input_ids, input_mask] lowercase_ : Optional[int] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[Any] , A : int , A : List[str] , A : Dict , A : int , A : int , A : Dict , A : Optional[int] , A : Dict , A : int , ) -> Optional[Any]: lowercase_ : int = TFFlaubertWithLMHeadModel(A ) lowercase_ : List[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} lowercase_ : List[str] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , A : Optional[int] , A : Tuple , A : Dict , A : List[Any] , A : Dict , A : Any , A : List[Any] , A : List[Any] , A : str , ) -> Union[str, Any]: lowercase_ : List[Any] = TFFlaubertForQuestionAnsweringSimple(A ) lowercase_ : Tuple = {'''input_ids''': input_ids, '''lengths''': input_lengths} lowercase_ : List[str] = model(A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int , A : Optional[Any] , A : int , A : List[str] , A : Optional[Any] , A : Tuple , A : Dict , A : Any , A : Any , A : str , ) -> Optional[int]: lowercase_ : str = TFFlaubertForSequenceClassification(A ) lowercase_ : Any = {'''input_ids''': input_ids, '''lengths''': input_lengths} lowercase_ : Union[str, Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : List[Any] , A : Tuple , A : int , A : Dict , A : Any , A : int , A : Optional[int] , A : str , A : str , A : int , ) -> Optional[int]: lowercase_ : Optional[Any] = self.num_labels lowercase_ : List[Any] = TFFlaubertForTokenClassification(config=A ) lowercase_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : int = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[str] , A : str , A : Any , A : int , A : Dict , A : Tuple , A : List[Any] , A : Optional[Any] , A : List[Any] , A : Optional[int] , ) -> Union[str, Any]: lowercase_ : Union[str, Any] = self.num_choices lowercase_ : Union[str, Any] = TFFlaubertForMultipleChoice(config=A ) lowercase_ : Union[str, Any] = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Any = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Dict = tf.tile(tf.expand_dims(A , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase_ : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Optional[int] ) -> str: lowercase_ : List[Any] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Dict = config_and_inputs lowercase_ : Optional[int] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False def A ( self : Any , A : Any , A : Union[str, Any] , A : Optional[int] , A : int , A : str ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self : Any ) -> Optional[int]: lowercase_ : Dict = TFFlaubertModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=A , emb_dim=37 ) def A ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def A ( self : List[str] ) -> int: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A ) def A ( self : List[str] ) -> int: lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A ) def A ( self : List[str] ) -> int: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A ) def A ( self : Any ) -> List[Any]: lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A ) def A ( self : Optional[int] ) -> str: lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A ) def A ( self : Optional[Any] ) -> Tuple: lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A ) @slow def A ( self : List[Any] ) -> Optional[Any]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Tuple = TFFlaubertModel.from_pretrained(A ) self.assertIsNotNone(A ) @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def A ( self : str ) -> int: lowercase_ : Any = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) lowercase_ : Optional[int] = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowercase_ : int = model(A )[0] lowercase_ : str = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape , A ) # compare the actual values for a slice. lowercase_ : int = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
33
"""simple docstring""" from __future__ import annotations __A : List[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] __A : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = [] lowercase_ : List[Any] = len(__snake_case ) for i in range(__snake_case ): lowercase_ : float = -1 for j in range(i + 1 , __snake_case ): if arr[i] < arr[j]: lowercase_ : List[str] = arr[j] break result.append(__snake_case ) return result def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = [] for i, outer in enumerate(__snake_case ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : List[Any] = inner break result.append(__snake_case ) return result def lowercase ( __snake_case : list[float] ): lowercase_ : List[str] = len(__snake_case ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(__snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) __A : int = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
33
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _lowerCamelCase = logging.get_logger(__name__) def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = r"\w+[.]\d+" UpperCAmelCase_ : List[Any] = re.findall(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for pat in pats: UpperCAmelCase_ : List[Any] = key.replace(_SCREAMING_SNAKE_CASE , "_".join(pat.split("." ) ) ) return key def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : int = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[Any]=42 ) -> Dict: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : Tuple = flax_model.init_weights(PRNGKey(_SCREAMING_SNAKE_CASE ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : str = rename_key(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ : int = rename_key_and_reshape_tensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : Optional[int] = jnp.asarray(_SCREAMING_SNAKE_CASE ) return unflatten_dict(_SCREAMING_SNAKE_CASE )
67
'''simple docstring''' import os from pathlib import Path def a__ ( ) -> Union[str, Any]: """simple docstring""" from torch.utils.cpp_extension import load UpperCAmelCase_ : Union[str, Any] = Path(_SCREAMING_SNAKE_CASE ).resolve().parent.parent.parent / "kernels" / "deformable_detr" UpperCAmelCase_ : Any = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _SCREAMING_SNAKE_CASE , with_cuda=_SCREAMING_SNAKE_CASE , extra_include_paths=[str(_SCREAMING_SNAKE_CASE )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
67
1
import baseaa def SCREAMING_SNAKE_CASE__ ( __a ): return baseaa.aaaencode(string.encode('utf-8' ) ) def SCREAMING_SNAKE_CASE__ ( __a ): return baseaa.aaadecode(__a ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
327
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__: Optional[str] = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether tp freeze the encoder."} ) __magic_name__: bool = field(default=snake_case_ , metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class SCREAMING_SNAKE_CASE_ : __magic_name__: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) __magic_name__: Optional[str] = field( default="summarization" , metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"} , ) __magic_name__: Optional[int] = field( default=1024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) } , ) __magic_name__: Optional[int] = field( default=142 , metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# training examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# validation examples. -1 means use all."} ) __magic_name__: Optional[int] = field(default=-1 , metadata={"help": "# test examples. -1 means use all."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Source language id for translation."} ) __magic_name__: Optional[str] = field(default=snake_case_ , metadata={"help": "Target language id for translation."} ) __magic_name__: Optional[int] = field(default=snake_case_ , metadata={"help": "# num_beams to use for evaluation."} ) __magic_name__: bool = field( default=snake_case_ , metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."} , ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__a , os.path.join(__a , f"""{split}_results.json""" ) ) def SCREAMING_SNAKE_CASE__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. snake_case_ ,snake_case_ ,snake_case_ : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: snake_case_ ,snake_case_ ,snake_case_ : List[str] = parser.parse_args_into_dataclasses() check_output_dir(__a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __a ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__a , __a , __a ): assert hasattr(__a , __a ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__a , __a , getattr(__a , __a ) ) snake_case_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ : Any = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='.ckpt' in model_args.model_name_or_path , config=__a , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__a , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: snake_case_ : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__a , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__a , __a ): snake_case_ : int = tokenizer.lang_code_to_id[data_args.tgt_lang] else: snake_case_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__a ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) snake_case_ : List[Any] = SeqaSeqDataset # Get datasets snake_case_ : List[Any] = ( dataset_class( __a , type_path='train' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_train else None ) snake_case_ : List[str] = ( dataset_class( __a , type_path='val' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) snake_case_ : List[Any] = ( dataset_class( __a , type_path='test' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '' , ) if training_args.do_predict else None ) # Initialize our Trainer snake_case_ : Any = ( build_compute_metrics_fn(data_args.task , __a ) if training_args.predict_with_generate else None ) snake_case_ : List[str] = SeqaSeqTrainer( model=__a , args=__a , data_args=__a , train_dataset=__a , eval_dataset=__a , data_collator=SeqaSeqDataCollator( __a , __a , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__a , tokenizer=__a , ) snake_case_ : Optional[int] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) snake_case_ : Any = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) snake_case_ : Tuple = train_result.metrics snake_case_ : List[str] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' , __a , training_args.output_dir ) all_metrics.update(__a ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ : List[Any] = trainer.evaluate(metric_key_prefix='val' ) snake_case_ : str = data_args.n_val snake_case_ : Union[str, Any] = round(metrics['val_loss'] , 4 ) if trainer.is_world_process_zero(): handle_metrics('val' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.do_predict: logger.info('*** Predict ***' ) snake_case_ : Dict = trainer.predict(test_dataset=__a , metric_key_prefix='test' ) snake_case_ : Union[str, Any] = test_output.metrics snake_case_ : int = data_args.n_test if trainer.is_world_process_zero(): snake_case_ : List[str] = round(metrics['test_loss'] , 4 ) handle_metrics('test' , __a , training_args.output_dir ) all_metrics.update(__a ) if training_args.predict_with_generate: snake_case_ : Any = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) snake_case_ : Any = lmap(str.strip , __a ) write_txt_file(__a , os.path.join(training_args.output_dir , 'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__a , os.path.join(training_args.output_dir , 'all_results.json' ) ) return all_metrics def SCREAMING_SNAKE_CASE__ ( __a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
327
1
'''simple docstring''' lowerCAmelCase__ = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
352
'''simple docstring''' import math def _A ( A__ = 100 ): """simple docstring""" __lowercase = sum(i * i for i in range(1 , n + 1 ) ) __lowercase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
52
0
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __UpperCAmelCase = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') __UpperCAmelCase = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __UpperCAmelCase = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __UpperCAmelCase = sorted(arg_to_scheduler.keys()) __UpperCAmelCase = '{' + ', '.join(arg_to_scheduler_choices) + '}' class lowerCamelCase (pl.LightningModule ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase="base" , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , **_UpperCamelCase , ) -> Tuple: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) UpperCAmelCase_ : str = 0 UpperCAmelCase_ : int = Path(self.hparams.output_dir ) UpperCAmelCase_ : List[Any] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase_ : str = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: UpperCAmelCase_ : List[Any] = config UpperCAmelCase_ : str = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: UpperCAmelCase_ : str = tokenizer UpperCAmelCase_ : int = MODEL_MODES[mode] if model is None: UpperCAmelCase_ : Any = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: UpperCAmelCase_ : Dict = model def __UpperCAmelCase ( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: UpperCAmelCase_ : List[str] = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase_ : List[Any] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase_ : Optional[int] = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : int = self.model UpperCAmelCase_ : Union[str, Any] = ['bias', 'LayerNorm.weight'] UpperCAmelCase_ : Tuple = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase_ : Optional[int] = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: UpperCAmelCase_ : Any = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase_ : List[Any] = optimizer UpperCAmelCase_ : Optional[int] = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Any: return self.validation_end(__UpperCAmelCase ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Union[str, Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase_ : Tuple = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: if stage == "test": UpperCAmelCase_ : str = len(self.test_dataloader().dataset ) else: UpperCAmelCase_ : Dict = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) UpperCAmelCase_ : int = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ) -> str: raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self ) -> Optional[Any]: return self.train_loader def __UpperCAmelCase ( self ) -> List[Any]: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def __UpperCAmelCase ( self ) -> Tuple: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[Any]: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , _UpperCamelCase ) -> None: UpperCAmelCase_ : Any = self.output_dir.joinpath('best_tfmr' ) UpperCAmelCase_ : Union[str, Any] = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ) -> int: parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=3_2 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=3_2 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class lowerCamelCase (pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> int: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase (pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class lowerCamelCase (pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> int: UpperCAmelCase_ : Tuple = trainer.lr_schedulers[0]['scheduler'] UpperCAmelCase_ : Optional[Any] = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: rank_zero_info('***** Validation results *****' ) UpperCAmelCase_ : Dict = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: rank_zero_info('***** Test results *****' ) UpperCAmelCase_ : Optional[int] = trainer.callback_metrics # Log and save results to file UpperCAmelCase_ : Optional[int] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : int ): '''simple docstring''' parser.add_argument( '--output_dir' , default=str(Path(__snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=__snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=__snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=__snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=__snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=__snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=__snake_case , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(__snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=__snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def lowercase__ ( __snake_case : BaseTransformer , __snake_case : argparse.Namespace , __snake_case : Tuple=None , __snake_case : Any=True , __snake_case : List[str]=[] , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , **__snake_case : Optional[Any] , ): '''simple docstring''' pl.seed_everything(args.seed ) # init model UpperCAmelCase_ : Optional[Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__snake_case ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase_ : List[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__snake_case ) if logging_callback is None: UpperCAmelCase_ : int = LoggingCallback() UpperCAmelCase_ : Optional[int] = {} if args.fpaa: UpperCAmelCase_ : Tuple = 16 if args.gpus > 1: UpperCAmelCase_ : Union[str, Any] = 'auto' UpperCAmelCase_ : str = 'ddp' UpperCAmelCase_ : List[str] = args.accumulate_grad_batches UpperCAmelCase_ : str = None UpperCAmelCase_ : List[str] = 'auto' UpperCAmelCase_ : List[str] = pl.Trainer.from_argparse_args( __snake_case , weights_summary=__snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=__snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **__snake_case , ) if args.do_train: trainer.fit(__snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
29
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCAmelCase__ = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ElectraTokenizer def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
0
0
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging a_ = logging.get_logger(__name__) def __lowercase ( lowerCamelCase : Tuple , lowerCamelCase : Any ): UpperCamelCase_ : Union[str, Any] = set() UpperCamelCase_ : List[Any] = [] def parse_line(lowerCamelCase : int ): for line in fp: if isinstance(lowerCamelCase , lowerCamelCase ): UpperCamelCase_ : Dict = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowerCamelCase ) > 0: UpperCamelCase_ : List[str] = '\n'.join(lowerCamelCase ) # Only keep the warnings specified in `targets` if any(F": {x}: " in warning for x in targets ): selected_warnings.add(lowerCamelCase ) buffer.clear() continue else: UpperCamelCase_ : Union[str, Any] = line.strip() buffer.append(lowerCamelCase ) if from_gh: for filename in os.listdir(lowerCamelCase ): UpperCamelCase_ : Union[str, Any] = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) else: try: with zipfile.ZipFile(lowerCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase ): # read the file if filename != "warnings.txt": continue with z.open(lowerCamelCase ) as fp: parse_line(lowerCamelCase ) except Exception: logger.warning( F"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple ): UpperCamelCase_ : Optional[int] = set() UpperCamelCase_ : Optional[int] = [os.path.join(lowerCamelCase , lowerCamelCase ) for p in os.listdir(lowerCamelCase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowerCamelCase , lowerCamelCase ) ) return selected_warnings if __name__ == "__main__": def __lowercase ( lowerCamelCase : Optional[Any] ): return values.split(',' ) a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) a_ = parser.parse_args() a_ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links a_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts a_ = extract_warnings(args.output_dir, args.targets) a_ = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
361
from timeit import timeit a_ = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : Optional[Any] = len(lowerCamelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Union[str, Any] = len(lowerCamelCase ) // 2 UpperCamelCase_ : Tuple = len(lowerCamelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowerCamelCase ) ) def __lowercase ( lowerCamelCase : str ): if len(lowerCamelCase ) <= 2: return True if s[0] == s[len(lowerCamelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __lowercase ( lowerCamelCase : str ): return s == s[::-1] def __lowercase ( lowerCamelCase : str ): UpperCamelCase_ : Optional[Any] = F"all({name}(key) is value for key, value in test_data.items())" UpperCamelCase_ : Tuple = F"from __main__ import test_data, {name}" UpperCamelCase_ : List[str] = 500000 UpperCamelCase_ : int = timeit(stmt=lowerCamelCase , setup=lowerCamelCase , number=lowerCamelCase ) print(F"{name:<35} finished {number:,} runs in {result:.5f} seconds" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
50
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowercase__ :List[str] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowercase__ :str = direct_transformers_import(PATH_TO_TRANSFORMERS) lowercase__ :Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowercase__ :int = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, "{attribute}"' in modeling_source or f'getattr(self.config, "{attribute}"' in modeling_source ): lowercase = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , lowerCAmelCase__ , ) is not None ): lowercase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowercase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowercase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] lowercase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed lowercase = True if not attribute_used: lowercase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowercase = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowercase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowercase = True elif attribute.endswith('''_token_id''' ): lowercase = True # configuration class specific cases if not case_allowed: lowercase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowercase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = dict(inspect.signature(config_class.__init__ ).parameters ) lowercase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] lowercase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowercase = {} if len(config_class.attribute_map ) > 0: lowercase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowercase = inspect.getsourcefile(lowerCAmelCase__ ) lowercase = os.path.dirname(lowerCAmelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowercase = [os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) for fn in os.listdir(lowerCAmelCase__ ) if fn.startswith('''modeling_''' )] # Get the source code strings lowercase = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase__ ): with open(lowerCAmelCase__ ) as fp: modeling_sources.append(fp.read() ) lowercase = [] for config_param, default_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): # `attributes` here is all the variant names for `config_param` lowercase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase__ ) def UpperCamelCase ( ): '''simple docstring''' lowercase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowercase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase__ : inspect.isclass(lowerCAmelCase__ ) and issubclass(lowerCAmelCase__ , lowerCAmelCase__ ) and inspect.getmodule(lowerCAmelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowercase = check_config_attributes_being_used(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: lowercase = unused_attributes if len(lowerCAmelCase__ ) > 0: lowercase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": check_config_attributes()
101
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase, '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase, '''num_attention_heads''' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Tuple, lowerCamelCase : str, lowerCamelCase : str=13, lowerCamelCase : Union[str, Any]=64, lowerCamelCase : str=3, lowerCamelCase : int=3, lowerCamelCase : Dict=2, lowerCamelCase : int=1, lowerCamelCase : Optional[Any]=16, lowerCamelCase : Dict=[128, 256, 384], lowerCamelCase : Tuple=[4, 6, 8], lowerCamelCase : Optional[Any]=[2, 3, 4], lowerCamelCase : str=[16, 16, 16], lowerCamelCase : Dict=0, lowerCamelCase : List[str]=[2, 2, 2], lowerCamelCase : str=[2, 2, 2], lowerCamelCase : List[Any]=0.02, lowerCamelCase : Any=True, lowerCamelCase : Tuple=True, lowerCamelCase : Optional[Any]=2, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowercase__ = is_training lowercase__ = use_labels lowercase__ = num_labels lowercase__ = initializer_range def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ): '''simple docstring''' return LevitConfig( image_size=self.image_size, num_channels=self.num_channels, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, patch_size=self.patch_size, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, depths=self.depths, key_dim=self.key_dim, drop_path_rate=self.drop_path_rate, mlp_ratio=self.mlp_ratio, attention_ratio=self.attention_ratio, initializer_range=self.initializer_range, down_ops=self.down_ops, ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : int, lowerCamelCase : int ): '''simple docstring''' lowercase__ = LevitModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase ) lowercase__ = (self.image_size, self.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowercase__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]), ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : int, lowerCamelCase : List[Any], lowerCamelCase : List[Any] ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = LevitForImageClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowercase__ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def lowercase__ ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def lowercase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def lowercase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def lowercase__ ( self : Dict ): '''simple docstring''' pass def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def lowercase__ ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Tuple ): lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowercase__ = outputs.hidden_states lowercase__ = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase ), lowerCamelCase ) lowercase__ = (self.model_tester.image_size, self.model_tester.image_size) lowercase__ , lowercase__ = image_size[0], image_size[1] for _ in range(4 ): lowercase__ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowercase__ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [ height * width, self.model_tester.hidden_sizes[0], ], ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[Any], lowerCamelCase : Any, lowerCamelCase : Any=False ): '''simple docstring''' lowercase__ = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) def lowercase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowercase__ = False lowercase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowercase__ = model_class(lowerCamelCase ) model.gradient_checkpointing_enable() model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) lowercase__ = model(**lowerCamelCase ).loss loss.backward() def lowercase__ ( self : List[str] ): '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): lowercase__ = problem_type['''title'''] lowercase__ = problem_type['''num_labels'''] lowercase__ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() lowercase__ = self._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase ) if problem_type["num_labels"] > 1: lowercase__ = inputs['''labels'''].unsqueeze(1 ).repeat(1, problem_type['''num_labels'''] ) lowercase__ = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase ) as warning_list: lowercase__ = model(**lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : Optional[int] ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = LevitModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def a ( ): '''simple docstring''' lowercase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self : int ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowercase__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4 ) )
207
0
def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" return str(lowerCAmelCase__ ) == str(lowerCAmelCase__ )[::-1] def lowerCAmelCase_ (lowerCAmelCase__: int ): """simple docstring""" return int(lowerCAmelCase__ ) + int(str(lowerCAmelCase__ )[::-1] ) def lowerCAmelCase_ (lowerCAmelCase__: int = 1_0_0_0_0 ): """simple docstring""" UpperCAmelCase_: Dict = [] for num in range(1 , lowerCAmelCase__ ): UpperCAmelCase_: List[str] = 0 UpperCAmelCase_: List[Any] = num while iterations < 5_0: UpperCAmelCase_: Tuple = sum_reverse(lowerCAmelCase__ ) iterations += 1 if is_palindrome(lowerCAmelCase__ ): break else: lychrel_nums.append(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
82
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a : Tuple = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _a ( unittest.TestCase ): A = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = ZeroShotClassificationPipeline( model=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # No kwarg UpperCAmelCase_: Optional[int] = classifier("""Who are you voting for in 2020?""", ["""politics"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) UpperCAmelCase_: Optional[int] = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics"""] ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) UpperCAmelCase_: List[Any] = classifier("""Who are you voting for in 2020?""", candidate_labels="""politics, public health""" ) self.assertEqual( SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ), 1.0 ) UpperCAmelCase_: Tuple = classifier("""Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ), 1.0 ) UpperCAmelCase_: str = classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""This text is about {}""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ )]} ) # https://github.com/huggingface/transformers/issues/13846 UpperCAmelCase_: Union[str, Any] = classifier(["""I am happy"""], ["""positive""", """negative"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(1 ) ], ) UpperCAmelCase_: Dict = classifier(["""I am happy""", """I am sad"""], ["""positive""", """negative"""] ) self.assertEqual( SCREAMING_SNAKE_CASE_, [ {"""sequence""": ANY(SCREAMING_SNAKE_CASE_ ), """labels""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )], """scores""": [ANY(SCREAMING_SNAKE_CASE_ ), ANY(SCREAMING_SNAKE_CASE_ )]} for i in range(2 ) ], ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""""", candidate_labels="""politics""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier(SCREAMING_SNAKE_CASE_, candidate_labels="""politics""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""Who are you voting for in 2020?""", candidate_labels="""""" ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier("""Who are you voting for in 2020?""", candidate_labels=SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template="""Not formatting template""", ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): classifier( """Who are you voting for in 2020?""", candidate_labels="""politics""", hypothesis_template=SCREAMING_SNAKE_CASE_, ) self.run_entailment_id(SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: int = zero_shot_classifier.model.config UpperCAmelCase_: Optional[int] = config.labelaid UpperCAmelCase_: str = zero_shot_classifier.entailment_id UpperCAmelCase_: Union[str, Any] = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id, -1 ) UpperCAmelCase_: int = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase_: Dict = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id, 0 ) UpperCAmelCase_: Tuple = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id, 2 ) UpperCAmelCase_: Any = original_labelaid self.assertEqual(SCREAMING_SNAKE_CASE_, zero_shot_classifier.entailment_id ) @require_torch def __snake_case (self ) -> str: UpperCAmelCase_: Any = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 100, candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""pt""", ) UpperCAmelCase_: Tuple = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @require_tf def __snake_case (self ) -> int: UpperCAmelCase_: List[Any] = pipeline( """zero-shot-classification""", model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""", framework="""tf""", ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], }, ) @slow @require_torch def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[Any] = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""pt""" ) UpperCAmelCase_: Optional[int] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, ) @slow @require_tf def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: List[str] = pipeline("""zero-shot-classification""", model="""roberta-large-mnli""", framework="""tf""" ) UpperCAmelCase_: Optional[Any] = zero_shot_classifier( """Who are you voting for in 2020?""", candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], }, ) UpperCAmelCase_: Any = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""", candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""], multi_label=SCREAMING_SNAKE_CASE_, ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ), { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], }, )
82
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase,__lowerCamelCase=13,__lowerCamelCase=7,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=True,__lowerCamelCase=99,__lowerCamelCase=32,__lowerCamelCase=2,__lowerCamelCase=4,__lowerCamelCase=37,__lowerCamelCase="gelu",__lowerCamelCase=0.1,__lowerCamelCase=0.1,__lowerCamelCase=512,__lowerCamelCase=16,__lowerCamelCase=2,__lowerCamelCase=0.02,__lowerCamelCase=3,__lowerCamelCase=4,__lowerCamelCase=None,): A__ = parent A__ = 13 A__ = 7 A__ = True A__ = True A__ = True A__ = True A__ = 99 A__ = 32 A__ = 2 A__ = 4 A__ = 37 A__ = '''gelu''' A__ = 0.1 A__ = 0.1 A__ = 512 A__ = 16 A__ = 2 A__ = 0.02 A__ = 3 A__ = 4 A__ = None def UpperCamelCase ( self ): A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = ids_tensor([self.batch_size],self.num_choices ) A__ = RoFormerConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=__lowerCamelCase,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = TFRoFormerModel(config=__lowerCamelCase ) A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} A__ = [input_ids, input_mask] A__ = model(__lowerCamelCase ) A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = True A__ = TFRoFormerForCausalLM(config=__lowerCamelCase ) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(__lowerCamelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ),[self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = TFRoFormerForMaskedLM(config=__lowerCamelCase ) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self.num_labels A__ = TFRoFormerForSequenceClassification(config=__lowerCamelCase ) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self.num_choices A__ = TFRoFormerForMultipleChoice(config=__lowerCamelCase ) A__ = tf.tile(tf.expand_dims(__lowerCamelCase,1 ),(1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(__lowerCamelCase,1 ),(1, self.num_choices, 1) ) A__ = tf.tile(tf.expand_dims(__lowerCamelCase,1 ),(1, self.num_choices, 1) ) A__ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self.num_labels A__ = TFRoFormerForTokenClassification(config=__lowerCamelCase ) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = TFRoFormerForQuestionAnswering(config=__lowerCamelCase ) A__ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } A__ = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) def UpperCamelCase ( self ): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self ): A__ = TFRoFormerModelTester(self ) A__ = ConfigTester(self,config_class=__lowerCamelCase,hidden_size=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCamelCase ( self ): A__ = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__lowerCamelCase ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def UpperCamelCase ( self ): A__ = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) A__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A__ = model(__lowerCamelCase )[0] # TODO Replace vocab size A__ = 5_0000 A__ = [1, 6, vocab_size] self.assertEqual(output.shape,__lowerCamelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. A__ = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3],__lowerCamelCase,atol=1E-4 ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ): A__ = tf.constant([[4, 10]] ) A__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6,embedding_dim=6 ) A__ = emba(input_ids.shape ) A__ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__lowerCamelCase,__lowerCamelCase,atol=self.tolerance ) def UpperCamelCase ( self ): A__ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) A__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512,embedding_dim=512 ) emba([2, 16, 512] ) A__ = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCamelCase,__lowerCamelCase,atol=self.tolerance ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ): # 2,12,16,64 A__ = tf.reshape(tf.range(2 * 12 * 16 * 64,dtype=tf.floataa ),shape=(2, 12, 16, 64) ) / 100 A__ = -tf.reshape(tf.range(2 * 12 * 16 * 64,dtype=tf.floataa ),shape=(2, 12, 16, 64) ) / 100 A__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32,embedding_dim=64 ) A__ = embed_positions([2, 16, 768] )[None, None, :, :] A__ , A__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) A__ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8],__lowerCamelCase,atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8],__lowerCamelCase,atol=self.tolerance )
193
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int )->int: # Initialise PyTorch model A__ = BertConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) A__ = BertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": a__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__: Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
193
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowerCAmelCase = get_logger(__name__) class _a : _lowercase : Tuple = '''dummy_data''' _lowercase : List[str] = '''datasets''' _lowercase : Dict = False def __init__( self: str , UpperCamelCase_: str , UpperCamelCase_: str , UpperCamelCase_: Union[Version, str] , UpperCamelCase_: Optional[str] = None , UpperCamelCase_: bool = False , UpperCamelCase_: bool = True , UpperCamelCase_: Optional[List[Callable]] = None , ) -> Tuple: """simple docstring""" lowercase__ = 0 lowercase__ = dataset_name lowercase__ = cache_dir lowercase__ = use_local_dummy_data lowercase__ = config # download_callbacks take a single url as input lowercase__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase__ = str(UpperCamelCase_ ) # to be downloaded lowercase__ = None lowercase__ = None @property def lowerCamelCase_ ( self: str ) -> Optional[int]: """simple docstring""" if self._dummy_file is None: lowercase__ = self.download_dummy_data() return self._dummy_file @property def lowerCamelCase_ ( self: List[Any] ) -> Dict: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase__ = cached_path( UpperCamelCase_ , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase_ , force_extract=UpperCamelCase_ ) return os.path.join(UpperCamelCase_ , self.dummy_file_name ) @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" if self._bucket_url is None: lowercase__ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def lowerCamelCase_ ( self: Optional[int] ) -> List[str]: """simple docstring""" if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def lowerCamelCase_ ( self: str , UpperCamelCase_: Optional[Any] , *UpperCamelCase_: Any ) -> Tuple: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase__ = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.create_dummy_data_dict(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase_ , UpperCamelCase_ ) else: return self.create_dummy_data_single(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: List[str] , *UpperCamelCase_: Optional[int] ) -> List[Any]: """simple docstring""" return self.download_and_extract(UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: str ) -> List[Any]: """simple docstring""" return self.download_and_extract(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Union[str, Any] , *UpperCamelCase_: List[Any] , **UpperCamelCase_: List[Any] ) -> Tuple: """simple docstring""" return path def lowerCamelCase_ ( self: Optional[Any] ) -> Tuple: """simple docstring""" return {} def lowerCamelCase_ ( self: int , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): for single_url in single_urls: download_callback(UpperCamelCase_ ) else: lowercase__ = single_urls download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) for x in single_urls] else: lowercase__ = single_urls lowercase__ = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(Path(UpperCamelCase_ ).name ) ) lowercase__ = value # make sure that values are unique if all(isinstance(UpperCamelCase_ , UpperCamelCase_ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowerCamelCase_ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase__ = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , UpperCamelCase_ ) ) for url in data_url ) lowercase__ = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase__ = [data_url[0]] * len(UpperCamelCase_ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase__ = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(UpperCamelCase_ ) return dummy_data_list def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] ) -> Optional[int]: """simple docstring""" for download_callback in self.download_callbacks: download_callback(UpperCamelCase_ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase__ = os.path.join(UpperCamelCase_ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(UpperCamelCase_ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" pass def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any] ) -> List[str]: """simple docstring""" def _iter_archive_members(UpperCamelCase_: int ): # this preserves the order of the members inside the ZIP archive lowercase__ = Path(self.dummy_file ).parent lowercase__ = path.relative_to(UpperCamelCase_ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase_ ) lowercase__ = Path(UpperCamelCase_ ) lowercase__ = _iter_archive_members(UpperCamelCase_ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(UpperCamelCase_ ).as_posix(), file_path.open('''rb''' ) def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> Optional[int]: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ = [paths] for path in paths: if os.path.isfile(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase_ ): if os.path.basename(UpperCamelCase_ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(UpperCamelCase_ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(UpperCamelCase_ , UpperCamelCase_ )
356
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger lowerCAmelCase = '<<<<<<< This should probably be modified because it mentions: ' lowerCAmelCase = '=======\n>>>>>>>\n' lowerCAmelCase = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _a ( UpperCamelCase__ ): @staticmethod def lowerCamelCase_ ( UpperCamelCase_: ArgumentParser ) -> int: """simple docstring""" lowercase__ = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=UpperCamelCase_ ) def __init__( self: Dict , UpperCamelCase_: str , UpperCamelCase_: str , *UpperCamelCase_: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = get_logger('''datasets-cli/converting''' ) lowercase__ = tfds_path lowercase__ = datasets_directory def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" if os.path.isdir(self._tfds_path ): lowercase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__ = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) lowercase__ = os.path.abspath(self._datasets_directory ) self._logger.info(f'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase__ = [] lowercase__ = [] lowercase__ = {} if os.path.isdir(self._tfds_path ): lowercase__ = os.listdir(UpperCamelCase_ ) else: lowercase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'Looking at file {f_name}' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowercase__ = f.readlines() lowercase__ = [] lowercase__ = False lowercase__ = False lowercase__ = [] for line in lines: lowercase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__ = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here lowercase__ = '''''' continue elif "from absl import logging" in out_line: lowercase__ = '''from datasets import logging\n''' elif "getLogger" in out_line: lowercase__ = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__ = True lowercase__ = list(filter(lambda UpperCamelCase_ : e in out_line , UpperCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCamelCase_ ) + '''\n''' ) out_lines.append(UpperCamelCase_ ) out_lines.append(UpperCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: lowercase__ = re.sub(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__ = re.match(r'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , UpperCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) lowercase__ = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__ = True out_lines.append(UpperCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__ = f_name.replace('''.py''' , '''''' ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) self._logger.info(f'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(UpperCamelCase_ ) if needs_manual_update: with_manual_update.append(UpperCamelCase_ ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines(UpperCamelCase_ ) self._logger.info(f'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase__ = os.path.basename(UpperCamelCase_ ) lowercase__ = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f'Moving {dest_folder} to {utils_file}' ) shutil.copy(UpperCamelCase_ , UpperCamelCase_ ) except KeyError: self._logger.error(f'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
93
0
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class a ( a_ ): UpperCAmelCase_ : List[Any] =(EulerDiscreteScheduler,) UpperCAmelCase_ : Optional[Any] =10 def UpperCamelCase_ ( self , **_lowerCamelCase ): lowercase = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**_lowerCamelCase ) return config def UpperCamelCase_ ( self ): for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_lowerCamelCase ) def UpperCamelCase_ ( self ): for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=_lowerCamelCase , beta_end=_lowerCamelCase ) def UpperCamelCase_ ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_lowerCamelCase ) def UpperCamelCase_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) lowercase = model(_lowerCamelCase , _lowerCamelCase ) lowercase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def UpperCamelCase_ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(prediction_type='v_prediction' ) lowercase = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase = sample.to(_lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowercase = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) lowercase = model(_lowerCamelCase , _lowerCamelCase ) lowercase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 0.0_0_0_2 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def UpperCamelCase_ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: lowercase = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) lowercase = model(_lowerCamelCase , _lowerCamelCase ) lowercase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_0.0_8_0_7 ) < 1e-2 assert abs(result_mean.item() - 0.0_1_3_1 ) < 1e-3 def UpperCamelCase_ ( self ): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config() lowercase = scheduler_class(**_lowerCamelCase , use_karras_sigmas=_lowerCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_lowerCamelCase ) lowercase = torch.manual_seed(0 ) lowercase = self.dummy_model() lowercase = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase = sample.to(_lowerCamelCase ) for t in scheduler.timesteps: lowercase = scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase ) lowercase = model(_lowerCamelCase , _lowerCamelCase ) lowercase = scheduler.step(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase ) lowercase = output.prev_sample lowercase = torch.sum(torch.abs(_lowerCamelCase ) ) lowercase = torch.mean(torch.abs(_lowerCamelCase ) ) assert abs(result_sum.item() - 1_2_4.5_2_2_9_9_4_9_9_5_1_1_7_1_9 ) < 1e-2 assert abs(result_mean.item() - 0.1_6_2_1_3_9_3_2_6_3_3_3_9_9_9_6_3 ) < 1e-3
220
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a ( a_ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase ): lowercase = parent lowercase = config_class lowercase = has_text_modality lowercase = kwargs lowercase = common_properties def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowerCamelCase , _lowerCamelCase ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(_lowerCamelCase ): try: setattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F'`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowerCamelCase ): try: lowercase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase , msg=F'`{name} value {idx} expected, but was {getattr(_lowerCamelCase , _lowerCamelCase )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase = os.path.join(_lowerCamelCase , 'config.json' ) config_first.to_json_file(_lowerCamelCase ) lowercase = self.config_class.from_json_file(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowerCamelCase ) lowercase = self.config_class.from_pretrained(_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict ) lowercase = 'test' with tempfile.TemporaryDirectory() as tmpdirname: lowercase = os.path.join(_lowerCamelCase , _lowerCamelCase ) config_first.save_pretrained(_lowerCamelCase ) lowercase = self.config_class.from_pretrained(_lowerCamelCase , subfolder=_lowerCamelCase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def UpperCamelCase_ ( self ): lowercase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowercase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def UpperCamelCase_ ( self ): if self.config_class.is_composition: return lowercase = self.config_class() self.parent.assertIsNotNone(_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = copy.deepcopy(_lowerCamelCase ) lowercase = self.config_class(**_lowerCamelCase ) lowercase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(_lowerCamelCase , _lowerCamelCase ) != value: wrong_values.append((key, getattr(_lowerCamelCase , _lowerCamelCase ), value) ) if len(_lowerCamelCase ) > 0: lowercase = '\n'.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def UpperCamelCase_ ( self ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
220
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch SCREAMING_SNAKE_CASE : Union[str, Any] = '''sshleifer/bart-tiny-random''' SCREAMING_SNAKE_CASE : int = '''patrickvonplaten/t5-tiny-random''' @require_torch class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return AutoConfig.from_pretrained(lowercase_) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=1) self.assertEqual(student.config.num_hidden_layers, 1) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : int = create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=lowercase_) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=lowercase_) self.assertEqual(student.config.encoder_layers, 1) self.assertEqual(student.config.decoder_layers, self.teacher_config.encoder_layers) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=1, d=1) self.assertEqual(student.config.encoder_layers, 1) self.assertEqual(student.config.decoder_layers, 1) def UpperCamelCase ( self) -> List[str]: """simple docstring""" with self.assertRaises(lowercase_): create_student_by_copying_alternating_layers(lowercase_, tempfile.mkdtemp(), e=lowercase_, d=lowercase_)
358
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _lowercase : Any = TOKENIZER_CLASSES else: _lowercase : Tuple = {tokenizer_name: getattr(lowerCamelCase_ , tokenizer_name + 'Fast' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _lowercase : Union[str, Any] = TOKENIZER_CLASSES[tokenizer_name] _lowercase : Any = True if checkpoint_name is None: _lowercase : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: _lowercase : List[Any] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _lowercase : Union[str, Any] = tokenizer_class.from_pretrained(lowerCamelCase_ , force_download=lowerCamelCase_ ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _lowercase , _lowercase : str = checkpoint.split('/' ) _lowercase : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) elif add_prefix: _lowercase : Union[str, Any] = checkpoint _lowercase : List[str] = dump_path else: _lowercase : str = None _lowercase : Any = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _lowercase : Tuple = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _lowercase : List[Any] = file_path.split(lowerCamelCase_ )[-1][0] if next_char == "/": _lowercase : Any = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) _lowercase : List[Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _lowercase : Optional[Any] = tokenizer.save_pretrained( lowerCamelCase_ , legacy_format=lowerCamelCase_ , filename_prefix=lowerCamelCase_ ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowerCamelCase_ ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) SCREAMING_SNAKE_CASE : str = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
84
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A : str = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def __lowerCamelCase ( __a :Union[str, Any] , __a :Optional[Any] , __a :Dict , __a :str , __a :List[Any] , __a :Dict ) -> List[str]: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( F'Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider' F' reinstalling {pkg}.' ) if not ops[op](version.parse(__a ) , version.parse(__a ) ): raise ImportError( F'{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}' ) def __lowerCamelCase ( __a :str , __a :Optional[str] = None ) -> None: """simple docstring""" A__ = F'\n{hint}' if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , __a ): A__ , A__ , A__ = requirement, None, None else: A__ = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , __a ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" F' got {requirement}' ) A__ , A__ = match[0] A__ = want_full.split(""",""" ) # there could be multiple requirements A__ = {} for w in want_range: A__ = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , __a ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" F' but got {requirement}' ) A__ , A__ = match[0] A__ = want_ver if op not in ops: raise ValueError(F'{requirement}: need one of {list(ops.keys() )}, but got {op}' ) # special case if pkg == "python": A__ = """.""".join([str(__a ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) return # check if any version is installed try: A__ = importlib.metadata.version(__a ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'The \'{requirement}\' distribution was not found and is required by this application. {hint}' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) def __lowerCamelCase ( __a :Optional[Any] ) -> int: """simple docstring""" A__ = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(__a , __a )
274
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) A__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) A__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A__ = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Tuple , **__lowerCAmelCase : Dict ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Union[str, Any] , **__lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : List[str] , **__lowerCAmelCase : Optional[Any] ) -> Dict: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : str ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : str ) -> Any: """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) A__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> Dict: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) A__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self : Optional[Any] ) -> Any: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = processor(text=__lowerCAmelCase ) A__ = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def a_ ( self : Tuple ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__lowerCAmelCase ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
274
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE_: List[str] =HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE_: int =parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE_: List[str] =AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE_: int =AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE_: Dict =AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
106
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_: Tuple =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: Any ={'facebook/bart-base': BartForConditionalGeneration} SCREAMING_SNAKE_CASE_: int ={'facebook/bart-base': BartTokenizer} def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case_ , default=snake_case_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case_ , default=snake_case_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--config_name" , type=snake_case_ , default=snake_case_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case_ , default=snake_case_ , help="Where to store the final ONNX file." ) UpperCAmelCase_ = parser.parse_args() return args def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : int="cpu" ) -> Dict: '''simple docstring''' UpperCAmelCase_ = model_dict[model_name].from_pretrained(snake_case_ ).to(snake_case_ ) UpperCAmelCase_ = tokenizer_dict[model_name].from_pretrained(snake_case_ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = 0 return huggingface_model, tokenizer def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Dict ) -> Dict: '''simple docstring''' model.eval() UpperCAmelCase_ = None UpperCAmelCase_ = torch.jit.script(BARTBeamSearchGenerator(snake_case_ ) ) with torch.no_grad(): UpperCAmelCase_ = "My friends are cool but they eat too many carbs." UpperCAmelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt" ).to(model.device ) UpperCAmelCase_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case_ , max_length=snake_case_ , early_stopping=snake_case_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case_ , ) logger.info("Model exported to {}".format(snake_case_ ) ) UpperCAmelCase_ = remove_dup_initializers(os.path.abspath(snake_case_ ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case_ ) ) UpperCAmelCase_ = onnxruntime.InferenceSession(snake_case_ ) UpperCAmelCase_ = ort_sess.run( snake_case_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case_ ), "max_length": np.array(snake_case_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = parse_args() UpperCAmelCase_ = 5 UpperCAmelCase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ = torch.device(args.device ) UpperCAmelCase_ , UpperCAmelCase_ = load_model_tokenizer(args.model_name_or_path , snake_case_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case_ ) if args.max_length: UpperCAmelCase_ = args.max_length if args.num_beams: UpperCAmelCase_ = args.num_beams if args.output_file_path: UpperCAmelCase_ = args.output_file_path else: UpperCAmelCase_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": main()
106
1
from abc import ABC, abstractmethod from typing import List, Optional class __lowercase (_snake_case ): def __init__( self ) ->Optional[int]: '''simple docstring''' self.test() def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = 0 __lowerCAmelCase : Any = False while not completed: if counter == 1: self.reset() __lowerCAmelCase : int = self.advance() if not self.does_advance(__snake_case ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) __lowerCAmelCase : List[Any] = self.update(__snake_case ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase__ ( self , A_ ) ->Union[str, Any]: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def UpperCamelCase__ ( self , A_=False ) ->Dict: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class __lowercase (_snake_case ): def __init__( self , A_ ) ->Dict: '''simple docstring''' super(__snake_case , self ).__init__() if not isinstance(__snake_case , __snake_case ) or len(__snake_case ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(__snake_case , __snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) __lowerCAmelCase : Optional[Any] = token_ids __lowerCAmelCase : List[str] = len(self.token_ids ) __lowerCAmelCase : Dict = -1 # the index of the currently fulfilled step __lowerCAmelCase : Dict = False def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(__snake_case )}""" ) __lowerCAmelCase : Tuple = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : List[str] = False if self.does_advance(__snake_case ): self.fulfilled_idx += 1 __lowerCAmelCase : Tuple = True if self.fulfilled_idx == (self.seqlen - 1): __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[int] = completed else: # failed to make progress. __lowerCAmelCase : Dict = True self.reset() return stepped, completed, reset def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Union[str, Any] = 0 def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase__ ( self , A_=False ) ->Any: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = PhrasalConstraint(self.token_ids ) if stateful: __lowerCAmelCase : Any = self.seqlen __lowerCAmelCase : Optional[Any] = self.fulfilled_idx __lowerCAmelCase : str = self.completed return new_constraint class __lowercase : def __init__( self , A_ , A_=True ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Tuple = max([len(__snake_case ) for one in nested_token_ids] ) __lowerCAmelCase : str = {} for token_ids in nested_token_ids: __lowerCAmelCase : Dict = root for tidx, token_id in enumerate(__snake_case ): if token_id not in level: __lowerCAmelCase : Tuple = {} __lowerCAmelCase : Dict = level[token_id] if no_subsets and self.has_subsets(__snake_case , __snake_case ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f""" {nested_token_ids}.""" ) __lowerCAmelCase : str = root def UpperCamelCase__ ( self , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Any = self.trie for current_token in current_seq: __lowerCAmelCase : Optional[Any] = start[current_token] __lowerCAmelCase : Union[str, Any] = list(start.keys() ) return next_tokens def UpperCamelCase__ ( self , A_ ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = self.next_tokens(__snake_case ) return len(__snake_case ) == 0 def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : Tuple = list(root.values() ) if len(__snake_case ) == 0: return 1 else: return sum([self.count_leaves(__snake_case ) for nn in next_nodes] ) def UpperCamelCase__ ( self , A_ , A_ ) ->str: '''simple docstring''' __lowerCAmelCase : List[str] = self.count_leaves(__snake_case ) return len(__snake_case ) != leaf_count class __lowercase (_snake_case ): def __init__( self , A_ ) ->int: '''simple docstring''' super(__snake_case , self ).__init__() if not isinstance(__snake_case , __snake_case ) or len(__snake_case ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(__snake_case , __snake_case ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(__snake_case , __snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) __lowerCAmelCase : Any = DisjunctiveTrie(__snake_case ) __lowerCAmelCase : int = nested_token_ids __lowerCAmelCase : Tuple = self.trie.max_height __lowerCAmelCase : List[str] = [] __lowerCAmelCase : List[Any] = False def UpperCamelCase__ ( self ) ->int: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.trie.next_tokens(self.current_seq ) if len(__snake_case ) == 0: return None else: return token_list def UpperCamelCase__ ( self , A_ ) ->Dict: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}""" ) __lowerCAmelCase : Any = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase__ ( self , A_ ) ->int: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__snake_case )}""" ) __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : int = False __lowerCAmelCase : Any = False if self.does_advance(__snake_case ): self.current_seq.append(__snake_case ) __lowerCAmelCase : Optional[Any] = True else: __lowerCAmelCase : List[str] = True self.reset() __lowerCAmelCase : List[Any] = self.trie.reached_leaf(self.current_seq ) __lowerCAmelCase : List[Any] = completed return stepped, completed, reset def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : Union[str, Any] = [] def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase__ ( self , A_=False ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : int = DisjunctiveConstraint(self.token_ids ) if stateful: __lowerCAmelCase : str = self.seqlen __lowerCAmelCase : Dict = self.current_seq __lowerCAmelCase : Dict = self.completed return new_constraint class __lowercase : def __init__( self , A_ ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Optional[int] = constraints # max # of steps required to fulfill a given constraint __lowerCAmelCase : Any = max([c.seqlen for c in constraints] ) __lowerCAmelCase : Tuple = len(__snake_case ) __lowerCAmelCase : Union[str, Any] = False self.init_state() def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : Any = [] __lowerCAmelCase : Tuple = None __lowerCAmelCase : Optional[int] = [constraint.copy(stateful=__snake_case ) for constraint in self.constraints] def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Dict = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __lowerCAmelCase : List[Any] = constraint.advance() if isinstance(__snake_case , __snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case , __snake_case ): token_list.extend(__snake_case ) else: __lowerCAmelCase : int = self.inprogress_constraint.advance() if isinstance(__snake_case , __snake_case ): token_list.append(__snake_case ) elif isinstance(__snake_case , __snake_case ): token_list.extend(__snake_case ) if len(__snake_case ) == 0: return None else: return token_list def UpperCamelCase__ ( self , A_ ) ->str: '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __lowerCAmelCase : Union[str, Any] = self.add(__snake_case ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase__ ( self , A_ ) ->Dict: '''simple docstring''' if not isinstance(__snake_case , __snake_case ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) __lowerCAmelCase : Any = False, False if self.completed: __lowerCAmelCase : Dict = True __lowerCAmelCase : Union[str, Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __lowerCAmelCase : List[str] = self.inprogress_constraint.update(__snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__snake_case ) ) __lowerCAmelCase : Any = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __lowerCAmelCase : Dict = None if len(self.pending_constraints ) == 0: # we're done! __lowerCAmelCase : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__snake_case ): __lowerCAmelCase : Any = pending_constraint.update(__snake_case ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__snake_case ) __lowerCAmelCase : Union[str, Any] = None if not complete and stepped: __lowerCAmelCase : str = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __lowerCAmelCase : Tuple = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __lowerCAmelCase : int = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase__ ( self , A_=True ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : List[str] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __lowerCAmelCase : List[str] = [ constraint.copy(stateful=__snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __lowerCAmelCase : List[Any] = self.inprogress_constraint.copy(stateful=__snake_case ) __lowerCAmelCase : Tuple = [constraint.copy() for constraint in self.pending_constraints] return new_state
275
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : str = [10, 20, 30, 40, 50, 60] _SCREAMING_SNAKE_CASE : List[str] = [2, 4, 6, 8, 10, 12] _SCREAMING_SNAKE_CASE : str = 100 self.assertEqual(kp.calc_profit(__snake_case , __snake_case , __snake_case ) , 210 ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """Weight can not be negative.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """Profit can not be negative.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex(__snake_case , """max_weight must greater than zero.""" ) def UpperCAmelCase_ ( self ): self.assertRaisesRegex( __snake_case , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
200
0
from math import sqrt def lowerCAmelCase_ ( _snake_case : int = 1000000 ) -> int: '''simple docstring''' __magic_name__ : str = 0 __magic_name__ : Union[str, Any] = 0 __magic_name__ : Optional[Any] = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
359
import numpy class _snake_case : def __init__( self , _a , _a ): __magic_name__ : Optional[Any] = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __magic_name__ : Any = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __magic_name__ : List[str] = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __magic_name__ : Any = numpy.random.rand(3 , 1 ) # Real output values provided. __magic_name__ : Dict = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __magic_name__ : Tuple = numpy.zeros(output_array.shape ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __magic_name__ : int = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __magic_name__ : Tuple = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __magic_name__ : Optional[int] = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __magic_name__ : int = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a ): for iteration in range(1 , iterations + 1 ): __magic_name__ : Any = self.feedforward() self.back_propagation() if give_loss: __magic_name__ : int = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : str = input_arr __magic_name__ : Optional[Any] = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __magic_name__ : Union[str, Any] = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __magic_name__ : Optional[Any] = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase_ ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' __magic_name__ : Tuple = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __magic_name__ : List[str] = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __magic_name__ : List[Any] = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
41
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Dict ={ """configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""], """processing_git""": ["""GitProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] =[ """GIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """GitForCausalLM""", """GitModel""", """GitPreTrainedModel""", """GitVisionModel""", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
262
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _UpperCAmelCase : Any =logging.get_logger(__name__) class snake_case__( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *__lowercase , **__lowercase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
262
1
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.encoder.norm.weight', 'encoder.layernorm.weight'), ('transformer.encoder.norm.bias', 'encoder.layernorm.bias'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) lowercase__ = value else: lowercase__ = value return new_state_dict def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowercase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) lowercase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:2_56, :] lowercase__ = in_proj_bias[:2_56] lowercase__ = in_proj_weight[2_56:5_12, :] lowercase__ = in_proj_bias[2_56:5_12] lowercase__ = in_proj_weight[-2_56:, :] lowercase__ = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) lowercase__ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:2_56, :] lowercase__ = in_proj_bias_cross_attn[:2_56] lowercase__ = in_proj_weight_cross_attn[2_56:5_12, :] lowercase__ = in_proj_bias_cross_attn[2_56:5_12] lowercase__ = in_proj_weight_cross_attn[-2_56:, :] lowercase__ = in_proj_bias_cross_attn[-2_56:] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = image.size lowercase__ = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = 8_00 if '''detection''' in checkpoint_url else 10_00 lowercase__ = target_max_size / current_max_size lowercase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = F.to_tensor(SCREAMING_SNAKE_CASE ) lowercase__ = F.normalize(SCREAMING_SNAKE_CASE , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" logger.info('''Converting model...''' ) # load original state dict lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = rename_backbone_keys(SCREAMING_SNAKE_CASE ) # query, key and value matrices need special treatment read_in_q_k_v(SCREAMING_SNAKE_CASE ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowercase__ = state_dict.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val # create HuggingFace model and load state dict lowercase__ = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: lowercase__ = 15 lowercase__ = 2 lowercase__ = {0: '''table''', 1: '''table rotated'''} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} else: lowercase__ = 1_25 lowercase__ = 6 lowercase__ = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = DetrImageProcessor( format='''coco_detection''' , max_size=8_00 if '''detection''' in checkpoint_url else 10_00 ) lowercase__ = TableTransformerForObjectDetection(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # verify our conversion lowercase__ = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' lowercase__ = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=SCREAMING_SNAKE_CASE ) lowercase__ = Image.open(SCREAMING_SNAKE_CASE ).convert('''RGB''' ) lowercase__ = normalize(resize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ).unsqueeze(0 ) lowercase__ = model(SCREAMING_SNAKE_CASE ) if "detection" in checkpoint_url: lowercase__ = (1, 15, 3) lowercase__ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) lowercase__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: lowercase__ = (1, 1_25, 7) lowercase__ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) lowercase__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) lowercase__ = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(SCREAMING_SNAKE_CASE ) image_processor.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', type=str, choices=[ 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth', 'https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth', ], help='URL of the Table Transformer checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
359
from abc import ABC, abstractmethod from typing import List, Optional class _a ( UpperCamelCase__ ): def __init__( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" self.test() def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = 0 lowercase__ = False while not completed: if counter == 1: self.reset() lowercase__ = self.advance() if not self.does_advance(UpperCamelCase_ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) lowercase__ , lowercase__ , lowercase__ = self.update(UpperCamelCase_ ) counter += 1 if counter > 10_000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int ) -> Optional[int]: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: int ) -> str: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Any ) -> Tuple: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) @abstractmethod def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int=False ) -> Any: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class _a ( UpperCamelCase__ ): def __init__( self: str , UpperCamelCase_: List[int] ) -> Tuple: """simple docstring""" super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f'`token_ids` has to be a non-empty list, but is {token_ids}.' ) if any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.' ) lowercase__ = token_ids lowercase__ = len(self.token_ids ) lowercase__ = -1 # the index of the currently fulfilled step lowercase__ = False def lowerCamelCase_ ( self: Tuple ) -> Tuple: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: int ) -> Optional[Any]: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: int ) -> Dict: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(UpperCamelCase_ ): self.fulfilled_idx += 1 lowercase__ = True if self.fulfilled_idx == (self.seqlen - 1): lowercase__ = True lowercase__ = completed else: # failed to make progress. lowercase__ = True self.reset() return stepped, completed, reset def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" lowercase__ = False lowercase__ = 0 def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any]=False ) -> Tuple: """simple docstring""" lowercase__ = PhrasalConstraint(self.token_ids ) if stateful: lowercase__ = self.seqlen lowercase__ = self.fulfilled_idx lowercase__ = self.completed return new_constraint class _a : def __init__( self: Union[str, Any] , UpperCamelCase_: List[List[int]] , UpperCamelCase_: int=True ) -> int: """simple docstring""" lowercase__ = max([len(UpperCamelCase_ ) for one in nested_token_ids] ) lowercase__ = {} for token_ids in nested_token_ids: lowercase__ = root for tidx, token_id in enumerate(UpperCamelCase_ ): if token_id not in level: lowercase__ = {} lowercase__ = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f' {nested_token_ids}.' ) lowercase__ = root def lowerCamelCase_ ( self: int , UpperCamelCase_: str ) -> Any: """simple docstring""" lowercase__ = self.trie for current_token in current_seq: lowercase__ = start[current_token] lowercase__ = list(start.keys() ) return next_tokens def lowerCamelCase_ ( self: Any , UpperCamelCase_: Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = self.next_tokens(UpperCamelCase_ ) return len(UpperCamelCase_ ) == 0 def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Optional[Any] ) -> Any: """simple docstring""" lowercase__ = list(root.values() ) if len(UpperCamelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase_ ) for nn in next_nodes] ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int ) -> Tuple: """simple docstring""" lowercase__ = self.count_leaves(UpperCamelCase_ ) return len(UpperCamelCase_ ) != leaf_count class _a ( UpperCamelCase__ ): def __init__( self: Optional[int] , UpperCamelCase_: List[List[int]] ) -> List[Any]: """simple docstring""" super(UpperCamelCase_ , self ).__init__() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or len(UpperCamelCase_ ) == 0: raise ValueError(f'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.' ) if any(not isinstance(UpperCamelCase_ , UpperCamelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.' ) if any( any((not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.' ) lowercase__ = DisjunctiveTrie(UpperCamelCase_ ) lowercase__ = nested_token_ids lowercase__ = self.trie.max_height lowercase__ = [] lowercase__ = False def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def lowerCamelCase_ ( self: str , UpperCamelCase_: int ) -> Tuple: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) lowercase__ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase_ ( self: int , UpperCamelCase_: int ) -> Dict: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase_ )}' ) lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(UpperCamelCase_ ): self.current_seq.append(UpperCamelCase_ ) lowercase__ = True else: lowercase__ = True self.reset() lowercase__ = self.trie.reached_leaf(self.current_seq ) lowercase__ = completed return stepped, completed, reset def lowerCamelCase_ ( self: List[str] ) -> List[Any]: """simple docstring""" lowercase__ = False lowercase__ = [] def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[Any]=False ) -> str: """simple docstring""" lowercase__ = DisjunctiveConstraint(self.token_ids ) if stateful: lowercase__ = self.seqlen lowercase__ = self.current_seq lowercase__ = self.completed return new_constraint class _a : def __init__( self: int , UpperCamelCase_: List[Constraint] ) -> Dict: """simple docstring""" lowercase__ = constraints # max # of steps required to fulfill a given constraint lowercase__ = max([c.seqlen for c in constraints] ) lowercase__ = len(UpperCamelCase_ ) lowercase__ = False self.init_state() def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" lowercase__ = [] lowercase__ = None lowercase__ = [constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.constraints] def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase_ ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase__ = constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) else: lowercase__ = self.inprogress_constraint.advance() if isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.append(UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): token_list.extend(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None else: return token_list def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Optional[List[int]] ) -> Optional[int]: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase__ , lowercase__ = self.add(UpperCamelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: int ) -> int: """simple docstring""" if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError(f'`token_id` should be an `int`, but is `{token_id}`.' ) lowercase__ , lowercase__ = False, False if self.completed: lowercase__ = True lowercase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase__ , lowercase__ , lowercase__ = self.inprogress_constraint.update(UpperCamelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) ) lowercase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase__ = None if len(self.pending_constraints ) == 0: # we're done! lowercase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase_ ): lowercase__ , lowercase__ , lowercase__ = pending_constraint.update(UpperCamelCase_ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(UpperCamelCase_ ) lowercase__ = None if not complete and stepped: lowercase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase_ ( self: Any , UpperCamelCase_: Optional[Any]=True ) -> Dict: """simple docstring""" lowercase__ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase__ = [ constraint.copy(stateful=UpperCamelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase__ = self.inprogress_constraint.copy(stateful=UpperCamelCase_ ) lowercase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
93
0
import os def A_ ( ) -> int: with open(os.path.dirname(_lowerCAmelCase ) + "/grid.txt" ) as f: UpperCamelCase : Optional[Any] = [] # noqa: E741 for _ in range(20 ): l.append([int(_lowerCAmelCase ) for x in f.readline().split()] ) UpperCamelCase : Optional[Any] = 0 # right for i in range(20 ): for j in range(17 ): UpperCamelCase : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: UpperCamelCase : Union[str, Any] = temp # down for i in range(17 ): for j in range(20 ): UpperCamelCase : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: UpperCamelCase : Optional[Any] = temp # diagonal 1 for i in range(17 ): for j in range(17 ): UpperCamelCase : Union[str, Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: UpperCamelCase : List[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): UpperCamelCase : int = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: UpperCamelCase : Optional[int] = temp return maximum if __name__ == "__main__": print(solution())
52
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __snake_case ( _lowercase): snake_case__ : List[str] = "unispeech" def __init__( self : List[str] , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : str=7_6_8 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=3_0_7_2 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Dict=1E-5 , __lowerCAmelCase : Optional[int]="group" , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : List[str]=1_2_8 , __lowerCAmelCase : Any=1_6 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=0.05 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Optional[int]=1_0 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[str]=3_2_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=1_0_0 , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : str=2_5_6 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict="mean" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Optional[Any]=2_5_6 , __lowerCAmelCase : Dict=8_0 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Any=0.5 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = feat_extract_norm _lowerCamelCase : List[Any] = feat_extract_activation _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : Tuple = list(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = conv_bias _lowerCamelCase : List[str] = num_conv_pos_embeddings _lowerCamelCase : Tuple = num_conv_pos_embedding_groups _lowerCamelCase : List[str] = len(self.conv_dim ) _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = hidden_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Optional[Any] = feat_proj_dropout _lowerCamelCase : Optional[int] = final_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : List[str] = num_ctc_classes _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = do_stable_layer_norm _lowerCamelCase : Tuple = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Any = apply_spec_augment _lowerCamelCase : Dict = mask_time_prob _lowerCamelCase : List[str] = mask_time_length _lowerCamelCase : Optional[Any] = mask_time_min_masks _lowerCamelCase : List[str] = mask_feature_prob _lowerCamelCase : int = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : Optional[Any] = num_codevectors_per_group _lowerCamelCase : int = num_codevector_groups _lowerCamelCase : List[Any] = contrastive_logits_temperature _lowerCamelCase : List[str] = feat_quantizer_dropout _lowerCamelCase : Dict = num_negatives _lowerCamelCase : Optional[int] = codevector_dim _lowerCamelCase : List[Any] = proj_codevector_dim _lowerCamelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCamelCase : Union[str, Any] = ctc_loss_reduction _lowerCamelCase : Any = ctc_zero_infinity # pretraining loss _lowerCamelCase : str = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
72
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a : Tuple = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } a : Optional[int] = logging.get_logger(__name__) class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "mask2former" __lowerCamelCase = ["swin"] __lowerCamelCase = {"hidden_size": "hidden_dim"} def __init__( self , snake_case__ = None , snake_case__ = 256 , snake_case__ = 256 , snake_case__ = 256 , snake_case__ = 1024 , snake_case__ = "relu" , snake_case__ = 6 , snake_case__ = 10 , snake_case__ = 8 , snake_case__ = 0.0 , snake_case__ = 2048 , snake_case__ = False , snake_case__ = False , snake_case__ = 4 , snake_case__ = 255 , snake_case__ = 100 , snake_case__ = 0.1 , snake_case__ = 2.0 , snake_case__ = 5.0 , snake_case__ = 5.0 , snake_case__ = 12544 , snake_case__ = 3.0 , snake_case__ = 0.75 , snake_case__ = 0.02 , snake_case__ = 1.0 , snake_case__ = True , snake_case__ = [4, 8, 16, 32] , snake_case__ = None , **snake_case__ , ): '''simple docstring''' if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) lowercase__ : Union[str, Any]= CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=snake_case__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(snake_case__ , snake_case__ ): lowercase__ : Dict= backbone_config.pop("model_type" ) lowercase__ : Tuple= CONFIG_MAPPING[backbone_model_type] lowercase__ : Any= config_class.from_dict(snake_case__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) lowercase__ : Optional[Any]= backbone_config lowercase__ : int= feature_size lowercase__ : str= mask_feature_size lowercase__ : Optional[int]= hidden_dim lowercase__ : Tuple= encoder_feedforward_dim lowercase__ : List[str]= activation_function lowercase__ : List[str]= encoder_layers lowercase__ : str= decoder_layers lowercase__ : Any= num_attention_heads lowercase__ : List[str]= dropout lowercase__ : Tuple= dim_feedforward lowercase__ : Optional[int]= pre_norm lowercase__ : Optional[int]= enforce_input_projection lowercase__ : List[str]= common_stride lowercase__ : int= ignore_value lowercase__ : List[Any]= num_queries lowercase__ : List[str]= no_object_weight lowercase__ : Dict= class_weight lowercase__ : Optional[Any]= mask_weight lowercase__ : Union[str, Any]= dice_weight lowercase__ : List[str]= train_num_points lowercase__ : Optional[int]= oversample_ratio lowercase__ : List[Any]= importance_sample_ratio lowercase__ : Union[str, Any]= init_std lowercase__ : Optional[int]= init_xavier_std lowercase__ : Optional[Any]= use_auxiliary_loss lowercase__ : Optional[int]= feature_strides lowercase__ : List[Any]= output_auxiliary_logits lowercase__ : Optional[Any]= decoder_layers super().__init__(**snake_case__ ) @classmethod def UpperCAmelCase_ ( cls , snake_case__ , **snake_case__ ): '''simple docstring''' return cls( backbone_config=snake_case__ , **snake_case__ , ) def UpperCAmelCase_ ( self ): '''simple docstring''' lowercase__ : Tuple= copy.deepcopy(self.__dict__ ) lowercase__ : List[Any]= self.backbone_config.to_dict() lowercase__ : str= self.__class__.model_type return output
352
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def lowercase__(A="ro" , A="en" , A="wmt16" , A=None ) ->None: """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("run pip install datasets" ) lowercase__ : int= f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) lowercase__ : List[Any]= datasets.load_dataset(A , A ) if save_dir is None: lowercase__ : Union[str, Any]= f'''{dataset}-{pair}''' lowercase__ : str= Path(A ) save_dir.mkdir(exist_ok=A ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets lowercase__ : Any= "val" if split == "validation" else split lowercase__ : List[Any]= save_dir.joinpath(f'''{fn}.source''' ) lowercase__ : Optional[Any]= save_dir.joinpath(f'''{fn}.target''' ) lowercase__ : Optional[int]= src_path.open("w+" ) lowercase__ : Any= tgt_path.open("w+" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): lowercase__ : int= x["translation"] src_fp.write(ex[src_lang] + "\n" ) tgt_fp.write(ex[tgt_lang] + "\n" ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
150
0
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCamelCase__ ( unittest.TestCase): SCREAMING_SNAKE_CASE__ = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: _lowercase =AudioClassificationPipeline(model=lowerCamelCase__ , feature_extractor=lowerCamelCase__ ) # test with a raw waveform _lowercase =np.zeros((3_4_0_0_0,) ) _lowercase =np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def __A (self , UpperCAmelCase , UpperCAmelCase ) -> str: _lowercase =examples _lowercase =audio_classifier(lowerCamelCase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowerCamelCase__ , [ {'''score''': ANY(lowerCamelCase__ ), '''label''': ANY(lowerCamelCase__ )}, {'''score''': ANY(lowerCamelCase__ ), '''label''': ANY(lowerCamelCase__ )}, ] , ) _lowercase =audio_classifier(lowerCamelCase__ , top_k=1 ) self.assertEqual( lowerCamelCase__ , [ {'''score''': ANY(lowerCamelCase__ ), '''label''': ANY(lowerCamelCase__ )}, ] , ) self.run_torchaudio(lowerCamelCase__ ) @require_torchaudio def __A (self , UpperCAmelCase ) -> Any: import datasets # test with a local file _lowercase =datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) _lowercase =dataset[0]["""audio"""]["""array"""] _lowercase =audio_classifier(lowerCamelCase__ ) self.assertEqual( lowerCamelCase__ , [ {'''score''': ANY(lowerCamelCase__ ), '''label''': ANY(lowerCamelCase__ )}, {'''score''': ANY(lowerCamelCase__ ), '''label''': ANY(lowerCamelCase__ )}, ] , ) @require_torch def __A (self ) -> List[Any]: _lowercase ="""anton-l/wav2vec2-random-tiny-classifier""" _lowercase =pipeline('''audio-classification''' , model=lowerCamelCase__ ) _lowercase =np.ones((8_0_0_0,) ) _lowercase =audio_classifier(lowerCamelCase__ , top_k=4 ) _lowercase =[ {"""score""": 0.0842, """label""": """no"""}, {"""score""": 0.0838, """label""": """up"""}, {"""score""": 0.0837, """label""": """go"""}, {"""score""": 0.0834, """label""": """right"""}, ] _lowercase =[ {"""score""": 0.0845, """label""": """stop"""}, {"""score""": 0.0844, """label""": """on"""}, {"""score""": 0.0841, """label""": """right"""}, {"""score""": 0.0834, """label""": """left"""}, ] self.assertIn(nested_simplify(lowerCamelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowercase ={"""array""": np.ones((8_0_0_0,) ), """sampling_rate""": audio_classifier.feature_extractor.sampling_rate} _lowercase =audio_classifier(lowerCamelCase__ , top_k=4 ) self.assertIn(nested_simplify(lowerCamelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def __A (self ) -> Union[str, Any]: import datasets _lowercase ="""superb/wav2vec2-base-superb-ks""" _lowercase =pipeline('''audio-classification''' , model=lowerCamelCase__ ) _lowercase =datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) _lowercase =np.array(dataset[3]['''speech'''] , dtype=np.floataa ) _lowercase =audio_classifier(lowerCamelCase__ , top_k=4 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=3 ) , [ {'''score''': 0.981, '''label''': '''go'''}, {'''score''': 0.007, '''label''': '''up'''}, {'''score''': 0.006, '''label''': '''_unknown_'''}, {'''score''': 0.001, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def __A (self ) -> Dict: pass
5
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_:List[Any] = TypeVar("""KEY""") SCREAMING_SNAKE_CASE_:Dict = TypeVar("""VAL""") @dataclass(frozen=SCREAMING_SNAKE_CASE__ , slots=SCREAMING_SNAKE_CASE__ ) class SCREAMING_SNAKE_CASE__ ( Generic[KEY, VAL] ): '''simple docstring''' __lowerCamelCase : KEY __lowerCamelCase : VAL class SCREAMING_SNAKE_CASE__ ( _Item ): '''simple docstring''' def __init__( self ): super().__init__(lowerCamelCase__, lowerCamelCase__ ) def __bool__( self ): return False SCREAMING_SNAKE_CASE_:Optional[Any] = _DeletedItem() class SCREAMING_SNAKE_CASE__ ( MutableMapping[KEY, VAL] ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 8, lowerCamelCase__ = 0.75 ): A : List[str] = initial_block_size A : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 A : Dict = capacity_factor A : Optional[Any] = 0 def _lowerCAmelCase ( self, lowerCamelCase__ ): return hash(lowerCamelCase__ ) % len(self._buckets ) def _lowerCAmelCase ( self, lowerCamelCase__ ): return (ind + 1) % len(self._buckets ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : List[Any] = self._buckets[ind] if not stored: A : Optional[int] = _Item(lowerCamelCase__, lowerCamelCase__ ) self._len += 1 return True elif stored.key == key: A : int = _Item(lowerCamelCase__, lowerCamelCase__ ) return True else: return False def _lowerCAmelCase ( self ): A : Union[str, Any] = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCamelCase__ ) def _lowerCAmelCase ( self ): if len(self._buckets ) <= self._initial_block_size: return False A : Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Dict = self._buckets A : Optional[Any] = [None] * new_size A : List[str] = 0 for item in old_buckets: if item: self._add_item(item.key, item.val ) def _lowerCAmelCase ( self ): self._resize(len(self._buckets ) * 2 ) def _lowerCAmelCase ( self ): self._resize(len(self._buckets ) // 2 ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Union[str, Any] = self._get_bucket_index(lowerCamelCase__ ) for _ in range(len(self._buckets ) ): yield ind A : Dict = self._get_next_ind(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): if self._try_set(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): break def __setitem__( self, lowerCamelCase__, lowerCamelCase__ ): if self._is_full(): self._size_up() self._add_item(lowerCamelCase__, lowerCamelCase__ ) def __delitem__( self, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): A : Tuple = self._buckets[ind] if item is None: raise KeyError(lowerCamelCase__ ) if item is _deleted: continue if item.key == key: A : int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self, lowerCamelCase__ ): for ind in self._iterate_buckets(lowerCamelCase__ ): A : int = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCamelCase__ ) def __len__( self ): return self._len def __iter__( self ): yield from (item.key for item in self._buckets if item) def __repr__( self ): A : Union[str, Any] = """ ,""".join( f'''{item.key}: {item.val}''' for item in self._buckets if item ) return f'''HashMap({val_string})'''
116
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=3 , _UpperCAmelCase=0.6 , _UpperCAmelCase=None , ): __a : int = parent __a : Union[str, Any] = batch_size __a : List[str] = image_size __a : Optional[int] = patch_size __a : str = num_channels __a : List[Any] = is_training __a : Any = use_labels __a : List[Any] = hidden_size __a : str = num_hidden_layers __a : List[str] = num_attention_heads __a : List[str] = intermediate_size __a : Optional[Any] = hidden_act __a : str = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : Tuple = type_sequence_label_size __a : Optional[Any] = initializer_range __a : int = mask_ratio __a : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __a : Tuple = (image_size // patch_size) ** 2 __a : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCamelCase ( self ): __a : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Optional[int] = None if self.use_labels: __a : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[int] = ViTMAEModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __a : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = ViTMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __a : Optional[Any] = model(_lowerCamelCase ) __a : List[str] = (self.image_size // self.patch_size) ** 2 __a : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __a : Optional[int] = 1 __a : List[Any] = ViTMAEForPreTraining(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __a : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a : List[Any] = model(_lowerCamelCase ) __a : int = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCamelCase ( self ): __a : Tuple = self.prepare_config_and_inputs() __a : Dict = config_and_inputs __a : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowercase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __lowerCAmelCase = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Tuple = ViTMAEModelTester(self ) __a : List[str] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _lowerCamelCase ( self ): __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[Any] = model_class(_lowerCamelCase ) __a : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : str = [*signature.parameters.keys()] __a : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _lowerCamelCase ( self ): __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _lowerCamelCase ( self ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # make masks reproducible np.random.seed(2 ) __a : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __a : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __a : int = torch.from_numpy(_lowerCamelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __a : List[str] = pt_noise super().check_pt_tf_models(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _lowerCamelCase ( self ): __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Any = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : List[Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) __a : str = outputs[0].cpu().numpy() __a : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) __a : Union[str, Any] = model_class.from_pretrained(_lowerCamelCase ) model.to(_lowerCamelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __a : Union[str, Any] = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) # Make sure we don't have nans __a : Dict = after_outputs[0].cpu().numpy() __a : Tuple = 0 __a : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCamelCase , 1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def _lowerCamelCase ( self ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def _lowerCamelCase ( self ): pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def _lowerCamelCase ( self ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCamelCase ( self ): pass @slow def _lowerCamelCase ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Any = ViTMAEModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def __A ( ) -> int: __a : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) __a : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(_lowerCamelCase ) __a : List[str] = self.default_image_processor __a : List[str] = prepare_img() __a : List[str] = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __a : List[str] = ViTMAEConfig() __a : Tuple = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __a : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __a : Optional[int] = model(**_lowerCamelCase , noise=torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase ) ) # verify the logits __a : List[Any] = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) __a : List[Any] = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_lowerCamelCase ) , atol=1e-4 ) )
369
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''openai/whisper-base''' __lowerCAmelCase = ( '''This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the ''' '''transcribed text.''' ) __lowerCAmelCase = '''transcriber''' __lowerCAmelCase = WhisperProcessor __lowerCAmelCase = WhisperForConditionalGeneration __lowerCAmelCase = ['''audio'''] __lowerCAmelCase = ['''text'''] def _lowerCamelCase ( self , _UpperCAmelCase ): return self.pre_processor(_UpperCAmelCase , return_tensors='''pt''' ).input_features def _lowerCamelCase ( self , _UpperCAmelCase ): return self.model.generate(inputs=_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.pre_processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )[0]
188
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image A__ = ["""text""", """image""", """audio"""] def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(snake_case , snake_case ): inputs.append(create_inputs(snake_case ) ) else: raise ValueError(F'Invalid type requested: {input_type}' ) return inputs def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [] for output in outputs: if isinstance(snake_case , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(snake_case , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(snake_case , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'Invalid output: {output}' ) return output_types @is_tool_test class __lowerCAmelCase : def snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) _lowerCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input , _snake_case ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _lowerCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = create_inputs(self.tool.inputs ) _lowerCAmelCase = self.tool(*_snake_case ) # There is a single output if len(self.tool.outputs ) == 1: _lowerCAmelCase = [outputs] self.assertListEqual(output_types(_snake_case ) , self.tool.outputs ) def snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = create_inputs(self.tool.inputs ) _lowerCAmelCase = self.tool(*_snake_case ) if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase = [outputs] self.assertEqual(len(_snake_case ) , len(self.tool.outputs ) ) for output, output_type in zip(_snake_case , self.tool.outputs ): _lowerCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_snake_case , _snake_case ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = create_inputs(self.tool.inputs ) _lowerCAmelCase = [] for _input, input_type in zip(_snake_case , self.tool.inputs ): if isinstance(_snake_case , _snake_case ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _lowerCAmelCase = self.tool(*_snake_case ) if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase = [outputs] self.assertEqual(len(_snake_case ) , len(self.tool.outputs ) )
82
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class __lowerCAmelCase ( lowerCamelCase__ ): # to overwrite at feature extractactor specific tests __lowerCamelCase = None __lowerCamelCase = None @property def snake_case ( self ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_snake_case , """feature_size""" ) ) self.assertTrue(hasattr(_snake_case , """sampling_rate""" ) ) self.assertTrue(hasattr(_snake_case , """padding_value""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case , processed_features[input_name] ) ) ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_snake_case ) _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" ) _lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: _lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = self.feat_extract_tester.seq_length_diff _lowerCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff _lowerCAmelCase = self.feat_extract_tester.min_seq_length _lowerCAmelCase = self.feat_extract_tester.batch_size _lowerCAmelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , padding=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[-1] ) ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" )[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = feat_extract.pad(_snake_case , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , pad_to_multiple_of=10 ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , pad_to_multiple_of=10 , max_length=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] self.assertTrue(all(len(_snake_case ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) _lowerCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_snake_case ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct _lowerCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def snake_case ( self , _snake_case=False ): """simple docstring""" def _inputs_have_equal_length(_snake_case ): _lowerCAmelCase = len(input[0] ) for input_slice in input[1:]: if len(_snake_case ) != length: return False return True def _inputs_are_equal(_snake_case , _snake_case ): if len(_snake_case ) != len(_snake_case ): return False for input_slice_a, input_slice_a in zip(_snake_case , _snake_case ): if not np.allclose(np.asarray(_snake_case ) , np.asarray(_snake_case ) , atol=1e-3 ): return False return True _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=_snake_case ) _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to smallest with np _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) # truncate to middle _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case , return_tensors="""np""" , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=_snake_case ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" ) _lowerCAmelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(_inputs_are_equal(_snake_case , _snake_case ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_snake_case ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""longest""" , truncation=_snake_case )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_snake_case ): feat_extract.pad(_snake_case , padding="""max_length""" , truncation=_snake_case )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy _lowerCAmelCase = 12 _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , truncation=_snake_case , ) _lowerCAmelCase = input_a[input_name] _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_snake_case , ) _lowerCAmelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of _lowerCAmelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: _lowerCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_snake_case ) ) self.assertFalse(_inputs_have_equal_length(_snake_case ) ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_padding(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) def snake_case ( self ): """simple docstring""" self._check_truncation(numpify=_snake_case ) @require_torch def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""pt""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" )[input_name] _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""tf""" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = feat_extract.pad(_snake_case , padding="""longest""" , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.feat_extract_dict _lowerCAmelCase = True _lowerCAmelCase = self.feature_extraction_class(**_snake_case ) _lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_common() _lowerCAmelCase = [len(_snake_case ) for x in speech_inputs] _lowerCAmelCase = feat_extract.model_input_names[0] _lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) _lowerCAmelCase = min(_snake_case ) _lowerCAmelCase = feat_extract.pad( _snake_case , padding="""max_length""" , max_length=_snake_case , truncation=_snake_case , return_tensors="""np""" ) self.assertIn("""attention_mask""" , _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
82
1
"""simple docstring""" import doctest from collections import deque import numpy as np class __lowerCAmelCase : '''simple docstring''' def __init__( self ): __a = [2, 1, 2, -1] __a = [1, 2, 3, 4] def __UpperCAmelCase ( self ): __a = len(self.first_signal ) __a = len(self.second_signal ) __a = max(_a , _a ) # create a zero matrix of max_length x max_length __a = [[0] * max_length for i in range(_a )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_a ): __a = deque(self.second_signal ) rotated_signal.rotate(_a ) for j, item in enumerate(_a ): matrix[i][j] += item # multiply the matrix with the first signal __a = np.matmul(np.transpose(_a ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_a , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
11
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = DistilBertTokenizer __UpperCAmelCase : Any = DistilBertTokenizerFast __UpperCAmelCase : int = True @slow def __UpperCAmelCase ( self ): __a = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
11
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def __lowerCAmelCase ( self ) -> List[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :str = ort.SessionOptions() lowerCAmelCase_ :int = False return options def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowerCAmelCase_ :List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowerCAmelCase_ :List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Dict = """A red cat sitting on a park bench""" lowerCAmelCase_ :int = np.random.RandomState(0 ) lowerCAmelCase_ :Dict = pipe( prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=10 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Dict = output.images lowerCAmelCase_ :Tuple = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase_ :str = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowerCAmelCase ( self ) -> List[str]: lowerCAmelCase_ :int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) lowerCAmelCase_ :int = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) lowerCAmelCase_ :List[str] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""" ) lowerCAmelCase_ :str = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=__A , safety_checker=__A , feature_extractor=__A , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[Any] = """A red cat sitting on a park bench""" lowerCAmelCase_ :str = np.random.RandomState(0 ) lowerCAmelCase_ :Dict = pipe( prompt=__A , image=__A , mask_image=__A , guidance_scale=7.5 , num_inference_steps=20 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Any = output.images lowerCAmelCase_ :Any = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) lowerCAmelCase_ :Optional[int] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
84
"""simple docstring""" __UpperCamelCase = 0 # The first color of the flag. __UpperCamelCase = 1 # The second color of the flag. __UpperCamelCase = 2 # The third color of the flag. __UpperCamelCase = (red, white, blue) def lowercase (SCREAMING_SNAKE_CASE_ : list ) -> list: if not sequence: return [] if len(SCREAMING_SNAKE_CASE_ ) == 1: return list(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) - 1 SCREAMING_SNAKE_CASE = 0 while mid <= high: if sequence[mid] == colors[0]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sequence[high], sequence[mid] high -= 1 else: SCREAMING_SNAKE_CASE = F'The elements inside the sequence must contains only {colors} values' raise ValueError(SCREAMING_SNAKE_CASE_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = input('''Enter numbers separated by commas:\n''').strip() __UpperCamelCase = [int(item.strip()) for item in user_input.split(''',''')] print(f'''{dutch_national_flag_sort(unsorted)}''')
113
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowerCAmelCase_ ( a__ ): @staticmethod @abstractmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: raise NotImplementedError() @abstractmethod def snake_case_ ( self ) -> List[Any]: raise NotImplementedError()
371
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') __UpperCAmelCase , __UpperCAmelCase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') __UpperCAmelCase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: __UpperCAmelCase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __UpperCAmelCase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F"""python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
103
0
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 4_0_0_0_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase : int = [0, 1] __UpperCAmelCase : Optional[Any] = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 __UpperCAmelCase : str = 0 for j in range(len(_UpperCamelCase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
115
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
115
1
"""simple docstring""" import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( __lowercase ,__lowercase ,unittest.TestCase ): '''simple docstring''' a__ =StableDiffusionDiffEditPipeline a__ =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} a__ =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} a__ =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a__ =frozenset([] ) def __lowerCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) _UpperCAmelCase : Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) _UpperCAmelCase : int = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_zero=_a , ) torch.manual_seed(0 ) _UpperCAmelCase : Dict = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) _UpperCAmelCase : List[Any] = CLIPTextModel(_a ) _UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCAmelCase : str = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __lowerCAmelCase ( self , A , A=0 ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = floats_tensor((1, 1_6, 1_6) , rng=random.Random(_a ) ).to(_a ) _UpperCAmelCase : int = floats_tensor((1, 2, 4, 1_6, 1_6) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith('''mps''' ): _UpperCAmelCase : str = torch.manual_seed(_a ) else: _UpperCAmelCase : Tuple = torch.Generator(device=_a ).manual_seed(_a ) _UpperCAmelCase : str = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self , A , A=0 ) -> Any: _UpperCAmelCase : int = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_a ) ).to(_a ) _UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ) if str(_a ).startswith('''mps''' ): _UpperCAmelCase : str = torch.manual_seed(_a ) else: _UpperCAmelCase : Tuple = torch.Generator(device=_a ).manual_seed(_a ) _UpperCAmelCase : Any = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self , A , A=0 ) -> Any: _UpperCAmelCase : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_a ) ).to(_a ) _UpperCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase : str = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ) if str(_a ).startswith('''mps''' ): _UpperCAmelCase : Tuple = torch.manual_seed(_a ) else: _UpperCAmelCase : Optional[Any] = torch.Generator(device=_a ).manual_seed(_a ) _UpperCAmelCase : Union[str, Any] = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) -> str: if not hasattr(self.pipeline_class , '''_optional_components''' ): return _UpperCAmelCase : Optional[Any] = self.get_dummy_components() _UpperCAmelCase : str = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_a , _a , _a ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _UpperCAmelCase : List[str] = self.get_dummy_inputs(_a ) _UpperCAmelCase : Any = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) _UpperCAmelCase : Any = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) for optional_component in pipe._optional_components: self.assertTrue( getattr(_a , _a ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) _UpperCAmelCase : Any = self.get_dummy_inputs(_a ) _UpperCAmelCase : Dict = pipe_loaded(**_a )[0] _UpperCAmelCase : Optional[Any] = np.abs(output - output_loaded ).max() self.assertLess(_a , 1E-4 ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Tuple = '''cpu''' _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : Tuple = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _UpperCAmelCase : List[Any] = self.get_dummy_mask_inputs(_a ) _UpperCAmelCase : Union[str, Any] = pipe.generate_mask(**_a ) _UpperCAmelCase : Optional[int] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 1_6, 1_6) ) _UpperCAmelCase : str = np.array([0] * 9 ) _UpperCAmelCase : List[str] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = '''cpu''' _UpperCAmelCase : List[str] = self.get_dummy_components() _UpperCAmelCase : List[str] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _UpperCAmelCase : Union[str, Any] = self.get_dummy_inversion_inputs(_a ) _UpperCAmelCase : Any = pipe.invert(**_a ).images _UpperCAmelCase : Optional[int] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) _UpperCAmelCase : Tuple = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) _UpperCAmelCase : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) def __lowerCAmelCase ( self ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = '''cpu''' _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : Dict = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} _UpperCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler(**_a ) _UpperCAmelCase : Dict = DPMSolverMultistepInverseScheduler(**_a ) _UpperCAmelCase : Any = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inversion_inputs(_a ) _UpperCAmelCase : Optional[int] = pipe.invert(**_a ).images _UpperCAmelCase : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 3_2, 3_2, 3) ) _UpperCAmelCase : List[Any] = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) _UpperCAmelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1E-3 ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __lowerCAmelCase ( cls ) -> Optional[int]: _UpperCAmelCase : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) _UpperCAmelCase : Dict = raw_image.convert('''RGB''' ).resize((7_6_8, 7_6_8) ) _UpperCAmelCase : Optional[Any] = raw_image def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : str = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_a , torch_dtype=torch.floataa ) _UpperCAmelCase : Tuple = DDIMScheduler.from_config(pipe.scheduler.config ) _UpperCAmelCase : Any = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) _UpperCAmelCase : Union[str, Any] = '''a bowl of fruit''' _UpperCAmelCase : Optional[Any] = '''a bowl of pears''' _UpperCAmelCase : List[str] = pipe.generate_mask( image=self.raw_image , source_prompt=_a , target_prompt=_a , generator=_a , ) _UpperCAmelCase : List[str] = pipe.invert( prompt=_a , image=self.raw_image , inpaint_strength=0.7 , generator=_a ).latents _UpperCAmelCase : Optional[int] = pipe( prompt=_a , mask_image=_a , image_latents=_a , generator=_a , negative_prompt=_a , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] _UpperCAmelCase : List[str] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1 def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : int = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_a , torch_dtype=torch.floataa ) _UpperCAmelCase : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _UpperCAmelCase : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) _UpperCAmelCase : List[str] = '''a bowl of fruit''' _UpperCAmelCase : List[str] = '''a bowl of pears''' _UpperCAmelCase : int = pipe.generate_mask( image=self.raw_image , source_prompt=_a , target_prompt=_a , generator=_a , ) _UpperCAmelCase : Tuple = pipe.invert( prompt=_a , image=self.raw_image , inpaint_strength=0.7 , generator=_a , num_inference_steps=2_5 , ).latents _UpperCAmelCase : Optional[Any] = pipe( prompt=_a , mask_image=_a , image_latents=_a , generator=_a , negative_prompt=_a , inpaint_strength=0.7 , num_inference_steps=2_5 , output_type='''numpy''' , ).images[0] _UpperCAmelCase : Optional[Any] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((7_6_8, 7_6_8) ) ) / 2_5_5 ) assert np.abs((expected_image - image).max() ) < 5E-1
350
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =TransfoXLTokenizer a__ =False a__ =False def __lowerCAmelCase ( self ) -> List[str]: super().setUp() _UpperCAmelCase : Dict = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , **A ) -> Dict: _UpperCAmelCase : Union[str, Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A ) def __lowerCAmelCase ( self , A ) -> str: _UpperCAmelCase : str = '''<unk> UNwanted , running''' _UpperCAmelCase : Union[str, Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Any = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(A , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [0, 4, 8, 7] ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : str = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) _UpperCAmelCase : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' _UpperCAmelCase : Optional[Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(A ) , A ) self.assertEqual(tokenizer.convert_tokens_to_string(A ) , A ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : List[Any] = len(A ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
68
0
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''T5Config''' def __lowercase ( __lowercase , __lowercase , __lowercase ) -> jnp.ndarray: '''simple docstring''' _A = jnp.zeros_like(__lowercase ) _A = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) _A = shifted_input_ids.at[:, 0].set(__lowercase ) _A = jnp.where(shifted_input_ids == -100 , __lowercase , __lowercase ) return shifted_input_ids class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''mt5''' snake_case = MTaConfig
79
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowerCamelCase_ = datasets.logging.get_logger(__name__) lowerCamelCase_ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowerCamelCase_ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowerCamelCase_ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : str ): '''simple docstring''' if self.config_name == "default": _A = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: _A = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase ( self : str , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : int=False ): '''simple docstring''' if gpus is None: _A = 1 if torch.cuda.is_available() else 0 _A = {"src": sources, "mt": predictions, "ref": references} _A = [dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) for t in zip(*data.values() )] _A , _A = self.scorer.predict(__UpperCAmelCase , gpus=__UpperCAmelCase , progress_bar=__UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
79
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Optional[Any] =['''image_processor''', '''tokenizer'''] a : Union[str, Any] ='''BlipImageProcessor''' a : Union[str, Any] ='''AutoTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) # add QFormer tokenizer UpperCamelCase_: Tuple = qformer_tokenizer def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = True , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = 0 , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = True , _lowerCamelCase = None , **_lowerCamelCase , ): if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) UpperCamelCase_: Tuple = BatchFeature() if text is not None: UpperCamelCase_: Optional[int] = self.tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) encoding.update(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self.qformer_tokenizer( text=_lowerCamelCase , add_special_tokens=_lowerCamelCase , padding=_lowerCamelCase , truncation=_lowerCamelCase , max_length=_lowerCamelCase , stride=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_overflowing_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , return_length=_lowerCamelCase , verbose=_lowerCamelCase , return_tensors=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_: Dict = qformer_text_encoding.pop('input_ids' ) UpperCamelCase_: int = qformer_text_encoding.pop('attention_mask' ) if images is not None: UpperCamelCase_: int = self.image_processor(_lowerCamelCase , return_tensors=_lowerCamelCase ) encoding.update(_lowerCamelCase ) return encoding def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _a ( self ): UpperCamelCase_: Optional[int] = self.tokenizer.model_input_names UpperCamelCase_: Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _a ( self , _lowerCamelCase , **_lowerCamelCase ): if os.path.isfile(_lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) UpperCamelCase_: List[str] = os.path.join(_lowerCamelCase , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(_lowerCamelCase ) return super().save_pretrained(_lowerCamelCase , **_lowerCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , **_lowerCamelCase ): UpperCamelCase_: Tuple = AutoTokenizer.from_pretrained(_lowerCamelCase , subfolder='qformer_tokenizer' ) UpperCamelCase_: int = cls._get_arguments_from_pretrained(_lowerCamelCase , **_lowerCamelCase ) args.append(_lowerCamelCase ) return cls(*_lowerCamelCase )
362
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Any = mock.Mock() UpperCamelCase_: Dict = 5_0_0 UpperCamelCase_: Any = {} UpperCamelCase_: Tuple = HTTPError UpperCamelCase_: List[str] = {} # Download this model to make sure it's in the cache. UpperCamelCase_: int = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _a ( self ): # A mock response for an HTTP head request to emulate server down UpperCamelCase_: Union[str, Any] = mock.Mock() UpperCamelCase_: Union[str, Any] = 5_0_0 UpperCamelCase_: str = {} UpperCamelCase_: List[str] = HTTPError UpperCamelCase_: Optional[int] = {} # Download this model to make sure it's in the cache. UpperCamelCase_: List[str] = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: UpperCamelCase_: str = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self ): # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase_: Optional[int] = tempfile.mktemp() with open(_lowerCamelCase , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , _lowerCamelCase ) UpperCamelCase_: Tuple = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , _lowerCamelCase ) UpperCamelCase_: List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def _a ( self ): # This test is for deprecated behavior and can be removed in v5 UpperCamelCase_: Any = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def _a ( cls ): UpperCamelCase_: Optional[int] = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _a ( cls ): try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: List[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: int = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Union[str, Any] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id='test-tokenizer' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: List[str] = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _a ( self ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Union[str, Any] = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase_: Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) UpperCamelCase_: Optional[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _a ( self ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Optional[int] = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: str = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_: Optional[Any] = os.path.join(_lowerCamelCase , 'vocab.txt' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase_: Dict = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) UpperCamelCase_: List[str] = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase_: Tuple = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase_: int = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Dict = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def _a ( self ): UpperCamelCase_: Optional[int] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def _a ( self ): UpperCamelCase_: int = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def _a ( self ): UpperCamelCase_: str = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: Union[str, Any] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def _a ( self ): UpperCamelCase_: List[str] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def _a ( self ): UpperCamelCase_: List[str] = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def _a ( self ): # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase_: Union[str, Any] = Trie() UpperCamelCase_: Any = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ['AB', 'C'] )
292
0
"""simple docstring""" import pytest _snake_case = '__dummy_dataset1__' _snake_case = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def lowerCAmelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCAmelCase__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = dataset_loading_script_name _a : List[Any] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=UpperCamelCase__ ) _a : Optional[int] = script_dir / F"""{script_name}.py""" with open(UpperCamelCase__ , """w""" ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ )
294
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor _snake_case = logging.get_logger(__name__) class UpperCamelCase ( snake_case_ ): def __init__( self : Any , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Tuple ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
294
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase_ ( a): def __init__( self, __a): '''simple docstring''' _lowerCAmelCase : str = data def __iter__( self): '''simple docstring''' for element in self.data: yield element def A ( _lowerCamelCase=True ): '''simple docstring''' _lowerCAmelCase : Any = Accelerator(even_batches=_lowerCamelCase ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False ): '''simple docstring''' if iterable: _lowerCAmelCase : List[str] = DummyIterableDataset(torch.as_tensor(range(_lowerCamelCase ) ) ) else: _lowerCAmelCase : Union[str, Any] = TensorDataset(torch.as_tensor(range(_lowerCamelCase ) ) ) _lowerCAmelCase : List[str] = DataLoader(_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : Tuple = accelerator.prepare(_lowerCamelCase ) return dl def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): '''simple docstring''' _lowerCAmelCase : str = create_dataloader(accelerator=_lowerCamelCase , dataset_size=_lowerCamelCase , batch_size=_lowerCamelCase ) _lowerCAmelCase : str = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def A ( ): '''simple docstring''' _lowerCAmelCase : Tuple = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def A ( ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = create_accelerator(even_batches=_lowerCamelCase ) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( _lowerCamelCase , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def A ( ): '''simple docstring''' _lowerCAmelCase : str = create_accelerator(even_batches=_lowerCamelCase ) _lowerCAmelCase : int = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Any = accelerator.prepare(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) _lowerCAmelCase : Tuple = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = ddp_model(batch[0].float() ) _lowerCAmelCase : List[Any] = output.sum() loss.backward() batch_idxs.append(_lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def A ( _lowerCamelCase ): '''simple docstring''' with warnings.catch_warnings(record=_lowerCamelCase ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , _lowerCamelCase ) assert "only supported for multi-GPU" in str(w[-1].message ) def A ( ): '''simple docstring''' _lowerCAmelCase : str = True _lowerCAmelCase : int = False _lowerCAmelCase : Any = create_accelerator(even_batches=_lowerCamelCase ) _lowerCAmelCase : List[Any] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Union[str, Any] = accelerator.prepare(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) _lowerCAmelCase : Optional[Any] = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): _lowerCAmelCase : Any = train_dl.batch_sampler.even_batches _lowerCAmelCase : Union[str, Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = True _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Optional[int] = create_accelerator(even_batches=_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : str = accelerator.prepare(_lowerCamelCase ) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase ) _lowerCAmelCase : str = create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings("ignore" ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): _lowerCAmelCase : int = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def A ( ): '''simple docstring''' _lowerCAmelCase : int = create_accelerator() _lowerCAmelCase : str = torch.nn.Linear(1 , 1 ) _lowerCAmelCase : Union[str, Any] = accelerator.prepare(_lowerCamelCase ) create_dataloader(_lowerCamelCase , dataset_size=3 , batch_size=1 , iterable=_lowerCamelCase ) with warnings.catch_warnings(record=_lowerCamelCase ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=_lowerCamelCase ): pass assert issubclass(w[-1].category , _lowerCamelCase ) assert "only supported for map-style datasets" in str(w[-1].message ) def A ( ): '''simple docstring''' _lowerCAmelCase : Dict = create_accelerator() accelerator.print("Test that even_batches variable ensures uniform batches across processes" ) test_default_ensures_even_batch_sizes() accelerator.print("Run tests with even_batches disabled" ) test_can_disable_even_batches() accelerator.print("Test joining uneven inputs" ) test_can_join_uneven_inputs() accelerator.print("Test overriding even_batches when joining uneven inputs" ) test_join_can_override_even_batches() accelerator.print("Test overriding even_batches for mixed dataloader types" ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print("Test join with non DDP distributed raises warning" ) _lowerCAmelCase : List[str] = accelerator.state.distributed_type _lowerCAmelCase : Optional[int] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(_lowerCamelCase ) _lowerCAmelCase : List[Any] = original_state if __name__ == "__main__": main()
300
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = StableDiffusionDiffEditPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE = frozenset([] ) def _lowerCAmelCase( self ) -> Any: torch.manual_seed(0 ) lowercase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__a , ) lowercase__ : Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__a , set_alpha_to_one=__a , ) lowercase__ : Optional[Any] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=__a , set_alpha_to_zero=__a , ) torch.manual_seed(0 ) lowercase__ : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) lowercase__ : Dict = CLIPTextModel(__a ) lowercase__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : Optional[int] = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> int: lowercase__ : List[Any] = floats_tensor((1, 16, 16) , rng=random.Random(__a ) ).to(__a ) lowercase__ : Tuple = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__a ) ).to(__a ) if str(__a ).startswith('''mps''' ): lowercase__ : Union[str, Any] = torch.manual_seed(__a ) else: lowercase__ : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowercase__ : Optional[Any] = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Optional[Any]: lowercase__ : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) lowercase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : Optional[int] = Image.fromarray(np.uinta(__a ) ).convert('''RGB''' ) if str(__a ).startswith('''mps''' ): lowercase__ : Any = torch.manual_seed(__a ) else: lowercase__ : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowercase__ : List[str] = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> List[Any]: lowercase__ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) lowercase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : Any = Image.fromarray(np.uinta(__a ) ).convert('''RGB''' ) if str(__a ).startswith('''mps''' ): lowercase__ : List[str] = torch.manual_seed(__a ) else: lowercase__ : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowercase__ : str = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def _lowerCAmelCase( self ) -> int: if not hasattr(self.pipeline_class , '''_optional_components''' ): return lowercase__ : str = self.get_dummy_components() lowercase__ : Optional[int] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(__a , __a , __a ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowercase__ : Dict = self.get_dummy_inputs(__a ) lowercase__ : Dict = pipe(**__a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__a ) lowercase__ : int = self.pipeline_class.from_pretrained(__a ) pipe_loaded.to(__a ) pipe_loaded.set_progress_bar_config(disable=__a ) for optional_component in pipe._optional_components: self.assertTrue( getattr(__a , __a ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) lowercase__ : Dict = self.get_dummy_inputs(__a ) lowercase__ : Tuple = pipe_loaded(**__a )[0] lowercase__ : Optional[Any] = np.abs(output - output_loaded ).max() self.assertLess(__a , 1E-4 ) def _lowerCAmelCase( self ) -> int: lowercase__ : List[Any] = """cpu""" lowercase__ : Dict = self.get_dummy_components() lowercase__ : Optional[Any] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ : int = self.get_dummy_mask_inputs(__a ) lowercase__ : Union[str, Any] = pipe.generate_mask(**__a ) lowercase__ : List[Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowercase__ : Any = np.array([0] * 9 ) lowercase__ : Any = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : Any = """cpu""" lowercase__ : Any = self.get_dummy_components() lowercase__ : List[str] = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ : List[Any] = self.get_dummy_inversion_inputs(__a ) lowercase__ : Any = pipe.invert(**__a ).images lowercase__ : Tuple = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ : List[str] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowercase__ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) def _lowerCAmelCase( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=5E-3 ) def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Optional[Any] = """cpu""" lowercase__ : str = self.get_dummy_components() lowercase__ : List[str] = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""} lowercase__ : int = DPMSolverMultistepScheduler(**__a ) lowercase__ : List[str] = DPMSolverMultistepInverseScheduler(**__a ) lowercase__ : str = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowercase__ : Optional[Any] = self.get_dummy_inversion_inputs(__a ) lowercase__ : Union[str, Any] = pipe.invert(**__a ).images lowercase__ : Optional[int] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowercase__ : List[Any] = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) lowercase__ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__a , 1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowerCAmelCase( cls ) -> Tuple: lowercase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' ) lowercase__ : Tuple = raw_image.convert('''RGB''' ).resize((768, 768) ) lowercase__ : int = raw_image def _lowerCAmelCase( self ) -> Tuple: lowercase__ : int = torch.manual_seed(0 ) lowercase__ : List[str] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__a , torch_dtype=torch.floataa ) lowercase__ : List[str] = DDIMScheduler.from_config(pipe.scheduler.config ) lowercase__ : Union[str, Any] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) lowercase__ : str = """a bowl of fruit""" lowercase__ : Optional[Any] = """a bowl of pears""" lowercase__ : Union[str, Any] = pipe.generate_mask( image=self.raw_image , source_prompt=__a , target_prompt=__a , generator=__a , ) lowercase__ : int = pipe.invert( prompt=__a , image=self.raw_image , inpaint_strength=0.7 , generator=__a ).latents lowercase__ : Optional[int] = pipe( prompt=__a , mask_image=__a , image_latents=__a , generator=__a , negative_prompt=__a , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] lowercase__ : str = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1 def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Optional[Any] = torch.manual_seed(0 ) lowercase__ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=__a , torch_dtype=torch.floataa ) lowercase__ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowercase__ : Optional[Any] = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) lowercase__ : Union[str, Any] = """a bowl of fruit""" lowercase__ : List[Any] = """a bowl of pears""" lowercase__ : Tuple = pipe.generate_mask( image=self.raw_image , source_prompt=__a , target_prompt=__a , generator=__a , ) lowercase__ : str = pipe.invert( prompt=__a , image=self.raw_image , inpaint_strength=0.7 , generator=__a , num_inference_steps=25 , ).latents lowercase__ : Union[str, Any] = pipe( prompt=__a , mask_image=__a , image_latents=__a , generator=__a , negative_prompt=__a , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] lowercase__ : List[str] = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5E-1
198
lowerCamelCase : Dict = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
233
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __magic_name__ : def __init__( self : List[str] ,_UpperCAmelCase : int ,_UpperCAmelCase : int=13 ,_UpperCAmelCase : Dict=7 ,_UpperCAmelCase : Tuple=True ,_UpperCAmelCase : Optional[Any]=True ,_UpperCAmelCase : List[str]=True ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : Optional[Any]=99 ,_UpperCAmelCase : List[str]=32 ,_UpperCAmelCase : Any=2 ,_UpperCAmelCase : Optional[Any]=4 ,_UpperCAmelCase : Any=37 ,_UpperCAmelCase : Tuple="gelu" ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : Any=0.1 ,_UpperCAmelCase : List[Any]=512 ,_UpperCAmelCase : List[str]=16 ,_UpperCAmelCase : int=2 ,_UpperCAmelCase : List[str]=0.02 ,_UpperCAmelCase : Any=False ,_UpperCAmelCase : Optional[Any]=True ,_UpperCAmelCase : Union[str, Any]="None" ,_UpperCAmelCase : Union[str, Any]=3 ,_UpperCAmelCase : Optional[Any]=4 ,_UpperCAmelCase : Optional[Any]=None ,): _a : List[Any] = parent _a : Tuple = batch_size _a : int = seq_length _a : Union[str, Any] = is_training _a : Dict = use_input_mask _a : int = use_token_type_ids _a : List[Any] = use_labels _a : Tuple = vocab_size _a : Any = hidden_size _a : Optional[Any] = num_hidden_layers _a : int = num_attention_heads _a : int = intermediate_size _a : int = hidden_act _a : Any = hidden_dropout_prob _a : Optional[int] = attention_probs_dropout_prob _a : Tuple = max_position_embeddings _a : Optional[int] = type_vocab_size _a : Dict = type_sequence_label_size _a : Tuple = initializer_range _a : Optional[Any] = num_labels _a : Dict = num_choices _a : List[str] = relative_attention _a : str = position_biased_input _a : Dict = pos_att_type _a : Optional[Any] = scope def __lowercase ( self : Union[str, Any] ): _a : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _a : Optional[Any] = None if self.use_input_mask: _a : Any = random_attention_mask([self.batch_size, self.seq_length] ) _a : List[str] = None if self.use_token_type_ids: _a : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _a : List[str] = None _a : Tuple = None _a : List[str] = None if self.use_labels: _a : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _a : List[Any] = DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,initializer_range=self.initializer_range ,return_dict=_UpperCAmelCase ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : str ): _a : List[str] = TFDebertaVaModel(config=_UpperCAmelCase ) _a : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _a : Any = [input_ids, input_mask] _a : Dict = model(_UpperCAmelCase ) _a : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : int ,_UpperCAmelCase : Optional[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ): _a : Optional[Any] = TFDebertaVaForMaskedLM(config=_UpperCAmelCase ) _a : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : List[Any] ): _a : List[Any] = self.num_labels _a : int = TFDebertaVaForSequenceClassification(config=_UpperCAmelCase ) _a : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : Dict = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : List[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[str] ): _a : str = self.num_labels _a : Any = TFDebertaVaForTokenClassification(config=_UpperCAmelCase ) _a : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[Any] ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[Any] ): _a : List[str] = TFDebertaVaForQuestionAnswering(config=_UpperCAmelCase ) _a : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _a : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowercase ( self : Optional[Any] ): _a : Dict = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : int = config_and_inputs _a : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : str = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase : str = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Optional[Any] = False def __lowercase ( self : List[Any] ): _a : Dict = TFDebertaVaModelTester(self ) _a : Optional[int] = ConfigTester(self ,config_class=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Dict ): self.config_tester.run_common_tests() def __lowercase ( self : int ): _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : List[Any] ): _a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def __lowercase ( self : Dict ): _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def __lowercase ( self : Optional[int] ): _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def __lowercase ( self : Tuple ): _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def __lowercase ( self : Optional[Any] ): _a : List[str] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class __magic_name__ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __lowercase ( self : Union[str, Any] ): pass @slow def __lowercase ( self : str ): _a : Optional[Any] = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) _a : List[Any] = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _a : Any = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a : Tuple = model(_UpperCAmelCase ,attention_mask=_UpperCAmelCase )[0] _a : Dict = tf.constant( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] ,_UpperCAmelCase ,atol=1E-4 )
107
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( lowerCAmelCase_ ) -> str: return "".join(sorted(lowerCAmelCase_ ) ) def __lowerCamelCase ( lowerCAmelCase_ ) -> list[str]: return word_by_signature[signature(lowerCAmelCase_ )] __lowerCAmelCase = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') __lowerCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) __lowerCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __lowerCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
107
1
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : str = """ml.p3.2xlarge""" lowerCAmelCase__ : Optional[Any] = """accelerate_sagemaker_execution_role""" lowerCAmelCase__ : Optional[int] = """hf-sm""" lowerCAmelCase__ : List[Any] = """us-east-1""" lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : List[str] = """accelerate-sagemaker-1""" lowerCAmelCase__ : Any = """1.6""" lowerCAmelCase__ : Optional[Any] = """4.4""" lowerCAmelCase__ : Union[str, Any] = """train.py""" lowerCAmelCase__ : str = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] lowerCAmelCase__ : Tuple = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , UpperCamelCase ) assert isinstance(converted_args['''do_train'''] , UpperCamelCase ) assert isinstance(converted_args['''epochs'''] , UpperCamelCase ) assert isinstance(converted_args['''learning_rate'''] , UpperCamelCase ) assert isinstance(converted_args['''max_steps'''] , UpperCamelCase ) with pytest.raises(UpperCamelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
2
"""simple docstring""" import os import numpy import onnx def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = a.name UpperCAmelCase__ = b.name UpperCAmelCase__ = '' UpperCAmelCase__ = '' UpperCAmelCase__ = a == b UpperCAmelCase__ = name_a UpperCAmelCase__ = name_b return res def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCamelCase , lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase , lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase , lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase , lowerCamelCase ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): for n in graph_proto.node: _node_replace_input_with(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = list(model.graph.initializer ) UpperCAmelCase__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCAmelCase__ = inits[i].name UpperCAmelCase__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase , lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = os.path.dirname(lowerCamelCase ) UpperCAmelCase__ = os.path.basename(lowerCamelCase ) UpperCAmelCase__ = onnx.load(os.path.join(lowerCamelCase , lowerCamelCase ) ) UpperCAmelCase__ = list(model.graph.initializer ) UpperCAmelCase__ = set() UpperCAmelCase__ = {} UpperCAmelCase__ = [] UpperCAmelCase__ = 0 for i in range(len(lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCamelCase ) dup_set.add(lowerCamelCase ) UpperCAmelCase__ = inits[j].data_type UpperCAmelCase__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , lowerCamelCase ) total_reduced_size += mem_size UpperCAmelCase__ = inits[i].name UpperCAmelCase__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase ) else: UpperCAmelCase__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) UpperCAmelCase__ = sorted(lowerCamelCase ) _remove_dup_initializers_from_model(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = 'optimized_' + model_file_name UpperCAmelCase__ = os.path.join(lowerCamelCase , lowerCamelCase ) onnx.save(lowerCamelCase , lowerCamelCase ) return new_model
98
0
class A__ ( snake_case__ ): """simple docstring""" pass class A__ ( snake_case__ ): """simple docstring""" pass class A__ : """simple docstring""" def __init__( self ): snake_case = [ [], [], [], ] def a_ ( self , __snake_case , __snake_case ): try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(__snake_case ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def a_ ( self ): for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self ): return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class A__ : """simple docstring""" def __init__( self ): snake_case = [] def a_ ( self , __snake_case ): if len(self.queue ) == 1_0_0: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(__snake_case ) def a_ ( self ): if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: snake_case = min(self.queue ) self.queue.remove(__snake_case ) return data def __str__( self ): return str(self.queue ) def UpperCAmelCase__ (): """simple docstring""" snake_case = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,1_00 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,1_28 ) print(UpperCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(UpperCamelCase_ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def UpperCAmelCase__ (): """simple docstring""" snake_case = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(1_00 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(1_28 ) print(UpperCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(UpperCamelCase_ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
213
import math class A__ : """simple docstring""" def a_ ( self , __snake_case , __snake_case ): snake_case = 0.0 snake_case = 0.0 for i in range(len(__snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def a_ ( self , __snake_case , __snake_case , __snake_case , __snake_case ): for i in range(len(__snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCAmelCase__ (): """simple docstring""" snake_case = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case = SelfOrganizingMap() snake_case = 3 snake_case = 0.5 for _ in range(UpperCamelCase_ ): for j in range(len(UpperCamelCase_ ) ): # training sample snake_case = training_samples[j] # Compute the winning vector snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # Update the winning vector snake_case = self_organizing_map.update(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ) # classify test sample snake_case = [0, 0, 0, 1] snake_case = self_organizing_map.get_winner(UpperCamelCase_ ,UpperCamelCase_ ) # results print(F'''Clusters that the test sample belongs to : {winner}''' ) print(F'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
213
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : List[Any] = logging.getLogger() def __UpperCamelCase ( ) ->Optional[Any]: """simple docstring""" lowerCamelCase_ =argparse.ArgumentParser() parser.add_argument("""-f""" ) lowerCamelCase_ =parser.parse_args() return args.f def __UpperCamelCase ( _A : Union[str, Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ ={} lowerCamelCase_ =os.path.join(_A , """all_results.json""" ) if os.path.exists(_A ): with open(_A , """r""" ) as f: lowerCamelCase_ =json.load(_A ) else: raise ValueError(f'can\'t find {path}' ) return results def __UpperCamelCase ( ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() __A : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): @classmethod def _snake_case ( cls )-> Any: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU lowerCamelCase_ =tempfile.mkdtemp() lowerCamelCase_ =os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) lowerCamelCase_ =["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def _snake_case ( cls )-> Any: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Any: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Optional[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCamelCase_ =7 if get_gpu_count() > 1 else 2 lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Optional[Any]: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Tuple: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """translation_no_trainer""" ) ) ) @slow def _snake_case ( self )-> Any: lowerCamelCase_ =logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.1_0 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def _snake_case ( self )-> Optional[int]: lowerCamelCase_ =self.get_auto_remove_tmp_dir() lowerCamelCase_ =f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) lowerCamelCase_ =get_results(_SCREAMING_SNAKE_CASE ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """image_classification_no_trainer""" ) ) )
154
def __UpperCamelCase ( _A : Dict ) ->List[str]: """simple docstring""" lowerCamelCase_ =[0] * len(_A ) lowerCamelCase_ =[] lowerCamelCase_ =[] lowerCamelCase_ =0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: lowerCamelCase_ =queue.pop(0 ) cnt += 1 topo.append(_A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_A ) if cnt != len(_A ): print("""Cycle exists""" ) else: print(_A ) # Adjacency List of Graph __A : List[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
154
1
import datasets from .evaluate import evaluate _UpperCAmelCase = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' _UpperCAmelCase = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' _UpperCAmelCase = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCamelCase_ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=_SCREAMING_SNAKE_CASE , predictions=_SCREAMING_SNAKE_CASE ) return score
328
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
1
import doctest from collections import deque import numpy as np class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> None: _A : Tuple = [2, 1, 2, -1] _A : Dict = [1, 2, 3, 4] def _lowerCamelCase ( self) -> list[float]: _A : int = len(self.first_signal) _A : List[str] = len(self.second_signal) _A : List[str] = max(__lowerCamelCase , __lowerCamelCase) # create a zero matrix of max_length x max_length _A : Dict = [[0] * max_length for i in range(__lowerCamelCase)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase): _A : int = deque(self.second_signal) rotated_signal.rotate(__lowerCamelCase) for j, item in enumerate(__lowerCamelCase): matrix[i][j] += item # multiply the matrix with the first signal _A : Dict = np.matmul(np.transpose(__lowerCamelCase) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(__lowerCamelCase , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
11
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def UpperCamelCase_ ( lowerCAmelCase__ : int ): """simple docstring""" lowerCAmelCase_ : int = int(number**0.5 ) return number == sq * sq def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): """simple docstring""" lowerCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCAmelCase_ : int = x_den * y_den * z_den lowerCAmelCase_ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def UpperCamelCase_ ( lowerCAmelCase__ : int = 35 ): """simple docstring""" lowerCAmelCase_ : set = set() lowerCAmelCase_ : int lowerCAmelCase_ : Fraction = Fraction(0 ) lowerCAmelCase_ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowerCAmelCase_ : str = x_num * y_den + x_den * y_num lowerCAmelCase_ : int = x_den * y_den lowerCAmelCase_ : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : List[str] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 lowerCAmelCase_ : Optional[int] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCAmelCase_ : Dict = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): lowerCAmelCase_ : Optional[int] = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : List[str] = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : Union[str, Any] = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Union[str, Any] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=-1 lowerCAmelCase_ : Dict = x_num * y_num lowerCAmelCase_ : Optional[int] = x_den * y_num + x_num * y_den lowerCAmelCase_ : Any = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Tuple = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 lowerCAmelCase_ : List[str] = x_num * x_num * y_num * y_num lowerCAmelCase_ : Optional[Any] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): lowerCAmelCase_ : Tuple = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : Optional[Any] = int(sqrt(lowerCAmelCase__ ) ) lowerCAmelCase_ : Optional[int] = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCAmelCase_ : Any = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) for num, den in unique_s: total += Fraction(lowerCAmelCase__ , lowerCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'{solution() = }')
371
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar lowercase__ : Any = TypeVar("""_T""") class UpperCamelCase__ ( Generic[_T] ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Iterable[_T] | None = None ): lowerCAmelCase_ : list[_T] = list(iterable or [] ) lowerCAmelCase_ : list[_T] = [] def __len__( self : List[str] ): return len(self._stacka ) + len(self._stacka ) def __repr__( self : int ): return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : _T ): self._stacka.append(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : List[str] = self._stacka.pop lowerCAmelCase_ : int = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('Queue is empty' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
289
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = [0.4814_5466, 0.457_8275, 0.4082_1073] , SCREAMING_SNAKE_CASE_ = [0.2686_2954, 0.2613_0258, 0.2757_7711] , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=3 , ) -> List[str]: UpperCamelCase :Optional[int] = parent UpperCamelCase :List[Any] = do_resize UpperCamelCase :Dict = size if size is not None else {'''shortest_edge''': 288} UpperCamelCase :int = size_divisor UpperCamelCase :List[str] = do_rescale UpperCamelCase :List[Any] = rescale_factor UpperCamelCase :List[Any] = do_normalize UpperCamelCase :Optional[Any] = do_center_crop UpperCamelCase :Optional[Any] = image_mean UpperCamelCase :Dict = image_std UpperCamelCase :List[Any] = do_pad UpperCamelCase :List[Any] = batch_size UpperCamelCase :Optional[int] = num_channels UpperCamelCase :Any = min_resolution UpperCamelCase :Optional[int] = max_resolution def UpperCAmelCase ( self ) -> Dict: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Any: if not batched: UpperCamelCase :Optional[int] = self.size['''shortest_edge'''] UpperCamelCase :List[str] = image_inputs[0] if isinstance(A_ , Image.Image ): UpperCamelCase :str = image.size else: UpperCamelCase :Tuple = image.shape[1], image.shape[2] UpperCamelCase :str = size / min(A_ , A_ ) if h < w: UpperCamelCase :Union[str, Any] = size, scale * w else: UpperCamelCase :Dict = scale * h, size UpperCamelCase :Union[str, Any] = int((1333 / 800) * size ) if max(A_ , A_ ) > max_size: UpperCamelCase :Tuple = max_size / max(A_ , A_ ) UpperCamelCase :int = newh * scale UpperCamelCase :int = neww * scale UpperCamelCase :List[Any] = int(newh + 0.5 ), int(neww + 0.5 ) UpperCamelCase :Optional[int] = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCamelCase :Any = [] for image in image_inputs: UpperCamelCase :int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase :List[str] = max(A_ , key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0] UpperCamelCase :List[str] = max(A_ , key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase_ ( UpperCamelCase_, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any =BridgeTowerImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Tuple = BridgeTowerImageProcessingTester(self ) @property def UpperCAmelCase ( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , '''image_mean''' ) ) self.assertTrue(hasattr(A_ , '''image_std''' ) ) self.assertTrue(hasattr(A_ , '''do_normalize''' ) ) self.assertTrue(hasattr(A_ , '''do_resize''' ) ) self.assertTrue(hasattr(A_ , '''size''' ) ) self.assertTrue(hasattr(A_ , '''size_divisor''' ) ) def UpperCAmelCase ( self ) -> str: pass def UpperCAmelCase ( self ) -> Tuple: # Initialize image processor UpperCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase :Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase :int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase :Optional[int] = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :Optional[int] = image_processing(A_ , return_tensors='''pt''' ).pixel_values UpperCamelCase :str = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ) -> Tuple: # Initialize image processor UpperCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase :Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase :Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase :List[Any] = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :List[str] = image_processing(A_ , return_tensors='''pt''' ).pixel_values UpperCamelCase :List[Any] = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase ( self ) -> str: # Initialize image processor UpperCamelCase :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase :List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase :int = self.image_processor_tester.get_expected_values(A_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase :str = image_processing(A_ , return_tensors='''pt''' ).pixel_values UpperCamelCase :int = self.image_processor_tester.get_expected_values(A_ , batched=A_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
259
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : int = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __snake_case ( UpperCamelCase_ ): _a = '''roc_bert''' def __init__( self : List[Any] , A_ : Optional[Any]=3_0_5_2_2 , A_ : List[str]=7_6_8 , A_ : Tuple=1_2 , A_ : List[str]=1_2 , A_ : List[str]=3_0_7_2 , A_ : Any="gelu" , A_ : str=0.1 , A_ : int=0.1 , A_ : Optional[int]=5_1_2 , A_ : int=2 , A_ : List[str]=0.02 , A_ : Union[str, Any]=1e-12 , A_ : Union[str, Any]=True , A_ : Tuple=0 , A_ : Union[str, Any]="absolute" , A_ : Optional[Any]=None , A_ : Any=True , A_ : Optional[int]=True , A_ : List[Any]=7_6_8 , A_ : str=9_1_0 , A_ : Dict=5_1_2 , A_ : Optional[int]=2_4_8_5_8 , A_ : Optional[Any]=True , **A_ : Dict , ): lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Tuple = enable_pronunciation lowerCAmelCase_ : Optional[Any] = enable_shape lowerCAmelCase_ : Union[str, Any] = pronunciation_embed_dim lowerCAmelCase_ : List[Any] = pronunciation_vocab_size lowerCAmelCase_ : Tuple = shape_embed_dim lowerCAmelCase_ : str = shape_vocab_size lowerCAmelCase_ : Optional[int] = concat_input lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[Any] = classifier_dropout super().__init__(pad_token_id=A_ , **A_)
103
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) @dataclass class __snake_case : lowerCAmelCase__ = field(metadata={"help": "The name of the task to train on: " + ", ".join(glue_processors.keys() )} ) lowerCAmelCase__ = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) lowerCAmelCase__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCAmelCase__ = field( default=_a , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.task_name.lower() class __snake_case (_a ): lowerCAmelCase__ = "train" lowerCAmelCase__ = "dev" lowerCAmelCase__ = "test" class __snake_case (_a ): lowerCAmelCase__ = 4_2 lowerCAmelCase__ = 4_2 lowerCAmelCase__ = 4_2 def __init__( self : Optional[Any] , _UpperCAmelCase : GlueDataTrainingArguments , _UpperCAmelCase : PreTrainedTokenizerBase , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Union[str, Split] = Split.train , _UpperCAmelCase : Optional[str] = None , ) -> str: '''simple docstring''' warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _UpperCAmelCase , ) _lowerCAmelCase : Dict = args _lowerCAmelCase : Dict = glue_processors[args.task_name]() _lowerCAmelCase : Optional[Any] = glue_output_modes[args.task_name] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: _lowerCAmelCase : Union[str, Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file _lowerCAmelCase : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}" , ) _lowerCAmelCase : Optional[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase : str = label_list[2], label_list[1] _lowerCAmelCase : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : Optional[int] = cached_features_file + """.lock""" with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : Union[str, Any] = torch.load(_UpperCAmelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) else: logger.info(f"Creating features from dataset file at {args.data_dir}" ) if mode == Split.dev: _lowerCAmelCase : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: _lowerCAmelCase : Tuple = self.processor.get_test_examples(args.data_dir ) else: _lowerCAmelCase : List[str] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: _lowerCAmelCase : Optional[int] = examples[:limit_length] _lowerCAmelCase : Union[str, Any] = glue_convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , max_length=args.max_seq_length , label_list=_UpperCAmelCase , output_mode=self.output_mode , ) _lowerCAmelCase : str = time.time() torch.save(self.features , _UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return len(self.features ) def __getitem__( self : Dict , _UpperCAmelCase : Any ) -> InputFeatures: '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.label_list
354
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _lowerCamelCase : str = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __snake_case (unittest.TestCase , _a ): def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: '''simple docstring''' _lowerCAmelCase : List[Any] = load_tool("""text-question-answering""" ) self.tool.setup() _lowerCAmelCase : Optional[Any] = load_tool("""text-question-answering""" , remote=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(_UpperCAmelCase , """What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : List[Any] = self.tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : List[Any] = self.remote_tool(text=_UpperCAmelCase , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(_UpperCAmelCase , """launched the BigScience Research Workshop""" )
159
0
from __future__ import annotations def UpperCamelCase( __UpperCamelCase : str ): return [ord(__UpperCamelCase ) - 96 for elem in plain] def UpperCamelCase( __UpperCamelCase : list[int] ): return "".join(chr(elem + 96 ) for elem in encoded ) def UpperCamelCase( ): lowerCAmelCase_ : Dict = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' ,__UpperCamelCase ) print('''Decoded:''' ,decode(__UpperCamelCase ) ) if __name__ == "__main__": main()
103
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __snake_case : def __init__( self : Tuple , A_ : Any , A_ : Tuple=1_3 , A_ : str=7 , A_ : Any=True , A_ : Union[str, Any]=True , A_ : int=False , A_ : int=True , A_ : List[Any]=9_9 , A_ : Dict=6_4 , A_ : int=5 , A_ : List[Any]=4 , A_ : Optional[Any]=6_4 , A_ : str="gelu" , A_ : Union[str, Any]=0.1 , A_ : List[Any]=0.1 , A_ : Any=5_1_2 , A_ : Union[str, Any]=1_6 , A_ : str=2 , A_ : Any=0.02 , A_ : str=3 , A_ : Optional[int]=4 , A_ : int=None , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : List[Any] = seq_length lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Union[str, Any] = use_input_mask lowerCAmelCase_ : Tuple = use_token_type_ids lowerCAmelCase_ : List[Any] = use_labels lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : List[str] = num_attention_heads lowerCAmelCase_ : List[str] = intermediate_size lowerCAmelCase_ : int = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = type_vocab_size lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = num_labels lowerCAmelCase_ : List[str] = num_choices lowerCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self : Dict): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''') def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowerCAmelCase_ : int = None if self.use_input_mask: lowerCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) lowerCAmelCase_ : Any = None lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[Any] = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) lowerCAmelCase_ : List[str] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Any): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Dict , A_ : Dict , A_ : int , A_ : Tuple , A_ : List[str] , A_ : str , A_ : List[Any]): lowerCAmelCase_ : int = MPNetModel(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Any = model(A_ , A_) lowerCAmelCase_ : Union[str, Any] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self : List[str] , A_ : Union[str, Any] , A_ : List[Any] , A_ : Optional[int] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Any): lowerCAmelCase_ : Any = MPNetForQuestionAnswering(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : int = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Tuple , A_ : List[str] , A_ : Optional[Any] , A_ : Dict , A_ : Union[str, Any] , A_ : Tuple): lowerCAmelCase_ : Tuple = self.num_labels lowerCAmelCase_ : Any = MPNetForSequenceClassification(A_) model.to(A_) model.eval() lowerCAmelCase_ : Dict = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any] , A_ : Tuple , A_ : Dict , A_ : Tuple , A_ : Dict , A_ : List[str] , A_ : List[Any]): lowerCAmelCase_ : int = self.num_choices lowerCAmelCase_ : List[str] = MPNetForMultipleChoice(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[Any] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : int = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowerCAmelCase_ : Optional[int] = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase__ ( self : Optional[Any] , A_ : Any , A_ : int , A_ : Any , A_ : List[Any] , A_ : Any , A_ : Union[str, Any]): lowerCAmelCase_ : int = self.num_labels lowerCAmelCase_ : Tuple = MPNetForTokenClassification(config=A_) model.to(A_) model.eval() lowerCAmelCase_ : Optional[int] = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ((lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_) , (lowerCAmelCase_)) : Union[str, Any] = config_and_inputs lowerCAmelCase_ : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( UpperCamelCase_ ,UpperCamelCase_ ,unittest.TestCase ): _a = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _a = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) _a = False _a = True def UpperCAmelCase__ ( self : Union[str, Any]): lowerCAmelCase_ : List[Any] = MPNetModelTester(self) lowerCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=A_ , hidden_size=3_7) def UpperCAmelCase__ ( self : Any): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any]): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*A_) def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*A_) def UpperCAmelCase__ ( self : int): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*A_) def UpperCAmelCase__ ( self : str): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*A_) @require_torch class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self : Tuple): lowerCAmelCase_ : Union[str, Any] = MPNetModel.from_pretrained('''microsoft/mpnet-base''') lowerCAmelCase_ : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]]) lowerCAmelCase_ : Union[str, Any] = model(A_)[0] lowerCAmelCase_ : Optional[int] = torch.Size((1, 1_1, 7_6_8)) self.assertEqual(output.shape , A_) lowerCAmelCase_ : Tuple = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4))
103
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int=None , lowerCAmelCase: Union[str, Any]=None ) -> Union[str, Any]: return field(default_factory=lambda: default , metadata=lowerCAmelCase ) @dataclass class a : _lowercase = field( metadata={"help": "The csv file to plot."} , ) _lowercase = field( default=lowerCAmelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) _lowercase = field( default=lowerCAmelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) _lowercase = field( default=lowerCAmelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) _lowercase = field( default=lowerCAmelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) _lowercase = field( default=lowerCAmelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) _lowercase = list_field( default=lowerCAmelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Union[str, Any]: try: int(lowerCAmelCase ) return True except ValueError: return False def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[Any]: try: float(lowerCAmelCase ) return True except ValueError: return False class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = args _UpperCAmelCase : Optional[int] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: _UpperCAmelCase : str = csv.DictReader(__lowerCAmelCase ) for row in reader: _UpperCAmelCase : List[str] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None _UpperCAmelCase : Optional[Any] = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None _UpperCAmelCase : Union[str, Any] = float(row["result"] ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Tuple = plt.subplots() _UpperCAmelCase : List[Any] = "Time usage" if self.args.is_time else "Memory usage" _UpperCAmelCase : Union[str, Any] = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCAmelCase : List[Any] = sorted(set(self.result_dict[model_name]["bsz"] ) ) _UpperCAmelCase : Any = sorted(set(self.result_dict[model_name]["seq_len"] ) ) _UpperCAmelCase : Optional[Any] = self.result_dict[model_name]["result"] ((_UpperCAmelCase) , (_UpperCAmelCase)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCAmelCase : Optional[int] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCAmelCase : Dict = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCAmelCase , ) else: _UpperCAmelCase : List[Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_UpperCAmelCase) , (_UpperCAmelCase)) : Optional[Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) _UpperCAmelCase : List[str] = np.asarray(__lowerCAmelCase , __lowerCAmelCase )[: len(__lowerCAmelCase )] plt.scatter( __lowerCAmelCase , __lowerCAmelCase , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(__lowerCAmelCase , __lowerCAmelCase , "--" ) title_str += f' {label_model_name} vs.' _UpperCAmelCase : Any = title_str[:-4] _UpperCAmelCase : Dict = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__lowerCAmelCase ) plt.xlabel(__lowerCAmelCase ) plt.ylabel(__lowerCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: _UpperCAmelCase : int = HfArgumentParser(lowerCAmelCase ) _UpperCAmelCase : int = parser.parse_args_into_dataclasses()[0] _UpperCAmelCase : Optional[Any] = Plot(args=lowerCAmelCase ) plot.plot() if __name__ == "__main__": main()
358
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class a ( UpperCAmelCase ): _lowercase = ["image_processor", "tokenizer"] _lowercase = "OwlViTImageProcessor" _lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , A_ , ) _UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor" ) _UpperCAmelCase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(A_ , A_ ) def __call__( self , A_=None , A_=None , A_=None , A_="max_length" , A_="np" , **A_ ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(A_ , A_ ) or (isinstance(A_ , A_ ) and not isinstance(text[0] , A_ )): _UpperCAmelCase : Optional[int] = [self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ )] elif isinstance(A_ , A_ ) and isinstance(text[0] , A_ ): _UpperCAmelCase : Optional[int] = [] # Maximum number of queries across batch _UpperCAmelCase : Optional[Any] = max([len(A_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(A_ ) != max_num_queries: _UpperCAmelCase : Optional[int] = t + [" "] * (max_num_queries - len(A_ )) _UpperCAmelCase : str = self.tokenizer(A_ , padding=A_ , return_tensors=A_ , **A_ ) encodings.append(A_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _UpperCAmelCase : List[str] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Tuple = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCAmelCase : Optional[Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCAmelCase : str = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _UpperCAmelCase : Dict = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCAmelCase : Union[str, Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _UpperCAmelCase : Optional[int] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _UpperCAmelCase : Optional[int] = BatchEncoding() _UpperCAmelCase : str = input_ids _UpperCAmelCase : Optional[Any] = attention_mask if query_images is not None: _UpperCAmelCase : int = BatchEncoding() _UpperCAmelCase : str = self.image_processor( A_ , return_tensors=A_ , **A_ ).pixel_values _UpperCAmelCase : Optional[Any] = query_pixel_values if images is not None: _UpperCAmelCase : int = self.image_processor(A_ , return_tensors=A_ , **A_ ) if text is not None and images is not None: _UpperCAmelCase : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**A_ ) , tensor_type=A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_object_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.batch_decode(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' return self.tokenizer.decode(*A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , A_ , ) return self.image_processor_class @property def _UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , A_ , ) return self.image_processor
189
0
from __future__ import annotations def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" if b == 0: return (1, 0) ((_lowerCAmelCase) , (_lowerCAmelCase)) = extended_euclid(snake_case , a % b ) _lowerCAmelCase = a // b return (y, x - k * y) def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" ((_lowerCAmelCase) , (_lowerCAmelCase)) = extended_euclid(snake_case , snake_case ) _lowerCAmelCase = na * na _lowerCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" ((_lowerCAmelCase) , (_lowerCAmelCase)) = extended_euclid(snake_case , snake_case ) if b < 0: _lowerCAmelCase = (b % n + n) % n return b def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = invert_modulo(snake_case , snake_case ), invert_modulo(snake_case , snake_case ) _lowerCAmelCase = na * na _lowerCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
82
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 class __A ( nn.Module ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = (16, 32, 96, 256) lowerCAmelCase_ = jnp.floataa def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase__ = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase__ = self.block_out_channels[i] lowerCamelCase__ = self.block_out_channels[i + 1] lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(__lowerCAmelCase ) lowerCamelCase__ = blocks lowerCamelCase__ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.conv_in(__lowerCAmelCase ) lowerCamelCase__ = nn.silu(__lowerCAmelCase ) for block in self.blocks: lowerCamelCase__ = block(__lowerCAmelCase ) lowerCamelCase__ = nn.silu(__lowerCAmelCase ) lowerCamelCase__ = self.conv_out(__lowerCAmelCase ) return embedding @flax_register_to_config class __A ( nn.Module , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 32 lowerCAmelCase_ = 4 lowerCAmelCase_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase_ = False lowerCAmelCase_ = (320, 640, 1280, 1280) lowerCAmelCase_ = 2 lowerCAmelCase_ = 8 lowerCAmelCase_ = None lowerCAmelCase_ = 1280 lowerCAmelCase_ = 0.0 lowerCAmelCase_ = False lowerCAmelCase_ = jnp.floataa lowerCAmelCase_ = True lowerCAmelCase_ = 0 lowerCAmelCase_ = "rgb" lowerCAmelCase_ = (16, 32, 96, 256) def __lowerCamelCase ( self , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase__ = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase__ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase__ = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase__ = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) lowerCamelCase__ , lowerCamelCase__ = jax.random.split(__lowerCAmelCase ) lowerCamelCase__ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )["params"] def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.block_out_channels lowerCamelCase__ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase__ = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase__ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase__ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase__ = FlaxTimestepEmbedding(__lowerCAmelCase , dtype=self.dtype ) lowerCamelCase__ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase__ = self.only_cross_attention if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase__ = [] lowerCamelCase__ = [] lowerCamelCase__ = block_out_channels[0] lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase__ = output_channel lowerCamelCase__ = block_out_channels[i] lowerCamelCase__ = i == len(__lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase__ = FlaxCrossAttnDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase__ = FlaxDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCAmelCase ) for _ in range(self.layers_per_block ): lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) if not is_final_block: lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(__lowerCAmelCase ) lowerCamelCase__ = down_blocks lowerCamelCase__ = controlnet_down_blocks # mid lowerCamelCase__ = block_out_channels[-1] lowerCamelCase__ = FlaxUNetMidBlockaDCrossAttn( in_channels=__lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase__ = nn.Conv( __lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = 1.0 , __lowerCAmelCase = True , __lowerCAmelCase = False , ): '''simple docstring''' lowerCamelCase__ = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase__ = jnp.flip(__lowerCAmelCase , axis=1 ) # 1. time if not isinstance(__lowerCAmelCase , jnp.ndarray ): lowerCamelCase__ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase__ = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase__ = jnp.expand_dims(__lowerCAmelCase , 0 ) lowerCamelCase__ = self.time_proj(__lowerCAmelCase ) lowerCamelCase__ = self.time_embedding(__lowerCAmelCase ) # 2. pre-process lowerCamelCase__ = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ = self.conv_in(__lowerCAmelCase ) lowerCamelCase__ = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) lowerCamelCase__ = self.controlnet_cond_embedding(__lowerCAmelCase ) sample += controlnet_cond # 3. down lowerCamelCase__ = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = down_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) else: lowerCamelCase__ , lowerCamelCase__ = down_block(__lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase__ = self.mid_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) # 5. contronet blocks lowerCamelCase__ = () for down_block_res_sample, controlnet_block in zip(__lowerCAmelCase , self.controlnet_down_blocks ): lowerCamelCase__ = controlnet_block(__lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase__ = controlnet_down_block_res_samples lowerCamelCase__ = self.controlnet_mid_block(__lowerCAmelCase ) # 6. scaling lowerCamelCase__ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=__lowerCAmelCase , mid_block_res_sample=__lowerCAmelCase )
209
0
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): return round(float(moles / volume ) * nfactor ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ : Optional[Any] = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __UpperCamelCase ( _UpperCAmelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __UpperCAmelCase : List[str] = list(s_dict.keys() ) for key in keys: __UpperCAmelCase : int = R".*/layers_(\d+)" __UpperCAmelCase : List[str] = key if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = re.sub(R"layers_(\d+)", R"block/\1/layer", _UpperCAmelCase ) __UpperCAmelCase : Any = R"(encoder|decoder)\/" if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = re.match(_UpperCAmelCase, _UpperCAmelCase ).groups() if groups[0] == "encoder": __UpperCAmelCase : Optional[Any] = re.sub(R"/mlp/", R"/1/mlp/", _UpperCAmelCase ) __UpperCAmelCase : List[Any] = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", _UpperCAmelCase ) elif groups[0] == "decoder": __UpperCAmelCase : List[Any] = re.sub(R"/mlp/", R"/2/mlp/", _UpperCAmelCase ) __UpperCAmelCase : Any = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", _UpperCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __UpperCAmelCase : List[str] = new_key.replace(_UpperCAmelCase, _UpperCAmelCase ) print(F"{key} -> {new_key}" ) __UpperCAmelCase : Any = s_dict.pop(_UpperCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Tuple = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Optional[Any] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __UpperCAmelCase : Any = s_dict[key].shape[0] __UpperCAmelCase : str = s_dict[key] for idx in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"{key} -> {key.replace('expert/', 'nested fstring' )}" ) s_dict.pop(_UpperCAmelCase ) return s_dict lowerCAmelCase__ : Optional[Any] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(_UpperCAmelCase, "r" ) as f: __UpperCAmelCase : List[Any] = f.read() __UpperCAmelCase : Union[str, Any] = re.findall(R"(.*) = ([0-9.]*)", _UpperCAmelCase ) __UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __UpperCAmelCase : Tuple = float(_UpperCAmelCase ) if "." in value else int(_UpperCAmelCase ) __UpperCAmelCase : str = re.findall(R"(.*activations) = \(\'(.*)\',\)", _UpperCAmelCase )[0] __UpperCAmelCase : int = str(activation[1] ) __UpperCAmelCase : int = num_experts __UpperCAmelCase : List[str] = SwitchTransformersConfig(**_UpperCAmelCase ) return config def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase="./", _UpperCAmelCase=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) __UpperCAmelCase : Dict = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) if gin_file is not None: __UpperCAmelCase : int = convert_gin_to_config(_UpperCAmelCase, _UpperCAmelCase ) else: __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(_UpperCAmelCase ) __UpperCAmelCase : Any = SwitchTransformersForConditionalGeneration(_UpperCAmelCase ) __UpperCAmelCase : str = flax_params["target"] __UpperCAmelCase : Any = flatten_dict(_UpperCAmelCase, sep="/" ) __UpperCAmelCase : Optional[Any] = rename_keys(_UpperCAmelCase ) __UpperCAmelCase : Any = unflatten_dict(_UpperCAmelCase, sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCAmelCase, _UpperCAmelCase ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowerCAmelCase__ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
37
1
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : str ) -> List[str]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCAmelCase : str = mf_knapsack(i - 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: UpperCAmelCase : int = max( mf_knapsack(i - 1 , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , mf_knapsack(i - 1 , _lowerCAmelCase , _lowerCAmelCase , j - wt[i - 1] ) + val[i - 1] , ) UpperCAmelCase : List[str] = val return f[i][j] def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict ) -> List[str]: UpperCAmelCase : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCAmelCase : int = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCAmelCase : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : list , _lowerCAmelCase : list ) -> Dict: if not (isinstance(_lowerCAmelCase , (list, tuple) ) and isinstance(_lowerCAmelCase , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) UpperCAmelCase : int = len(_lowerCAmelCase ) if num_items != len(_lowerCAmelCase ): UpperCAmelCase : str = ( '''The number of weights must be the same as the number of values.\n''' f"""But got {num_items} weights and {len(_lowerCAmelCase )} values""" ) raise ValueError(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): if not isinstance(wt[i] , _lowerCAmelCase ): UpperCAmelCase : Any = ( '''All weights must be integers but got weight of ''' f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] = knapsack(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : set = set() _construct_solution(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return optimal_val, example_optional_set def snake_case_ ( _lowerCAmelCase : list , _lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : set ) -> int: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowerCAmelCase , _lowerCAmelCase , i - 1 , _lowerCAmelCase , _lowerCAmelCase ) else: optimal_set.add(_lowerCAmelCase ) _construct_solution(_lowerCAmelCase , _lowerCAmelCase , i - 1 , j - wt[i - 1] , _lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Optional[int] = [3, 2, 4, 4] UpperCamelCase__: List[str] = [4, 3, 2, 3] UpperCamelCase__: List[Any] = 4 UpperCamelCase__: Tuple = 6 UpperCamelCase__: Optional[Any] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCamelCase__ , UpperCamelCase__: Union[str, Any] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCamelCase__ , UpperCamelCase__: Tuple = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
23
from __future__ import annotations from typing import Any def lowercase_ ( _A : list[Any] ): """simple docstring""" create_state_space_tree(_A , [] , 0 ) def lowercase_ ( _A : list[Any] , _A : list[Any] , _A : int ): """simple docstring""" if index == len(_A ): print(_A ) return create_state_space_tree(_A , _A , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_A , _A , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["A", "B", "C"]) generate_all_subsequences(seq)
184
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 42 class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a , __a , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules( prior=__a , image_encoder=__a , image_processor=__a , scheduler=__a , renderer=__a , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' if latents is None: _UpperCamelCase = randn_tensor(__a , generator=__a , device=__a , dtype=__a) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''') _UpperCamelCase = latents.to(__a) _UpperCamelCase = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self , __a=0) -> Optional[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') _UpperCamelCase = torch.device(F'''cuda:{gpu_id}''') _UpperCamelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__a , __a) @property def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' if self.device != torch.device('''meta''') or not hasattr(self.image_encoder , '''_hf_hook'''): return self.device for module in self.image_encoder.modules(): if ( hasattr(__a , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def UpperCAmelCase ( self , __a , __a , __a , __a , ) -> Optional[int]: '''simple docstring''' if isinstance(__a , __a) and isinstance(image[0] , torch.Tensor): _UpperCamelCase = torch.cat(__a , axis=0) if image[0].ndim == 4 else torch.stack(__a , axis=0) if not isinstance(__a , torch.Tensor): _UpperCamelCase = self.image_processor(__a , return_tensors='''pt''').pixel_values[0].unsqueeze(0) _UpperCamelCase = image.to(dtype=self.image_encoder.dtype , device=__a) _UpperCamelCase = self.image_encoder(__a)['''last_hidden_state'''] _UpperCamelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 _UpperCamelCase = image_embeds.repeat_interleave(__a , dim=0) if do_classifier_free_guidance: _UpperCamelCase = torch.zeros_like(__a) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCamelCase = torch.cat([negative_image_embeds, image_embeds]) return image_embeds @torch.no_grad() @replace_example_docstring(__a) def __call__( self , __a , __a = 1 , __a = 25 , __a = None , __a = None , __a = 4.0 , __a = 64 , __a = "pil" , __a = True , ) -> Optional[int]: '''simple docstring''' if isinstance(__a , PIL.Image.Image): _UpperCamelCase = 1 elif isinstance(__a , torch.Tensor): _UpperCamelCase = image.shape[0] elif isinstance(__a , __a) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image)): _UpperCamelCase = len(__a) else: raise ValueError( F'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__a)}''') _UpperCamelCase = self._execution_device _UpperCamelCase = batch_size * num_images_per_prompt _UpperCamelCase = guidance_scale > 1.0 _UpperCamelCase = self._encode_image(__a , __a , __a , __a) # prior self.scheduler.set_timesteps(__a , device=__a) _UpperCamelCase = self.scheduler.timesteps _UpperCamelCase = self.prior.config.num_embeddings _UpperCamelCase = self.prior.config.embedding_dim _UpperCamelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __a , __a , __a , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim _UpperCamelCase = latents.reshape(latents.shape[0] , __a , __a) for i, t in enumerate(self.progress_bar(__a)): # expand the latents if we are doing classifier free guidance _UpperCamelCase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents _UpperCamelCase = self.scheduler.scale_model_input(__a , __a) _UpperCamelCase = self.prior( __a , timestep=__a , proj_embedding=__a , ).predicted_image_embedding # remove the variance _UpperCamelCase , _UpperCamelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: _UpperCamelCase , _UpperCamelCase = noise_pred.chunk(2) _UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) _UpperCamelCase = self.scheduler.step( __a , timestep=__a , sample=__a , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__a) _UpperCamelCase = [] for i, latent in enumerate(__a): print() _UpperCamelCase = self.renderer.decode( latent[None, :] , __a , size=__a , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(__a) _UpperCamelCase = torch.stack(__a) if output_type not in ["np", "pil"]: raise ValueError(F'''Only the output types `pil` and `np` are supported not output_type={output_type}''') _UpperCamelCase = images.cpu().numpy() if output_type == "pil": _UpperCamelCase = [self.numpy_to_pil(__a) for image in images] # Offload last model to CPU if hasattr(self , '''final_offload_hook''') and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__a)
365
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'dandelin/vilt-b32-finetuned-vqa' lowercase__ = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) lowercase__ = 'image_qa' lowercase__ = AutoProcessor lowercase__ = AutoModelForVisualQuestionAnswering lowercase__ = ['image', 'text'] lowercase__ = ['text'] def __init__( self , *__a , **__a) -> int: '''simple docstring''' requires_backends(self , ['''vision''']) super().__init__(*__a , **__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return self.pre_processor(__a , __a , return_tensors='''pt''') def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' with torch.no_grad(): return self.model(**__a).logits def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = outputs.argmax(-1).item() return self.model.config.idalabel[idx]
100
0
"""simple docstring""" from collections.abc import Callable import numpy as np def _snake_case ( UpperCamelCase : Callable , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float , UpperCamelCase : float ): UpperCAmelCase : Any = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) UpperCAmelCase : Optional[int] = ya UpperCAmelCase : int = xa for k in range(UpperCamelCase ): UpperCAmelCase : Optional[int] = y[k] + step_size * ode_func(UpperCamelCase , y[k] ) UpperCAmelCase : Optional[int] = y[k] + ( (step_size / 2) * (ode_func(UpperCamelCase , y[k] ) + ode_func(x + step_size , UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
109
"""simple docstring""" import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _snake_case ( *UpperCamelCase : str , UpperCamelCase : Optional[Union[Dict, Any]] = None , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[int]=2 ): from .. import __version__ UpperCAmelCase : Tuple = take_from UpperCAmelCase : Optional[Any] = () if not isinstance(args[0] , UpperCamelCase ): UpperCAmelCase : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(UpperCamelCase ).base_version ) >= version.parse(UpperCamelCase ): raise ValueError( F"The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'" F" version {__version__} is >= {version_name}" ) UpperCAmelCase : Optional[int] = None if isinstance(UpperCamelCase , UpperCamelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(UpperCamelCase ),) UpperCAmelCase : List[str] = F"The `{attribute}` argument is deprecated and will be removed in version {version_name}." elif hasattr(UpperCamelCase , UpperCamelCase ): values += (getattr(UpperCamelCase , UpperCamelCase ),) UpperCAmelCase : List[Any] = F"The `{attribute}` attribute is deprecated and will be removed in version {version_name}." elif deprecated_kwargs is None: UpperCAmelCase : int = F"`{attribute}` is deprecated and will be removed in version {version_name}." if warning is not None: UpperCAmelCase : Optional[Any] = warning + """ """ if standard_warn else """""" warnings.warn(warning + message , UpperCamelCase , stacklevel=UpperCamelCase ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) > 0: UpperCAmelCase : Optional[int] = inspect.getouterframes(inspect.currentframe() )[1] UpperCAmelCase : Union[str, Any] = call_frame.filename UpperCAmelCase : List[Any] = call_frame.lineno UpperCAmelCase : List[str] = call_frame.function UpperCAmelCase , UpperCAmelCase : Optional[int] = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F"{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`" ) if len(UpperCamelCase ) == 0: return elif len(UpperCamelCase ) == 1: return values[0] return values
109
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCAmelCase_ ( __lowercase, __lowercase): '''simple docstring''' __UpperCamelCase : str = '''nat''' __UpperCamelCase : int = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=[3, 4, 6, 5] , __SCREAMING_SNAKE_CASE=[2, 4, 8, 16] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**UpperCAmelCase__ ) UpperCamelCase : Dict = patch_size UpperCamelCase : List[Any] = num_channels UpperCamelCase : List[Any] = embed_dim UpperCamelCase : List[Any] = depths UpperCamelCase : str = len(UpperCAmelCase__ ) UpperCamelCase : List[str] = num_heads UpperCamelCase : Optional[Any] = kernel_size UpperCamelCase : Dict = mlp_ratio UpperCamelCase : str = qkv_bias UpperCamelCase : str = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : str = drop_path_rate UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Optional[int] = layer_norm_eps UpperCamelCase : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase : Dict = int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) UpperCamelCase : int = layer_scale_init_value UpperCamelCase : Optional[int] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] UpperCamelCase , UpperCamelCase : Optional[int] = get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names )
361
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def a ( SCREAMING_SNAKE_CASE_ : dict ): """simple docstring""" return (data["data"], data["target"]) def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" UpperCamelCase : Optional[Any] = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Predict target for test data UpperCamelCase : Any = xgb.predict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = predictions.reshape(len(SCREAMING_SNAKE_CASE_ ) , 1 ) return predictions def a ( ): """simple docstring""" UpperCamelCase : Tuple = fetch_california_housing() UpperCamelCase , UpperCamelCase : Tuple = data_handling(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = train_test_split( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , test_size=0.25 , random_state=1 ) UpperCamelCase : Optional[Any] = xgboost(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Error printing print(F"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) print(F"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
315
0
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class UpperCamelCase__ ( snake_case__ ): """simple docstring""" UpperCAmelCase_ ='encodec' def __init__( self , _A=[1.5, 3.0, 6.0, 12.0, 24.0] , _A=24000 , _A=1 , _A=False , _A=None , _A=None , _A=128 , _A=32 , _A=1 , _A=[8, 5, 4, 2] , _A="weight_norm" , _A=7 , _A=7 , _A=3 , _A=2 , _A=True , _A="reflect" , _A=2 , _A=2 , _A=1.0 , _A=1024 , _A=None , _A=True , **_A , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = target_bandwidths SCREAMING_SNAKE_CASE_ = sampling_rate SCREAMING_SNAKE_CASE_ = audio_channels SCREAMING_SNAKE_CASE_ = normalize SCREAMING_SNAKE_CASE_ = chunk_length_s SCREAMING_SNAKE_CASE_ = overlap SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_filters SCREAMING_SNAKE_CASE_ = num_residual_layers SCREAMING_SNAKE_CASE_ = upsampling_ratios SCREAMING_SNAKE_CASE_ = norm_type SCREAMING_SNAKE_CASE_ = kernel_size SCREAMING_SNAKE_CASE_ = last_kernel_size SCREAMING_SNAKE_CASE_ = residual_kernel_size SCREAMING_SNAKE_CASE_ = dilation_growth_rate SCREAMING_SNAKE_CASE_ = use_causal_conv SCREAMING_SNAKE_CASE_ = pad_mode SCREAMING_SNAKE_CASE_ = compress SCREAMING_SNAKE_CASE_ = num_lstm_layers SCREAMING_SNAKE_CASE_ = trim_right_ratio SCREAMING_SNAKE_CASE_ = codebook_size SCREAMING_SNAKE_CASE_ = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE_ = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_A ) @property def _UpperCamelCase ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _UpperCamelCase ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _UpperCamelCase ( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
299
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __UpperCamelCase = {'UserAgent': UserAgent().random} def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find('{\"config\"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> Optional[int]: SCREAMING_SNAKE_CASE = F'https://www.instagram.com/{username}/' SCREAMING_SNAKE_CASE = self.get_json() def __A ( self ) -> dict: SCREAMING_SNAKE_CASE = requests.get(self.url , headers=SCREAMING_SNAKE_CASE_ ).text SCREAMING_SNAKE_CASE = BeautifulSoup(SCREAMING_SNAKE_CASE_ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self ) -> str: return F'{self.fullname} ({self.username}) is {self.biography}' @property def __A ( self ) -> str: return self.user_data["username"] @property def __A ( self ) -> str: return self.user_data["full_name"] @property def __A ( self ) -> str: return self.user_data["biography"] @property def __A ( self ) -> str: return self.user_data["business_email"] @property def __A ( self ) -> str: return self.user_data["external_url"] @property def __A ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __A ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def __A ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __A ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def __A ( self ) -> bool: return self.user_data["is_verified"] @property def __A ( self ) -> bool: return self.user_data["is_private"] def lowercase (SCREAMING_SNAKE_CASE_ : str = "github" ) -> str: import os if os.environ.get('CI' ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(lowerCAmelCase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowerCAmelCase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = InstagramUser('''github''') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
365
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> bool: SCREAMING_SNAKE_CASE = int(number**0.5 ) return number == sq * sq def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> tuple[int, int]: SCREAMING_SNAKE_CASE = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE = x_den * y_den * z_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) top //= hcf bottom //= hcf return top, bottom def lowercase (SCREAMING_SNAKE_CASE_ : int = 35 ) -> int: SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = Fraction(0 ) SCREAMING_SNAKE_CASE = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE = x_den * y_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 SCREAMING_SNAKE_CASE = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE = x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=-1 SCREAMING_SNAKE_CASE = x_num * y_num SCREAMING_SNAKE_CASE = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) # n=2 SCREAMING_SNAKE_CASE = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE_ ) and is_sq(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = int(sqrt(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE = gcd(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE = add_three( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) unique_s.add(SCREAMING_SNAKE_CASE_ ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
38
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase ( _UpperCAmelCase ): def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , lowercase=2 , lowercase=99 , lowercase=0 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=12 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase="last" , lowercase=None , lowercase=None , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_lengths lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = gelu_activation lowerCAmelCase = sinusoidal_embeddings lowerCAmelCase = causal lowerCAmelCase = asm lowerCAmelCase = n_langs lowerCAmelCase = vocab_size lowerCAmelCase = n_special lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = summary_type lowerCAmelCase = use_proj lowerCAmelCase = scope def _snake_case ( self ) -> int: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_input_lengths: lowerCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ) -> List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: lowerCAmelCase = FlaubertModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , lengths=lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase , langs=lowercase ) lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = FlaubertWithLMHeadModel(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> str: lowerCAmelCase = FlaubertForQuestionAnsweringSimple(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Dict: lowerCAmelCase = FlaubertForQuestionAnswering(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , p_mask=lowercase , ) lowerCAmelCase = model( lowercase , start_positions=lowercase , end_positions=lowercase , cls_index=lowercase , is_impossible=lowercase , ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() lowerCAmelCase = model(lowercase , start_positions=lowercase , end_positions=lowercase ) ((lowerCAmelCase) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = FlaubertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase ) lowerCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = FlaubertForTokenClassification(lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Tuple: lowerCAmelCase = self.num_choices lowerCAmelCase = FlaubertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self , lowercase , lowercase , lowercase=False ) -> Optional[Any]: lowerCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _snake_case ( self ) -> List[str]: lowerCAmelCase = FlaubertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , emb_dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase ) def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowercase ) @slow def _snake_case ( self ) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = FlaubertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _snake_case ( self ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase = True lowerCAmelCase = model_class(config=lowercase ) lowerCAmelCase = self._prepare_for_class(lowercase , lowercase ) lowerCAmelCase = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """traced_model.pt""" ) ) lowerCAmelCase = torch.jit.load(os.path.join(lowercase , """traced_model.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCAmelCase = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase ) lowerCAmelCase = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
46
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'imagegpt' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=512 + 1 , lowercase=32 * 32 , lowercase=512 , lowercase=24 , lowercase=8 , lowercase=None , lowercase="quick_gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , **lowercase , ) -> Any: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = scale_attn_by_inverse_layer_idx lowerCAmelCase = reorder_and_upcast_attn lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase , **lowercase ) class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self , lowercase , lowercase = 1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 32 , lowercase = 32 , ) -> Mapping[str, Any]: lowerCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) lowerCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) ) return inputs
46
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['ConditionalDetrFeatureExtractor'] _snake_case = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
"""simple docstring""" from __future__ import annotations import time _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class UpperCamelCase : def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Node | None ) -> List[str]: _a : int = pos_x _a : Union[str, Any] = pos_y _a : Tuple = (pos_y, pos_x) _a : Tuple = goal_x _a : int = goal_y _a : str = parent class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : tuple[int, int] , UpperCAmelCase__ : tuple[int, int] ) -> List[str]: _a : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , UpperCAmelCase__ ) _a : Optional[int] = [self.start] _a : Tuple = False def _lowercase ( self : str ) -> Path | None: while self.node_queue: _a : Tuple = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _a : Dict = True return self.retrace_path(UpperCAmelCase__ ) _a : Tuple = self.get_successors(UpperCAmelCase__ ) for node in successors: self.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node ) -> list[Node]: _a : Optional[Any] = [] for action in delta: _a : str = parent.pos_x + action[1] _a : List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(UpperCAmelCase__ , UpperCAmelCase__ , self.target.pos_y , self.target.pos_x , UpperCAmelCase__ ) ) return successors def _lowercase ( self : List[Any] , UpperCAmelCase__ : Node | None ) -> Path: _a : Dict = node _a : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _a : Any = current_node.parent path.reverse() return path class UpperCamelCase : def __init__( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] ) -> Any: _a : Dict = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = BreadthFirstSearch(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = False def _lowercase ( self : Any ) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _a : List[Any] = self.fwd_bfs.node_queue.pop(0 ) _a : Union[str, Any] = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _a : Optional[int] = True return self.retrace_bidirectional_path( UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = current_bwd_node _a : int = current_fwd_node _a : Optional[Any] = { self.fwd_bfs: self.fwd_bfs.get_successors(UpperCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(UpperCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(UpperCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Node , UpperCAmelCase__ : Node ) -> Path: _a : str = self.fwd_bfs.retrace_path(UpperCAmelCase__ ) _a : List[Any] = self.bwd_bfs.retrace_path(UpperCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _a : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = BreadthFirstSearch(init, goal) _snake_case = bfs.search() _snake_case = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) _snake_case = time.time() _snake_case = BidirectionalBreadthFirstSearch(init, goal) _snake_case = bd_bfs.search() _snake_case = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
1
from math import isclose, sqrt def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> tuple[float, float, float]: __lowerCamelCase : Tuple = point_y / 4 / point_x __lowerCamelCase : Tuple = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __lowerCamelCase : List[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __lowerCamelCase : int = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __lowerCamelCase : Any = outgoing_gradient**2 + 4 __lowerCamelCase : Optional[int] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __lowerCamelCase : str = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 __lowerCamelCase : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __lowerCamelCase : Optional[Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __lowerCamelCase : Optional[Any] = x_minus if isclose(lowerCamelCase__ , lowerCamelCase__ ) else x_plus __lowerCamelCase : Tuple = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1.4 , lowerCamelCase__ = -9.6 ) -> int: __lowerCamelCase : int = 0 __lowerCamelCase : float = first_x_coord __lowerCamelCase : float = first_y_coord __lowerCamelCase : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = next_point(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
73
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __magic_name__ ( _UpperCamelCase ): @require_torch def __lowercase ( self : Tuple ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Optional[int] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : List[str] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Tuple = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : List[Any] = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : Tuple = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : List[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : Any ): # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Dict = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' _a : Optional[int] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' _a : Optional[Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache _a : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_UpperCAmelCase ) BertModel.from_pretrained(_UpperCAmelCase ) BertTokenizer.from_pretrained(_UpperCAmelCase ) pipeline(task='fill-mask' ,model=_UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a : Optional[int] = [sys.executable, '-c', '\n'.join([load, run, mock] )] # should succeed _a : str = self.get_env() _a : Optional[Any] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : List[str] ): # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a : Union[str, Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' _a : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' _a : str = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network _a : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Dict = self.get_env() _a : int = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # next emulate no network _a : List[Any] = [sys.executable, '-c', '\n'.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : int = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) @require_torch def __lowercase ( self : int ): _a : Optional[Any] = '\nfrom transformers import pipeline\n ' _a : str = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' _a : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' _a : List[Any] = self.get_env() _a : Dict = '1' _a : Dict = [sys.executable, '-c', '\n'.join([load, mock, run] )] _a : str = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,1 ,result.stderr ) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' ,result.stderr.decode().replace('\n' ,'' ) ,) @require_torch def __lowercase ( self : int ): _a : Optional[int] = '\nfrom transformers import AutoModel\n ' _a : List[Any] = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network _a : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run] )] # should succeed _a : Tuple = self.get_env() _a : List[str] = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a : Optional[Any] = '1' _a : Any = subprocess.run(_UpperCAmelCase ,env=_UpperCAmelCase ,check=_UpperCAmelCase ,capture_output=_UpperCAmelCase ) self.assertEqual(result.returncode ,0 ,result.stderr ) self.assertIn('success' ,result.stdout.decode() )
89
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase__( __A ): lowerCAmelCase__ : Dict = 'fnet' def __init__( self ,__UpperCAmelCase=3_20_00 ,__UpperCAmelCase=7_68 ,__UpperCAmelCase=12 ,__UpperCAmelCase=30_72 ,__UpperCAmelCase="gelu_new" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=4 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1e-12 ,__UpperCAmelCase=False ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=3 ,__UpperCAmelCase=1 ,__UpperCAmelCase=2 ,**__UpperCAmelCase ,) -> Any: super().__init__(pad_token_id=__UpperCAmelCase ,bos_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = use_tpu_fourier_optimizations A__ = tpu_short_seq_length
154
"""simple docstring""" from collections import namedtuple __lowerCamelCase = namedtuple("from_to", "from_ to") __lowerCamelCase = { "cubicmeter": from_to(1, 1), "litre": from_to(0.0_0_1, 10_00), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0_4_5_4, 2_6_4.1_7_2), "cubicyard": from_to(0.7_6_4_5_5, 1.3_0_7_9_5), "cubicfoot": from_to(0.0_2_8, 3_5.3_1_4_7), "cup": from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ', '.join(UpperCamelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ', '.join(UpperCamelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
154
1
'''simple docstring''' import os def _lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =len(grid[0] ) _SCREAMING_SNAKE_CASE =len(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_UpperCamelCase ): for j in range(n_rows - 3 ): _SCREAMING_SNAKE_CASE =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] _SCREAMING_SNAKE_CASE =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: _SCREAMING_SNAKE_CASE =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: _SCREAMING_SNAKE_CASE =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) _SCREAMING_SNAKE_CASE =max( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if max_product > largest: _SCREAMING_SNAKE_CASE =max_product return largest def _lowerCAmelCase ( ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =[] with open(os.path.dirname(_UpperCamelCase ) + '/grid.txt' ) as file: for line in file: grid.append(line.strip('\n' ).split(' ' ) ) _SCREAMING_SNAKE_CASE =[[int(_UpperCamelCase ) for i in grid[j]] for j in range(len(_UpperCamelCase ) )] return largest_product(_UpperCamelCase ) if __name__ == "__main__": print(solution())
47
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( _lowerCamelCase: list[int] , _lowerCamelCase: list[int] , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[Any] = list(range(len(_lowerCamelCase ) ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = [v / w for v, w in zip(_lowerCamelCase , _lowerCamelCase )] index.sort(key=lambda _lowerCamelCase : ratio[i] , reverse=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : float = 0 __SCREAMING_SNAKE_CASE : list[float] = [0] * len(_lowerCamelCase ) for i in index: if weight[i] <= capacity: __SCREAMING_SNAKE_CASE : str = 1 max_value += value[i] capacity -= weight[i] else: __SCREAMING_SNAKE_CASE : int = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
112
0
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
1
'''simple docstring''' from __future__ import annotations class a__ : def __init__( self : List[Any] , a : Tuple ): """simple docstring""" __lowerCamelCase = order # a_{0} ... a_{k} __lowerCamelCase = [1.0] + [0.0] * order # b_{0} ... b_{k} __lowerCamelCase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __lowerCamelCase = [0.0] * self.order # y[n-1] ... y[n-k] __lowerCamelCase = [0.0] * self.order def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : Dict , a : Optional[int] ): """simple docstring""" if len(snake_case_ ) < self.order: __lowerCamelCase = [1.0, *a_coeffs] if len(snake_case_ ) != self.order + 1: __lowerCamelCase = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) if len(snake_case_ ) != self.order + 1: __lowerCamelCase = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(snake_case_ )}""" ) raise ValueError(snake_case_ ) __lowerCamelCase = a_coeffs __lowerCamelCase = b_coeffs def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : int ): """simple docstring""" __lowerCamelCase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __lowerCamelCase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __lowerCamelCase = self.input_history[:-1] __lowerCamelCase = self.output_history[:-1] __lowerCamelCase = sample __lowerCamelCase = result return result
67
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def lowercase (_lowerCAmelCase , _lowerCAmelCase="shi-labs/oneformer_demo" ): with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) as f: __lowerCAmelCase = json.load(_lowerCAmelCase ) __lowerCAmelCase = {} __lowerCAmelCase = [] __lowerCAmelCase = [] for key, info in class_info.items(): __lowerCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) __lowerCAmelCase = thing_ids __lowerCAmelCase = class_names return metadata class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=30 , snake_case_=400 , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=10 , snake_case_=False , snake_case_=255 , snake_case_="shi-labs/oneformer_demo" , snake_case_="ade20k_panoptic.json" , snake_case_=10 , ) -> Union[str, Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1_333} if size is None else size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = class_info_file __lowerCAmelCase = prepare_metadata(snake_case_ , snake_case_ ) __lowerCAmelCase = num_text __lowerCAmelCase = repo_path # for the post_process_functions __lowerCAmelCase = 2 __lowerCAmelCase = 10 __lowerCAmelCase = 10 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = num_labels __lowerCAmelCase = do_reduce_labels __lowerCAmelCase = ignore_index def A__ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def A__ ( self , snake_case_ , snake_case_=False ) -> Dict: if not batched: __lowerCAmelCase = image_inputs[0] if isinstance(snake_case_ , Image.Image ): __lowerCAmelCase , __lowerCAmelCase = image.size else: __lowerCAmelCase , __lowerCAmelCase = image.shape[1], image.shape[2] if w < h: __lowerCAmelCase = int(self.size["""shortest_edge"""] * h / w ) __lowerCAmelCase = self.size["""shortest_edge"""] elif w > h: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: __lowerCAmelCase = self.size["""shortest_edge"""] __lowerCAmelCase = self.size["""shortest_edge"""] else: __lowerCAmelCase = [] for image in image_inputs: __lowerCAmelCase , __lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[0] )[0] __lowerCAmelCase = max(snake_case_ , key=lambda snake_case_ : item[1] )[1] return expected_height, expected_width def A__ ( self ) -> Tuple: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _snake_case = image_processing_class def A__ ( self ) -> str: __lowerCAmelCase = OneFormerImageProcessorTester(self ) @property def A__ ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """ignore_index""" ) ) self.assertTrue(hasattr(snake_case_ , """class_info_file""" ) ) self.assertTrue(hasattr(snake_case_ , """num_text""" ) ) self.assertTrue(hasattr(snake_case_ , """repo_path""" ) ) self.assertTrue(hasattr(snake_case_ , """metadata""" ) ) self.assertTrue(hasattr(snake_case_ , """do_reduce_labels""" ) ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Union[str, Any]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> List[str]: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self ) -> Tuple: # Initialize image_processor __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched __lowerCAmelCase , __lowerCAmelCase = self.image_processing_tester.get_expected_values(snake_case_ , batched=snake_case_ ) __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def A__ ( self , snake_case_=False , snake_case_=False , snake_case_="np" ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target __lowerCAmelCase = self.image_processing_tester.num_labels __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case_ ) if with_segmentation_maps: __lowerCAmelCase = num_labels if is_instance_map: __lowerCAmelCase = list(range(snake_case_ ) ) * 2 __lowerCAmelCase = dict(enumerate(snake_case_ ) ) __lowerCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": __lowerCAmelCase = [Image.fromarray(snake_case_ ) for annotation in annotations] __lowerCAmelCase = image_processor( snake_case_ , ["""semantic"""] * len(snake_case_ ) , snake_case_ , return_tensors="""pt""" , instance_id_to_semantic_id=snake_case_ , pad_and_return_pixel_mask=snake_case_ , ) return inputs def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Optional[Any]: def common(snake_case_=False , snake_case_=None ): __lowerCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case_ , is_instance_map=snake_case_ , segmentation_type=snake_case_ ) __lowerCAmelCase = inputs["""mask_labels"""] __lowerCAmelCase = inputs["""class_labels"""] __lowerCAmelCase = inputs["""pixel_values"""] __lowerCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(snake_case_ , snake_case_ , snake_case_ ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case_ ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) common(is_instance_map=snake_case_ , segmentation_type="""pil""" ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = np.zeros((20, 50) ) __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = binary_mask_to_rle(snake_case_ ) self.assertEqual(len(snake_case_ ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ ) self.assertEqual(len(snake_case_ ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) __lowerCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] __lowerCAmelCase = fature_extractor.post_process_semantic_segmentation(snake_case_ , target_sizes=snake_case_ ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_instance_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) __lowerCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() __lowerCAmelCase = image_processor.post_process_panoptic_segmentation(snake_case_ , threshold=0 ) self.assertTrue(len(snake_case_ ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , snake_case_ ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
301
0
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowercase__ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' lowercase__ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' lowercase__ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' lowercase__ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' lowercase__ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowerCamelCase ( self : int ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def lowerCamelCase ( self : Optional[Any] , a_ : Tuple , a_ : Tuple , a_ : str=[1, 10, 1_00] , a_ : int=4 , a_ : List[Any]=3.0 ): if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=a_ ) as executor: lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : List[str] = Counter() lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : str = defaultdict(a_ ) for task_id, (candidates, test_case) in enumerate(zip(a_ , a_ ) ): for candidate in candidates: lowerCAmelCase_ : Optional[Any] = candidate + '\n' + test_case lowerCAmelCase_ : Any = (test_program, timeout, task_id, completion_id[task_id]) lowerCAmelCase_ : Tuple = executor.submit(a_ , *a_ ) futures.append(a_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(a_ ): lowerCAmelCase_ : List[str] = future.result() results[result["task_id"]].append((result["completion_id"], result) ) lowerCAmelCase_ : List[Any] = [], [] for result in results.values(): result.sort() lowerCAmelCase_ : str = [r[1]['passed'] for r in result] total.append(len(a_ ) ) correct.append(sum(a_ ) ) lowerCAmelCase_ : List[Any] = np.array(a_ ) lowerCAmelCase_ : int = np.array(a_ ) lowerCAmelCase_ : Dict = k lowerCAmelCase_ : List[str] = {f'''pass@{k}''': estimate_pass_at_k(a_ , a_ , a_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: """simple docstring""" def estimator(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase_ : List[Any] = itertools.repeat(_UpperCAmelCase , len(_UpperCAmelCase ) ) else: assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) lowerCAmelCase_ : int = iter(_UpperCAmelCase ) return np.array([estimator(int(_UpperCAmelCase ) , int(_UpperCAmelCase ) , _UpperCAmelCase ) for n, c in zip(_UpperCAmelCase , _UpperCAmelCase )] )
359
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase__ = logging.get_logger(__name__) logging.set_verbosity_info() def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Tuple: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: lowerCAmelCase_ : List[str] = XLMProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Tuple = XLMProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) else: lowerCAmelCase_ : List[str] = ProphetNetForConditionalGenerationOld.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = ProphetNetForConditionalGeneration.from_pretrained( __UpperCamelCase , output_loading_info=__UpperCamelCase ) lowerCAmelCase_ : List[str] = ["key_proj", "value_proj", "query_proj"] lowerCAmelCase_ : Tuple = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: lowerCAmelCase_ : Dict = key.split("." ) if attributes[0] == "lm_head": lowerCAmelCase_ : int = prophet lowerCAmelCase_ : int = prophet_old else: lowerCAmelCase_ : str = prophet.prophetnet lowerCAmelCase_ : int = prophet_old.model lowerCAmelCase_ : Optional[int] = False for attribute in attributes: if attribute in mapping: lowerCAmelCase_ : Tuple = mapping[attribute] if not hasattr(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) > 0: lowerCAmelCase_ : Optional[Any] = attribute elif hasattr(__UpperCamelCase , __UpperCamelCase ): lowerCAmelCase_ : Optional[Any] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" lowerCAmelCase_ : str = old_model.weight logger.info(f'''{attribute} is initialized.''' ) lowerCAmelCase_ : Union[str, Any] = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" lowerCAmelCase_ : Tuple = old_model.bias logger.info(f'''{attribute} is initialized''' ) lowerCAmelCase_ : Optional[int] = True break elif attribute in special_keys and hasattr(__UpperCamelCase , "in_proj_weight" ): lowerCAmelCase_ : List[Any] = old_model.in_proj_weight.shape[0] // 3 lowerCAmelCase_ : List[str] = getattr(__UpperCamelCase , __UpperCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": lowerCAmelCase_ : List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) lowerCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": lowerCAmelCase_ : Union[str, Any] = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) lowerCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": lowerCAmelCase_ : Tuple = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) lowerCAmelCase_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) lowerCAmelCase_ : List[str] = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." lowerCAmelCase_ : Any = nn.Parameter(old_model.embed_positions.weight[:512, :] ) lowerCAmelCase_ : int = True break if attribute.isdigit(): lowerCAmelCase_ : Tuple = model[int(__UpperCamelCase )] lowerCAmelCase_ : Tuple = old_model[int(__UpperCamelCase )] else: lowerCAmelCase_ : Optional[int] = getattr(__UpperCamelCase , __UpperCamelCase ) if old_attribute == "": lowerCAmelCase_ : Tuple = old_model else: if not hasattr(__UpperCamelCase , __UpperCamelCase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) lowerCAmelCase_ : List[Any] = getattr(__UpperCamelCase , __UpperCamelCase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase__ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
161
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCamelCase__( __A , __A ): @register_to_config def __init__( self ,__UpperCAmelCase = 1_28 ,__UpperCAmelCase = 2_56 ,__UpperCAmelCase = 2_0_0_0.0 ,__UpperCAmelCase = 7_68 ,__UpperCAmelCase = 12 ,__UpperCAmelCase = 12 ,__UpperCAmelCase = 64 ,__UpperCAmelCase = 20_48 ,__UpperCAmelCase = 0.1 ,) -> Optional[Any]: super().__init__() A__ = nn.Sequential( nn.Linear(__UpperCAmelCase ,d_model * 4 ,bias=__UpperCAmelCase ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=__UpperCAmelCase ) ,nn.SiLU() ,) A__ = nn.Embedding(__UpperCAmelCase ,__UpperCAmelCase ) A__ = False A__ = nn.Linear(__UpperCAmelCase ,__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.Dropout(p=__UpperCAmelCase ) A__ = nn.ModuleList() for lyr_num in range(__UpperCAmelCase ): # FiLM conditional T5 decoder A__ = DecoderLayer(d_model=__UpperCAmelCase ,d_kv=__UpperCAmelCase ,num_heads=__UpperCAmelCase ,d_ff=__UpperCAmelCase ,dropout_rate=__UpperCAmelCase ) self.decoders.append(__UpperCAmelCase ) A__ = TaLayerNorm(__UpperCAmelCase ) A__ = nn.Dropout(p=__UpperCAmelCase ) A__ = nn.Linear(__UpperCAmelCase ,__UpperCAmelCase ,bias=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Any: A__ = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: A__ , A__ , A__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) A__ = self.conditioning_emb(__UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A__ = torch.broadcast_to( torch.arange(__UpperCAmelCase ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) A__ = self.position_encoding(__UpperCAmelCase ) A__ = self.continuous_inputs_projection(__UpperCAmelCase ) inputs += position_encodings A__ = self.dropout(__UpperCAmelCase ) # decoder: No padding present. A__ = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A__ = [(x, self.encoder_decoder_mask(__UpperCAmelCase ,__UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings A__ = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) A__ = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: A__ = lyr( __UpperCAmelCase ,conditioning_emb=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,encoder_attention_mask=__UpperCAmelCase ,)[0] A__ = self.decoder_norm(__UpperCAmelCase ) A__ = self.post_dropout(__UpperCAmelCase ) A__ = self.spec_out(__UpperCAmelCase ) return spec_out class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=1e-6 ) -> Optional[Any]: super().__init__() A__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__UpperCAmelCase ,d_kv=__UpperCAmelCase ,num_heads=__UpperCAmelCase ,dropout_rate=__UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__UpperCAmelCase ,d_kv=__UpperCAmelCase ,num_heads=__UpperCAmelCase ,dropout_rate=__UpperCAmelCase ,layer_norm_epsilon=__UpperCAmelCase ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__UpperCAmelCase ,d_ff=__UpperCAmelCase ,dropout_rate=__UpperCAmelCase ,layer_norm_epsilon=__UpperCAmelCase ) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,) -> Any: A__ = self.layer[0]( __UpperCAmelCase ,conditioning_emb=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,) if encoder_hidden_states is not None: A__ = torch.where(encoder_attention_mask > 0 ,0 ,-1e10 ).to( encoder_hidden_states.dtype ) A__ = self.layer[1]( __UpperCAmelCase ,key_value_states=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,) # Apply Film Conditional Feed Forward layer A__ = self.layer[-1](__UpperCAmelCase ,__UpperCAmelCase ) return (hidden_states,) class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: super().__init__() A__ = TaLayerNorm(__UpperCAmelCase ) A__ = TaFiLMLayer(in_features=d_model * 4 ,out_features=__UpperCAmelCase ) A__ = Attention(query_dim=__UpperCAmelCase ,heads=__UpperCAmelCase ,dim_head=__UpperCAmelCase ,out_bias=__UpperCAmelCase ,scale_qk=__UpperCAmelCase ) A__ = nn.Dropout(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,) -> Optional[int]: # pre_self_attention_layer_norm A__ = self.layer_norm(__UpperCAmelCase ) if conditioning_emb is not None: A__ = self.FiLMLayer(__UpperCAmelCase ,__UpperCAmelCase ) # Self-attention block A__ = self.attention(__UpperCAmelCase ) A__ = hidden_states + self.dropout(__UpperCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: super().__init__() A__ = Attention(query_dim=__UpperCAmelCase ,heads=__UpperCAmelCase ,dim_head=__UpperCAmelCase ,out_bias=__UpperCAmelCase ,scale_qk=__UpperCAmelCase ) A__ = TaLayerNorm(__UpperCAmelCase ,eps=__UpperCAmelCase ) A__ = nn.Dropout(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,) -> int: A__ = self.layer_norm(__UpperCAmelCase ) A__ = self.attention( __UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,attention_mask=attention_mask.squeeze(1 ) ,) A__ = hidden_states + self.dropout(__UpperCAmelCase ) return layer_output class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[str]: super().__init__() A__ = TaDenseGatedActDense(d_model=__UpperCAmelCase ,d_ff=__UpperCAmelCase ,dropout_rate=__UpperCAmelCase ) A__ = TaFiLMLayer(in_features=d_model * 4 ,out_features=__UpperCAmelCase ) A__ = TaLayerNorm(__UpperCAmelCase ,eps=__UpperCAmelCase ) A__ = nn.Dropout(__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=None ) -> Any: A__ = self.layer_norm(__UpperCAmelCase ) if conditioning_emb is not None: A__ = self.film(__UpperCAmelCase ,__UpperCAmelCase ) A__ = self.DenseReluDense(__UpperCAmelCase ) A__ = hidden_states + self.dropout(__UpperCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: super().__init__() A__ = nn.Linear(__UpperCAmelCase ,__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.Linear(__UpperCAmelCase ,__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.Linear(__UpperCAmelCase ,__UpperCAmelCase ,bias=__UpperCAmelCase ) A__ = nn.Dropout(__UpperCAmelCase ) A__ = NewGELUActivation() def snake_case__ ( self ,__UpperCAmelCase ) -> Dict: A__ = self.act(self.wi_a(__UpperCAmelCase ) ) A__ = self.wi_a(__UpperCAmelCase ) A__ = hidden_gelu * hidden_linear A__ = self.dropout(__UpperCAmelCase ) A__ = self.wo(__UpperCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=1e-6 ) -> Any: super().__init__() A__ = nn.Parameter(torch.ones(__UpperCAmelCase ) ) A__ = eps def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=__UpperCAmelCase ) A__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCamelCase__( nn.Module ): def snake_case__ ( self ,__UpperCAmelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(__UpperCAmelCase ,3.0 )) )) class UpperCamelCase__( nn.Module ): def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: super().__init__() A__ = nn.Linear(__UpperCAmelCase ,out_features * 2 ,bias=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: A__ = self.scale_bias(__UpperCAmelCase ) A__ , A__ = torch.chunk(__UpperCAmelCase ,2 ,-1 ) A__ = x * (1 + scale) + shift return x
221
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = b.T A__ = np.sum(np.square(UpperCamelCase__ ) , axis=1 ) A__ = np.sum(np.square(UpperCamelCase__ ) , axis=0 ) A__ = np.matmul(UpperCamelCase__ , UpperCamelCase__ ) A__ = aa[:, None] - 2 * ab + ba[None, :] return d def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = x.reshape(-1 , 3 ) A__ = squared_euclidean_distance(UpperCamelCase__ , UpperCamelCase__ ) return np.argmin(UpperCamelCase__ , axis=1 ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Tuple = ['pixel_values'] def __init__( self ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = True ,__UpperCAmelCase = True ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = size if size is not None else {'height': 2_56, 'width': 2_56} A__ = get_size_dict(__UpperCAmelCase ) A__ = np.array(__UpperCAmelCase ) if clusters is not None else None A__ = do_resize A__ = size A__ = resample A__ = do_normalize A__ = do_color_quantize def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __UpperCAmelCase ,size=(size['height'], size['width']) ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,) -> np.ndarray: A__ = rescale(image=__UpperCAmelCase ,scale=1 / 1_2_7.5 ,data_format=__UpperCAmelCase ) A__ = image - 1 return image def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(__UpperCAmelCase ) A__ = resample if resample is not None else self.resample A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A__ = clusters if clusters is not None else self.clusters A__ = np.array(__UpperCAmelCase ) A__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: A__ = [self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) for image in images] if do_normalize: A__ = [self.normalize(image=__UpperCAmelCase ) for image in images] if do_color_quantize: A__ = [to_channel_dimension_format(__UpperCAmelCase ,ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A__ = np.array(__UpperCAmelCase ) A__ = color_quantize(__UpperCAmelCase ,__UpperCAmelCase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A__ = images.shape[0] A__ = images.reshape(__UpperCAmelCase ,-1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A__ = list(__UpperCAmelCase ) else: A__ = [to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) for image in images] A__ = {'input_ids': images} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase )
221
1
"""simple docstring""" from manim import * class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[str] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase_ : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase_ : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase_ : List[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : List[str] = VGroup(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text("CPU" , font_size=24 ) UpperCAmelCase_ : str = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : Optional[int] = [mem.copy() for i in range(4 )] UpperCAmelCase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Any = Text("GPU" , font_size=24 ) UpperCAmelCase_ : Dict = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : int = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Tuple = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Optional[int] = Text("Model" , font_size=24 ) UpperCAmelCase_ : Optional[int] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , buff=0.5 , aligned_edge=lowercase_ ) model.move_to([3, -1.0, 0] ) self.add(lowercase_ ) UpperCAmelCase_ : Dict = [] for i, rect in enumerate(lowercase_ ): rect.set_stroke(lowercase_ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase_ : Optional[int] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase_ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase_ , buff=0.0 ) self.add(lowercase_ ) cpu_targs.append(lowercase_ ) UpperCAmelCase_ : Dict = [mem.copy() for i in range(6 )] UpperCAmelCase_ : Union[str, Any] = VGroup(*lowercase_ ).arrange(lowercase_ , buff=0 ) UpperCAmelCase_ : Tuple = Text("Loaded Checkpoint" , font_size=24 ) UpperCAmelCase_ : Union[str, Any] = Group(lowercase_ , lowercase_ ).arrange(lowercase_ , aligned_edge=lowercase_ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase_ : int = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase_ : Dict = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase_ , lowercase_ ) UpperCAmelCase_ : List[Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(lowercase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase_ : Union[str, Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase_ ) , Write(lowercase_ ) ) self.play(Write(lowercase_ , run_time=1 ) , Create(lowercase_ , run_time=1 ) ) UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : str = [] for i, rect in enumerate(lowercase_ ): UpperCAmelCase_ : int = fill.copy().set_fill(lowercase_ , opacity=0.7 ) target.move_to(lowercase_ ) first_animations.append(GrowFromCenter(lowercase_ , run_time=1 ) ) UpperCAmelCase_ : str = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase_ , run_time=1.5 ) ) self.play(*lowercase_ ) self.play(*lowercase_ ) self.wait()
352
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _a = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
23
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" A__ = inspect.getfile(accelerate.test_utils ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) A__ = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) A__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def UpperCamelCase ( self: List[Any] ): """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) A__ = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase ( self: Union[str, Any] ): """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) A__ = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase ( self: int ): """simple docstring""" A__ = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) @require_multi_gpu def UpperCamelCase ( self: str ): """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) A__ = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Union[str, Any] = Accelerator() SCREAMING_SNAKE_CASE_ : Optional[Any] = (accelerator.state.process_index + 2, 1_0) SCREAMING_SNAKE_CASE_ : Dict = torch.randint(0, 1_0, shape).to(accelerator.device) SCREAMING_SNAKE_CASE_ : int = '' SCREAMING_SNAKE_CASE_ : Any = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." SCREAMING_SNAKE_CASE_ : Any = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." SCREAMING_SNAKE_CASE_ : int = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
335
"""simple docstring""" import math class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: List[str]=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" A__ = n A__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # adjacency matrix for weight A__ = [ [math.inf for j in range(0 , UpperCamelCase )] for i in range(0 , UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] , UpperCamelCase: Tuple ): """simple docstring""" A__ = w def UpperCamelCase ( self: int ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A__ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase ( self: int , UpperCamelCase: List[str] , UpperCamelCase: Dict ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[Any] = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
335
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCamelCase__ = '''src/diffusers''' lowerCamelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCamelCase__ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCamelCase__ = spec.loader.load_module() def lowerCAmelCase__ ( a__ , a__ ) ->int: '''simple docstring''' return line.startswith(lowercase_ ) or len(lowercase_ ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , lowercase_ ) is not None def lowerCAmelCase__ ( a__ ) ->Tuple: '''simple docstring''' _UpperCamelCase = object_name.split("." ) _UpperCamelCase = 0 # First let's find the module where our object lives. _UpperCamelCase = parts[i] while i < len(lowercase_ ) and not os.path.isfile(os.path.join(lowercase_ , f'{module}.py' ) ): i += 1 if i < len(lowercase_ ): _UpperCamelCase = os.path.join(lowercase_ , parts[i] ) if i >= len(lowercase_ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(lowercase_ , f'{module}.py' ) , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCamelCase = f.readlines() # Now let's find the class / func in the code! _UpperCamelCase = "" _UpperCamelCase = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase_ ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase_ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _UpperCamelCase = line_index while line_index < len(lowercase_ ) and _should_continue(lines[line_index] , lowercase_ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCamelCase = lines[start_index:line_index] return "".join(lowercase_ ) lowerCamelCase__ = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCamelCase__ = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCamelCase__ = re.compile(R'''<FILL\s+[^>]*>''') def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' _UpperCamelCase = code.split("\n" ) _UpperCamelCase = 0 while idx < len(lowercase_ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase_ ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def lowerCAmelCase__ ( a__ ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase = len(get_indent(lowercase_ ) ) > 0 if has_indent: _UpperCamelCase = f'class Bla:\n{code}' _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowercase_ ) _UpperCamelCase = black.format_str(lowercase_ , mode=lowercase_ ) _UpperCamelCase , _UpperCamelCase = style_docstrings_in_code(lowercase_ ) return result[len("class Bla:\n" ) :] if has_indent else result def lowerCAmelCase__ ( a__ , a__=False ) ->str: '''simple docstring''' with open(lowercase_ , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCamelCase = f.readlines() _UpperCamelCase = [] _UpperCamelCase = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase_ ): _UpperCamelCase = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = search.groups() _UpperCamelCase = find_code_in_diffusers(lowercase_ ) _UpperCamelCase = get_indent(lowercase_ ) _UpperCamelCase = line_index + 1 if indent == theoretical_indent else line_index + 2 _UpperCamelCase = theoretical_indent _UpperCamelCase = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _UpperCamelCase = True while line_index < len(lowercase_ ) and should_continue: line_index += 1 if line_index >= len(lowercase_ ): break _UpperCamelCase = lines[line_index] _UpperCamelCase = _should_continue(lowercase_ , lowercase_ ) and re.search(f'^{indent}# End copy' , lowercase_ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _UpperCamelCase = lines[start_index:line_index] _UpperCamelCase = "".join(lowercase_ ) # Remove any nested `Copied from` comments to avoid circular copies _UpperCamelCase = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(lowercase_ ) is None] _UpperCamelCase = "\n".join(lowercase_ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase_ ) > 0: _UpperCamelCase = replace_pattern.replace("with" , "" ).split("," ) _UpperCamelCase = [_re_replace_pattern.search(lowercase_ ) for p in patterns] for pattern in patterns: if pattern is None: continue _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = pattern.groups() _UpperCamelCase = re.sub(lowercase_ , lowercase_ , lowercase_ ) if option.strip() == "all-casing": _UpperCamelCase = re.sub(obja.lower() , obja.lower() , lowercase_ ) _UpperCamelCase = re.sub(obja.upper() , obja.upper() , lowercase_ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _UpperCamelCase = blackify(lines[start_index - 1] + theoretical_code ) _UpperCamelCase = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _UpperCamelCase = lines[:start_index] + [theoretical_code] + lines[line_index:] _UpperCamelCase = start_index + 1 if overwrite and len(lowercase_ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(lowercase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowercase_ ) return diffs def lowerCAmelCase__ ( a__ = False ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase = glob.glob(os.path.join(lowercase_ , "**/*.py" ) , recursive=lowercase_ ) _UpperCamelCase = [] for filename in all_files: _UpperCamelCase = is_copy_consistent(lowercase_ , lowercase_ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowercase_ ) > 0: _UpperCamelCase = "\n".join(lowercase_ ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
356
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small") _UpperCamelCase = AutoTokenizer.from_pretrained("google/mt5-small") _UpperCamelCase = tokenizer("Hello there" , return_tensors="np").input_ids _UpperCamelCase = tokenizer("Hi I am" , return_tensors="np").input_ids _UpperCamelCase = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id) _UpperCamelCase = model(lowercase_ , decoder_input_ids=lowercase_).logits _UpperCamelCase = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1])).mean() _UpperCamelCase = -(labels.shape[-1] * loss.item()) _UpperCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
63
0
from typing import Any class SCREAMING_SNAKE_CASE_ : def __init__( self : Any , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = data UpperCamelCase = None class SCREAMING_SNAKE_CASE_ : def __init__( self : Optional[int] ): """simple docstring""" UpperCamelCase = None def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.head while temp is not None: print(temp.data , end=""" """ ) UpperCamelCase = temp.next print() def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = Node(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.head UpperCamelCase = new_node def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): """simple docstring""" if node_data_a == node_data_a: return else: UpperCamelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCamelCase = node_a.next UpperCamelCase = self.head while node_a is not None and node_a.data != node_data_a: UpperCamelCase = node_a.next if node_a is None or node_a is None: return UpperCamelCase = node_a.data, node_a.data if __name__ == "__main__": _SCREAMING_SNAKE_CASE = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
343
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , delta=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): lowerCAmelCase_ : int = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[int] = None ops.enable_eager_execution_internal() lowerCAmelCase_ : str = tf.config.list_physical_devices('CPU' ) if len(SCREAMING_SNAKE_CASE_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCAmelCase_ : Dict = tf.config.list_logical_devices(device_type='CPU' ) lowerCAmelCase_ : Optional[int] = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCAmelCase_ : Union[str, Any] = GradientAccumulator() lowerCAmelCase_ : int = tf.Variable([4.0, 3.0] ) lowerCAmelCase_ ,lowerCAmelCase_ : Optional[int] = create_optimizer(5E-5 , 1_0 , 5 ) lowerCAmelCase_ : Union[str, Any] = tf.Variable([0.0, 0.0] , trainable=SCREAMING_SNAKE_CASE_ ) def accumulate_on_replica(SCREAMING_SNAKE_CASE_ : Optional[int] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): with strategy.scope(): lowerCAmelCase_ : Tuple = strategy.experimental_local_results(SCREAMING_SNAKE_CASE_ ) local_variables[0].assign(SCREAMING_SNAKE_CASE_ ) local_variables[1].assign(SCREAMING_SNAKE_CASE_ ) strategy.run(SCREAMING_SNAKE_CASE_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(SCREAMING_SNAKE_CASE_ ) def _check_local_values(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): lowerCAmelCase_ : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , SCREAMING_SNAKE_CASE_ , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
224
0
from __future__ import annotations _UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int]] , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: __lowerCAmelCase : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(SCREAMING_SNAKE_CASE ) ) ] # the reference grid __lowerCAmelCase : Optional[Any] = 1 __lowerCAmelCase : Any = [ [0 for col in range(len(grid[0] ) )] for row in range(len(SCREAMING_SNAKE_CASE ) ) ] # the action grid __lowerCAmelCase : Dict = init[0] __lowerCAmelCase : Dict = init[1] __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : int = g + heuristic[x][y] # cost from starting cell to destination cell __lowerCAmelCase : int = [[f, g, x, y]] __lowerCAmelCase : List[str] = False # flag that is set when search is complete __lowerCAmelCase : Tuple = False # flag set if we can't find expand while not found and not resign: if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __lowerCAmelCase : Optional[Any] = cell.pop() __lowerCAmelCase : str = next_cell[2] __lowerCAmelCase : List[Any] = next_cell[3] __lowerCAmelCase : Any = next_cell[1] if x == goal[0] and y == goal[1]: __lowerCAmelCase : Dict = True else: for i in range(len(SCREAMING_SNAKE_CASE ) ): # to try out different valid actions __lowerCAmelCase : Union[str, Any] = x + DIRECTIONS[i][0] __lowerCAmelCase : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __lowerCAmelCase : Optional[int] = g + cost __lowerCAmelCase : int = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __lowerCAmelCase : Dict = 1 __lowerCAmelCase : int = i __lowerCAmelCase : Union[str, Any] = [] __lowerCAmelCase : List[str] = goal[0] __lowerCAmelCase : Dict = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __lowerCAmelCase : List[str] = x - DIRECTIONS[action[x][y]][0] __lowerCAmelCase : Tuple = y - DIRECTIONS[action[x][y]][1] __lowerCAmelCase : Optional[int] = xa __lowerCAmelCase : List[Any] = ya invpath.append([x, y] ) __lowerCAmelCase : str = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": _UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] _UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] _UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal _UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _UpperCAmelCase = 99 _UpperCAmelCase , _UpperCAmelCase = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
232
from math import isqrt def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int ) -> list[int]: __lowerCAmelCase : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Tuple = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int = 10**8 ) -> int: __lowerCAmelCase : int = calculate_prime_numbers(max_number // 2 ) __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : List[str] = 0 __lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
232
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _UpperCamelCase : Optional[int] = False class a ( unittest.TestCase ): pass @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase = torch.manual_seed(0 ) lowercase = pipe( image=_lowerCamelCase , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' , ).images lowercase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
220
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _UpperCamelCase : Tuple = int(input('Enter number: ').strip()) print(F'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
220
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCAmelCase_ : Union[str, Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A (__a ) -> Union[str, Any]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__a ) def _A (__a ) -> Any: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE_ : Optional[Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__a , id=__a )
318
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip()) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = start_length SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) SCREAMING_SNAKE_CASE_ : Tuple = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(lowercase_) def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1] SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : str = '''false''' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : List[str] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' ) SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' ) SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : int = [] for task in tqdm(range(__a ) ): SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test'''] SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
318
1
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class A_ : @property def lowercase ( self : Optional[int] ): return self.get_dummy_input() @property def lowercase ( self : List[str] ): if self.block_type == "down": return (4, 3_2, 1_6, 1_6) elif self.block_type == "mid": return (4, 3_2, 3_2, 3_2) elif self.block_type == "up": return (4, 3_2, 6_4, 6_4) raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' ) def lowercase ( self : str , snake_case_ : Dict=True , snake_case_ : int=False , snake_case_ : Any=False , snake_case_ : Union[str, Any]=False , ): _UpperCAmelCase = 4 _UpperCAmelCase = 3_2 _UpperCAmelCase = (3_2, 3_2) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = torch.device(snake_case_ ) _UpperCAmelCase = (batch_size, num_channels) + sizes _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ ) _UpperCAmelCase = {"hidden_states": hidden_states} if include_temb: _UpperCAmelCase = 1_2_8 _UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=snake_case_ , device=snake_case_ ) if include_res_hidden_states_tuple: _UpperCAmelCase = torch.manual_seed(1 ) _UpperCAmelCase = (randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ ),) if include_encoder_hidden_states: _UpperCAmelCase = floats_tensor((batch_size, 3_2, 3_2) ).to(snake_case_ ) if include_skip_sample: _UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=snake_case_ , device=snake_case_ ) return dummy_input def lowercase ( self : List[str] ): _UpperCAmelCase = { "in_channels": 3_2, "out_channels": 3_2, "temb_channels": 1_2_8, } if self.block_type == "up": _UpperCAmelCase = 3_2 if self.block_type == "mid": init_dict.pop("out_channels" ) _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def lowercase ( self : int , snake_case_ : List[str] ): _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**snake_case_ ) unet_block.to(snake_case_ ) unet_block.eval() with torch.no_grad(): _UpperCAmelCase = unet_block(**snake_case_ ) if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = output[0] self.assertEqual(output.shape , self.output_shape ) _UpperCAmelCase = output[0, -1, -3:, -3:] _UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ ) assert torch_all_close(output_slice.flatten() , snake_case_ , atol=5e-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def lowercase ( self : str ): _UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() _UpperCAmelCase = self.block_class(**snake_case_ ) model.to(snake_case_ ) model.train() _UpperCAmelCase = model(**snake_case_ ) if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = output[0] _UpperCAmelCase = torch.device(snake_case_ ) _UpperCAmelCase = randn_tensor(output.shape , device=snake_case_ ) _UpperCAmelCase = torch.nn.functional.mse_loss(snake_case_ , snake_case_ ) loss.backward()
22
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowercase__ : str = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = ['pixel_values'] def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 256} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] _UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]: '''simple docstring''' _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase__ ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
324
0
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase__ : int = """scheduler_config.json""" class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 5 @dataclass class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 42 class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = SCHEDULER_CONFIG_NAME SCREAMING_SNAKE_CASE_ = ['dtype'] SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] ,__lowerCamelCase : Dict[str, Any] = None ,__lowerCamelCase : Optional[str] = None ,__lowerCamelCase : str=False ,**__lowerCamelCase : Union[str, Any] ,): '''simple docstring''' a , a = cls.load_config( pretrained_model_name_or_path=__lowerCamelCase ,subfolder=__lowerCamelCase ,return_unused_kwargs=__lowerCamelCase ,**__lowerCamelCase ,) a , a = cls.from_config(__lowerCamelCase ,return_unused_kwargs=__lowerCamelCase ,**__lowerCamelCase ) if hasattr(__lowerCamelCase ,'''create_state''' ) and getattr(__lowerCamelCase ,'''has_state''' ,__lowerCamelCase ): a = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Union[str, os.PathLike] ,__lowerCamelCase : bool = False ,**__lowerCamelCase : List[Any] ): '''simple docstring''' self.save_config(save_directory=__lowerCamelCase ,push_to_hub=__lowerCamelCase ,**__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self._get_compatibles() @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] ): '''simple docstring''' a = list(set([cls.__name__] + cls._compatibles ) ) a = importlib.import_module(__name__.split('''.''' )[0] ) a = [ getattr(__lowerCamelCase ,__lowerCamelCase ) for c in compatible_classes_str if hasattr(__lowerCamelCase ,__lowerCamelCase ) ] return compatible_classes def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> jnp.ndarray: """simple docstring""" assert len(snake_case_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(snake_case_ ) - x.ndim) ), snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=0.999, snake_case_=jnp.floataa ) -> jnp.ndarray: """simple docstring""" def alpha_bar(snake_case_ ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 a = [] for i in range(snake_case_ ): a = i / num_diffusion_timesteps a = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(snake_case_ ) / alpha_bar(snake_case_ ), snake_case_ ) ) return jnp.array(snake_case_, dtype=snake_case_ ) @flax.struct.dataclass class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] ,__lowerCamelCase : str ): '''simple docstring''' a = scheduler.config if config.trained_betas is not None: a = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype ) elif config.beta_schedule == "linear": a = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a = ( jnp.linspace( config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype ) else: raise NotImplementedError( F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) a = 1.0 - betas a = jnp.cumprod(__lowerCamelCase ,axis=0 ) return cls( alphas=__lowerCamelCase ,betas=__lowerCamelCase ,alphas_cumprod=__lowerCamelCase ,) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" a = state.alphas_cumprod a = alphas_cumprod[timesteps] ** 0.5 a = sqrt_alpha_prod.flatten() a = broadcast_to_shape_from_left(snake_case_, original_samples.shape ) a = (1 - alphas_cumprod[timesteps]) ** 0.5 a = sqrt_one_minus_alpha_prod.flatten() a = broadcast_to_shape_from_left(snake_case_, original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" a , a = get_sqrt_alpha_prod(snake_case_, snake_case_, snake_case_, snake_case_ ) a = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Dict: """simple docstring""" a , a = get_sqrt_alpha_prod(snake_case_, snake_case_, snake_case_, snake_case_ ) a = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : list ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_SCREAMING_SNAKE_CASE ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": __A : Dict = input("Enter numbers separated by a comma:\n").strip() __A : List[Any] = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
260
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def _a( UpperCamelCase__ : Dict ): '''simple docstring''' config.addinivalue_line( '''markers''', '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''', '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''', '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''', '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''', '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''', '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _a( UpperCamelCase__ : Optional[Any] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCamelCase__ ) def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : Union[str, Any] =terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(UpperCamelCase__, id=UpperCamelCase__ ) def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Tuple ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : Optional[int] =0 # Doctest custom flag to ignore output. a_ = doctest.register_optionflag('IGNORE_RESULT') a_ = doctest.OutputChecker class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __magic_name__ ( self : str , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : Dict ) -> List[str]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , __lowercase , __lowercase , __lowercase ) a_ = CustomOutputChecker a_ = HfDoctestModule a_ = HfDocTestParser
222
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } a_ = {'facebook/blenderbot_small-90M': 5_1_2} def _a( UpperCamelCase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] =set() SCREAMING_SNAKE_CASE__ : Optional[Any] =word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : Optional[Any] =char SCREAMING_SNAKE_CASE__ : Any =set(UpperCamelCase__ ) return pairs class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , __lowercase : int , __lowercase : Optional[int] , __lowercase : List[str]="__start__" , __lowercase : Union[str, Any]="__end__" , __lowercase : str="__unk__" , __lowercase : Union[str, Any]="__null__" , **__lowercase : List[str] , ) -> Optional[int]: super().__init__(unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , pad_token=__lowercase , **__lowercase ) with open(__lowercase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE__ : Any =json.load(__lowercase ) SCREAMING_SNAKE_CASE__ : Dict ={v: k for k, v in self.encoder.items()} with open(__lowercase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ : int =merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE__ : List[Any] =[tuple(merge.split() ) for merge in merges] SCREAMING_SNAKE_CASE__ : int =dict(zip(__lowercase , range(len(__lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Dict ={} @property def __magic_name__ ( self : Any ) -> int: return len(self.encoder ) def __magic_name__ ( self : Tuple ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : Optional[Any] , __lowercase : str ) -> str: if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : Union[str, Any] =re.sub('''([.,!?()])''' , r''' \1''' , __lowercase ) SCREAMING_SNAKE_CASE__ : int =re.sub('''(\')''' , r''' \1 ''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =re.sub(r'''\s{2,}''' , ''' ''' , __lowercase ) if "\n" in token: SCREAMING_SNAKE_CASE__ : List[str] =token.replace('''\n''' , ''' __newln__''' ) SCREAMING_SNAKE_CASE__ : Dict =token.split(''' ''' ) SCREAMING_SNAKE_CASE__ : Dict =[] for token in tokens: if not len(__lowercase ): continue SCREAMING_SNAKE_CASE__ : Union[str, Any] =token.lower() SCREAMING_SNAKE_CASE__ : Optional[Any] =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) SCREAMING_SNAKE_CASE__ : Optional[Any] =get_pairs(__lowercase ) if not pairs: words.append(__lowercase ) continue while True: SCREAMING_SNAKE_CASE__ : int =min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =bigram SCREAMING_SNAKE_CASE__ : List[Any] =[] SCREAMING_SNAKE_CASE__ : Tuple =0 while i < len(__lowercase ): try: SCREAMING_SNAKE_CASE__ : Optional[Any] =word.index(__lowercase , __lowercase ) new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : Optional[int] =j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : int =tuple(__lowercase ) SCREAMING_SNAKE_CASE__ : int =new_word if len(__lowercase ) == 1: break else: SCREAMING_SNAKE_CASE__ : Any =get_pairs(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] ='''@@ '''.join(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =word[:-4] SCREAMING_SNAKE_CASE__ : str =word words.append(__lowercase ) return " ".join(__lowercase ) def __magic_name__ ( self : str , __lowercase : str ) -> List[str]: SCREAMING_SNAKE_CASE__ : Dict =[] SCREAMING_SNAKE_CASE__ : List[Any] =re.findall(r'''\S+\n?''' , __lowercase ) for token in words: split_tokens.extend(list(self.bpe(__lowercase ).split(''' ''' ) ) ) return split_tokens def __magic_name__ ( self : List[Any] , __lowercase : str ) -> int: SCREAMING_SNAKE_CASE__ : int =token.lower() return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : int , __lowercase : int ) -> str: return self.decoder.get(__lowercase , self.unk_token ) def __magic_name__ ( self : List[Any] , __lowercase : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : Optional[int] =''' '''.join(__lowercase ).replace('''@@ ''' , '''''' ).strip() return out_string def __magic_name__ ( self : Tuple , __lowercase : str , __lowercase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowercase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE__ : str =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : int =os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + '''\n''' ) SCREAMING_SNAKE_CASE__ : List[str] =0 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : Any =token_index writer.write(''' '''.join(__lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file
222
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = field(default="""audio-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) UpperCAmelCase_ = Features({"""audio""": Audio()} ) UpperCAmelCase_ = Features({"""labels""": ClassLabel} ) UpperCAmelCase_ = "audio" UpperCAmelCase_ = "labels" def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Optional[Any] ) -> Union[str, Any]: if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCamelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCAmelCase__ = copy.deepcopy(self ) UpperCAmelCase__ = self.label_schema.copy() UpperCAmelCase__ = features[self.label_column] UpperCAmelCase__ = label_schema return task_template @property def UpperCAmelCase_ ( self :Tuple ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
169
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase ) class _UpperCamelCase ( lowerCAmelCase ): def __init__( self :Optional[int] , **lowerCamelCase :Dict ) -> int: super().__init__(**lowerCamelCase ) requires_backends(self , "vision" ) requires_backends(self , "torch" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(lowerCamelCase ) def UpperCAmelCase_ ( self :Any , **lowerCamelCase :int ) -> int: UpperCAmelCase__ = {} UpperCAmelCase__ = {} UpperCAmelCase__ = {} # preprocess args if "points_per_batch" in kwargs: UpperCAmelCase__ = kwargs["points_per_batch"] if "points_per_crop" in kwargs: UpperCAmelCase__ = kwargs["points_per_crop"] if "crops_n_layers" in kwargs: UpperCAmelCase__ = kwargs["crops_n_layers"] if "crop_overlap_ratio" in kwargs: UpperCAmelCase__ = kwargs["crop_overlap_ratio"] if "crop_n_points_downscale_factor" in kwargs: UpperCAmelCase__ = kwargs["crop_n_points_downscale_factor"] # postprocess args if "pred_iou_thresh" in kwargs: UpperCAmelCase__ = kwargs["pred_iou_thresh"] if "stability_score_offset" in kwargs: UpperCAmelCase__ = kwargs["stability_score_offset"] if "mask_threshold" in kwargs: UpperCAmelCase__ = kwargs["mask_threshold"] if "stability_score_thresh" in kwargs: UpperCAmelCase__ = kwargs["stability_score_thresh"] if "crops_nms_thresh" in kwargs: UpperCAmelCase__ = kwargs["crops_nms_thresh"] if "output_rle_mask" in kwargs: UpperCAmelCase__ = kwargs["output_rle_mask"] if "output_bboxes_mask" in kwargs: UpperCAmelCase__ = kwargs["output_bboxes_mask"] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , *lowerCamelCase :str , lowerCamelCase :Optional[Any]=None , lowerCamelCase :int=None , **lowerCamelCase :Optional[Any] ) -> str: return super().__call__(lowerCamelCase , *lowerCamelCase , num_workers=lowerCamelCase , batch_size=lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Any , lowerCamelCase :str , lowerCamelCase :Optional[Any]=64 , lowerCamelCase :int = 0 , lowerCamelCase :float = 512 / 1500 , lowerCamelCase :Optional[int] = 32 , lowerCamelCase :Optional[int] = 1 , ) -> Any: UpperCAmelCase__ = load_image(lowerCamelCase ) UpperCAmelCase__ = self.image_processor.size["longest_edge"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = self.image_processor(images=lowerCamelCase , return_tensors="pt" ) with self.device_placement(): if self.framework == "pt": UpperCAmelCase__ = self.get_inference_context() with inference_context(): UpperCAmelCase__ = self._ensure_tensor_on_device(lowerCamelCase , device=self.device ) UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) ) UpperCAmelCase__ = image_embeddings UpperCAmelCase__ = grid_points.shape[1] UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( "Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. " "To return all points at once, set points_per_batch to None" ) for i in range(0 , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :] UpperCAmelCase__ = input_labels[:, i : i + points_per_batch] UpperCAmelCase__ = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :List[str] , lowerCamelCase :Union[str, Any]=0.88 , lowerCamelCase :Optional[Any]=0.95 , lowerCamelCase :Tuple=0 , lowerCamelCase :Union[str, Any]=1 , ) -> Dict: UpperCAmelCase__ = model_inputs.pop("input_boxes" ) UpperCAmelCase__ = model_inputs.pop("is_last" ) UpperCAmelCase__ = model_inputs.pop("original_sizes" ).tolist() UpperCAmelCase__ = model_inputs.pop("reshaped_input_sizes" ).tolist() UpperCAmelCase__ = self.model(**lowerCamelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCAmelCase__ = model_outputs["pred_masks"] UpperCAmelCase__ = self.image_processor.post_process_masks( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , binarize=lowerCamelCase ) UpperCAmelCase__ = model_outputs["iou_scores"] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def UpperCAmelCase_ ( self :int , lowerCamelCase :str , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :int=0.7 , ) -> Union[str, Any]: UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for model_output in model_outputs: all_scores.append(model_output.pop("iou_scores" ) ) all_masks.extend(model_output.pop("masks" ) ) all_boxes.append(model_output.pop("boxes" ) ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) UpperCAmelCase__ = torch.cat(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = defaultdict(lowerCamelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCamelCase ) UpperCAmelCase__ = {} if output_rle_mask: UpperCAmelCase__ = rle_mask if output_bboxes_mask: UpperCAmelCase__ = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
169
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a_ = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class _lowercase ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" debug_launcher(test_script.main ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" debug_launcher(test_ops.main )
50
0
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCamelCase_ = logging.get_logger(__name__) enable_full_determinism() class _snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' A__ : Union[str, Any] = UNetaDModel A__ : List[Any] = '''sample''' @property def A__ ( self: Dict ) -> Union[str, Any]: UpperCAmelCase_ : int = 4 UpperCAmelCase_ : str = 3 UpperCAmelCase_ : Dict = (32, 32) UpperCAmelCase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def A__ ( self: str ) -> str: return (3, 32, 32) @property def A__ ( self: Tuple ) -> Optional[int]: return (3, 32, 32) def A__ ( self: Dict ) -> Any: UpperCAmelCase_ : str = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } UpperCAmelCase_ : List[str] = self.dummy_input return init_dict, inputs_dict class _snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' A__ : Tuple = UNetaDModel A__ : Union[str, Any] = '''sample''' @property def A__ ( self: Dict ) -> Union[str, Any]: UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : Optional[Any] = 4 UpperCAmelCase_ : str = (32, 32) UpperCAmelCase_ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) UpperCAmelCase_ : Optional[Any] = torch.tensor([10] ).to(__snake_case ) return {"sample": noise, "timestep": time_step} @property def A__ ( self: int ) -> Optional[int]: return (4, 32, 32) @property def A__ ( self: Optional[int] ) -> List[Any]: return (4, 32, 32) def A__ ( self: str ) -> Any: UpperCAmelCase_ : List[Any] = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } UpperCAmelCase_ : Dict = self.dummy_input return init_dict, inputs_dict def A__ ( self: Tuple ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(__snake_case ) UpperCAmelCase_ : str = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" ,"""This test is supposed to run on GPU""" ) def A__ ( self: List[Any] ) -> Any: UpperCAmelCase_ , UpperCAmelCase_ : int = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=__snake_case ) model.to(__snake_case ) UpperCAmelCase_ : int = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" ,"""This test is supposed to run on GPU""" ) def A__ ( self: Tuple ) -> List[Any]: # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ,output_loading_info=__snake_case ) model_accelerate.to(__snake_case ) model_accelerate.eval() UpperCAmelCase_ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : List[str] = noise.to(__snake_case ) UpperCAmelCase_ : Tuple = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) UpperCAmelCase_ : str = model_accelerate(__snake_case ,__snake_case )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" ,output_loading_info=__snake_case ,low_cpu_mem_usage=__snake_case ) model_normal_load.to(__snake_case ) model_normal_load.eval() UpperCAmelCase_ : Optional[Any] = model_normal_load(__snake_case ,__snake_case )["""sample"""] assert torch_all_close(__snake_case ,__snake_case ,rtol=1e-3 ) def A__ ( self: List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[Any] = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(__snake_case ) UpperCAmelCase_ : int = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) UpperCAmelCase_ : Tuple = noise.to(__snake_case ) UpperCAmelCase_ : int = torch.tensor([10] * noise.shape[0] ).to(__snake_case ) with torch.no_grad(): UpperCAmelCase_ : int = model(__snake_case ,__snake_case ).sample UpperCAmelCase_ : Any = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase_ : Any = torch.tensor([-1_3.3_2_5_8, -2_0.1_1_0_0, -1_5.9_8_7_3, -1_7.6_6_1_7, -2_3.0_5_9_6, -1_7.9_4_1_9, -1_3.3_6_7_5, -1_6.1_8_8_9, -1_2.3_8_0_0] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1e-3 ) ) class _snake_case ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' A__ : Tuple = UNetaDModel A__ : Optional[int] = '''sample''' @property def A__ ( self: Tuple ,lowerCamelCase_: Optional[int]=(32, 32) ) -> Union[str, Any]: UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) UpperCAmelCase_ : Optional[Any] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__snake_case ) return {"sample": noise, "timestep": time_step} @property def A__ ( self: Optional[Any] ) -> int: return (3, 32, 32) @property def A__ ( self: Optional[int] ) -> str: return (3, 32, 32) def A__ ( self: Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : str = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } UpperCAmelCase_ : Optional[int] = self.dummy_input return init_dict, inputs_dict @slow def A__ ( self: int ) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ,output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info["""missing_keys"""] ) ,0 ) model.to(__snake_case ) UpperCAmelCase_ : str = self.dummy_input UpperCAmelCase_ : Tuple = floats_tensor((4, 3) + (256, 256) ).to(__snake_case ) UpperCAmelCase_ : Optional[Any] = noise UpperCAmelCase_ : Optional[Any] = model(**__snake_case ) assert image is not None, "Make sure output is not None" @slow def A__ ( self: Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(__snake_case ) UpperCAmelCase_ : int = 4 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : Any = (256, 256) UpperCAmelCase_ : List[Any] = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) UpperCAmelCase_ : Union[str, Any] = torch.tensor(batch_size * [1e-4] ).to(__snake_case ) with torch.no_grad(): UpperCAmelCase_ : Dict = model(__snake_case ,__snake_case ).sample UpperCAmelCase_ : Tuple = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase_ : Dict = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1e-2 ) ) def A__ ( self: Tuple ) -> Dict: UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(__snake_case ) UpperCAmelCase_ : Union[str, Any] = 4 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : str = (32, 32) UpperCAmelCase_ : Dict = torch.ones((batch_size, num_channels) + sizes ).to(__snake_case ) UpperCAmelCase_ : List[Any] = torch.tensor(batch_size * [1e-4] ).to(__snake_case ) with torch.no_grad(): UpperCAmelCase_ : int = model(__snake_case ,__snake_case ).sample UpperCAmelCase_ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off UpperCAmelCase_ : int = torch.tensor([-0.0_3_2_5, -0.0_9_0_0, -0.0_8_6_9, -0.0_3_3_2, -0.0_7_2_5, -0.0_2_7_0, -0.0_1_0_1, 0.0_2_2_7, 0.0_2_5_6] ) # fmt: on self.assertTrue(torch_all_close(__snake_case ,__snake_case ,rtol=1e-2 ) ) def A__ ( self: Optional[int] ) -> List[Any]: # not required for this model pass
345
def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float(moles / volume ) * nfactor ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
240
0
from __future__ import annotations from collections import deque class lowerCamelCase_ : def __init__( self : List[str] ,__lowerCamelCase : list[str] ): '''simple docstring''' a = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(__lowerCamelCase ) self.set_fail_transitions() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : int ,__lowerCamelCase : str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : str ): '''simple docstring''' a = 0 for character in keyword: a = self.find_next_state(__lowerCamelCase ,__lowerCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) a = len(self.adlist ) - 1 else: a = next_state self.adlist[current_state]["output"].append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = deque() for node in self.adlist[0]["next_states"]: q.append(__lowerCamelCase ) a = 0 while q: a = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__lowerCamelCase ) a = self.adlist[r]['''fail_state'''] while ( self.find_next_state(__lowerCamelCase ,self.adlist[child]['''value'''] ) is None and state != 0 ): a = self.adlist[state]['''fail_state'''] a = self.find_next_state( __lowerCamelCase ,self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: a = 0 a = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : str ): '''simple docstring''' a = {} # returns a dict with keywords and list of its occurrences a = 0 for i in range(len(__lowerCamelCase ) ): while ( self.find_next_state(__lowerCamelCase ,string[i] ) is None and current_state != 0 ): a = self.adlist[current_state]['''fail_state'''] a = self.find_next_state(__lowerCamelCase ,string[i] ) if next_state is None: a = 0 else: a = next_state for key in self.adlist[current_state]["output"]: if key not in result: a = [] result[key].append(i - len(__lowerCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
353
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: SCREAMING_SNAKE_CASE =mf_knapsack(i - 1, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) else: SCREAMING_SNAKE_CASE =max( mf_knapsack(i - 1, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ), mf_knapsack(i - 1, _lowerCAmelCase, _lowerCAmelCase, j - wt[i - 1] ) + val[i - 1], ) SCREAMING_SNAKE_CASE =val return f[i][j] def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =[[0] * (w + 1) for _ in range(n + 1 )] for i in range(1, n + 1 ): for w_ in range(1, w + 1 ): if wt[i - 1] <= w_: SCREAMING_SNAKE_CASE =max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] ) else: SCREAMING_SNAKE_CASE =dp[i - 1][w_] return dp[n][w_], dp def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if not (isinstance(_lowerCAmelCase, (list, tuple) ) and isinstance(_lowerCAmelCase, (list, tuple) )): raise ValueError( 'Both the weights and values vectors must be either lists or tuples' ) SCREAMING_SNAKE_CASE =len(_lowerCAmelCase ) if num_items != len(_lowerCAmelCase ): SCREAMING_SNAKE_CASE =( '''The number of weights must be the same as the number of values.\n''' F'But got {num_items} weights and {len(_lowerCAmelCase )} values' ) raise ValueError(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): if not isinstance(wt[i], _lowerCAmelCase ): SCREAMING_SNAKE_CASE =( '''All weights must be integers but got weight of ''' F'type {type(wt[i] )} at index {i}' ) raise TypeError(_lowerCAmelCase ) SCREAMING_SNAKE_CASE =knapsack(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) SCREAMING_SNAKE_CASE =set() _construct_solution(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) return optimal_val, example_optional_set def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(_lowerCAmelCase, _lowerCAmelCase, i - 1, _lowerCAmelCase, _lowerCAmelCase ) else: optimal_set.add(_lowerCAmelCase ) _construct_solution(_lowerCAmelCase, _lowerCAmelCase, i - 1, j - wt[i - 1], _lowerCAmelCase ) if __name__ == "__main__": _lowerCamelCase =[3, 2, 4, 4] _lowerCamelCase =[4, 3, 2, 3] _lowerCamelCase =4 _lowerCamelCase =6 _lowerCamelCase =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _lowerCamelCase =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _lowerCamelCase =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
334
'''simple docstring''' import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """MCTCTFeatureExtractor""" lowerCamelCase__ = """AutoTokenizer""" def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : List[str] ) -> str: super().__init__(__snake_case , __snake_case ) UpperCAmelCase : List[Any] = self.feature_extractor UpperCAmelCase : Union[str, Any] = False def __call__( self : Any , *__snake_case : List[str] , **__snake_case : Any ) -> List[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) UpperCAmelCase : int = kwargs.pop('''raw_speech''' ) else: UpperCAmelCase : Union[str, Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase : Dict = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : Any = args[0] UpperCAmelCase : Optional[int] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: UpperCAmelCase : List[str] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if text is not None: UpperCAmelCase : int = self.tokenizer(__snake_case , **__snake_case ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase : str = encodings['''input_ids'''] return inputs def A ( self : List[Any] , *__snake_case : List[Any] , **__snake_case : List[Any] ) -> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def A ( self : List[Any] , *__snake_case : int , **__snake_case : Optional[int] ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = kwargs.pop('''input_features''' , __snake_case ) UpperCAmelCase : Optional[Any] = kwargs.pop('''labels''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase : List[str] = args[0] UpperCAmelCase : List[Any] = args[1:] if input_features is not None: UpperCAmelCase : Tuple = self.feature_extractor.pad(__snake_case , *__snake_case , **__snake_case ) if labels is not None: UpperCAmelCase : Optional[int] = self.tokenizer.pad(__snake_case , **__snake_case ) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase : List[str] = labels['''input_ids'''] return input_features def A ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[int] ) -> Optional[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @contextmanager def A ( self : Any ) -> Optional[int]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) UpperCAmelCase : Dict = True UpperCAmelCase : List[Any] = self.tokenizer yield UpperCAmelCase : Tuple = self.feature_extractor UpperCAmelCase : List[Any] = False
23
0
from itertools import product def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ): UpperCamelCase_ : Union[str, Any] = sides_number UpperCamelCase_ : Union[str, Any] = max_face_number * dice_number UpperCamelCase_ : Tuple = [0] * (max_total + 1) UpperCamelCase_ : Union[str, Any] = 1 UpperCamelCase_ : List[Any] = range(lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(lowerCamelCase , repeat=lowerCamelCase ): UpperCamelCase_ : Optional[int] = sum(lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def __lowercase ( ): UpperCamelCase_ : str = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCamelCase_ : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCamelCase_ : str = 0 UpperCamelCase_ : List[Any] = 9 UpperCamelCase_ : Any = 4 * 9 UpperCamelCase_ : str = 6 for peter_total in range(lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCamelCase_ : List[str] = (4**9) * (6**6) UpperCamelCase_ : str = peter_wins_count / total_games_number UpperCamelCase_ : List[Any] = round(lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"""{solution() = }""")
359
from manim import * class _lowercase ( snake_case_ ): def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ : str = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase_ : Optional[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : List[Any] = [mem.copy() for i in range(6 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : List[str] = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = VGroup(snake_case , snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : int = Text('CPU' , font_size=2_4 ) UpperCamelCase_ : List[str] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(snake_case ) UpperCamelCase_ : Union[str, Any] = [mem.copy() for i in range(1 )] UpperCamelCase_ : Dict = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Union[str, Any] = Text('GPU' , font_size=2_4 ) UpperCamelCase_ : Optional[Any] = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) gpu.align_to(snake_case , snake_case ) gpu.set_x(gpu.get_x() - 1 ) self.add(snake_case ) UpperCamelCase_ : int = [mem.copy() for i in range(6 )] UpperCamelCase_ : int = VGroup(*snake_case ).arrange(snake_case , buff=0 ) UpperCamelCase_ : Tuple = Text('Model' , font_size=2_4 ) UpperCamelCase_ : Dict = Group(snake_case , snake_case ).arrange(snake_case , buff=0.5 , aligned_edge=snake_case ) model.move_to([3, -1.0, 0] ) self.play( Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , Create(snake_case , run_time=1 ) , ) UpperCamelCase_ : Union[str, Any] = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , ) UpperCamelCase_ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase_ : Dict = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(snake_case , run_time=2.5 ) , Write(snake_case ) , Write(snake_case ) ) self.add(snake_case ) UpperCamelCase_ : Tuple = [] UpperCamelCase_ : List[str] = [] UpperCamelCase_ : Tuple = [] for i, rect in enumerate(snake_case ): UpperCamelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(snake_case , opacity=0.7 ) cpu_target.move_to(snake_case ) cpu_target.generate_target() UpperCamelCase_ : int = 0.46 / 4 UpperCamelCase_ : Tuple = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=snake_case ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=snake_case , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=snake_case , buff=0.0 ) cpu_targs.append(snake_case ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(snake_case ) ) second_animations.append(MoveToTarget(snake_case , run_time=1.5 ) ) self.play(*snake_case ) self.play(*snake_case ) self.wait()
50
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Dict , lowercase : Optional[int]=None , lowercase : List[str]=True , lowercase : Dict=None , **lowercase : Optional[int] ): '''simple docstring''' _snake_case = parent _snake_case = config_class _snake_case = has_text_modality _snake_case = kwargs _snake_case = common_properties def A ( self : int ): '''simple docstring''' _snake_case = self.config_class(**self.inputs_dict ) _snake_case = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowercase , lowercase ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(lowercase ): try: setattr(lowercase , lowercase , lowercase ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f'''`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowercase ): try: _snake_case = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f'''`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.config_class(**self.inputs_dict ) _snake_case = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowercase ) def A ( self : Tuple ): '''simple docstring''' _snake_case = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(lowercase , 'config.json' ) config_first.to_json_file(lowercase ) _snake_case = self.config_class.from_json_file(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : Optional[int] ): '''simple docstring''' _snake_case = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowercase ) _snake_case = self.config_class.from_pretrained(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : str ): '''simple docstring''' _snake_case = self.config_class(**self.inputs_dict ) _snake_case = 'test' with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(lowercase , lowercase ) config_first.save_pretrained(lowercase ) _snake_case = self.config_class.from_pretrained(lowercase , subfolder=lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def A ( self : Union[str, Any] ): '''simple docstring''' _snake_case = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _snake_case = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def A ( self : List[str] ): '''simple docstring''' if self.config_class.is_composition: return _snake_case = self.config_class() self.parent.assertIsNotNone(lowercase ) def A ( self : Any ): '''simple docstring''' _snake_case = copy.deepcopy(lowercase ) _snake_case = self.config_class(**lowercase ) _snake_case = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(lowercase , lowercase ) != value: wrong_values.append((key, getattr(lowercase , lowercase ), value) ) if len(lowercase ) > 0: _snake_case = '\n'.join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def A ( self : Optional[int] ): '''simple docstring''' self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
282
from collections.abc import Sequence def a_ ( __lowercase : Sequence[float] , __lowercase : float ) -> float: return sum(c * (x**i) for i, c in enumerate(__lowercase ) ) def a_ ( __lowercase : Sequence[float] , __lowercase : float ) -> float: _snake_case = 0.0 for coeff in reversed(__lowercase ): _snake_case = result * x + coeff return result if __name__ == "__main__": _lowerCamelCase : Optional[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCamelCase : Optional[int] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
282
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : Optional[int]=8 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : str=9_9 , UpperCAmelCase__ : List[str]=1_6 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : Union[str, Any]=3_6 , UpperCAmelCase__ : Dict="gelu" , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : List[Any]=5_1_2 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Any=None , ) -> Tuple: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : str ) -> Optional[Any]: return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : List[Any] ) -> str: __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = 3_0_0 return config def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: ( __SCREAMING_SNAKE_CASE ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE = MraModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , ) -> Tuple: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = MraModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple ) -> int: __SCREAMING_SNAKE_CASE = MraForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) -> str: __SCREAMING_SNAKE_CASE = MraForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = MraForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> int: __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = MraForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : str ) -> Dict: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( __UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) snake_case__ : List[Any] = False snake_case__ : List[Any] = False snake_case__ : Optional[Any] = False snake_case__ : Union[str, Any] = False snake_case__ : Optional[Any] = () def UpperCAmelCase_ ( self : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = MraModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[str] ) -> str: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Any: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[str] ) -> Tuple: for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = MraModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="MRA does not output attentions" ) def UpperCAmelCase_ ( self : Any ) -> Dict: return @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) __SCREAMING_SNAKE_CASE = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 2_5_6, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) __SCREAMING_SNAKE_CASE = torch.arange(2_5_6 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = 5_0_2_6_5 __SCREAMING_SNAKE_CASE = torch.Size((1, 2_5_6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) __SCREAMING_SNAKE_CASE = torch.arange(4_0_9_6 ).unsqueeze(0 ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = 5_0_2_6_5 __SCREAMING_SNAKE_CASE = torch.Size((1, 4_0_9_6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
356
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[str] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
0