code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import doctest from collections import deque import numpy as np class lowerCamelCase : def __init__( self : str ) -> None: SCREAMING_SNAKE_CASE__ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ = [1, 2, 3, 4] def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> list[float]: SCREAMING_SNAKE_CASE__ = len(self.first_signal ) SCREAMING_SNAKE_CASE__ = len(self.second_signal ) SCREAMING_SNAKE_CASE__ = max(__UpperCAmelCase , __UpperCAmelCase ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ = [[0] * max_length for i in range(__UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = deque(self.second_signal ) rotated_signal.rotate(__UpperCAmelCase ) for j, item in enumerate(__UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ = np.matmul(np.transpose(__UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
165
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoImageProcessor.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) SCREAMING_SNAKE_CASE__ = AutoModelForImageClassification.from_pretrained("""microsoft/dit-base-finetuned-rvlcdip""" ) model.to(__UpperCAmelCase ) from datasets import load_dataset SCREAMING_SNAKE_CASE__ = load_dataset("""nielsr/rvlcdip-demo""" ) SCREAMING_SNAKE_CASE__ = dataset["""train"""][0]["""image"""].convert("""RGB""" ) SCREAMING_SNAKE_CASE__ = image_processor(__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = outputs.logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=__UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
165
1
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase : int = logging.get_logger(__name__) _lowercase : Any = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip_2_vision_model''' def __init__( self : Optional[int] , lowercase_ : Union[str, Any]=1408 , lowercase_ : List[str]=6144 , lowercase_ : Union[str, Any]=39 , lowercase_ : List[str]=16 , lowercase_ : Optional[Any]=224 , lowercase_ : int=14 , lowercase_ : str="gelu" , lowercase_ : int=0.0_00_01 , lowercase_ : List[Any]=0.0 , lowercase_ : int=1E-10 , lowercase_ : int=True , **lowercase_ : Tuple , ): super().__init__(**lowercase_ ) lowercase_ : Any = hidden_size lowercase_ : Union[str, Any] = intermediate_size lowercase_ : Dict = num_hidden_layers lowercase_ : int = num_attention_heads lowercase_ : Optional[Any] = patch_size lowercase_ : Tuple = image_size lowercase_ : List[Any] = initializer_range lowercase_ : Any = attention_dropout lowercase_ : str = layer_norm_eps lowercase_ : List[Any] = hidden_act lowercase_ : Optional[Any] = qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : int ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ : str = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase_ : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip_2_qformer''' def __init__( self : Optional[Any] , lowercase_ : Any=30522 , lowercase_ : Union[str, Any]=768 , lowercase_ : Any=12 , lowercase_ : str=12 , lowercase_ : List[str]=3072 , lowercase_ : str="gelu" , lowercase_ : Tuple=0.1 , lowercase_ : int=0.1 , lowercase_ : List[str]=512 , lowercase_ : Optional[int]=0.02 , lowercase_ : str=1E-12 , lowercase_ : str=0 , lowercase_ : Union[str, Any]="absolute" , lowercase_ : int=2 , lowercase_ : Any=1408 , **lowercase_ : Any , ): super().__init__(pad_token_id=lowercase_ , **lowercase_ ) lowercase_ : Dict = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : List[str] = hidden_act lowercase_ : Any = intermediate_size lowercase_ : Dict = hidden_dropout_prob lowercase_ : List[str] = attention_probs_dropout_prob lowercase_ : Dict = max_position_embeddings lowercase_ : Tuple = initializer_range lowercase_ : str = layer_norm_eps lowercase_ : int = position_embedding_type lowercase_ : List[str] = cross_attention_frequency lowercase_ : int = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , lowercase_ : Union[str, os.PathLike] , **lowercase_ : Union[str, Any] ): cls._set_token_in_kwargs(lowercase_ ) lowercase_ : Dict = cls.get_config_dict(lowercase_ , **lowercase_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": lowercase_ : Union[str, Any] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase_ , **lowercase_ ) class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''blip-2''' UpperCamelCase__ = True def __init__( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : List[Any]=None , lowercase_ : Dict=None , lowercase_ : Any=32 , **lowercase_ : Any ): super().__init__(**lowercase_ ) if vision_config is None: lowercase_ : Any = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: lowercase_ : str = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: lowercase_ : int = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) lowercase_ : List[Any] = BlipaVisionConfig(**lowercase_ ) lowercase_ : List[str] = BlipaQFormerConfig(**lowercase_ ) lowercase_ : int = text_config["""model_type"""] if """model_type""" in text_config else """opt""" lowercase_ : Tuple = CONFIG_MAPPING[text_model_type](**lowercase_ ) lowercase_ : Dict = self.text_config.tie_word_embeddings lowercase_ : Tuple = self.text_config.is_encoder_decoder lowercase_ : Any = num_query_tokens lowercase_ : Tuple = self.vision_config.hidden_size lowercase_ : List[Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase_ : Optional[int] = 1.0 lowercase_ : Dict = 0.02 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , lowercase_ : BlipaVisionConfig , lowercase_ : BlipaQFormerConfig , lowercase_ : PretrainedConfig , **lowercase_ : List[str] , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowercase_ , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = copy.deepcopy(self.__dict__ ) lowercase_ : List[str] = self.vision_config.to_dict() lowercase_ : Optional[Any] = self.qformer_config.to_dict() lowercase_ : List[Any] = self.text_config.to_dict() lowercase_ : List[str] = self.__class__.model_type return output
359
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING _lowercase : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase) class __magic_name__ ( _UpperCAmelCase): def __init__( self : str , *lowercase_ : int , **lowercase_ : Any ): super().__init__(*lowercase_ , **lowercase_ ) requires_backends(self , """decord""" ) self.check_model_type(lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : str=None , lowercase_ : Union[str, Any]=None , lowercase_ : List[Any]=None ): lowercase_ : Union[str, Any] = {} if frame_sampling_rate is not None: lowercase_ : Any = frame_sampling_rate if num_frames is not None: lowercase_ : Optional[Any] = num_frames lowercase_ : Union[str, Any] = {} if top_k is not None: lowercase_ : Optional[Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self : str , lowercase_ : Union[str, List[str]] , **lowercase_ : str ): return super().__call__(lowercase_ , **lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None , lowercase_ : Optional[int]=1 ): if num_frames is None: lowercase_ : List[Any] = self.model.config.num_frames if video.startswith("""http://""" ) or video.startswith("""https://""" ): lowercase_ : Union[str, Any] = BytesIO(requests.get(lowercase_ ).content ) lowercase_ : Optional[Any] = VideoReader(lowercase_ ) videoreader.seek(0 ) lowercase_ : Tuple = 0 lowercase_ : List[Any] = num_frames * frame_sampling_rate - 1 lowercase_ : Optional[int] = np.linspace(lowercase_ , lowercase_ , num=lowercase_ , dtype=np.intaa ) lowercase_ : Optional[int] = videoreader.get_batch(lowercase_ ).asnumpy() lowercase_ : Union[str, Any] = list(lowercase_ ) lowercase_ : Optional[Any] = self.image_processor(lowercase_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str , lowercase_ : str ): lowercase_ : int = self.model(**lowercase_ ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=5 ): if top_k > self.model.config.num_labels: lowercase_ : List[Any] = self.model.config.num_labels if self.framework == "pt": lowercase_ : str = model_outputs.logits.softmax(-1 )[0] lowercase_ , lowercase_ : Optional[Any] = probs.topk(lowercase_ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) lowercase_ : Union[str, Any] = scores.tolist() lowercase_ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowercase_ , lowercase_ )]
21
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __A , __A=False ) -> Optional[int]: _snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: _snake_case = '' else: _snake_case = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _snake_case = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[ : config.hidden_size, : ] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]: _snake_case = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Any: _snake_case = dct.pop(__SCREAMING_SNAKE_CASE ) _snake_case = val def SCREAMING_SNAKE_CASE__ ( ) -> Any: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=True ) -> Optional[Any]: _snake_case = ViTConfig() # patch_size if model_name[-1] == "8": _snake_case = 8 # set labels if required if not base_model: _snake_case = 1_000 _snake_case = 'huggingface/label-files' _snake_case = 'imagenet-1k-id2label.json' _snake_case = json.load(open(hf_hub_download(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 6 # load original model from torch hub _snake_case = torch.hub.load('facebookresearch/dino:main' , __SCREAMING_SNAKE_CASE ) original_model.eval() # load state_dict of original model, remove and rename some keys _snake_case = original_model.state_dict() if base_model: remove_classification_head_(__SCREAMING_SNAKE_CASE ) _snake_case = create_rename_keys(__SCREAMING_SNAKE_CASE , base_model=__SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) read_in_q_k_v(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # load HuggingFace model if base_model: _snake_case = ViTModel(__SCREAMING_SNAKE_CASE , add_pooling_layer=__SCREAMING_SNAKE_CASE ).eval() else: _snake_case = ViTForImageClassification(__SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(__SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by ViTImageProcessor _snake_case = ViTImageProcessor() _snake_case = image_processor(images=prepare_img() , return_tensors='pt' ) _snake_case = encoding['pixel_values'] _snake_case = model(__SCREAMING_SNAKE_CASE ) if base_model: _snake_case = original_model(__SCREAMING_SNAKE_CASE ) assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: _snake_case = original_model(__SCREAMING_SNAKE_CASE ) assert logits.shape == outputs.logits.shape assert torch.allclose(__SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) Path(__SCREAMING_SNAKE_CASE ).mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) lowercase : Any = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
42
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Optional[Any] = """blip_2_vision_model""" def __init__( self , snake_case=1408 , snake_case=6144 , snake_case=39 , snake_case=16 , snake_case=224 , snake_case=14 , snake_case="gelu" , snake_case=0.00_001 , snake_case=0.0 , snake_case=1E-10 , snake_case=True , **snake_case , ): super().__init__(**snake_case ) lowercase = hidden_size lowercase = intermediate_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = patch_size lowercase = image_size lowercase = initializer_range lowercase = attention_dropout lowercase = layer_norm_eps lowercase = hidden_act lowercase = qkv_bias @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """blip_2_qformer""" def __init__( self , snake_case=3_0522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=0.02 , snake_case=1E-12 , snake_case=0 , snake_case="absolute" , snake_case=2 , snake_case=1408 , **snake_case , ): super().__init__(pad_token_id=snake_case , **snake_case ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = cross_attention_frequency lowercase = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , **snake_case ): cls._set_token_in_kwargs(snake_case ) lowercase , lowercase = cls.get_config_dict(snake_case , **snake_case ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": lowercase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(snake_case , **snake_case ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[Any] = """blip-2""" _UpperCamelCase : str = True def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case=32 , **snake_case ): super().__init__(**snake_case ) if vision_config is None: lowercase = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: lowercase = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: lowercase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) lowercase = BlipaVisionConfig(**snake_case ) lowercase = BlipaQFormerConfig(**snake_case ) lowercase = text_config['model_type'] if 'model_type' in text_config else 'opt' lowercase = CONFIG_MAPPING[text_model_type](**snake_case ) lowercase = self.text_config.tie_word_embeddings lowercase = self.text_config.is_encoder_decoder lowercase = num_query_tokens lowercase = self.vision_config.hidden_size lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowercase = 1.0 lowercase = 0.02 @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , snake_case , **snake_case , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **snake_case , ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = copy.deepcopy(self.__dict__ ) lowercase = self.vision_config.to_dict() lowercase = self.qformer_config.to_dict() lowercase = self.text_config.to_dict() lowercase = self.__class__.model_type return output
195
0
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = AlbertConfig.from_json_file(A__ ) print(F"Building PyTorch model from configuration: {config}" ) __lowercase = AlbertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(A__ , A__ , A__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
52
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() # fmt: off __lowercase = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __lowercase = dict(zip(lowercase__ ,range(len(lowercase__ ) ) ) ) __lowercase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __lowercase = {'''unk_token''': '''<unk>'''} __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowercase__ ) + '''\n''' ) with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowercase__ ) ) __lowercase = { '''do_resize''': True, '''size''': 2_0, '''do_center_crop''': True, '''crop_size''': 1_8, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowercase = os.path.join(self.tmpdirname ,lowercase__ ) with open(self.image_processor_file ,'''w''' ,encoding='''utf-8''' ) as fp: json.dump(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ,**lowercase__ : Optional[int] ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,pad_token='''!''' ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,**lowercase__ : Union[str, Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,pad_token='''!''' ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,**lowercase__ : int ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname ,**lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(lowercase__ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = self.get_image_processor() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) processor_slow.save_pretrained(self.tmpdirname ) __lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname ,use_fast=lowercase__ ) __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) processor_fast.save_pretrained(self.tmpdirname ) __lowercase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,lowercase__ ) self.assertIsInstance(processor_fast.tokenizer ,lowercase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,lowercase__ ) self.assertIsInstance(processor_fast.image_processor ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = OwlViTProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) __lowercase = self.get_image_processor(do_normalize=lowercase__ ) __lowercase = OwlViTProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=lowercase__ ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowercase__ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(lowercase__ ,return_tensors='''np''' ) __lowercase = processor(images=lowercase__ ,return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = '''lower newer''' __lowercase = processor(text=lowercase__ ,return_tensors='''np''' ) __lowercase = tokenizer(lowercase__ ,return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() ,encoded_processor[key][0].tolist() ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = '''lower newer''' __lowercase = self.prepare_image_inputs() __lowercase = processor(text=lowercase__ ,images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''google/owlvit-base-patch32''' __lowercase = OwlViTProcessor.from_pretrained(lowercase__ ) __lowercase = ['''cat''', '''nasa badge'''] __lowercase = processor(text=lowercase__ ) __lowercase = 1_6 self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape ,(2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = '''google/owlvit-base-patch32''' __lowercase = OwlViTProcessor.from_pretrained(lowercase__ ) __lowercase = [['''cat''', '''nasa badge'''], ['''person''']] __lowercase = processor(text=lowercase__ ) __lowercase = 1_6 __lowercase = len(lowercase__ ) __lowercase = max([len(lowercase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape ,(batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = '''google/owlvit-base-patch32''' __lowercase = OwlViTProcessor.from_pretrained(lowercase__ ) __lowercase = ['''cat''', '''nasa badge'''] __lowercase = processor(text=lowercase__ ) __lowercase = 1_6 __lowercase = inputs['''input_ids'''] __lowercase = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape ,(2, seq_length) ) self.assertListEqual(list(input_ids[0] ) ,predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) ,predicted_ids[1] ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = self.prepare_image_inputs() __lowercase = self.prepare_image_inputs() __lowercase = processor(images=lowercase__ ,query_images=lowercase__ ) self.assertListEqual(list(inputs.keys() ) ,['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowercase__ ): processor() def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.get_image_processor() __lowercase = self.get_tokenizer() __lowercase = OwlViTProcessor(tokenizer=lowercase__ ,image_processor=lowercase__ ) __lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowercase = processor.batch_decode(lowercase__ ) __lowercase = tokenizer.batch_decode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ )
52
1
"""simple docstring""" import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class a ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE : torch.FloatTensor SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None def lowerCamelCase__ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str]=0.9_99 , _lowerCamelCase : Union[str, Any]="cosine" , ) -> Any: if alpha_transform_type == "cosine": def alpha_bar_fn(_lowerCamelCase : List[Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_lowerCamelCase : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowerCamelCase_ = [] for i in range(__UpperCAmelCase ): lowerCamelCase_ = i / num_diffusion_timesteps lowerCamelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class a ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE : Tuple = 1 @register_to_config def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] = 1000 , __SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0_001 , __SCREAMING_SNAKE_CASE : List[str] = 0.02 , __SCREAMING_SNAKE_CASE : int = "linear" , __SCREAMING_SNAKE_CASE : List[Any] = None , __SCREAMING_SNAKE_CASE : Optional[int] = True , __SCREAMING_SNAKE_CASE : int = True , __SCREAMING_SNAKE_CASE : Any = 0 , __SCREAMING_SNAKE_CASE : Optional[int] = "epsilon" , __SCREAMING_SNAKE_CASE : Dict = 1.0 , **__SCREAMING_SNAKE_CASE : Any , ) -> List[Any]: if kwargs.get('set_alpha_to_one' , _UpperCAmelCase ) is not None: lowerCamelCase_ = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('set_alpha_to_one' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) lowerCamelCase_ = kwargs['''set_alpha_to_one'''] if trained_betas is not None: lowerCamelCase_ = torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCamelCase_ = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCamelCase_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCamelCase_ = betas_for_alpha_bar(_UpperCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) lowerCamelCase_ = 1.0 - self.betas lowerCamelCase_ = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowerCamelCase_ = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowerCamelCase_ = 1.0 # setable values lowerCamelCase_ = None lowerCamelCase_ = torch.from_numpy(np.arange(0 , _UpperCAmelCase ).copy().astype(np.intaa ) ) def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[int] = None ) -> List[Any]: return sample def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] = None ) -> Optional[int]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) lowerCamelCase_ = num_inference_steps lowerCamelCase_ = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCamelCase_ = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) lowerCamelCase_ = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) self.timesteps += self.config.steps_offset def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] = 0.0 , __SCREAMING_SNAKE_CASE : int = False , __SCREAMING_SNAKE_CASE : Union[str, Any] = None , __SCREAMING_SNAKE_CASE : List[Any] = True , ) -> str: # 1. get previous step value (=t+1) lowerCamelCase_ = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowerCamelCase_ = self.alphas_cumprod[timestep] lowerCamelCase_ = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowerCamelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowerCamelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowerCamelCase_ = model_output elif self.config.prediction_type == "sample": lowerCamelCase_ = model_output lowerCamelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowerCamelCase_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowerCamelCase_ = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowerCamelCase_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def __len__( self : Optional[Any] ) -> str: return self.config.num_train_timesteps
183
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: lowercase__: Optional[Any] = 0 lowercase__: List[Any] = len(__UpperCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowercase__: Tuple = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCAmelCase ): return None lowercase__: Optional[int] = sorted_collection[point] if current_item == item: return point else: if point < left: lowercase__: List[Any] = left lowercase__: int = point elif point > right: lowercase__: Dict = right lowercase__: List[str] = point else: if item < current_item: lowercase__: int = point - 1 else: lowercase__: int = point + 1 return None def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowercase__: Optional[int] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__UpperCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) elif point > right: return interpolation_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( __UpperCAmelCase , __UpperCAmelCase , point + 1 , __UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[Any]: if collection != sorted(__UpperCAmelCase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys __A = 0 if debug == 1: __A = [1_0, 3_0, 4_0, 4_5, 5_0, 6_6, 7_7, 9_3] try: __assert_sorted(collection) except ValueError: sys.exit("Sequence must be ascending sorted to apply interpolation search") __A = 6_7 __A = interpolation_search(collection, target) if result is not None: print(f'''{target} found at positions: {result}''') else: print("Not found")
177
0
"""simple docstring""" import unittest import numpy as np def _lowerCAmelCase ( UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : np.ndarray | None = None, ) ->np.ndarray: A__ : List[Any] = np.shape(UpperCAmelCase__ ) A__ : List[str] = np.shape(UpperCAmelCase__ ) A__ : str = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: A__ : int = ( """Expected the same number of rows for A and B. """ f'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: A__ : int = ( """Expected the same number of columns for B and C. """ f'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(UpperCAmelCase__ ) A__ : Any = pseudo_inv if a_inv is None: try: A__ : List[str] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) A__ : int = np.array([[2, 1], [6, 3]] ) A__ : List[str] = schur_complement(snake_case , snake_case , snake_case ) A__ : str = np.block([[a, b], [b.T, c]] ) A__ : Optional[Any] = np.linalg.det(snake_case ) A__ : Union[str, Any] = np.linalg.det(snake_case ) A__ : Optional[Any] = np.linalg.det(snake_case ) self.assertAlmostEqual(snake_case , det_a * det_s ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Union[str, Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) A__ : Tuple = np.array([[2, 1], [6, 3]] ) with self.assertRaises(snake_case ): schur_complement(snake_case , snake_case , snake_case ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) A__ : Optional[int] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(snake_case ): schur_complement(snake_case , snake_case , snake_case ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
296
"""simple docstring""" import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] ): '''simple docstring''' A__ : Optional[int] = (0, 0) A__ : Dict = None A__ : int = 0 A__ : str = 0 A__ : Optional[Any] = 0 def __eq__( self : str , snake_case : Optional[int] ): '''simple docstring''' return self.position == cell.position def _UpperCamelCase ( self : List[str] ): '''simple docstring''' print(self.position ) class __SCREAMING_SNAKE_CASE : def __init__( self : int , snake_case : Any=(5, 5) ): '''simple docstring''' A__ : Optional[int] = np.zeros(snake_case ) A__ : List[Any] = world_size[0] A__ : Dict = world_size[1] def _UpperCamelCase ( self : Any ): '''simple docstring''' print(self.w ) def _UpperCamelCase ( self : Optional[int] , snake_case : List[Any] ): '''simple docstring''' A__ : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] A__ : int = cell.position[0] A__ : str = cell.position[1] A__ : Any = [] for n in neughbour_cord: A__ : List[Any] = current_x + n[0] A__ : Tuple = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: A__ : List[Any] = Cell() A__ : str = (x, y) A__ : Optional[Any] = cell neighbours.append(snake_case ) return neighbours def _lowerCAmelCase ( UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict ) ->Dict: A__ : Union[str, Any] = [] A__ : Optional[int] = [] _open.append(UpperCAmelCase__ ) while _open: A__ : List[Any] = np.argmin([n.f for n in _open] ) A__ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase__ ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase__ ): for c in _closed: if c == n: continue A__ : Dict = current.g + 1 A__ , A__ : int = n.position A__ , A__ : Optional[int] = goal.position A__ : Union[str, Any] = (ya - ya) ** 2 + (xa - xa) ** 2 A__ : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase__ ) A__ : List[str] = [] while current.parent is not None: path.append(current.position ) A__ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": A_ = Gridworld() # Start position and goal A_ = Cell() A_ = (0, 0) A_ = Cell() A_ = (4, 4) print(F'path from {start.position} to {goal.position}') A_ = astar(world, start, goal) # Just for visual reasons. for i in s: A_ = 1 print(world.w)
296
1
from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
313
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : str = StableDiffusionSAGPipeline _A : Optional[Any] = TEXT_TO_IMAGE_PARAMS _A : Any = TEXT_TO_IMAGE_BATCH_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : List[str] = False def lowerCAmelCase_ ( self: Optional[Any] ) -> str: torch.manual_seed(0 ) snake_case_ :Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ :Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) snake_case_ :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case_ :Tuple = CLIPTextModel(snake_case ) snake_case_ :str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ :Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple , snake_case: List[str]=0 ) -> str: if str(snake_case ).startswith("""mps""" ): snake_case_ :Tuple = torch.manual_seed(snake_case ) else: snake_case_ :Optional[int] = torch.Generator(device=snake_case ).manual_seed(snake_case ) snake_case_ :Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self: Optional[int] ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: int ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Union[str, Any] = """.""" snake_case_ :str = torch.manual_seed(0 ) snake_case_ :str = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :List[Any] = output.images snake_case_ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :List[Any] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: Dict ) -> str: snake_case_ :Tuple = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :Optional[int] = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Union[str, Any] = torch.manual_seed(0 ) snake_case_ :Tuple = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :Optional[int] = output.images snake_case_ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :Tuple = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case_ :Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Optional[int] = torch.manual_seed(0 ) snake_case_ :List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) snake_case_ :Optional[Any] = output.images assert image.shape == (1, 512, 768, 3)
66
0
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCamelCase_ = random.Random() if is_torch_available(): import torch def snake_case ( A__ ,A__=1.0 ,A__=None ,A__=None ): if rng is None: UpperCAmelCase_ : Any = global_rng UpperCAmelCase_ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase_ (unittest.TestCase ): def __init__( self : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : Optional[int]=400 , lowerCAmelCase_ : Optional[int]=2_000 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : int=16_000 , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Optional[int]=True , ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Union[str, Any] = min_seq_length UpperCAmelCase_ : Dict = max_seq_length UpperCAmelCase_ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ : List[Any] = feature_size UpperCAmelCase_ : Tuple = padding_value UpperCAmelCase_ : List[str] = sampling_rate UpperCAmelCase_ : Any = return_attention_mask UpperCAmelCase_ : Dict = do_normalize def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Any=False ) -> Union[str, Any]: def _flatten(lowerCAmelCase_ : Dict ): return list(itertools.chain(*__SCREAMING_SNAKE_CASE ) ) if equal_length: UpperCAmelCase_ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCAmelCase_ : List[Any] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase_ : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase_ (_A , unittest.TestCase ): __magic_name__ = ASTFeatureExtractor def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ASTFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: # Tests that all call wrap to encode_plus and batch_encode_plus UpperCAmelCase_ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] UpperCAmelCase_ : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase_ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCAmelCase_ : int = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test batched UpperCAmelCase_ : Dict = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values UpperCAmelCase_ : List[Any] = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_ : int = np.asarray(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values UpperCAmelCase_ : str = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[str]: import torch UpperCAmelCase_ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCAmelCase_ : Tuple = np.random.rand(100 ).astype(np.floataa ) UpperCAmelCase_ : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ : str = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCAmelCase_ : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Dict ) -> Tuple: from datasets import load_dataset UpperCAmelCase_ : Tuple = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCAmelCase_ : List[str] = ds.sort("id" ).select(range(__SCREAMING_SNAKE_CASE ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: # fmt: off UpperCAmelCase_ : List[str] = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on UpperCAmelCase_ : Dict = self._load_datasamples(1 ) UpperCAmelCase_ : Optional[Any] = ASTFeatureExtractor() UpperCAmelCase_ : str = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1_024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
363
"""simple docstring""" def snake_case ( A__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(A__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
253
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''spiece.model'''} _snake_case = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A=False , __A=True , __A=False , __A="<s>" , __A="</s>" , __A="<unk>" , __A="<sep>" , __A="<pad>" , __A="<cls>" , __A="<mask>" , __A=["<eop>", "<eod>"] , __A = None , **__A , ): """simple docstring""" lowerCamelCase : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token lowerCamelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) lowerCamelCase : Dict = 3 lowerCamelCase : Dict = do_lower_case lowerCamelCase : Optional[int] = remove_space lowerCamelCase : Any = keep_accents lowerCamelCase : List[Any] = vocab_file lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) lowerCamelCase : Any = jieba lowerCamelCase : int = str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" lowerCamelCase : str = self.__dict__.copy() lowerCamelCase : Union[str, Any] = None return state def __setstate__( self , __A ): """simple docstring""" lowerCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase : int = {} lowerCamelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , __A ): """simple docstring""" if self.remove_space: lowerCamelCase : Tuple = " ".join(inputs.strip().split() ) else: lowerCamelCase : List[Any] = inputs lowerCamelCase : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCamelCase : int = unicodedata.normalize("NFKD" , __A ) lowerCamelCase : Dict = "".join([c for c in outputs if not unicodedata.combining(__A )] ) if self.do_lower_case: lowerCamelCase : List[Any] = outputs.lower() return outputs def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[int] = self.preprocess_text(__A ) lowerCamelCase : List[Any] = self.sp_model.encode(__A , out_type=__A ) lowerCamelCase : int = [] for piece in pieces: if len(__A ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCamelCase : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__A , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase : List[str] = cur_pieces[1:] else: lowerCamelCase : List[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__A ) else: new_pieces.append(__A ) return new_pieces def _snake_case ( self , __A ): """simple docstring""" return self.sp_model.PieceToId(__A ) def _snake_case ( self , __A ): """simple docstring""" return self.sp_model.IdToPiece(__A ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Any = "".join(__A ).replace(__A , " " ).strip() return out_string def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : List[str] = [self.sep_token_id] lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _snake_case ( self , __A , __A = None , __A = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is not None: return ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1, 1] return ([0] * len(__A )) + [1, 1] def _snake_case ( self , __A , __A = None ): """simple docstring""" lowerCamelCase : Dict = [self.sep_token_id] lowerCamelCase : Optional[int] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _snake_case ( self , __A , __A = None ): """simple docstring""" if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase : List[str] = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , "wb" ) as fi: lowerCamelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,) def _snake_case ( self , *__A , **__A ): """simple docstring""" lowerCamelCase : Union[str, Any] = super()._decode(*__A , **__A ) lowerCamelCase : int = text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
283
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : str = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : List[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Dict = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[int] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Any = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : Optional[Any] = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) class UpperCAmelCase_ ( metaclass=UpperCamelCase ): '''simple docstring''' __A : int = ["flax"] def __init__( self , *__A , **__A ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def _snake_case ( cls , *__A , **__A ): """simple docstring""" requires_backends(cls , ["flax"] )
283
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: def get_masked_lm_array(_UpperCAmelCase ): lowerCamelCase =F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCamelCase =tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) if "kernel" in name: lowerCamelCase =array.transpose() return torch.from_numpy(_UpperCAmelCase ) def get_encoder_array(_UpperCAmelCase ): lowerCamelCase =F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCamelCase =tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) if "kernel" in name: lowerCamelCase =array.transpose() return torch.from_numpy(_UpperCAmelCase ) def get_encoder_layer_array(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCamelCase =tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) if "kernel" in name: lowerCamelCase =array.transpose() return torch.from_numpy(_UpperCAmelCase ) def get_encoder_attention_layer_array(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" lowerCamelCase =tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =array.reshape(_UpperCAmelCase ) if "kernel" in name: lowerCamelCase =array.transpose() return torch.from_numpy(_UpperCAmelCase ) print(F"""Loading model based on config from {config_path}...""" ) lowerCamelCase =BertConfig.from_json_file(_UpperCAmelCase ) lowerCamelCase =BertForMaskedLM(_UpperCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): lowerCamelCase =model.bert.encoder.layer[layer_index] # Self-attention lowerCamelCase =layer.attention.self lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output lowerCamelCase =layer.attention.output lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) lowerCamelCase =get_encoder_attention_layer_array( _UpperCAmelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_attention_layer_norm/gamma""" ) lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_attention_layer_norm/beta""" ) # Intermediate lowerCamelCase =layer.intermediate lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_intermediate_dense/kernel""" ) lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_intermediate_dense/bias""" ) # Output lowerCamelCase =layer.output lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_output_dense/kernel""" ) lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_output_dense/bias""" ) lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_output_layer_norm/gamma""" ) lowerCamelCase =get_encoder_layer_array(_UpperCAmelCase , """_output_layer_norm/beta""" ) # Embeddings lowerCamelCase =get_encoder_array("""_position_embedding_layer/embeddings""" ) lowerCamelCase =get_encoder_array("""_type_embedding_layer/embeddings""" ) lowerCamelCase =get_encoder_array("""_embedding_norm_layer/gamma""" ) lowerCamelCase =get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head lowerCamelCase =model.cls.predictions.transform lowerCamelCase =get_masked_lm_array("""dense/kernel""" ) lowerCamelCase =get_masked_lm_array("""dense/bias""" ) lowerCamelCase =get_masked_lm_array("""layer_norm/gamma""" ) lowerCamelCase =get_masked_lm_array("""layer_norm/beta""" ) lowerCamelCase =get_masked_lm_array("""embedding_table""" ) # Pooling lowerCamelCase =BertPooler(config=_UpperCAmelCase ) lowerCamelCase =get_encoder_array("""_pooler_layer/kernel""" ) lowerCamelCase =get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(_UpperCAmelCase ) # Integration test - should load without any errors ;) lowerCamelCase =BertForMaskedLM.from_pretrained(_UpperCAmelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": UpperCAmelCase__ : str =argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) UpperCAmelCase__ : Dict =parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
364
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor UpperCAmelCase__ : Optional[int] =logging.getLogger(__name__) UpperCAmelCase__ : Tuple =50 # max width of layer names UpperCAmelCase__ : List[str] =70 # max width of quantizer names def _lowercase ( _UpperCAmelCase ) -> List[str]: lowerCamelCase =parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=_UpperCAmelCase , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=_UpperCAmelCase , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=_UpperCAmelCase , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=_UpperCAmelCase , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=_UpperCAmelCase , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=_UpperCAmelCase , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def _lowercase ( _UpperCAmelCase ) -> Dict: if args.calibrator == "max": lowerCamelCase ="""max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) lowerCamelCase ="""histogram""" elif args.calibrator == "mse": lowerCamelCase ="""histogram""" else: raise ValueError(F"""Invalid calibrator {args.calibrator}""" ) lowerCamelCase =QuantDescriptor(num_bits=args.aprec , calib_method=_UpperCAmelCase ) lowerCamelCase =QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_UpperCAmelCase ) quant_nn.QuantLinear.set_default_quant_desc_weight(_UpperCAmelCase ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False ) -> int: logger.info("""Configuring Model for Quantization""" ) logger.info(F"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_UpperCAmelCase , ["""embeddings"""] , which="""weight""" , _disabled=_UpperCAmelCase ) if args.quant_disable: set_quantizer_by_name(_UpperCAmelCase , [""""""] , _disabled=_UpperCAmelCase ) if args.quant_disable_keyword: set_quantizer_by_name(_UpperCAmelCase , args.quant_disable_keyword , _disabled=_UpperCAmelCase ) if args.quant_disable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [r"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=_UpperCAmelCase ) if args.quant_enable_layer_module: set_quantizer_by_name(_UpperCAmelCase , [r"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=_UpperCAmelCase ) if args.recalibrate_weights: recalibrate_weights(_UpperCAmelCase ) if args.fuse_qkv: fuse_qkv(_UpperCAmelCase , _UpperCAmelCase ) if args.clip_gelu: clip_gelu(_UpperCAmelCase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_UpperCAmelCase ) def _lowercase ( _UpperCAmelCase ) -> Optional[Any]: logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"""{name:80}: {module}""" ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_UpperCAmelCase ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: def fusea(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for mod in [qq, qk, qv]: if not hasattr(_UpperCAmelCase , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return lowerCamelCase =qq._amax.detach().item() lowerCamelCase =qk._amax.detach().item() lowerCamelCase =qv._amax.detach().item() lowerCamelCase =max(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) qq._amax.fill_(_UpperCAmelCase ) qk._amax.fill_(_UpperCAmelCase ) qv._amax.fill_(_UpperCAmelCase ) logger.info(F""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(F"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> int: for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): lowerCamelCase =mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_UpperCAmelCase ) lowerCamelCase =mod._input_quantizer._amax.data.detach().item() logger.info(F"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def _lowercase ( _UpperCAmelCase ) -> Dict: for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: lowerCamelCase =mod.weight.shape[0] lowerCamelCase =mod._weight_quantizer._amax.detach() lowerCamelCase =torch.ones(_UpperCAmelCase , dtype=amax.dtype , device=amax.device ) * amax print(F"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def _lowercase ( _UpperCAmelCase ) -> List[str]: for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCamelCase =set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCamelCase =set(range(len(mod.weight.size() ) ) ) - axis_set lowerCamelCase =pytorch_quantization.utils.reduce_amax(mod.weight , axis=_UpperCAmelCase , keepdims=_UpperCAmelCase ).detach() logger.info(F"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) lowerCamelCase =amax def _lowercase ( _UpperCAmelCase , _UpperCAmelCase=25 , _UpperCAmelCase=1_80 , _UpperCAmelCase=None ) -> Dict: if ignore is None: lowerCamelCase =[] elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =[ignore] lowerCamelCase =0 for name, mod in model.named_modules(): if not hasattr(_UpperCAmelCase , """weight""" ): continue lowerCamelCase =max(_UpperCAmelCase , len(_UpperCAmelCase ) ) for name, mod in model.named_modules(): lowerCamelCase =getattr(_UpperCAmelCase , """_input_quantizer""" , _UpperCAmelCase ) lowerCamelCase =getattr(_UpperCAmelCase , """_weight_quantizer""" , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , """weight""" ): continue if type(_UpperCAmelCase ) in ignore: continue if [True for s in ignore if type(_UpperCAmelCase ) is str and s in name]: continue lowerCamelCase =F"""Act:{input_q.extra_repr()}""" lowerCamelCase =F"""Wgt:{weight_q.extra_repr()}""" lowerCamelCase =F"""{name:{name_width}} {act_str} {wgt_str}""" if len(_UpperCAmelCase ) <= line_width: logger.info(_UpperCAmelCase ) else: logger.info(F"""{name:{name_width}} {act_str}""" ) logger.info(F"""{" ":{name_width}} {wgt_str}""" ) def _lowercase ( _UpperCAmelCase ) -> Dict: lowerCamelCase =0 for name, mod in model.named_modules(): if isinstance(_UpperCAmelCase , pytorch_quantization.nn.TensorQuantizer ): print(F"""{name:80} {mod}""" ) count += 1 print(F"""{count} TensorQuantizers found in model""" ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase =getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if quantizer_mod is not None: assert hasattr(_UpperCAmelCase , _UpperCAmelCase ) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: logger.warning(F"""{name} has no {quantizer}""" ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="both" , **_UpperCAmelCase ) -> List[str]: lowerCamelCase =F"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" if which in ["input", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , """_input_quantizer""" , _UpperCAmelCase , _UpperCAmelCase ) if which in ["weight", "both"]: set_quantizer(_UpperCAmelCase , _UpperCAmelCase , """_weight_quantizer""" , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase ) def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> int: for name, mod in model.named_modules(): if hasattr(_UpperCAmelCase , """_input_quantizer""" ) or hasattr(_UpperCAmelCase , """_weight_quantizer""" ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): set_quantizers(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =F"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += F""" {k}={v}""" setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) logger.info(_UpperCAmelCase )
262
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig SCREAMING_SNAKE_CASE = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class UpperCAmelCase_ ( A_ ): lowercase__ = '''albert''' def __init__( self : int , snake_case_ : Any=30_000 , snake_case_ : str=128 , snake_case_ : Tuple=4_096 , snake_case_ : int=12 , snake_case_ : str=1 , snake_case_ : Optional[int]=64 , snake_case_ : str=16_384 , snake_case_ : Tuple=1 , snake_case_ : List[Any]="gelu_new" , snake_case_ : Optional[Any]=0 , snake_case_ : Optional[int]=0 , snake_case_ : List[str]=512 , snake_case_ : List[Any]=2 , snake_case_ : Optional[Any]=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : Tuple=0.1 , snake_case_ : str="absolute" , snake_case_ : int=0 , snake_case_ : Optional[int]=2 , snake_case_ : Dict=3 , **snake_case_ : Tuple , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = embedding_size A__ = hidden_size A__ = num_hidden_layers A__ = num_hidden_groups A__ = num_attention_heads A__ = inner_group_num A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = classifier_dropout_prob A__ = position_embedding_type class UpperCAmelCase_ ( A_ ): @property def __magic_name__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: "batch", 1: "choice", 2: "sequence"} else: A__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
247
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ ( A_ ): lowercase__ = '''megatron-bert''' def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=29_056 , snake_case_ : int=1_024 , snake_case_ : Optional[int]=24 , snake_case_ : str=16 , snake_case_ : str=4_096 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : List[str]=512 , snake_case_ : Optional[int]=2 , snake_case_ : Dict=0.02 , snake_case_ : Optional[Any]=1e-12 , snake_case_ : Optional[Any]=0 , snake_case_ : int="absolute" , snake_case_ : List[str]=True , **snake_case_ : Tuple , ) -> int: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , **snake_case_ ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache
247
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowercase : List[str] = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE=None ) -> int: snake_case_ : List[str] = {} if top_k is not None: snake_case_ : Any = top_k return {}, {}, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: snake_case_ : List[Any] = load_image(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ : str = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=5 ) -> int: if top_k > self.model.config.num_labels: snake_case_ : Optional[Any] = self.model.config.num_labels if self.framework == "pt": snake_case_ : Tuple = model_outputs.logits.softmax(-1 )[0] snake_case_ , snake_case_ : int = probs.topk(_SCREAMING_SNAKE_CASE ) elif self.framework == "tf": snake_case_ : int = stable_softmax(model_outputs.logits , axis=-1 )[0] snake_case_ : Optional[Any] = tf.math.top_k(_SCREAMING_SNAKE_CASE , k=_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ : List[str] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) snake_case_ : str = scores.tolist() snake_case_ : Union[str, Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
36
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : List[Any] = logging.get_logger(__name__) lowercase : List[Any] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = 'conditional_detr' A : Optional[int] = ['past_key_values'] A : List[Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE="resnet50" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.25 , **_SCREAMING_SNAKE_CASE , ) -> str: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) snake_case_ : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Optional[int] = backbone_config.get("model_type" ) snake_case_ : str = CONFIG_MAPPING[backbone_model_type] snake_case_ : Tuple = config_class.from_dict(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = use_timm_backbone snake_case_ : Optional[Any] = backbone_config snake_case_ : str = num_channels snake_case_ : Optional[Any] = num_queries snake_case_ : Optional[Any] = d_model snake_case_ : Optional[Any] = encoder_ffn_dim snake_case_ : str = encoder_layers snake_case_ : int = encoder_attention_heads snake_case_ : int = decoder_ffn_dim snake_case_ : Optional[Any] = decoder_layers snake_case_ : List[str] = decoder_attention_heads snake_case_ : List[str] = dropout snake_case_ : Optional[int] = attention_dropout snake_case_ : Tuple = activation_dropout snake_case_ : List[Any] = activation_function snake_case_ : Dict = init_std snake_case_ : str = init_xavier_std snake_case_ : Tuple = encoder_layerdrop snake_case_ : int = decoder_layerdrop snake_case_ : List[Any] = encoder_layers snake_case_ : int = auxiliary_loss snake_case_ : int = position_embedding_type snake_case_ : List[str] = backbone snake_case_ : Union[str, Any] = use_pretrained_backbone snake_case_ : Optional[Any] = dilation # Hungarian matcher snake_case_ : Tuple = class_cost snake_case_ : Tuple = bbox_cost snake_case_ : str = giou_cost # Loss coefficients snake_case_ : Union[str, Any] = mask_loss_coefficient snake_case_ : Tuple = dice_loss_coefficient snake_case_ : List[str] = cls_loss_coefficient snake_case_ : List[str] = bbox_loss_coefficient snake_case_ : List[str] = giou_loss_coefficient snake_case_ : Any = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def _lowerCAmelCase ( self ) -> int: return self.d_model def _lowerCAmelCase ( self ) -> Optional[Any]: snake_case_ : List[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case_ : Optional[int] = self.backbone_config.to_dict() snake_case_ : Optional[int] = self.__class__.model_type return output class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Union[str, Any] = version.parse('1.11' ) @property def _lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCAmelCase ( self ) -> float: return 1e-5 @property def _lowerCAmelCase ( self ) -> int: return 12
36
1
'''simple docstring''' import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , ): output_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , use_external_data_format=_SCREAMING_SNAKE_CASE , enable_onnx_checker=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) else: export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): _snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _snake_case = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _snake_case = """cpu""" _snake_case = Path(_SCREAMING_SNAKE_CASE ) # VAE DECODER _snake_case = AutoencoderKL.from_pretrained(model_path + """/vae""" ) _snake_case = vae_decoder.config.latent_channels # forward only through the decoder part _snake_case = vae_decoder.decode onnx_export( _SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , _SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=_SCREAMING_SNAKE_CASE , ) del vae_decoder if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') __lowerCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
341
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = num_channels _snake_case = num_stages _snake_case = hidden_sizes _snake_case = depths _snake_case = is_training _snake_case = use_labels _snake_case = intermediate_size _snake_case = hidden_act _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = out_features _snake_case = num_labels _snake_case = scope _snake_case = num_stages def lowercase (self ) -> List[Any]: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = self.get_config() return config, pixel_values, labels def lowercase (self ) -> Tuple: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def lowercase (self ) -> Any: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , ) def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: _snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() _snake_case = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowercase (self ) -> Tuple: _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ), ( _snake_case ), ( _snake_case ), ) = config_and_inputs _snake_case = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase (self ) -> Optional[Any]: _snake_case = UperNetModelTester(self ) _snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowercase (self ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase (self ) -> Union[str, Any]: return def lowercase (self ) -> Union[str, Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(UpperCAmelCase ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowercase (self ) -> int: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @unittest.skip(reason="""UperNet does not use inputs_embeds""" ) def lowercase (self ) -> int: pass @unittest.skip(reason="""UperNet does not support input and output embeddings""" ) def lowercase (self ) -> List[str]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @unittest.skip(reason="""UperNet does not have a base model""" ) def lowercase (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def lowercase (self ) -> str: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowercase (self ) -> int: pass def lowercase (self ) -> List[str]: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) _snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _snake_case = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowercase (self ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = _config_zero_init(UpperCAmelCase ) _snake_case = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _snake_case = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason="""UperNet does not have tied weights""" ) def lowercase (self ) -> Optional[Any]: pass @slow def lowercase (self ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( ): _snake_case = hf_hub_download( repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" ) _snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" ) return image @require_torch @require_vision @slow class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) def lowercase (self ) -> Any: _snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" ) _snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase ) _snake_case = prepare_img() _snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) with torch.no_grad(): _snake_case = model(**UpperCAmelCase ) _snake_case = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) _snake_case = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
341
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowercase__ ( lowercase_ ) -> int: """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(lowercase_ ,"_dynamo" ): return False return isinstance(lowercase_ ,torch._dynamo.eval_frame.OptimizedModule ) def lowercase__ ( lowercase_ ,lowercase_ = True ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCamelCase : int = is_compiled_module(lowercase_ ) if is_compiled: _UpperCamelCase : Dict = model _UpperCamelCase : Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Tuple = model.module if not keep_fpaa_wrapper: _UpperCamelCase : Tuple = getattr(lowercase_ ,"forward" ) _UpperCamelCase : str = model.__dict__.pop("_original_forward" ,lowercase_ ) if original_forward is not None: while hasattr(lowercase_ ,"__wrapped__" ): _UpperCamelCase : Optional[int] = forward.__wrapped__ if forward == original_forward: break _UpperCamelCase : int = forward if getattr(lowercase_ ,"_converted_to_transformer_engine" ,lowercase_ ): convert_model(lowercase_ ,to_transformer_engine=lowercase_ ) if is_compiled: _UpperCamelCase : Dict = model _UpperCamelCase : List[Any] = compiled_model return model def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" PartialState().wait_for_everyone() def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[int]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase_ ,lowercase_ ) elif PartialState().local_process_index == 0: torch.save(lowercase_ ,lowercase_ ) @contextmanager def lowercase__ ( **lowercase_ ) -> Optional[Any]: """simple docstring""" for key, value in kwargs.items(): _UpperCamelCase : Any = str(lowercase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" if not hasattr(lowercase_ ,"__qualname__" ) and not hasattr(lowercase_ ,"__name__" ): _UpperCamelCase : Union[str, Any] = getattr(lowercase_ ,"__class__" ,lowercase_ ) if hasattr(lowercase_ ,"__qualname__" ): return obj.__qualname__ if hasattr(lowercase_ ,"__name__" ): return obj.__name__ return str(lowercase_ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Optional[Any]: """simple docstring""" for key, value in source.items(): if isinstance(lowercase_ ,lowercase_ ): _UpperCamelCase : Any = destination.setdefault(lowercase_ ,{} ) merge_dicts(lowercase_ ,lowercase_ ) else: _UpperCamelCase : Union[str, Any] = value return destination def lowercase__ ( lowercase_ = None ) -> bool: """simple docstring""" if port is None: _UpperCamelCase : Optional[int] = 29_500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
310
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCamelCase__ = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" lowerCamelCase__ = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" lowerCamelCase__ = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : List[List[List[str]]] , __a : List[List[str]] , __a : int = 1 , __a : int = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__a , hypotheses=__a , min_len=__a , max_len=__a ) }
310
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
205
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( A__ : bool = True , *A__ : int , **A__ : Union[str, Any] ) -> List[str]: """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) _lowercase =False if main_process_only: _lowercase =PartialState().local_process_index == 0 return _tqdm(*A__ , **A__ , disable=A__ )
205
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = """microsoft/speecht5_tts""" _lowercase : str = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) _lowercase : Optional[int] = """text_reader""" _lowercase : Any = SpeechTaProcessor _lowercase : Union[str, Any] = SpeechTaForTextToSpeech _lowercase : Tuple = SpeechTaHifiGan _lowercase : Tuple = ["""text"""] _lowercase : Tuple = ["""audio"""] def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' if self.post_processor is None: a__ : List[str] ="microsoft/speecht5_hifigan" super().setup() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Any: '''simple docstring''' a__ : List[str] =self.pre_processor(text=lowerCAmelCase__ , return_tensors="pt" , truncation=lowerCAmelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("Datasets needs to be installed if not passing speaker embeddings." ) a__ : List[Any] =load_dataset("Matthijs/cmu-arctic-xvectors" , split="validation" ) a__ : Optional[Any] =torch.tensor(embeddings_dataset[7_3_0_5]["xvector"] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowercase ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCAmelCase__ ).cpu().detach()
148
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = """char""" _lowercase : str = """bpe""" _lowercase : List[Any] = """wp""" UpperCAmelCase : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Tuple = ["""image_processor""", """char_tokenizer"""] _lowercase : Any = """ViTImageProcessor""" _lowercase : Optional[Any] = """MgpstrTokenizer""" def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase__ , ) a__ : List[str] =kwargs.pop("feature_extractor" ) a__ : List[str] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) a__ : str =tokenizer a__ : List[str] =AutoTokenizer.from_pretrained("gpt2" ) a__ : Optional[int] =AutoTokenizer.from_pretrained("bert-base-uncased" ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: a__ : Union[str, Any] =self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: a__ : int =self.char_tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif images is None: return encodings else: a__ : Tuple =encodings["input_ids"] return inputs def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ , a__ , a__ : Any =sequences a__ : Union[str, Any] =char_preds.size(0 ) a__ , a__ : Dict =self._decode_helper(lowerCAmelCase__ , "char" ) a__ , a__ : List[Any] =self._decode_helper(lowerCAmelCase__ , "bpe" ) a__ , a__ : Optional[int] =self._decode_helper(lowerCAmelCase__ , "wp" ) a__ : List[Any] =[] a__ : Dict =[] for i in range(lowerCAmelCase__ ): a__ : int =[char_scores[i], bpe_scores[i], wp_scores[i]] a__ : Tuple =[char_strs[i], bpe_strs[i], wp_strs[i]] a__ : Any =scores.index(max(lowerCAmelCase__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) a__ : Dict ={} a__ : str =final_strs a__ : Optional[int] =final_scores a__ : Union[str, Any] =char_strs a__ : List[str] =bpe_strs a__ : Union[str, Any] =wp_strs return out def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' if format == DecodeType.CHARACTER: a__ : Optional[Any] =self.char_decode a__ : Dict =1 a__ : Tuple ="[s]" elif format == DecodeType.BPE: a__ : str =self.bpe_decode a__ : Dict =2 a__ : Optional[int] ="#" elif format == DecodeType.WORDPIECE: a__ : Union[str, Any] =self.wp_decode a__ : List[Any] =1_0_2 a__ : Dict ="[SEP]" else: raise ValueError(F'''Format {format} is not supported.''' ) a__ , a__ : Any =[], [] a__ : str =pred_logits.size(0 ) a__ : Optional[Any] =pred_logits.size(1 ) a__ , a__ : Optional[int] =pred_logits.topk(1 , dim=-1 , largest=lowerCAmelCase__ , sorted=lowerCAmelCase__ ) a__ : Optional[Any] =preds_index.view(-1 , lowerCAmelCase__ )[:, 1:] a__ : Dict =decoder(lowerCAmelCase__ ) a__ , a__ : Any =torch.nn.functional.softmax(lowerCAmelCase__ , dim=2 ).max(dim=2 ) a__ : int =preds_max_prob[:, 1:] for index in range(lowerCAmelCase__ ): a__ : Optional[Any] =preds_str[index].find(lowerCAmelCase__ ) a__ : Optional[int] =preds_str[index][:pred_eos] a__ : List[Any] =preds_index[index].cpu().tolist() a__ : List[Any] =pred_index.index(lowerCAmelCase__ ) if eos_token in pred_index else -1 a__ : Union[str, Any] =preds_max_prob[index][: pred_eos_index + 1] a__ : List[Any] =pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCAmelCase__ ) conf_scores.append(lowerCAmelCase__ ) return dec_strs, conf_scores def _lowercase ( self , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : int =[seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs def _lowercase ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' return self.bpe_tokenizer.batch_decode(lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =[seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(lowerCAmelCase__ )] return decode_strs
148
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ViTImageProcessor if is_vision_available() else None @property def snake_case__ ( self : Tuple ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Any ): """simple docstring""" snake_case_ = (3, 32, 1_28) snake_case_ = tempfile.mkdtemp() # fmt: off snake_case_ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on snake_case_ = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowercase ) + "\n" ) snake_case_ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 1_28}, } snake_case_ = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__lowercase , __lowercase ) def snake_case__ ( self : Any , **__lowercase : List[Any] ): """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def snake_case__ ( self : int , **__lowercase : int ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def snake_case__ ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) snake_case_ = Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) return image_input def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) snake_case_ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.get_tokenizer() snake_case_ = self.get_image_processor() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor.save_pretrained(self.tmpdirname ) snake_case_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) snake_case_ = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) snake_case_ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) snake_case_ = self.prepare_image_inputs() snake_case_ = image_processor(__lowercase , return_tensors="np" ) snake_case_ = processor(images=__lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) snake_case_ = 'test' snake_case_ = processor(text=__lowercase ) snake_case_ = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) snake_case_ = 'test' snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) snake_case_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case_ = processor.char_decode(__lowercase ) snake_case_ = tokenizer.batch_decode(__lowercase ) snake_case_ = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(__lowercase , __lowercase ) def snake_case__ ( self : str ): """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) snake_case_ = None snake_case_ = self.prepare_image_inputs() snake_case_ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def snake_case__ ( self : int ): """simple docstring""" snake_case_ = self.get_image_processor() snake_case_ = self.get_tokenizer() snake_case_ = MgpstrProcessor(tokenizer=__lowercase , image_processor=__lowercase ) snake_case_ = torch.randn(1 , 27 , 38 ) snake_case_ = torch.randn(1 , 27 , 5_02_57 ) snake_case_ = torch.randn(1 , 27 , 3_05_22 ) snake_case_ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
187
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class _lowerCamelCase( _a ): lowercase_ : Dict = """deformable_detr""" lowercase_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=3, lowerCamelCase=3_00, lowerCamelCase=10_24, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase="resnet50", lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=False, lowerCamelCase=3_00, lowerCamelCase=False, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, lowerCamelCase=False, **lowerCamelCase, ) -> Optional[int]: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCamelCase, lowerCamelCase): _lowercase : List[str] = backbone_config.get('model_type') _lowercase : str = CONFIG_MAPPING[backbone_model_type] _lowercase : Optional[int] = config_class.from_dict(lowerCamelCase) _lowercase : Tuple = use_timm_backbone _lowercase : List[str] = backbone_config _lowercase : Tuple = num_channels _lowercase : Optional[Any] = num_queries _lowercase : Optional[Any] = max_position_embeddings _lowercase : Optional[int] = d_model _lowercase : int = encoder_ffn_dim _lowercase : List[Any] = encoder_layers _lowercase : str = encoder_attention_heads _lowercase : str = decoder_ffn_dim _lowercase : Optional[Any] = decoder_layers _lowercase : List[str] = decoder_attention_heads _lowercase : Optional[int] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Any = activation_function _lowercase : Optional[int] = init_std _lowercase : int = init_xavier_std _lowercase : Union[str, Any] = encoder_layerdrop _lowercase : Tuple = auxiliary_loss _lowercase : Union[str, Any] = position_embedding_type _lowercase : str = backbone _lowercase : List[Any] = use_pretrained_backbone _lowercase : Any = dilation # deformable attributes _lowercase : Any = num_feature_levels _lowercase : Dict = encoder_n_points _lowercase : Dict = decoder_n_points _lowercase : Dict = two_stage _lowercase : Union[str, Any] = two_stage_num_proposals _lowercase : str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : Tuple = class_cost _lowercase : int = bbox_cost _lowercase : Optional[int] = giou_cost # Loss coefficients _lowercase : Optional[Any] = mask_loss_coefficient _lowercase : Dict = dice_loss_coefficient _lowercase : Tuple = bbox_loss_coefficient _lowercase : Optional[int] = giou_loss_coefficient _lowercase : Union[str, Any] = eos_coefficient _lowercase : Union[str, Any] = focal_alpha _lowercase : Dict = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: _lowercase : Union[str, Any] = self.backbone_config.to_dict() _lowercase : Tuple = self.__class__.model_type return output
21
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , A , ) super().__init__(*A , **A )
361
'''simple docstring''' a : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" def __lowerCamelCase ( ) -> None: UpperCAmelCase : Optional[int] = input("""Enter message: """ ) UpperCAmelCase : Dict = input("""Enter key [alphanumeric]: """ ) UpperCAmelCase : Optional[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): UpperCAmelCase : List[str] = """encrypt""" UpperCAmelCase : List[str] = encrypt_message(_lowercase , _lowercase ) elif mode.lower().startswith("""d""" ): UpperCAmelCase : Tuple = """decrypt""" UpperCAmelCase : str = decrypt_message(_lowercase , _lowercase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowercase ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """encrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase ) -> str: return translate_message(_lowercase , _lowercase , """decrypt""" ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> str: UpperCAmelCase : Optional[int] = [] UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : Tuple = key.upper() for symbol in message: UpperCAmelCase : Dict = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowercase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowercase ): UpperCAmelCase : Optional[int] = 0 else: translated.append(_lowercase ) return "".join(_lowercase ) if __name__ == "__main__": main()
338
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase_ = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = """openai-gpt""" SCREAMING_SNAKE_CASE_ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , __lowerCamelCase : List[str]=4_04_78 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : List[str]=7_68 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="cls_index" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=0.1 , **__lowerCamelCase : Union[str, Any] , ) -> List[str]: a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = afn a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = summary_type a = summary_use_proj a = summary_activation a = summary_first_dropout a = summary_proj_to_labels super().__init__(**__lowerCamelCase )
107
0
from __future__ import annotations def __lowerCamelCase ( __a :list , __a :int , __a :int , __a :int ) -> list: """simple docstring""" A__ = [] A__ , A__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) A__ = result + left + right return input_list def __lowerCamelCase ( __a :list ) -> list: """simple docstring""" if len(__a ) <= 1: return input_list A__ = list(__a ) # iteration for two-way merging A__ = 2 while p <= len(__a ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__a ) , __a ): A__ = i A__ = i + p - 1 A__ = (low + high + 1) // 2 A__ = merge(__a , __a , __a , __a ) # final merge of last two parts if p * 2 >= len(__a ): A__ = i A__ = merge(__a , 0 , __a , len(__a ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": A : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": A : int = [] else: A : Tuple = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
276
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __lowerCamelCase ( __a :int ) -> int: """simple docstring""" A__ = prime_factors(__a ) if is_square_free(__a ): return -1 if len(__a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
276
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum ): '''simple docstring''' SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 2 @add_end_docstrings(a_ ) class A__ ( a_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self: str , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: int) -> List[str]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. __lowerCAmelCase : Tuple = None if self.model.config.prefix is not None: __lowerCAmelCase : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. __lowerCAmelCase : int = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Tuple = self._sanitize_parameters(prefix=_SCREAMING_SNAKE_CASE , **self._forward_params) __lowerCAmelCase : List[str] = {**self._preprocess_params, **preprocess_params} __lowerCAmelCase : Tuple = {**self._forward_params, **forward_params} def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = {} if prefix is not None: __lowerCAmelCase : Optional[Any] = prefix if prefix: __lowerCAmelCase : Optional[int] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : Any = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, \'hole\']") __lowerCAmelCase : Optional[int] = handle_long_generation preprocess_params.update(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = generate_kwargs __lowerCAmelCase : Any = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`") if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`") __lowerCAmelCase : List[str] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`") __lowerCAmelCase : Optional[Any] = ReturnType.TENSORS if return_type is not None: __lowerCAmelCase : int = return_type if clean_up_tokenization_spaces is not None: __lowerCAmelCase : Any = clean_up_tokenization_spaces if stop_sequence is not None: __lowerCAmelCase : Dict = self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim.") __lowerCAmelCase : Optional[Any] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _SCREAMING_SNAKE_CASE ( self: Optional[int] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True}) return super()._parse_and_tokenize(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def __call__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: int) -> Optional[Any]: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any]="" , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[str] = self.tokenizer( prefix + prompt_text , padding=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors=self.framework) __lowerCAmelCase : List[str] = prompt_text if handle_long_generation == "hole": __lowerCAmelCase : Optional[int] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: __lowerCAmelCase : str = generate_kwargs["max_new_tokens"] else: __lowerCAmelCase : Any = generate_kwargs.get("max_length" , self.model.config.max_length) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected") if cur_len + new_tokens > self.tokenizer.model_max_length: __lowerCAmelCase : List[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length") __lowerCAmelCase : Optional[int] = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: __lowerCAmelCase : Optional[Any] = inputs["attention_mask"][:, -keep_length:] return inputs def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Any) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : int = model_inputs["input_ids"] __lowerCAmelCase : List[Any] = model_inputs.get("attention_mask" , _SCREAMING_SNAKE_CASE) # Allow empty prompts if input_ids.shape[1] == 0: __lowerCAmelCase : Dict = None __lowerCAmelCase : Dict = None __lowerCAmelCase : int = 1 else: __lowerCAmelCase : Dict = input_ids.shape[0] __lowerCAmelCase : str = model_inputs.pop("prompt_text") # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. __lowerCAmelCase : List[str] = generate_kwargs.pop("prefix_length" , 0) if prefix_length > 0: __lowerCAmelCase : Tuple = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: __lowerCAmelCase : Dict = generate_kwargs.get("max_length") or self.model.config.max_length generate_kwargs["max_length"] += prefix_length __lowerCAmelCase : Optional[int] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL __lowerCAmelCase : Optional[int] = self.model.generate(input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = generated_sequence.shape[0] if self.framework == "pt": __lowerCAmelCase : Any = generated_sequence.reshape(_SCREAMING_SNAKE_CASE , out_b // in_b , *generated_sequence.shape[1:]) elif self.framework == "tf": __lowerCAmelCase : str = tf.reshape(_SCREAMING_SNAKE_CASE , (in_b, out_b // in_b, *generated_sequence.shape[1:])) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=ReturnType.FULL_TEXT , _SCREAMING_SNAKE_CASE: Optional[Any]=True) -> str: """simple docstring""" __lowerCAmelCase : Tuple = model_outputs["generated_sequence"][0] __lowerCAmelCase : Optional[int] = model_outputs["input_ids"] __lowerCAmelCase : Optional[Any] = model_outputs["prompt_text"] __lowerCAmelCase : Tuple = generated_sequence.numpy().tolist() __lowerCAmelCase : Any = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: __lowerCAmelCase : int = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text __lowerCAmelCase : List[Any] = self.tokenizer.decode( _SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: __lowerCAmelCase : Any = 0 else: __lowerCAmelCase : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , )) if return_type == ReturnType.FULL_TEXT: __lowerCAmelCase : Optional[int] = prompt_text + text[prompt_length:] else: __lowerCAmelCase : Optional[Any] = text[prompt_length:] __lowerCAmelCase : List[str] = {"generated_text": all_text} records.append(_SCREAMING_SNAKE_CASE) return records
269
def a_ ( _A = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , _A ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(f'''{solution() = }''')
307
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _a = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __a ( __lowerCamelCase ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __a ( __lowerCamelCase, __lowerCamelCase ): if args.student_type == "roberta": UpperCAmelCase_ : Optional[int] = False elif args.student_type == "gpt2": UpperCAmelCase_ : List[Any] = False def __a ( __lowerCamelCase, __lowerCamelCase ): if args.student_type == "roberta": UpperCAmelCase_ : str = False def __a ( ): UpperCAmelCase_ : Union[str, Any] = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force", action="store_true", help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path", type=__lowerCamelCase, required=__lowerCamelCase, help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file", type=__lowerCamelCase, required=__lowerCamelCase, help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence.", ) parser.add_argument( "--student_type", type=__lowerCamelCase, choices=["distilbert", "roberta", "gpt2"], required=__lowerCamelCase, help="The student type (DistilBERT, RoBERTa).", ) parser.add_argument("--student_config", type=__lowerCamelCase, required=__lowerCamelCase, help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights", default=__lowerCamelCase, type=__lowerCamelCase, help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type", choices=["bert", "roberta", "gpt2"], required=__lowerCamelCase, help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name", type=__lowerCamelCase, required=__lowerCamelCase, help="The teacher model." ) parser.add_argument("--temperature", default=2.0, type=__lowerCamelCase, help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce", default=0.5, type=__lowerCamelCase, help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm", default=0.0, type=__lowerCamelCase, help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.", ) parser.add_argument("--alpha_clm", default=0.5, type=__lowerCamelCase, help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse", default=0.0, type=__lowerCamelCase, help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos", default=0.0, type=__lowerCamelCase, help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm", action="store_true", help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop", default=0.15, type=__lowerCamelCase, help="Proportion of tokens for which we need to make a prediction.", ) parser.add_argument("--word_mask", default=0.8, type=__lowerCamelCase, help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep", default=0.1, type=__lowerCamelCase, help="Proportion of tokens to keep." ) parser.add_argument("--word_rand", default=0.1, type=__lowerCamelCase, help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing", default=0.7, type=__lowerCamelCase, help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).", ) parser.add_argument("--token_counts", type=__lowerCamelCase, help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask", action="store_true", help="If true, compute the distillation loss only the [MLM] prediction distribution.", ) parser.add_argument( "--freeze_pos_embs", action="store_true", help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.", ) parser.add_argument( "--freeze_token_type_embds", action="store_true", help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.", ) parser.add_argument("--n_epoch", type=__lowerCamelCase, default=3, help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size", type=__lowerCamelCase, default=5, help="Batch size (for each process)." ) parser.add_argument( "--group_by_size", action="store_false", help="If true, group sequences that have similar length into the same batch. Default is true.", ) parser.add_argument( "--gradient_accumulation_steps", type=__lowerCamelCase, default=50, help="Gradient accumulation for larger training batches.", ) parser.add_argument("--warmup_prop", default=0.05, type=__lowerCamelCase, help="Linear warmup proportion." ) parser.add_argument("--weight_decay", default=0.0, type=__lowerCamelCase, help="Weight decay if we apply some." ) parser.add_argument("--learning_rate", default=5E-4, type=__lowerCamelCase, help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon", default=1E-6, type=__lowerCamelCase, help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm", default=5.0, type=__lowerCamelCase, help="Max gradient norm." ) parser.add_argument("--initializer_range", default=0.02, type=__lowerCamelCase, help="Random initialization range." ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=__lowerCamelCase, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--n_gpu", type=__lowerCamelCase, default=1, help="Number of GPUs in the node." ) parser.add_argument("--local_rank", type=__lowerCamelCase, default=-1, help="Distributed training - Local rank" ) parser.add_argument("--seed", type=__lowerCamelCase, default=56, help="Random seed" ) parser.add_argument("--log_interval", type=__lowerCamelCase, default=500, help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval", type=__lowerCamelCase, default=4000, help="Checkpoint interval." ) UpperCAmelCase_ : Tuple = parser.parse_args() sanity_checks(__lowerCamelCase ) # ARGS # init_gpu_params(__lowerCamelCase ) set_seed(__lowerCamelCase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path, "parameters.json" ), "w" ) as f: json.dump(vars(__lowerCamelCase ), __lowerCamelCase, indent=4 ) git_log(args.dump_path ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = MODEL_CLASSES[args.student_type] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase_ : str = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase_ : List[Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase_ : Dict = tokenizer.all_special_tokens.index(__lowerCamelCase ) UpperCAmelCase_ : List[str] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) UpperCAmelCase_ : Tuple = special_tok_ids UpperCAmelCase_ : List[str] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file, "rb" ) as fp: UpperCAmelCase_ : List[Any] = pickle.load(__lowerCamelCase ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts, "rb" ) as fp: UpperCAmelCase_ : List[Any] = pickle.load(__lowerCamelCase ) UpperCAmelCase_ : List[Any] = np.maximum(__lowerCamelCase, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase_ : Any = 0.0 # do not predict special tokens UpperCAmelCase_ : str = torch.from_numpy(__lowerCamelCase ) else: UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Dict = LmSeqsDataset(params=__lowerCamelCase, data=__lowerCamelCase ) logger.info("Data loader created." ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) UpperCAmelCase_ : List[str] = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase_ : Dict = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase_ : Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights, config=__lowerCamelCase ) else: UpperCAmelCase_ : Optional[int] = student_model_class(__lowerCamelCase ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # UpperCAmelCase_ : str = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=__lowerCamelCase ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowerCamelCase, __lowerCamelCase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowerCamelCase, __lowerCamelCase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase_ : int = Distiller( params=__lowerCamelCase, dataset=__lowerCamelCase, token_probs=__lowerCamelCase, student=__lowerCamelCase, teacher=__lowerCamelCase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
23
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = (PNDMScheduler,) SCREAMING_SNAKE_CASE__ : str = (("""num_inference_steps""", 50),) def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowercase_ ) return config def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Union[str, Any] = self.dummy_sample UpperCAmelCase_ : Dict = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : str = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Optional[int] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , lowercase_=0 , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop("num_inference_steps" , lowercase_ ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[str] = 0.1 * sample UpperCAmelCase_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Dict = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) UpperCAmelCase_ : Dict = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Union[str, Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Dict = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : int = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**lowercase_ ) UpperCAmelCase_ : List[Any] = scheduler_class(**lowercase_ ) UpperCAmelCase_ : Tuple = 10 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): UpperCAmelCase_ : Tuple = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): UpperCAmelCase_ : Any = model(lowercase_ , lowercase_ ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : str = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Optional[Any] = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): UpperCAmelCase_ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : List[str] = dummy_past_residuals[:] UpperCAmelCase_ : str = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Any = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample UpperCAmelCase_ : Optional[Any] = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : int = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def UpperCamelCase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ : List[Any] = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : List[Any] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : List[str] = self.get_scheduler_config() UpperCAmelCase_ : List[str] = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): UpperCAmelCase_ : List[str] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" with self.assertRaises(lowercase_ ): UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : List[Any] = self.full_loop() UpperCAmelCase_ : Any = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2 assert abs(result_mean.item() - 0.25_80 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.full_loop(prediction_type="v_prediction" ) UpperCAmelCase_ : str = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.39_86 ) < 1E-2 assert abs(result_mean.item() - 0.08_78 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : List[Any] = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : int = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2 assert abs(result_mean.item() - 0.29_95 ) < 1E-3 def UpperCamelCase__ ( self ): """simple docstring""" # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) UpperCAmelCase_ : int = torch.sum(torch.abs(lowercase_ ) ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2 assert abs(result_mean.item() - 0.24_34 ) < 1E-3
23
1
"""simple docstring""" import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def _snake_case ( UpperCamelCase : List[str] ): return EnvironmentCommand() def _snake_case ( UpperCamelCase : str ): return EnvironmentCommand(args.accelerate_config_file ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCAmelCase_ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCAmelCase_ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCAmelCase_ ) def __init__( self , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' UpperCAmelCase : Dict = accelerate_config_file def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = """not installed""" if is_safetensors_available(): import safetensors UpperCAmelCase : Dict = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors UpperCAmelCase : List[str] = F"{safetensors.__version__} but is ignored because of PyTorch version too old." UpperCAmelCase : Tuple = """not installed""" UpperCAmelCase : List[str] = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCAmelCase : str = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCAmelCase : Union[str, Any] = ( """\n""".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else F"\t{accelerate_config}" ) UpperCAmelCase : Optional[Any] = """not installed""" UpperCAmelCase : Optional[Any] = """NA""" if is_torch_available(): import torch UpperCAmelCase : List[Any] = torch.__version__ UpperCAmelCase : List[str] = torch.cuda.is_available() UpperCAmelCase : Any = """not installed""" UpperCAmelCase : Optional[Any] = """NA""" if is_tf_available(): import tensorflow as tf UpperCAmelCase : Union[str, Any] = tf.__version__ try: # deprecated in v2.1 UpperCAmelCase : Union[str, Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCAmelCase : Any = bool(tf.config.list_physical_devices("""GPU""" ) ) UpperCAmelCase : Dict = """not installed""" UpperCAmelCase : Optional[int] = """not installed""" UpperCAmelCase : List[Any] = """not installed""" UpperCAmelCase : str = """NA""" if is_flax_available(): import flax import jax import jaxlib UpperCAmelCase : Optional[Any] = flax.__version__ UpperCAmelCase : List[Any] = jax.__version__ UpperCAmelCase : Optional[Any] = jaxlib.__version__ UpperCAmelCase : List[Any] = jax.lib.xla_bridge.get_backend().platform UpperCAmelCase : Union[str, Any] = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F"{safetensors_version}", """Accelerate version""": F"{accelerate_version}", """Accelerate config""": F"{accelerate_config_str}", """PyTorch version (GPU?)""": F"{pt_version} ({pt_cuda_available})", """Tensorflow version (GPU?)""": F"{tf_version} ({tf_cuda_available})", """Flax version (CPU?/GPU?/TPU?)""": F"{flax_version} ({jax_backend})", """Jax version""": F"{jax_version}", """JaxLib version""": F"{jaxlib_version}", """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCAmelCase_ ) ) return info @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' return "\n".join([F"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
109
def __lowerCamelCase ( snake_case__ ) -> list: """simple docstring""" def merge(snake_case__ ,snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection _SCREAMING_SNAKE_CASE = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
306
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A_ : int =logging.get_logger(__name__) class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] = "vision-encoder-decoder" SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def __init__( self , **a__ ): super().__init__(**a__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) _lowerCamelCase = kwargs.pop('encoder' ) _lowerCamelCase = encoder_config.pop('model_type' ) _lowerCamelCase = kwargs.pop('decoder' ) _lowerCamelCase = decoder_config.pop('model_type' ) _lowerCamelCase = AutoConfig.for_model(a__ , **a__ ) _lowerCamelCase = AutoConfig.for_model(a__ , **a__ ) _lowerCamelCase = True @classmethod def snake_case_ ( cls , a__ , a__ , **a__ ): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _lowerCamelCase = True _lowerCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a__ ) def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.encoder.to_dict() _lowerCamelCase = self.decoder.to_dict() _lowerCamelCase = self.__class__.model_type return output class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : int = version.parse("1.11" ) @property def snake_case_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ): return 1e-4 @property def snake_case_ ( self ): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class __a ( lowerCAmelCase__ ): @property def snake_case_ ( self ): _lowerCamelCase = OrderedDict() _lowerCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _lowerCamelCase = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def snake_case_ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ): import torch _lowerCamelCase = OrderedDict() _lowerCamelCase = super().generate_dummy_inputs( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) _lowerCamelCase , _lowerCamelCase = dummy_input['input_ids'].shape _lowerCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCamelCase = dummy_input.pop('input_ids' ) _lowerCamelCase = dummy_input.pop('attention_mask' ) _lowerCamelCase = torch.zeros(a__ ) return common_inputs class __a ( lowerCAmelCase__ ): @property def snake_case_ ( self ): pass def snake_case_ ( self , a__ ): return VisionEncoderDecoderEncoderOnnxConfig(a__ ) def snake_case_ ( self , a__ , a__ , a__ = "default" ): _lowerCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(a__ , a__ )
356
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def SCREAMING_SNAKE_CASE_ ( )-> List[Any]: _lowerCamelCase = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=snake_case ) _lowerCamelCase = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=snake_case ) env_command_parser(subparsers=snake_case ) launch_command_parser(subparsers=snake_case ) tpu_command_parser(subparsers=snake_case ) test_command_parser(subparsers=snake_case ) # Let's go _lowerCamelCase = parser.parse_args() if not hasattr(snake_case , 'func' ): parser.print_help() exit(1 ) # Run args.func(snake_case ) if __name__ == "__main__": main()
80
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def snake_case ( A__ ,A__ ,A__=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" UpperCAmelCase_ : List[str] = nn.Parameter(A__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" UpperCAmelCase_ : Any = nn.Parameter(A__ ) def snake_case ( A__ ,A__ ,A__ ): # set torch weights for 1-to-1 comparison UpperCAmelCase_ : Union[str, Any] = np.asarray(weights[0] ) UpperCAmelCase_ : Optional[int] = np.asarray(weights[1] ) UpperCAmelCase_ : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key ,torch.tensor(A__ ).transpose(1 ,2 ).contiguous().view(-1 ,A__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(A__ ).transpose(1 ,2 ).contiguous().view(-1 ,A__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(A__ ).view(-1 ,A__ ).contiguous().transpose(0 ,1 ) ,) def snake_case ( A__ ,A__ ,A__ ): # set torch weights for 1-to-1 comparison UpperCAmelCase_ : Optional[int] = np.asarray(weights[0] ) UpperCAmelCase_ : Union[str, Any] = np.asarray(weights[1] ) UpperCAmelCase_ : str = np.asarray(weights[2] ) UpperCAmelCase_ : Dict = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query ,torch.tensor(A__ ).transpose(1 ,2 ).contiguous().view(-1 ,A__ ) ,) set_param( torch_layer.self_attention.key ,torch.tensor(A__ ).transpose(1 ,2 ).contiguous().view(-1 ,A__ ) ,) set_param( torch_layer.self_attention.value ,torch.tensor(A__ ).transpose(1 ,2 ).contiguous().view(-1 ,A__ ) ,) set_param( torch_layer.output.dense ,torch.tensor(A__ ).view(-1 ,A__ ).contiguous().transpose(0 ,1 ) ,) def snake_case ( A__ ,A__ ,A__ ): # layernorm 1 UpperCAmelCase_ : int = weights[0][0][0] UpperCAmelCase_ : Union[str, Any] = np.asarray(layer_norm_a[0] ) UpperCAmelCase_ : Dict = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm ,torch.tensor(A__ ) ,torch.tensor(A__ ) ,) # lsh weights + output UpperCAmelCase_ : List[str] = weights[0][1] if len(A__ ) < 4: set_layer_weights_in_torch_lsh(A__ ,torch_block.attention ,A__ ) else: set_layer_weights_in_torch_local(A__ ,torch_block.attention ,A__ ) # intermediate weighs UpperCAmelCase_ : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(A__ ) == 4: UpperCAmelCase_ : Union[str, Any] = intermediate_weights[2] # layernorm 2 UpperCAmelCase_ : str = np.asarray(intermediate_weights[0][0] ) UpperCAmelCase_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm ,torch.tensor(A__ ) ,torch.tensor(A__ ) ,) # intermediate dense UpperCAmelCase_ : int = np.asarray(intermediate_weights[1][0] ) UpperCAmelCase_ : Tuple = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense ,torch.tensor(A__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(A__ ) ,) # intermediate out UpperCAmelCase_ : List[Any] = np.asarray(intermediate_weights[4][0] ) UpperCAmelCase_ : Optional[int] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense ,torch.tensor(A__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(A__ ) ,) def snake_case ( A__ ,A__ ,A__ ): # reformer model UpperCAmelCase_ : Tuple = torch_model.reformer # word embeds UpperCAmelCase_ : Tuple = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings ,torch.tensor(A__ ) ,) if isinstance(weights[3] ,A__ ): UpperCAmelCase_ : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCAmelCase_ : Any = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" UpperCAmelCase_ : Dict = nn.Parameter(torch.tensor(A__ ) ) UpperCAmelCase_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( A__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCAmelCase_ : Union[str, Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(A__ ,A__ ,A__ ) # output layer norm UpperCAmelCase_ : str = np.asarray(weights[7][0] ) UpperCAmelCase_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm ,torch.tensor(A__ ) ,torch.tensor(A__ ) ,) # output embeddings UpperCAmelCase_ : Union[str, Any] = np.asarray(weights[9][0] ) UpperCAmelCase_ : List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder ,torch.tensor(A__ ).transpose(0 ,1 ).contiguous() ,torch.tensor(A__ ) ,) def snake_case ( A__ ,A__ ,A__ ): # Initialise PyTorch model UpperCAmelCase_ : int = ReformerConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase_ : List[str] = ReformerModelWithLMHead(A__ ) with open(A__ ,"rb" ) as f: UpperCAmelCase_ : Any = pickle.load(A__ )["weights"] set_model_weights_in_torch(A__ ,A__ ,config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,A__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
268
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class UpperCamelCase_ (__A ): __magic_name__ = '''rwkv''' __magic_name__ = {'''max_position_embeddings''': '''context_length'''} def __init__( self : str , lowerCAmelCase_ : str=50_277 , lowerCAmelCase_ : Optional[int]=1_024 , lowerCAmelCase_ : Optional[int]=4_096 , lowerCAmelCase_ : Union[str, Any]=32 , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=1e-5 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : int=6 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : Any=True , **lowerCAmelCase_ : List[Any] , ) -> List[str]: UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[Any] = rescale_every UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : List[str] = bos_token_id UpperCAmelCase_ : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
268
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def lowerCamelCase__ ( A__ : Any , A__ : Optional[int] , A__ : str=8 ): '''simple docstring''' __lowerCamelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCamelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase__( __lowerCamelCase): def __init__( self: Optional[Any] , UpperCamelCase_: UNetaDConditionModel , UpperCamelCase_: DDPMScheduler , UpperCamelCase_: VQModel , ): super().__init__() self.register_modules( unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , movq=UpperCamelCase_ , ) __lowerCamelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int ): if latents is None: __lowerCamelCase = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) __lowerCamelCase = latents.to(UpperCamelCase_ ) __lowerCamelCase = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Union[str, Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) __lowerCamelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: str , UpperCamelCase_: Union[str, Any]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) __lowerCamelCase = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCamelCase = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCamelCase, __lowerCamelCase = cpu_offload_with_hook(UpperCamelCase_ , UpperCamelCase_ , prev_module_hook=UpperCamelCase_ ) # We'll offload the last model manually. __lowerCamelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self: Any ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self: Optional[Any] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 5_12 , UpperCamelCase_: int = 1_00 , UpperCamelCase_: float = 4.0 , UpperCamelCase_: int = 1 , UpperCamelCase_: Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_: Optional[torch.FloatTensor] = None , UpperCamelCase_: Optional[str] = "pil" , UpperCamelCase_: bool = True , ): __lowerCamelCase = self._execution_device __lowerCamelCase = guidance_scale > 1.0 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) __lowerCamelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = torch.cat(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: __lowerCamelCase = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = negative_image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) __lowerCamelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCamelCase_ ) self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) __lowerCamelCase = self.scheduler.timesteps __lowerCamelCase = self.unet.config.in_channels __lowerCamelCase, __lowerCamelCase = downscale_height_and_width(UpperCamelCase_ , UpperCamelCase_ , self.movq_scale_factor ) # create initial latent __lowerCamelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase = {"""image_embeds""": image_embeds} __lowerCamelCase = self.unet( sample=UpperCamelCase_ , timestep=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , added_cond_kwargs=UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] if do_classifier_free_guidance: __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCamelCase, __lowerCamelCase = noise_pred.chunk(2 ) __lowerCamelCase, __lowerCamelCase = variance_pred.chunk(2 ) __lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCamelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCamelCase, __lowerCamelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase = self.scheduler.step( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , generator=UpperCamelCase_ , )[0] # post-processing __lowerCamelCase = self.movq.decode(UpperCamelCase_ , force_not_quantize=UpperCamelCase_ )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: __lowerCamelCase = image * 0.5 + 0.5 __lowerCamelCase = image.clamp(0 , 1 ) __lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(UpperCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase_ )
29
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( A__ : Tuple , A__ : Optional[int]=0.999 , A__ : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(A__ : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase = [] for i in range(A__ ): __lowerCamelCase = i / num_diffusion_timesteps __lowerCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class lowerCamelCase__( __lowerCamelCase , __lowerCamelCase): UpperCAmelCase__ : List[str] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : Any = 2 @register_to_config def __init__( self: List[str] , UpperCamelCase_: int = 10_00 , UpperCamelCase_: float = 0.0_0085 , UpperCamelCase_: float = 0.012 , UpperCamelCase_: str = "linear" , UpperCamelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCamelCase_: str = "epsilon" , UpperCamelCase_: str = "linspace" , UpperCamelCase_: int = 0 , ): if trained_betas is not None: __lowerCamelCase = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase = betas_for_alpha_bar(UpperCamelCase_ ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) __lowerCamelCase = 1.0 - self.betas __lowerCamelCase = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[str] , UpperCamelCase_: Optional[Any]=None ): if schedule_timesteps is None: __lowerCamelCase = self.timesteps __lowerCamelCase = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase = 1 if len(UpperCamelCase_ ) > 1 else 0 else: __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep __lowerCamelCase = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self: Optional[int] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: Union[float, torch.FloatTensor] , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] else: __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: int , UpperCamelCase_: Union[str, torch.device] = None , UpperCamelCase_: Optional[int] = None , ): __lowerCamelCase = num_inference_steps __lowerCamelCase = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowerCamelCase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase = torch.from_numpy(np.log(UpperCamelCase_ ) ).to(UpperCamelCase_ ) __lowerCamelCase = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) __lowerCamelCase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) # interpolate sigmas __lowerCamelCase = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCamelCase_ ).startswith("""mps""" ): # mps does not support float64 __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=torch.floataa ) else: __lowerCamelCase = torch.from_numpy(UpperCamelCase_ ).to(UpperCamelCase_ ) # interpolate timesteps __lowerCamelCase = self.sigma_to_t(UpperCamelCase_ ).to(UpperCamelCase_ , dtype=timesteps.dtype ) __lowerCamelCase = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase = defaultdict(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Optional[Any] , UpperCamelCase_: str ): # get log sigma __lowerCamelCase = sigma.log() # get distribution __lowerCamelCase = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase = low_idx + 1 __lowerCamelCase = self.log_sigmas[low_idx] __lowerCamelCase = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase = (low - log_sigma) / (low - high) __lowerCamelCase = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase = (1 - w) * low_idx + w * high_idx __lowerCamelCase = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self: Dict ): return self.sample is None def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: Union[float, torch.FloatTensor] , UpperCamelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCamelCase_: bool = True , ): __lowerCamelCase = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 __lowerCamelCase = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase = self.sigmas[step_index] __lowerCamelCase = self.sigmas_interpol[step_index + 1] __lowerCamelCase = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase = self.sigmas[step_index - 1] __lowerCamelCase = self.sigmas_interpol[step_index] __lowerCamelCase = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase = 0 __lowerCamelCase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase = sigma_next - sigma_hat __lowerCamelCase = self.sample __lowerCamelCase = None __lowerCamelCase = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , UpperCamelCase_: torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 __lowerCamelCase = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase = self.timesteps.to(original_samples.device ) __lowerCamelCase = timesteps.to(original_samples.device ) __lowerCamelCase = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] __lowerCamelCase = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase = sigma.unsqueeze(-1 ) __lowerCamelCase = original_samples + noise * sigma return noisy_samples def __len__( self: Tuple ): return self.config.num_train_timesteps
29
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : str = logging.get_logger(__name__) snake_case : Optional[int] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'markuplm' def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=0 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=256 , _lowerCamelCase=1024 , _lowerCamelCase=216 , _lowerCamelCase=1001 , _lowerCamelCase=32 , _lowerCamelCase=50 , _lowerCamelCase="absolute" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) a :Optional[Any] = vocab_size a :int = hidden_size a :List[Any] = num_hidden_layers a :str = num_attention_heads a :Tuple = hidden_act a :Any = intermediate_size a :Optional[int] = hidden_dropout_prob a :Optional[Any] = attention_probs_dropout_prob a :Any = max_position_embeddings a :Union[str, Any] = type_vocab_size a :Optional[int] = initializer_range a :Any = layer_norm_eps a :Any = position_embedding_type a :Optional[Any] = use_cache a :Optional[Any] = classifier_dropout # additional properties a :Optional[int] = max_depth a :int = max_xpath_tag_unit_embeddings a :Optional[Any] = max_xpath_subs_unit_embeddings a :Union[str, Any] = tag_pad_id a :str = subs_pad_id a :List[str] = xpath_unit_hidden_size
94
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = R'\w+[.]\d+' A_ : int = re.findall(_UpperCAmelCase , _UpperCAmelCase ) for pat in pats: A_ : Optional[int] = key.replace(_UpperCAmelCase , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A_ : Union[str, Any] = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A_ : List[str] = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A_ : Optional[Any] = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A_ : int = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A_ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A_ : Optional[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A_ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A_ : Tuple = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A_ : Optional[int] = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=42 ): """simple docstring""" A_ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A_ : Union[str, Any] = flax_model.init_weights(PRNGKey(_UpperCAmelCase ) ) A_ : Optional[Any] = flatten_dict(_UpperCAmelCase ) A_ : Tuple = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A_ : Any = rename_key(_UpperCAmelCase ) A_ : List[str] = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A_ , A_ : Union[str, Any] = rename_key_and_reshape_tensor(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown A_ : str = jnp.asarray(_UpperCAmelCase ) return unflatten_dict(_UpperCAmelCase )
286
0
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCamelCase :Tuple = logging.getLogger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 'token-classification' def __init__(self , lowercase ): if type(lowercase ) == dict: A_ : Optional[int] = Namespace(**lowercase ) A_ : Dict = import_module("""tasks""" ) try: A_ : str = getattr(lowercase , hparams.task_type ) A_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) A_ : Any = self.token_classification_task.get_labels(hparams.labels ) A_ : str = CrossEntropyLoss().ignore_index super().__init__(lowercase , len(self.labels ) , self.mode ) def _a (self , **lowercase ): return self.model(**lowercase ) def _a (self , lowercase , lowercase ): A_ : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": A_ : List[str] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids A_ : List[Any] = self(**lowercase ) A_ : Optional[int] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _a (self ): A_ : int = self.hparams for mode in ["train", "dev", "test"]: A_ : List[Any] = self._feature_file(lowercase ) if os.path.exists(lowercase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , lowercase ) A_ : Tuple = torch.load(lowercase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) A_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , lowercase ) A_ : Tuple = self.token_classification_task.convert_examples_to_features( lowercase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowercase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , lowercase ) torch.save(lowercase , lowercase ) def _a (self , lowercase , lowercase , lowercase = False ): A_ : List[Any] = self._feature_file(lowercase ) logger.info("""Loading features from cached file %s""" , lowercase ) A_ : int = torch.load(lowercase ) A_ : str = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A_ : Optional[int] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: A_ : Tuple = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: A_ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) A_ : Tuple = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowercase , lowercase , lowercase , lowercase ) , batch_size=lowercase ) def _a (self , lowercase , lowercase ): """Compute validation""" "" A_ : Optional[int] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": A_ : int = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids A_ : List[str] = self(**lowercase ) A_ : List[Any] = outputs[:2] A_ : Tuple = logits.detach().cpu().numpy() A_ : List[Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _a (self , lowercase ): A_ : Union[str, Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() A_ : Any = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) A_ : Optional[int] = np.argmax(lowercase , axis=2 ) A_ : int = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) A_ : Dict = dict(enumerate(self.labels ) ) A_ : Tuple = [[] for _ in range(out_label_ids.shape[0] )] A_ : int = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) A_ : Tuple = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(lowercase , lowercase ), """precision""": precision_score(lowercase , lowercase ), """recall""": recall_score(lowercase , lowercase ), """f1""": fa_score(lowercase , lowercase ), } A_ : Optional[Any] = dict(results.items() ) A_ : Optional[int] = results return ret, preds_list, out_label_list def _a (self , lowercase ): # when stable A_ : Optional[Any] = self._eval_end(lowercase ) A_ : str = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _a (self , lowercase ): # updating to test_epoch_end instead of deprecated test_end A_ : List[str] = self._eval_end(lowercase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 A_ : Dict = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _a (lowercase , lowercase ): # Add NER specific options BaseTransformer.add_model_specific_args(lowercase , lowercase ) parser.add_argument( """--task_type""" , default="""NER""" , type=lowercase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=lowercase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=lowercase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=lowercase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": lowerCamelCase :Any = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCamelCase :Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCamelCase :List[str] = parser.parse_args() lowerCamelCase :Union[str, Any] = NERTransformer(args) lowerCamelCase :Union[str, Any] = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCamelCase :str = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) lowerCamelCase :List[str] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
366
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCamelCase :Tuple = logging.get_logger(__name__) lowerCamelCase :Optional[int] = {'''vocab_file''': '''spiece.model'''} lowerCamelCase :int = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase :Tuple = { '''t5-small''': 5_1_2, '''t5-base''': 5_1_2, '''t5-large''': 5_1_2, '''t5-3b''': 5_1_2, '''t5-11b''': 5_1_2, } lowerCamelCase :str = '''▁''' class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__(self , lowercase , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=100 , lowercase=None , lowercase = None , lowercase=True , **lowercase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: A_ : Any = [F'<extra_id_{i}>' for i in range(lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens A_ : Tuple = len(set(filter(lambda lowercase : bool("""extra_id""" in str(lowercase ) ) , lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) A_ : str = legacy A_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy=lowercase , **lowercase , ) A_ : List[str] = vocab_file A_ : Tuple = extra_ids A_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) @staticmethod def _a (lowercase , lowercase , lowercase ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: A_ : Union[str, Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , lowercase , ) return max_model_length @property def _a (self ): return self.sp_model.get_piece_size() + self._extra_ids def _a (self ): A_ : Union[str, Any] = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a (self , lowercase , lowercase = None , lowercase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowercase )) + [1] return ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def _a (self ): return list( set(filter(lambda lowercase : bool(re.search(R"""<extra_id_\d+>""" , lowercase ) ) is not None , self.additional_special_tokens ) ) ) def _a (self ): return [self._convert_token_to_id(lowercase ) for token in self.get_sentinel_tokens()] def _a (self , lowercase ): if len(lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def _a (self , lowercase , lowercase = None ): A_ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _a (self , lowercase , lowercase = None ): A_ : Optional[Any] = self._add_eos_if_not_present(lowercase ) if token_ids_a is None: return token_ids_a else: A_ : List[Any] = self._add_eos_if_not_present(lowercase ) return token_ids_a + token_ids_a def __getstate__(self ): A_ : int = self.__dict__.copy() A_ : Tuple = None return state def __setstate__(self , lowercase ): A_ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A_ : Dict = {} A_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a (self , lowercase , **lowercase ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: A_ : Tuple = SPIECE_UNDERLINE + text.replace(lowercase , """ """ ) return super().tokenize(lowercase , **lowercase ) def _a (self , lowercase , **lowercase ): if not self.legacy: A_ : Dict = text.startswith(lowercase ) if is_first: A_ : str = text[1:] A_ : Optional[int] = self.sp_model.encode(lowercase , out_type=lowercase ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(lowercase ): A_ : Optional[int] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _a (self , lowercase ): if token.startswith("""<extra_id_""" ): A_ : Union[str, Any] = re.match(R"""<extra_id_(\d+)>""" , lowercase ) A_ : str = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowercase ) def _a (self , lowercase ): if index < self.sp_model.get_piece_size(): A_ : List[Any] = self.sp_model.IdToPiece(lowercase ) else: A_ : Dict = F'<extra_id_{self.vocab_size - 1 - index}>' return token def _a (self , lowercase ): A_ : Union[str, Any] = [] A_ : int = """""" A_ : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token A_ : Dict = True A_ : Union[str, Any] = [] else: current_sub_tokens.append(lowercase ) A_ : Optional[Any] = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def _a (self , lowercase , lowercase = None ): if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A_ : Optional[Any] = os.path.join( lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , """wb""" ) as fi: A_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,)
135
0
"""simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = 0 # The first color of the flag. SCREAMING_SNAKE_CASE_ : int = 1 # The second color of the flag. SCREAMING_SNAKE_CASE_ : Dict = 2 # The third color of the flag. SCREAMING_SNAKE_CASE_ : Tuple = (red, white, blue) def _snake_case ( UpperCAmelCase_ : list ): if not sequence: return [] if len(UpperCAmelCase_ ) == 1: return list(UpperCAmelCase_ ) A__ = 0 A__ = len(UpperCAmelCase_ ) - 1 A__ = 0 while mid <= high: if sequence[mid] == colors[0]: A__ , A__ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: A__ , A__ = sequence[high], sequence[mid] high -= 1 else: A__ = F"""The elements inside the sequence must contains only {colors} values""" raise ValueError(UpperCAmelCase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input('Enter numbers separated by commas:\n').strip() SCREAMING_SNAKE_CASE_ : Tuple = [int(item.strip()) for item in user_input.split(',')] print(f"""{dutch_national_flag_sort(unsorted)}""")
335
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def _snake_case ( UpperCAmelCase_ : List[Any] ): A__ = FileLock(str(tmpdir / """foo.lock""" ) ) A__ = FileLock(str(tmpdir / """foo.lock""" ) ) A__ = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): A__ = time.time() locka.acquire(UpperCAmelCase_ ) assert time.time() - _start > timeout def _snake_case ( UpperCAmelCase_ : List[Any] ): A__ = """a""" * 1000 + """.lock""" A__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(UpperCAmelCase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): locka.acquire(0 )
335
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , **__snake_case ): warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
362
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[int] = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'efficientnet' def __init__( self , __snake_case = 3 , __snake_case = 6_0_0 , __snake_case = 2.0 , __snake_case = 3.1 , __snake_case = 8 , __snake_case = [3, 3, 5, 3, 5, 5, 3] , __snake_case = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __snake_case = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __snake_case = [] , __snake_case = [1, 2, 2, 2, 1, 2, 1] , __snake_case = [1, 2, 2, 3, 3, 4, 1] , __snake_case = [1, 6, 6, 6, 6, 6, 6] , __snake_case = 0.25 , __snake_case = "swish" , __snake_case = 2_5_6_0 , __snake_case = "mean" , __snake_case = 0.02 , __snake_case = 0.001 , __snake_case = 0.99 , __snake_case = 0.5 , __snake_case = 0.2 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = num_channels snake_case = image_size snake_case = width_coefficient snake_case = depth_coefficient snake_case = depth_divisor snake_case = kernel_sizes snake_case = in_channels snake_case = out_channels snake_case = depthwise_padding snake_case = strides snake_case = num_block_repeats snake_case = expand_ratios snake_case = squeeze_expansion_ratio snake_case = hidden_act snake_case = hidden_dim snake_case = pooling_type snake_case = initializer_range snake_case = batch_norm_eps snake_case = batch_norm_momentum snake_case = dropout_rate snake_case = drop_connect_rate snake_case = sum(__snake_case ) * 4 class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a_ ( self ): return 1E-5
213
0
import os def __snake_case ( __UpperCamelCase : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(__UpperCamelCase ) ,__UpperCamelCase ) ) as input_file: A_ = [ [int(__UpperCamelCase ) for element in line.split("," )] for line in input_file.readlines() ] A_ = len(__UpperCamelCase ) A_ = len(matrix[0] ) A_ = [[-1 for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase )] for i in range(__UpperCamelCase ): A_ = matrix[i][0] for j in range(1 ,__UpperCamelCase ): for i in range(__UpperCamelCase ): A_ = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 ,__UpperCamelCase ): A_ = min( minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 ,-1 ,-1 ): A_ = min( minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"{solution() = }")
312
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __a :Dict = get_logger(__name__) __a :Union[str, Any] = Path(__file__).parent / 'model_card_template.md' __a :Tuple = uuida().hex __a :List[Any] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES __a :Union[str, Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES __a :Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def __snake_case ( __UpperCamelCase : Union[Dict, str, None] = None ): """simple docstring""" A_ = f'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'''; torch/{_torch_version}''' if is_flax_available(): ua += f'''; jax/{_jax_version}''' ua += f'''; flax/{_flax_version}''' if is_onnx_available(): ua += f'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" ,"" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + "; ".join(f'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): ua += "; " + user_agent return ua def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if token is None: A_ = HfFolder.get_token() if organization is None: A_ = whoami(__UpperCamelCase )["name"] return f'''{username}/{model_id}''' else: return f'''{organization}/{model_id}''' def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__UpperCamelCase ,"local_rank" ) and args.local_rank not in [-1, 0]: return A_ = args.hub_token if hasattr(__UpperCamelCase ,"hub_token" ) else None A_ = get_full_repo_name(__UpperCamelCase ,token=__UpperCamelCase ) A_ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" ,license="apache-2.0" ,library_name="diffusers" ,tags=[] ,datasets=args.dataset_name ,metrics=[] ,) ,template_path=__UpperCamelCase ,model_name=__UpperCamelCase ,repo_name=__UpperCamelCase ,dataset_name=args.dataset_name if hasattr(__UpperCamelCase ,"dataset_name" ) else None ,learning_rate=args.learning_rate ,train_batch_size=args.train_batch_size ,eval_batch_size=args.eval_batch_size ,gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__UpperCamelCase ,"gradient_accumulation_steps" ) else None ) ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta1" ) else None ,adam_betaa=args.adam_betaa if hasattr(__UpperCamelCase ,"adam_beta2" ) else None ,adam_weight_decay=args.adam_weight_decay if hasattr(__UpperCamelCase ,"adam_weight_decay" ) else None ,adam_epsilon=args.adam_epsilon if hasattr(__UpperCamelCase ,"adam_epsilon" ) else None ,lr_scheduler=args.lr_scheduler if hasattr(__UpperCamelCase ,"lr_scheduler" ) else None ,lr_warmup_steps=args.lr_warmup_steps if hasattr(__UpperCamelCase ,"lr_warmup_steps" ) else None ,ema_inv_gamma=args.ema_inv_gamma if hasattr(__UpperCamelCase ,"ema_inv_gamma" ) else None ,ema_power=args.ema_power if hasattr(__UpperCamelCase ,"ema_power" ) else None ,ema_max_decay=args.ema_max_decay if hasattr(__UpperCamelCase ,"ema_max_decay" ) else None ,mixed_precision=args.mixed_precision ,) A_ = os.path.join(args.output_dir ,"README.md" ) model_card.save(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[str] ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash A_ = str(Path(__UpperCamelCase ).as_posix() ) A_ = re.search(R"snapshots/([^/]+)/" ,__UpperCamelCase ) if search is None: return None A_ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__UpperCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __a :str = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) __a :List[Any] = os.path.join(hf_cache_home, 'diffusers') def __snake_case ( __UpperCamelCase : Optional[str] = None ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if new_cache_dir is None: A_ = DIFFUSERS_CACHE if old_cache_dir is None: A_ = old_diffusers_cache A_ = Path(__UpperCamelCase ).expanduser() A_ = Path(__UpperCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A_ = new_cache_dir / old_blob_path.relative_to(__UpperCamelCase ) new_blob_path.parent.mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) os.replace(__UpperCamelCase ,__UpperCamelCase ) try: os.symlink(__UpperCamelCase ,__UpperCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __a :Dict = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): __a :Optional[int] = 0 else: with open(cache_version_file) as f: try: __a :Dict = int(f.read()) except ValueError: __a :str = 0 if cache_version < 1: __a :Optional[Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: __a :Optional[Any] = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( F"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[str] = None ): """simple docstring""" if variant is not None: A_ = weights_name.split("." ) A_ = splits[:-1] + [variant] + splits[-1:] A_ = ".".join(__UpperCamelCase ) return weights_name def __snake_case ( __UpperCamelCase : Optional[Any] ,*, __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = str(__UpperCamelCase ) if os.path.isfile(__UpperCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__UpperCamelCase ): if os.path.isfile(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ): # Load from a PyTorch checkpoint A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ): A_ = os.path.join(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) return model_file else: raise EnvironmentError( f'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: A_ = hf_hub_download( __UpperCamelCase ,filename=_add_variant(__UpperCamelCase ,__UpperCamelCase ) ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) warnings.warn( f'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' ,__UpperCamelCase ,) return model_file except: # noqa: E722 warnings.warn( f'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__UpperCamelCase ,__UpperCamelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__UpperCamelCase ,__UpperCamelCase )}\' so that the correct variant file can be added.''' ,__UpperCamelCase ,) try: # 2. Load model file as usual A_ = hf_hub_download( __UpperCamelCase ,filename=__UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,use_auth_token=__UpperCamelCase ,user_agent=__UpperCamelCase ,subfolder=__UpperCamelCase ,revision=revision or commit_hash ,) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' "this model name. Check the model page at " f'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( f'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( f'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( f'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' f''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' f''' directory containing a file named {weights_name} or''' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' f'''containing a file named {weights_name}''' )
312
1
"""simple docstring""" import numpy as np def snake_case_ ( A_ : Optional[int], A_ : Optional[int], A_ : Optional[int], A_ : Optional[Any], A_ : int ): '''simple docstring''' _lowerCamelCase : int = int(np.ceil((x_end - xa) / h ) ) _lowerCamelCase : Tuple = np.zeros((n + 1,) ) _lowerCamelCase : Union[str, Any] = ya _lowerCamelCase : Union[str, Any] = xa for k in range(A_ ): _lowerCamelCase : Tuple = f(A_, y[k] ) _lowerCamelCase : List[str] = f(x + 0.5 * h, y[k] + 0.5 * h * ka ) _lowerCamelCase : str = f(x + 0.5 * h, y[k] + 0.5 * h * ka ) _lowerCamelCase : Dict = f(x + h, y[k] + h * ka ) _lowerCamelCase : int = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
175
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : Optional[int] = BlenderbotSmallTokenizer snake_case__ : List[str] = False def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" super().setUp() _lowerCamelCase : str = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _lowerCamelCase : Any = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCamelCase : Any = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _lowerCamelCase : List[str] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _lowerCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Tuple = '''adapt act apte''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Tuple = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCamelCase : int = '''adapt act apte''' _lowerCamelCase : Optional[Any] = ['''adapt''', '''act''', '''ap@@''', '''te'''] _lowerCamelCase : Optional[Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _lowerCamelCase : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_3_8_4] _lowerCamelCase : List[str] = '''I am a small frog.''' _lowerCamelCase : str = tok([src_text] , padding=__lowerCAmelCase , truncation=__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Any = tok.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _lowerCamelCase : Optional[Any] = '''I am a small frog .''' _lowerCamelCase : str = '''.''' _lowerCamelCase : str = tok(__lowerCAmelCase )['''input_ids'''] _lowerCamelCase : Dict = tok(__lowerCAmelCase )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
175
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # General docstring _SCREAMING_SNAKE_CASE = """MobileNetV1Config""" # Base docstring _SCREAMING_SNAKE_CASE = """google/mobilenet_v1_1.0_224""" _SCREAMING_SNAKE_CASE = [1, 10_24, 7, 7] # Image classification docstring _SCREAMING_SNAKE_CASE = """google/mobilenet_v1_1.0_224""" _SCREAMING_SNAKE_CASE = """tabby, tabby cat""" _SCREAMING_SNAKE_CASE = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=None ): snake_case_ : Union[str, Any] = {} if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[Any] = model.mobilenet_va else: snake_case_ : Optional[Any] = model snake_case_ : Optional[int] = '''MobilenetV1/Conv2d_0/''' snake_case_ : List[str] = backbone.conv_stem.convolution.weight snake_case_ : Any = backbone.conv_stem.normalization.bias snake_case_ : List[str] = backbone.conv_stem.normalization.weight snake_case_ : Dict = backbone.conv_stem.normalization.running_mean snake_case_ : Optional[int] = backbone.conv_stem.normalization.running_var for i in range(13 ): snake_case_ : str = i + 1 snake_case_ : List[Any] = i * 2 snake_case_ : Tuple = backbone.layer[pt_index] snake_case_ : List[str] = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" snake_case_ : int = pointer.convolution.weight snake_case_ : Tuple = pointer.normalization.bias snake_case_ : Optional[int] = pointer.normalization.weight snake_case_ : int = pointer.normalization.running_mean snake_case_ : List[Any] = pointer.normalization.running_var snake_case_ : List[Any] = backbone.layer[pt_index + 1] snake_case_ : Dict = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" snake_case_ : List[Any] = pointer.convolution.weight snake_case_ : Optional[int] = pointer.normalization.bias snake_case_ : List[str] = pointer.normalization.weight snake_case_ : Union[str, Any] = pointer.normalization.running_mean snake_case_ : Optional[Any] = pointer.normalization.running_var if isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[int] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' snake_case_ : int = model.classifier.weight snake_case_ : Tuple = model.classifier.bias return tf_to_pt_map def SCREAMING_SNAKE_CASE__ ( __a , __a , __a ): try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model snake_case_ : List[str] = tf.train.list_variables(_UpperCamelCase ) snake_case_ : Dict = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) snake_case_ : Dict = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase ) snake_case_ : Optional[int] = array # Build TF to PyTorch weights loading map snake_case_ : str = _build_tf_to_pytorch_map(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue snake_case_ : str = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) snake_case_ : List[str] = np.transpose(_UpperCamelCase , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer snake_case_ : int = array.squeeze().transpose() else: snake_case_ : Union[str, Any] = np.transpose(_UpperCamelCase , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) snake_case_ : Any = torch.from_numpy(_UpperCamelCase ) tf_weights.pop(_UpperCamelCase , _UpperCamelCase ) tf_weights.pop(name + '/RMSProp' , _UpperCamelCase ) tf_weights.pop(name + '/RMSProp_1' , _UpperCamelCase ) tf_weights.pop(name + '/ExponentialMovingAverage' , _UpperCamelCase ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Any = features.shape[-2:] snake_case_ : str = conv_layer.stride snake_case_ : List[Any] = conv_layer.kernel_size if in_height % stride_height == 0: snake_case_ : Tuple = max(kernel_height - stride_height , 0 ) else: snake_case_ : Union[str, Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: snake_case_ : Optional[int] = max(kernel_width - stride_width , 0 ) else: snake_case_ : Dict = max(kernel_width - (in_width % stride_width) , 0 ) snake_case_ : Union[str, Any] = pad_along_width // 2 snake_case_ : Optional[Any] = pad_along_width - pad_left snake_case_ : Optional[Any] = pad_along_height // 2 snake_case_ : Union[str, Any] = pad_along_height - pad_top snake_case_ : Tuple = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_UpperCamelCase , _UpperCamelCase , 'constant' , 0.0 ) class SCREAMING_SNAKE_CASE_ ( nn.Module ): def __init__( self : Any , _A : Dict , _A : List[Any] , _A : List[str] , _A : List[Any] , _A : Optional[int] = 1 , _A : List[Any] = 1 , _A : Tuple = False , _A : Optional[int] = True , _A : Optional[Any] = True , ) -> None: """simple docstring""" super().__init__() snake_case_ : Optional[Any] = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) snake_case_ : List[str] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) snake_case_ : List[str] = nn.Convad( in_channels=_A , out_channels=_A , kernel_size=_A , stride=_A , padding=_A , groups=_A , bias=_A , padding_mode='zeros' , ) if use_normalization: snake_case_ : Tuple = nn.BatchNormad( num_features=_A , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=_A , track_running_stats=_A , ) else: snake_case_ : str = None if use_activation: if isinstance(_A , _A ): snake_case_ : Optional[Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , _A ): snake_case_ : Any = ACTaFN[config.hidden_act] else: snake_case_ : List[str] = config.hidden_act else: snake_case_ : Any = None def UpperCAmelCase_ ( self : Dict , _A : Any ) -> torch.Tensor: """simple docstring""" if self.config.tf_padding: snake_case_ : Union[str, Any] = apply_tf_padding(_A , self.convolution ) snake_case_ : Union[str, Any] = self.convolution(_A ) if self.normalization is not None: snake_case_ : int = self.normalization(_A ) if self.activation is not None: snake_case_ : List[Any] = self.activation(_A ) return features class SCREAMING_SNAKE_CASE_ ( _a ): __magic_name__: Tuple = MobileNetVaConfig __magic_name__: Optional[int] = load_tf_weights_in_mobilenet_va __magic_name__: int = '''mobilenet_v1''' __magic_name__: str = '''pixel_values''' __magic_name__: List[str] = False def UpperCAmelCase_ ( self : List[str] , _A : Tuple ) -> None: """simple docstring""" if isinstance(_A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _SCREAMING_SNAKE_CASE = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _SCREAMING_SNAKE_CASE = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , _a , ) class SCREAMING_SNAKE_CASE_ ( _a ): def __init__( self : Tuple , _A : Dict , _A : Dict = True ) -> List[Any]: """simple docstring""" super().__init__(_A ) snake_case_ : Union[str, Any] = config snake_case_ : str = 32 snake_case_ : Optional[int] = max(int(depth * config.depth_multiplier ) , config.min_depth ) snake_case_ : List[str] = MobileNetVaConvLayer( _A , in_channels=config.num_channels , out_channels=_A , kernel_size=3 , stride=2 , ) snake_case_ : Any = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] snake_case_ : Union[str, Any] = nn.ModuleList() for i in range(13 ): snake_case_ : List[str] = out_channels if strides[i] == 2 or i == 0: depth *= 2 snake_case_ : Dict = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _A , in_channels=_A , out_channels=_A , kernel_size=3 , stride=strides[i] , groups=_A , ) ) self.layer.append( MobileNetVaConvLayer( _A , in_channels=_A , out_channels=_A , kernel_size=1 , ) ) snake_case_ : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase_ ( self : Tuple , _A : Tuple ) -> Dict: """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase_ ( self : Tuple , _A : Optional[int] = None , _A : Any = None , _A : Dict = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: """simple docstring""" snake_case_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) snake_case_ : Dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) snake_case_ : Union[str, Any] = self.conv_stem(_A ) snake_case_ : Union[str, Any] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): snake_case_ : List[str] = layer_module(_A ) if output_hidden_states: snake_case_ : Union[str, Any] = all_hidden_states + (hidden_states,) snake_case_ : Any = hidden_states if self.pooler is not None: snake_case_ : Optional[int] = torch.flatten(self.pooler(_A ) , start_dim=1 ) else: snake_case_ : Tuple = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A , pooler_output=_A , hidden_states=_A , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class SCREAMING_SNAKE_CASE_ ( _a ): def __init__( self : Any , _A : Optional[int] ) -> None: """simple docstring""" super().__init__(_A ) snake_case_ : Dict = config.num_labels snake_case_ : List[str] = MobileNetVaModel(_A ) snake_case_ : Optional[int] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head snake_case_ : Union[str, Any] = nn.Dropout(config.classifier_dropout_prob , inplace=_A ) snake_case_ : Any = nn.Linear(_A , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase_ ( self : Optional[int] , _A : Optional[Any] = None , _A : List[Any] = None , _A : Optional[Any] = None , _A : List[str] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: """simple docstring""" snake_case_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict snake_case_ : Any = self.mobilenet_va(_A , output_hidden_states=_A , return_dict=_A ) snake_case_ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] snake_case_ : List[Any] = self.classifier(self.dropout(_A ) ) snake_case_ : Optional[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: snake_case_ : List[str] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): snake_case_ : List[str] = '''single_label_classification''' else: snake_case_ : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": snake_case_ : Optional[Any] = MSELoss() if self.num_labels == 1: snake_case_ : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: snake_case_ : str = loss_fct(_A , _A ) elif self.config.problem_type == "single_label_classification": snake_case_ : List[str] = CrossEntropyLoss() snake_case_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": snake_case_ : Tuple = BCEWithLogitsLoss() snake_case_ : Optional[Any] = loss_fct(_A , _A ) if not return_dict: snake_case_ : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_A , logits=_A , hidden_states=outputs.hidden_states , )
327
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase_ = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase_ = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase_ = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase_ = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ , snake_case_ : Any = randrange(len(_UpperCamelCase ) ), randrange(len(_UpperCamelCase ) ) snake_case_ : Any = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] snake_case_ , snake_case_ : Tuple = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase_ ( _UpperCamelCase = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(_UpperCamelCase )) @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" snake_case_ : str = PokerHand(_UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" assert PokerHand(_UpperCamelCase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Dict = [PokerHand(_UpperCamelCase ) for hand in SORTED_HANDS] snake_case_ : str = poker_hands.copy() shuffle(_UpperCamelCase ) snake_case_ : List[str] = chain(sorted(_UpperCamelCase ) ) for index, hand in enumerate(_UpperCamelCase ): assert hand == poker_hands[index] def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=_UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Dict = PokerHand('''2C 4S AS 3D 5C''' ) snake_case_ : str = True snake_case_ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" snake_case_ : List[str] = 0 snake_case_ : Union[str, Any] = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) snake_case_ : Dict = os.path.join(_UpperCamelCase , '''poker_hands.txt''' ) with open(_UpperCamelCase ) as file_hand: for line in file_hand: snake_case_ : Dict = line[:14].strip() snake_case_ : List[str] = line[15:].strip() snake_case_ , snake_case_ : str = PokerHand(_UpperCamelCase ), PokerHand(_UpperCamelCase ) snake_case_ : int = player.compare_with(_UpperCamelCase ) if output == "Win": answer += 1 assert answer == 376
279
0
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCAmelCase: Union[str, Any] = logging.getLogger(__name__) UpperCAmelCase: List[Any] = """pytorch_model.bin""" @dataclasses.dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = dataclasses.field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) SCREAMING_SNAKE_CASE_ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = dataclasses.field( default=snake_case , metadata={"help": "A csv or a json file containing the validation data."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = dataclasses.field( default=snake_case , metadata={"help": "The name of the task to train on."} , ) SCREAMING_SNAKE_CASE_ : Optional[List[str]] = dataclasses.field( default=snake_case , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = dataclasses.field( default=1_0 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE_ : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) SCREAMING_SNAKE_CASE_ : Optional[bool] = dataclasses.field( default=snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) SCREAMING_SNAKE_CASE_ : Optional[bool] = dataclasses.field( default=snake_case , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) SCREAMING_SNAKE_CASE_ : Optional[bool] = dataclasses.field( default=snake_case , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) SCREAMING_SNAKE_CASE_ : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = dataclasses.field( default=1_0_0 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = dataclasses.field( default=snake_case , metadata={"help": "Random seed for initialization."} , ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Any = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _lowercase : Optional[Any] = dataset.filter(lambda __UpperCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _lowercase : int = int(eval_result * len(__UpperCAmelCase ) ) print(__UpperCAmelCase ) _lowercase : Optional[Any] = dataset.sort("""probability""" , reverse=__UpperCAmelCase ) _lowercase : Dict = dataset.select(range(__UpperCAmelCase ) ) _lowercase : Any = dataset.remove_columns(["""label""", """probability"""] ) _lowercase : List[str] = dataset.rename_column("""prediction""" , """label""" ) _lowercase : List[str] = dataset.map(lambda __UpperCAmelCase : {"label": idalabel[example["label"]]} ) _lowercase : Optional[int] = dataset.shuffle(seed=args.seed ) _lowercase : List[Any] = os.path.join(__UpperCAmelCase , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__UpperCAmelCase , index=__UpperCAmelCase ) else: dataset.to_json(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): _lowercase : Any = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _lowercase : Union[str, Any] = STModelArguments(model_name_or_path=__UpperCAmelCase ) _lowercase : int = STDataArguments(train_file=__UpperCAmelCase , infer_file=__UpperCAmelCase ) _lowercase : Any = STTrainingArguments(output_dir=__UpperCAmelCase ) _lowercase : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__UpperCAmelCase ).items(): setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for key, value in kwargs.items(): if hasattr(__UpperCAmelCase , __UpperCAmelCase ): setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Sanity checks _lowercase : Any = {} _lowercase : Optional[Any] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _lowercase : Optional[Any] = args.train_file _lowercase : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _lowercase : Dict = args.eval_file for key in data_files: _lowercase : Tuple = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _lowercase : int = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) _lowercase : Any = F"""{args.output_dir}/self-train_iter-{{}}""".format _lowercase : List[str] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__UpperCAmelCase ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) accelerator.wait_for_everyone() _lowercase : Optional[int] = None _lowercase : List[Any] = None _lowercase : Dict = 0 _lowercase : Union[str, Any] = False # Show the progress bar _lowercase : Tuple = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _lowercase : int = data_dir_format(__UpperCAmelCase ) assert os.path.exists(__UpperCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _lowercase : Any = os.path.join(__UpperCAmelCase , """stage-1""" ) _lowercase : Any = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__UpperCAmelCase , __UpperCAmelCase ): arguments_dict.update({key: value} ) _lowercase : Optional[Any] = os.path.join(__UpperCAmelCase , """best-checkpoint""" , __UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , __UpperCAmelCase , __UpperCAmelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , __UpperCAmelCase ) finetune(**__UpperCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__UpperCAmelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , __UpperCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _lowercase : List[str] = os.path.join(__UpperCAmelCase , """best-checkpoint""" ) _lowercase : Optional[Any] = os.path.join(__UpperCAmelCase , """stage-2""" ) # Update arguments_dict _lowercase : Union[str, Any] = model_path _lowercase : Optional[Any] = data_files["""train"""] _lowercase : str = current_output_dir _lowercase : int = os.path.join(__UpperCAmelCase , """best-checkpoint""" , __UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , __UpperCAmelCase , __UpperCAmelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , __UpperCAmelCase ) finetune(**__UpperCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(__UpperCAmelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , __UpperCAmelCase ) _lowercase : List[str] = iteration _lowercase : Optional[Any] = data_dir_format(iteration + 1 ) _lowercase : Any = AutoConfig.from_pretrained(os.path.join(__UpperCAmelCase , """best-checkpoint""" ) ) _lowercase : int = config.idalabel _lowercase : Optional[Any] = os.path.join(__UpperCAmelCase , """eval_results_best-checkpoint.json""" ) _lowercase : Tuple = os.path.join(__UpperCAmelCase , """test_results_best-checkpoint.json""" ) assert os.path.exists(__UpperCAmelCase ) with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Tuple = float(json.load(__UpperCAmelCase )[args.eval_metric] ) _lowercase : str = os.path.join(__UpperCAmelCase , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(__UpperCAmelCase ) # Loading the dataset from local csv or json files. _lowercase : str = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] _lowercase : Optional[Any] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) shutil.copy(__UpperCAmelCase , os.path.join(__UpperCAmelCase , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__UpperCAmelCase ): shutil.copy(__UpperCAmelCase , os.path.join(__UpperCAmelCase , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) accelerator.wait_for_everyone() _lowercase : Optional[int] = os.path.join(__UpperCAmelCase , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _lowercase : Union[str, Any] = eval_result if best_iteration is None: _lowercase : str = new_iteration _lowercase : Any = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _lowercase : str = new_iteration _lowercase : Union[str, Any] = new_eval_result _lowercase : Optional[Any] = 0 else: if new_eval_result == best_eval_result: _lowercase : Optional[int] = new_iteration _lowercase : Dict = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _lowercase : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , __UpperCAmelCase ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__UpperCAmelCase , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(__UpperCAmelCase , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__UpperCAmelCase , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__UpperCAmelCase , """eval_results_best-iteration.json""" ) , )
336
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : int = logging.get_logger(__name__) lowercase : Any = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase : str = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } lowercase : Optional[Any] = { 'gpt-neox-20b': 20_48, } class A ( __snake_case ): __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ['''input_ids''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="<|endoftext|>" , SCREAMING_SNAKE_CASE="<|endoftext|>" , SCREAMING_SNAKE_CASE="<|endoftext|>" , SCREAMING_SNAKE_CASE=False , **SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) A : Tuple = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE ) != add_prefix_space: A : Optional[int] = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) A : Dict = add_prefix_space A : Dict = pre_tok_class(**SCREAMING_SNAKE_CASE ) A : List[str] = add_prefix_space def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" A : Tuple = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[int]: """simple docstring""" A : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: A : List[str] = input_ids[-self.model_max_length :] return input_ids
3
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType A : Optional[List[str]] = None A : str = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image A : str = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class _lowercase : """simple docstring""" A__ = True A__ = None # Automatically constructed A__ = "PIL.Image.Image" A__ = pa.struct({"bytes": pa.binary(), "path": pa.string()}) A__ = field(default="Image" , init=lowercase__ , repr=lowercase__) def __call__( self : Any ): '''simple docstring''' return self.pa_type def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): '''simple docstring''' if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : str = np.array(__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": value, "bytes": None} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"path": None, "bytes": value} elif isinstance(__lowerCamelCase , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__lowerCamelCase ) elif isinstance(__lowerCamelCase , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__lowerCamelCase ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def lowerCAmelCase ( self : Any , __lowerCamelCase : dict , __lowerCamelCase : List[Any]=None ): '''simple docstring''' if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: lowerCamelCase__ : Union[str, Any] = {} lowerCamelCase__ , lowerCamelCase__ : Optional[int] = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = PIL.Image.open(__lowerCamelCase ) else: lowerCamelCase__ : Tuple = path.split("::" )[-1] try: lowerCamelCase__ : str = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )["repo_id"] lowerCamelCase__ : Any = token_per_repo_id.get(__lowerCamelCase ) except ValueError: lowerCamelCase__ : int = None with xopen(__lowerCamelCase , "rb" , use_auth_token=__lowerCamelCase ) as f: lowerCamelCase__ : List[str] = BytesIO(f.read() ) lowerCamelCase__ : Optional[int] = PIL.Image.open(bytes_ ) else: lowerCamelCase__ : Dict = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase ( self : Dict ): '''simple docstring''' from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) lowerCamelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowerCamelCase__ : List[Any] = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : Any = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: lowerCamelCase__ : Dict = storage.field("bytes" ) else: lowerCamelCase__ : Optional[int] = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: lowerCamelCase__ : Dict = storage.field("path" ) else: lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): lowerCamelCase__ : Union[str, Any] = pa.array( [encode_np_array(np.array(__lowerCamelCase ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) lowerCamelCase__ : Dict = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) lowerCamelCase__ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def lowerCAmelCase ( self : int , __lowerCamelCase : pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Union[str, Any] ): with xopen(__lowerCamelCase , "rb" ) as f: lowerCamelCase__ : str = f.read() return bytes_ lowerCamelCase__ : List[Any] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowerCamelCase__ : Optional[int] = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) lowerCamelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def lowercase_ ( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() lowerCamelCase__ : List[str] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowercase_ ( _A : "PIL.Image.Image" ): """simple docstring""" lowerCamelCase__ : Optional[Any] = BytesIO() if image.format in list_image_compression_formats(): lowerCamelCase__ : int = image.format else: lowerCamelCase__ : int = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(_A , format=_A ) return buffer.getvalue() def lowercase_ ( _A : "PIL.Image.Image" ): """simple docstring""" if hasattr(_A , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_A )} def lowercase_ ( _A : np.ndarray ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) lowerCamelCase__ : int = array.dtype lowerCamelCase__ : List[str] = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER lowerCamelCase__ : List[str] = dtype.kind lowerCamelCase__ : Optional[Any] = dtype.itemsize lowerCamelCase__ : Dict = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: lowerCamelCase__ : List[Any] = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: lowerCamelCase__ : Any = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: lowerCamelCase__ : Optional[Any] = dtype_byteorder + dtype_kind + str(_A ) lowerCamelCase__ : int = np.dtype(_A ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) lowerCamelCase__ : List[Any] = PIL.Image.fromarray(array.astype(_A ) ) return {"path": None, "bytes": image_to_bytes(_A )} def lowercase_ ( _A : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: lowerCamelCase__ , lowerCamelCase__ : int = first_non_null_value(_A ) if isinstance(_A , _A ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_A , np.ndarray ): lowerCamelCase__ : Optional[Any] = no_op_if_value_is_null(_A ) return [obj_to_image_dict_func(_A ) for obj in objs] elif isinstance(_A , PIL.Image.Image ): lowerCamelCase__ : int = no_op_if_value_is_null(_A ) return [obj_to_image_dict_func(_A ) for obj in objs] else: return objs else: return objs
184
0
from __future__ import annotations from cmath import sqrt def A ( _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> tuple[complex, complex]: '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(_UpperCAmelCase )) / (2 * a) _UpperCAmelCase = (-b - sqrt(_UpperCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def A ( ) -> str: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
290
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( A ): def _lowerCamelCase ( self : List[str]) -> int: """simple docstring""" _UpperCAmelCase = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(A , 'hidden_sizes')) self.parent.assertTrue(hasattr(A , 'neck_hidden_sizes')) self.parent.assertTrue(hasattr(A , 'num_attention_heads')) class __lowerCAmelCase : def __init__( self : int , A : Tuple , A : List[str]=13 , A : List[str]=32 , A : List[str]=2 , A : List[str]=3 , A : List[Any]=6_40 , A : Any=4 , A : int="silu" , A : int=3 , A : Dict=32 , A : List[Any]=0.1 , A : Optional[Any]=0.1 , A : Optional[int]=0.1 , A : List[str]=0.0_2 , A : int=True , A : Any=True , A : List[str]=10 , A : Tuple=None , ) -> Dict: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = last_hidden_size _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = conv_kernel_size _UpperCAmelCase = output_stride _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = classifier_dropout_prob _UpperCAmelCase = use_labels _UpperCAmelCase = is_training _UpperCAmelCase = num_labels _UpperCAmelCase = initializer_range _UpperCAmelCase = scope def _lowerCamelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) _UpperCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self : str) -> int: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : List[Any] , A : Dict , A : Tuple , A : int , A : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MobileViTModel(config=A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : int , A : Any , A : List[Any] , A : List[Any] , A : Optional[int]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForImageClassification(A) model.to(A) model.eval() _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : int , A : Tuple , A : Optional[Any] , A : Union[str, Any] , A : List[Any]) -> int: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = MobileViTForSemanticSegmentation(A) model.to(A) model.eval() _UpperCAmelCase = model(A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCAmelCase = model(A , labels=A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : int) -> Any: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" _UpperCAmelCase = MobileViTModelTester(self) _UpperCAmelCase = MobileViTConfigTester(self , config_class=A , has_text_modality=A) def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds') def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings') def _lowerCamelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions') def _lowerCamelCase ( self : Any) -> Optional[Any]: """simple docstring""" pass def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(A) _UpperCAmelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowerCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" pass def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : Optional[int]) -> Any: """simple docstring""" def check_hidden_states_output(A : List[str] , A : Union[str, Any] , A : int): _UpperCAmelCase = model_class(A) model.to(A) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(A , A)) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 5 self.assertEqual(len(A) , A) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCAmelCase = 2 for i in range(len(A)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(A , A , A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(A , A , A) def _lowerCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A) def _lowerCamelCase ( self : int) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A) @slow def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = MobileViTModel.from_pretrained(A) self.assertIsNotNone(A) def A ( ) -> List[str]: '''simple docstring''' _UpperCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small') if is_vision_available() else None @slow def _lowerCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small').to(A) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , A) _UpperCAmelCase = torch.tensor([-1.9_3_6_4, -1.2_3_2_7, -0.4_6_5_3]).to(A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = model.to(A) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) _UpperCAmelCase = outputs.logits # verify the logits _UpperCAmelCase = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , A) _UpperCAmelCase = torch.tensor( [ [[6.9_7_1_3, 6.9_7_8_6, 7.2_4_2_2], [7.2_8_9_3, 7.2_8_2_5, 7.4_4_4_6], [7.6_5_8_0, 7.8_7_9_7, 7.9_4_2_0]], [[-1_0.6_8_6_9, -1_0.3_2_5_0, -1_0.3_4_7_1], [-1_0.4_2_2_8, -9.9_8_6_8, -9.7_1_3_2], [-1_1.0_4_0_5, -1_1.0_2_2_1, -1_0.7_3_1_8]], [[-3.3_0_8_9, -2.8_5_3_9, -2.6_7_4_0], [-3.2_7_0_6, -2.5_6_2_1, -2.5_1_0_8], [-3.2_5_3_4, -2.6_6_1_5, -2.6_6_5_1]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4)) @slow def _lowerCamelCase ( self : List[Any]) -> List[str]: """simple docstring""" _UpperCAmelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = model.to(A) _UpperCAmelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt').to(A) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**A) _UpperCAmelCase = outputs.logits.detach().cpu() _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)]) _UpperCAmelCase = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , A) _UpperCAmelCase = image_processor.post_process_semantic_segmentation(outputs=A) _UpperCAmelCase = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , A)
290
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__: Optional[int] = logging.get_logger(__name__) UpperCamelCase__: str = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = """ctrl""" lowerCamelCase__ = ["""past_key_values"""] lowerCamelCase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , __snake_case : Optional[int]=246534 , __snake_case : Any=256 , __snake_case : Optional[Any]=1280 , __snake_case : List[Any]=8192 , __snake_case : Tuple=48 , __snake_case : Union[str, Any]=16 , __snake_case : Optional[int]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Optional[int]=1E-6 , __snake_case : Any=0.02 , __snake_case : Optional[Any]=True , **__snake_case : Dict , ) -> Optional[int]: UpperCAmelCase : Dict = vocab_size UpperCAmelCase : Optional[int] = n_positions UpperCAmelCase : str = n_embd UpperCAmelCase : Any = n_layer UpperCAmelCase : Tuple = n_head UpperCAmelCase : int = dff UpperCAmelCase : Any = resid_pdrop UpperCAmelCase : Any = embd_pdrop UpperCAmelCase : Tuple = layer_norm_epsilon UpperCAmelCase : int = initializer_range UpperCAmelCase : Any = use_cache super().__init__(**__snake_case )
23
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCamelCase__: int = logging.get_logger(__name__) UpperCamelCase__: Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCamelCase__: Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def snake_case_ ( _lowerCAmelCase : str ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = {} with open(_lowerCAmelCase , '''r''' ) as file: for line_number, line in enumerate(_lowerCAmelCase ): UpperCAmelCase : List[str] = line.strip() if line: UpperCAmelCase : str = line.split() UpperCAmelCase : Union[str, Any] = line_number UpperCAmelCase : List[Any] = words[0] UpperCAmelCase : Union[str, Any] = value return result def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : Any = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Dict = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase : List[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : Optional[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase : Union[str, Any] = value[0] else: UpperCAmelCase : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase : int = value elif weight_type == "weight_g": UpperCAmelCase : str = value elif weight_type == "weight_v": UpperCAmelCase : Dict = value elif weight_type == "bias": UpperCAmelCase : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase : int = getattr(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = value else: UpperCAmelCase : Tuple = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> List[Any]: UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCAmelCase ): UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase : Optional[int] = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase : List[Any] = key UpperCAmelCase : Tuple = value if '''lm_head''' in full_key else value[0] UpperCamelCase__: Tuple = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]=None ) -> int: UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase : Optional[Any] = True if "*" in mapped_key: UpperCAmelCase : Tuple = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] UpperCAmelCase : List[Any] = mapped_key.replace('''*''' , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase : str = '''weight_g''' elif "weight_v" in name: UpperCAmelCase : int = '''weight_v''' elif "bias" in name: UpperCAmelCase : int = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase : List[str] = '''weight''' else: UpperCAmelCase : Dict = None if hf_dict is not None: rename_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return is_used return is_used def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Any: UpperCAmelCase : Dict = [] UpperCAmelCase : Dict = fairseq_model.state_dict() UpperCAmelCase : Union[str, Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase : Any = True else: UpperCAmelCase : Optional[Any] = load_wavaveca_layer(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def snake_case_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase : Optional[int] = name.split('''.''' ) UpperCAmelCase : Tuple = int(items[0] ) UpperCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase : Tuple = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[int]=False ) -> Dict: if config_path is not None: UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: UpperCAmelCase : Optional[Any] = read_txt_into_dict(_lowerCAmelCase ) UpperCAmelCase : Optional[int] = idalabel UpperCAmelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCAmelCase ) UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) feature_extractor.save_pretrained(_lowerCAmelCase ) elif is_finetuned: if dict_path: UpperCAmelCase : Dict = Dictionary.load(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase : Any = target_dict.pad_index UpperCAmelCase : Tuple = target_dict.bos_index UpperCAmelCase : Optional[int] = target_dict.eos_index UpperCAmelCase : Union[str, Any] = len(target_dict.symbols ) UpperCAmelCase : Dict = os.path.join(_lowerCAmelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCAmelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) UpperCAmelCase : List[Any] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = 1 with open(_lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCAmelCase , ) UpperCAmelCase : int = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = WavaVecaForCTC(_lowerCAmelCase ) else: UpperCAmelCase : Dict = WavaVecaForPreTraining(_lowerCAmelCase ) if is_finetuned or is_seq_class: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase : Optional[Any] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase : List[Any] = fairseq.tasks.setup_task(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase__: Dict = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCamelCase__: Any = parser.parse_args() UpperCamelCase__: int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
23
1
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str )-> str | Literal[False]: '''simple docstring''' UpperCAmelCase__ : int = list(snake_case ) UpperCAmelCase__ : Dict = list(snake_case ) UpperCAmelCase__ : Optional[Any] = 0 for i in range(len(snake_case ) ): if lista[i] != lista[i]: count += 1 UpperCAmelCase__ : Any = "_" if count > 1: return False else: return "".join(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : list[str] )-> list[str]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] while True: UpperCAmelCase__ : List[Any] = ["$"] * len(snake_case ) UpperCAmelCase__ : Tuple = [] for i in range(len(snake_case ) ): for j in range(i + 1 , len(snake_case ) ): UpperCAmelCase__ : Dict = compare_string(binary[i] , binary[j] ) if k is False: UpperCAmelCase__ : List[Any] = "*" UpperCAmelCase__ : Dict = "*" temp.append("X" ) for i in range(len(snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case ) == 0: return pi UpperCAmelCase__ : Any = list(set(snake_case ) ) def SCREAMING_SNAKE_CASE__ ( snake_case : int , snake_case : Sequence[float] )-> list[str]: '''simple docstring''' UpperCAmelCase__ : str = [] for minterm in minterms: UpperCAmelCase__ : str = "" for _ in range(snake_case ): UpperCAmelCase__ : List[Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str , snake_case : int )-> bool: '''simple docstring''' UpperCAmelCase__ : List[str] = list(snake_case ) UpperCAmelCase__ : Optional[Any] = list(snake_case ) UpperCAmelCase__ : int = 0 for i in range(len(snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case : list[list[int]] , snake_case : list[str] )-> list[str]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = [0] * len(snake_case ) for i in range(len(chart[0] ) ): UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : List[str] = -1 for j in range(len(snake_case ) ): if chart[j][i] == 1: count += 1 UpperCAmelCase__ : Tuple = j if count == 1: UpperCAmelCase__ : Optional[Any] = 1 for i in range(len(snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case ) ): UpperCAmelCase__ : str = 0 temp.append(prime_implicants[i] ) while True: UpperCAmelCase__ : int = 0 UpperCAmelCase__ : Any = -1 UpperCAmelCase__ : Any = 0 for i in range(len(snake_case ) ): UpperCAmelCase__ : str = chart[i].count(1 ) if count_n > max_n: UpperCAmelCase__ : Dict = count_n UpperCAmelCase__ : List[Any] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case ) ): UpperCAmelCase__ : Optional[int] = 0 def SCREAMING_SNAKE_CASE__ ( snake_case : list[str] , snake_case : list[str] )-> list[list[int]]: '''simple docstring''' UpperCAmelCase__ : Tuple = [[0 for x in range(len(snake_case ) )] for x in range(len(snake_case ) )] for i in range(len(snake_case ) ): UpperCAmelCase__ : Any = prime_implicants[i].count("_" ) for j in range(len(snake_case ) ): if is_for_table(prime_implicants[i] , binary[j] , snake_case ): UpperCAmelCase__ : Dict = 1 return chart def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : Tuple = int(input("Enter the no. of variables\n" ) ) UpperCAmelCase__ : List[str] = [ float(snake_case ) for x in input( "Enter the decimal representation of Minterms 'Spaces Separated'\n" ).split() ] UpperCAmelCase__ : List[Any] = decimal_to_binary(snake_case , snake_case ) UpperCAmelCase__ : Tuple = check(snake_case ) print("Prime Implicants are:" ) print(snake_case ) UpperCAmelCase__ : int = prime_implicant_chart(snake_case , snake_case ) UpperCAmelCase__ : Any = selection(snake_case , snake_case ) print("Essential Prime Implicants are:" ) print(snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
298
"""simple docstring""" import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =XLMTokenizer SCREAMING_SNAKE_CASE_ =False def __a ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] UpperCAmelCase__ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Tuple = ["l o 123", "lo w 1456", "e r</w> 1789", ""] UpperCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" ) as fp: fp.write(json.dumps(snake_case__ ) ) with open(self.merges_file , "w" ) as fp: fp.write("\n".join(snake_case__ ) ) def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = "lower newer" UpperCAmelCase__ : Optional[Any] = "lower newer" return input_text, output_text def __a ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase__ : List[Any] = "lower" UpperCAmelCase__ : Any = ["low", "er</w>"] UpperCAmelCase__ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokens + ["<unk>"] UpperCAmelCase__ : List[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @slow def __a ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = XLMTokenizer.from_pretrained("xlm-mlm-en-2048" ) UpperCAmelCase__ : str = tokenizer.encode("sequence builders" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case__ ) UpperCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case__ , snake_case__ ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
298
1
'''simple docstring''' lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _lowerCAmelCase ( _UpperCamelCase : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE ={'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} _SCREAMING_SNAKE_CASE =Stack() _SCREAMING_SNAKE_CASE =Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_UpperCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_UpperCamelCase ) elif i == ")": # RULE 4 _SCREAMING_SNAKE_CASE =operator_stack.peek() operator_stack.pop() _SCREAMING_SNAKE_CASE =operand_stack.peek() operand_stack.pop() _SCREAMING_SNAKE_CASE =operand_stack.peek() operand_stack.pop() _SCREAMING_SNAKE_CASE =operators[opr](_UpperCamelCase , _UpperCamelCase ) operand_stack.push(_UpperCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Optional[Any] = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
47
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase : Dict = logging.get_logger(__name__) lowerCamelCase : List[Any] = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class A__ ( A__ ): A__ = 'deta' A__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Tuple , _a : Optional[int]=None , _a : int=900 , _a : Optional[Any]=2048 , _a : int=6 , _a : Tuple=2048 , _a : Optional[int]=8 , _a : Any=6 , _a : str=1024 , _a : int=8 , _a : int=0.0 , _a : Optional[Any]=True , _a : Tuple="relu" , _a : Union[str, Any]=256 , _a : Tuple=0.1 , _a : str=0.0 , _a : Dict=0.0 , _a : Tuple=0.02 , _a : Union[str, Any]=1.0 , _a : Any=True , _a : Tuple=False , _a : List[Any]="sine" , _a : str=5 , _a : List[Any]=4 , _a : str=4 , _a : Union[str, Any]=True , _a : Optional[int]=300 , _a : Dict=True , _a : List[Any]=True , _a : List[Any]=1 , _a : List[str]=5 , _a : int=2 , _a : Dict=1 , _a : str=1 , _a : Optional[Any]=5 , _a : Union[str, Any]=2 , _a : List[str]=0.1 , _a : List[Any]=0.25 , **_a : Union[str, Any] , ) -> List[str]: '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _SCREAMING_SNAKE_CASE =CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =backbone_config.pop('model_type' ) _SCREAMING_SNAKE_CASE =CONFIG_MAPPING[backbone_model_type] _SCREAMING_SNAKE_CASE =config_class.from_dict(_a ) _SCREAMING_SNAKE_CASE =backbone_config _SCREAMING_SNAKE_CASE =num_queries _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =encoder_ffn_dim _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =encoder_attention_heads _SCREAMING_SNAKE_CASE =decoder_ffn_dim _SCREAMING_SNAKE_CASE =decoder_layers _SCREAMING_SNAKE_CASE =decoder_attention_heads _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =init_xavier_std _SCREAMING_SNAKE_CASE =encoder_layerdrop _SCREAMING_SNAKE_CASE =auxiliary_loss _SCREAMING_SNAKE_CASE =position_embedding_type # deformable attributes _SCREAMING_SNAKE_CASE =num_feature_levels _SCREAMING_SNAKE_CASE =encoder_n_points _SCREAMING_SNAKE_CASE =decoder_n_points _SCREAMING_SNAKE_CASE =two_stage _SCREAMING_SNAKE_CASE =two_stage_num_proposals _SCREAMING_SNAKE_CASE =with_box_refine _SCREAMING_SNAKE_CASE =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _SCREAMING_SNAKE_CASE =class_cost _SCREAMING_SNAKE_CASE =bbox_cost _SCREAMING_SNAKE_CASE =giou_cost # Loss coefficients _SCREAMING_SNAKE_CASE =mask_loss_coefficient _SCREAMING_SNAKE_CASE =dice_loss_coefficient _SCREAMING_SNAKE_CASE =bbox_loss_coefficient _SCREAMING_SNAKE_CASE =giou_loss_coefficient _SCREAMING_SNAKE_CASE =eos_coefficient _SCREAMING_SNAKE_CASE =focal_alpha super().__init__(is_encoder_decoder=_a , **_a ) @property def A ( self : Dict ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def A ( self : List[Any] ) -> int: '''simple docstring''' return self.d_model def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.backbone_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
47
1
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version a__: Optional[int] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = "dummy_data" __SCREAMING_SNAKE_CASE = "datasets" __SCREAMING_SNAKE_CASE = False def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = False,__lowerCamelCase = True,__lowerCamelCase = None,): A__ = 0 A__ = dataset_name A__ = cache_dir A__ = use_local_dummy_data A__ = config # download_callbacks take a single url as input A__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root A__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general A__ = str(_a ) # to be downloaded A__ = None A__ = None @property def UpperCamelCase ( self ): if self._dummy_file is None: A__ = self.download_dummy_data() return self._dummy_file @property def UpperCamelCase ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''',self.config.name,self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''',self.version_name ) @property def UpperCamelCase ( self ): return os.path.join(self.dummy_data_folder,'''dummy_data.zip''' ) def UpperCamelCase ( self ): A__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) A__ = cached_path( _a,cache_dir=self.cache_dir,extract_compressed_file=_a,force_extract=_a ) return os.path.join(_a,self.dummy_file_name ) @property def UpperCamelCase ( self ): return os.path.join(self.datasets_scripts_dir,self.dataset_name,self.dummy_zip_file ) @property def UpperCamelCase ( self ): if self._bucket_url is None: A__ = hf_github_url(self.dataset_name,self.dummy_zip_file.replace(os.sep,'''/''' ) ) return self._bucket_url @property def UpperCamelCase ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep,'''/''' ).split('''/''' )[:-1] ) def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase ): if self.load_existing_dummy_data: # dummy data is downloaded and tested A__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned A__ = self.dummy_file_name # special case when data_url is a dict if isinstance(_a,_a ): return self.create_dummy_data_dict(_a,_a ) elif isinstance(_a,(list, tuple) ): return self.create_dummy_data_list(_a,_a ) else: return self.create_dummy_data_single(_a,_a ) def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase ): return self.download_and_extract(_a ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): return self.download_and_extract(_a ) def UpperCamelCase ( self,__lowerCamelCase,*__lowerCamelCase,**__lowerCamelCase ): return path def UpperCamelCase ( self ): return {} def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_a,_a ): for single_url in single_urls: download_callback(_a ) else: A__ = single_urls download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_a,_a ): A__ = [os.path.join(_a,urllib.parse.quote_plus(Path(_a ).name ) ) for x in single_urls] else: A__ = single_urls A__ = os.path.join(_a,urllib.parse.quote_plus(Path(_a ).name ) ) A__ = value # make sure that values are unique if all(isinstance(_a,_a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique A__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one A__ = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''',_a ) ) for url in data_url ) A__ = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): A__ = [data_url[0]] * len(_a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ = os.path.join(_a,urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(_a ) return dummy_data_list def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A__ = os.path.join(_a,urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(_a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCamelCase ( self ): pass def UpperCamelCase ( self ): pass def UpperCamelCase ( self,__lowerCamelCase ): def _iter_archive_members(__lowerCamelCase ): # this preserves the order of the members inside the ZIP archive A__ = Path(self.dummy_file ).parent A__ = path.relative_to(_a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: A__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_a ) A__ = Path(_a ) A__ = _iter_archive_members(_a ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(_a ).as_posix(), file_path.open('''rb''' ) def UpperCamelCase ( self,__lowerCamelCase ): if not isinstance(_a,_a ): A__ = [paths] for path in paths: if os.path.isfile(_a ): if os.path.basename(_a ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(_a ): if os.path.basename(_a ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(_a ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(_a,_a )
365
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class SCREAMING_SNAKE_CASE__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = 1.0,__lowerCamelCase = None,): super().__init__() A__ = initial_learning_rate A__ = warmup_steps A__ = power A__ = decay_schedule_fn A__ = name def __call__( self,__lowerCamelCase ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. A__ = tf.cast(__lowerCamelCase,tf.floataa ) A__ = tf.cast(self.warmup_steps,tf.floataa ) A__ = global_step_float / warmup_steps_float A__ = self.initial_learning_rate * tf.math.pow(__lowerCamelCase,self.power ) return tf.cond( global_step_float < warmup_steps_float,lambda: warmup_learning_rate,lambda: self.decay_schedule_fn(step - self.warmup_steps ),name=__lowerCamelCase,) def UpperCamelCase ( self ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCamelCase__( UpperCamelCase__ : float , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 0.9 , UpperCamelCase__ : float = 0.999 , UpperCamelCase__ : float = 1e-8 , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : Optional[float] = None , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : float = 1.0 , UpperCamelCase__ : Optional[List[str]] = None , )->int: A__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCamelCase__ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCamelCase__ , ) if num_warmup_steps: A__ = WarmUp( initial_learning_rate=UpperCamelCase__ , decay_schedule_fn=UpperCamelCase__ , warmup_steps=UpperCamelCase__ , ) if weight_decay_rate > 0.0: A__ = AdamWeightDecay( learning_rate=UpperCamelCase__ , weight_decay_rate=UpperCamelCase__ , beta_a=UpperCamelCase__ , beta_a=UpperCamelCase__ , epsilon=UpperCamelCase__ , clipnorm=UpperCamelCase__ , global_clipnorm=UpperCamelCase__ , exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''] , include_in_weight_decay=UpperCamelCase__ , ) else: A__ = tf.keras.optimizers.Adam( learning_rate=UpperCamelCase__ , beta_a=UpperCamelCase__ , beta_a=UpperCamelCase__ , epsilon=UpperCamelCase__ , clipnorm=UpperCamelCase__ , global_clipnorm=UpperCamelCase__ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self,__lowerCamelCase = 0.001,__lowerCamelCase = 0.9,__lowerCamelCase = 0.999,__lowerCamelCase = 1E-7,__lowerCamelCase = False,__lowerCamelCase = 0.0,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = "AdamWeightDecay",**__lowerCamelCase,): super().__init__(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) A__ = weight_decay_rate A__ = include_in_weight_decay A__ = exclude_from_weight_decay @classmethod def UpperCamelCase ( cls,__lowerCamelCase ): A__ = {'''WarmUp''': WarmUp} return super(__lowerCamelCase,cls ).from_config(__lowerCamelCase,custom_objects=__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): super(__lowerCamelCase,self )._prepare_local(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) A__ = tf.constant( self.weight_decay_rate,name='''adam_weight_decay_rate''' ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''],use_locking=self._use_locking,) return tf.no_op() def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase=None,**__lowerCamelCase ): A__ , A__ = list(zip(*__lowerCamelCase ) ) return super(__lowerCamelCase,self ).apply_gradients(zip(__lowerCamelCase,__lowerCamelCase ),name=__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} A__ = apply_state or {} A__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: A__ = self._fallback_apply_state(__lowerCamelCase,__lowerCamelCase ) A__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None ): A__ , A__ = self._get_lr(var.device,var.dtype.base_dtype,__lowerCamelCase ) A__ = self._decay_weights_op(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase,self )._resource_apply_dense(__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase=None ): A__ , A__ = self._get_lr(var.device,var.dtype.base_dtype,__lowerCamelCase ) A__ = self._decay_weights_op(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) with tf.control_dependencies([decay] ): return super(__lowerCamelCase,self )._resource_apply_sparse(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,**__lowerCamelCase ) def UpperCamelCase ( self ): A__ = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def UpperCamelCase ( self,__lowerCamelCase ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(__lowerCamelCase,__lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(__lowerCamelCase,__lowerCamelCase ) is not None: return False return True class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self ): A__ = [] A__ = None @property def UpperCamelCase ( self ): if self._accum_steps is None: A__ = tf.Variable( tf.constant(0,dtype=tf.intaa ),trainable=__lowerCamelCase,synchronization=tf.VariableSynchronization.ON_READ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,) return self._accum_steps.value() @property def UpperCamelCase ( self ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self,__lowerCamelCase ): if not self._gradients: A__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(__lowerCamelCase ),trainable=__lowerCamelCase,synchronization=tf.VariableSynchronization.ON_READ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA,) if gradient is not None else gradient for gradient in gradients ] ) if len(__lowerCamelCase ) != len(self._gradients ): raise ValueError(f"Expected {len(self._gradients )} gradients, but got {len(__lowerCamelCase )}" ) for accum_gradient, gradient in zip(self._gradients,__lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(__lowerCamelCase ) self._accum_steps.assign_add(1 ) def UpperCamelCase ( self ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(__lowerCamelCase ) )
39
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('foo.json',)] ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase , config_name=_UpperCamelCase ) UpperCAmelCase_ : str = GenerationConfig.from_pretrained(_UpperCamelCase , config_name=_UpperCamelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _UpperCamelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = AutoConfig.from_pretrained('gpt2' ) UpperCAmelCase_ : Tuple = GenerationConfig.from_model_config(_UpperCamelCase ) UpperCAmelCase_ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_UpperCamelCase , _UpperCamelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase_ : List[str] = GenerationConfig() UpperCAmelCase_ : int = { 'max_new_tokens': 1_0_2_4, 'foo': 'bar', } UpperCAmelCase_ : List[Any] = copy.deepcopy(_UpperCamelCase ) UpperCAmelCase_ : Tuple = generation_config.update(**_UpperCamelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_UpperCamelCase , {'foo': 'bar'} ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : int = GenerationConfig() UpperCAmelCase_ : Union[str, Any] = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : List[str] = GenerationConfig.from_pretrained(_UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) UpperCAmelCase_ : Tuple = GenerationConfig.from_model_config(_UpperCamelCase ) assert not hasattr(_UpperCamelCase , 'foo' ) # no new kwargs should be initialized if from config def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase_ : List[Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _UpperCamelCase ) self.assertEqual(default_config.num_beams , 1 ) UpperCAmelCase_ : List[Any] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _UpperCamelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : str = GenerationConfig.from_pretrained(_UpperCamelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _UpperCamelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ) -> Optional[int]: UpperCAmelCase_ : Dict = TOKEN HfFolder.save_token(_UpperCamelCase ) @classmethod def __UpperCAmelCase ( cls ) -> List[Any]: try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase_ : List[str] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) UpperCAmelCase_ : Optional[int] = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCamelCase , repo_id='test-generation-config' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) UpperCAmelCase_ : Optional[int] = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : List[str] = GenerationConfig( do_sample=_UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _UpperCamelCase , repo_id='valid_org/test-generation-config-org' , push_to_hub=_UpperCamelCase , use_auth_token=self._token ) UpperCAmelCase_ : Union[str, Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) )
29
__UpperCAmelCase = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
29
1
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase_ = 4 ) -> list[list[int]]: A__ = abs(lowercase_ ) or 4 return [[1 + x + y * row_size for x in range(lowercase_ )] for y in range(lowercase_ )] def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: return reverse_row(transpose(lowercase_ ) ) # OR.. transpose(reverse_column(matrix)) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: return reverse_row(reverse_column(lowercase_ ) ) # OR.. reverse_column(reverse_row(matrix)) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: return reverse_column(transpose(lowercase_ ) ) # OR.. transpose(reverse_row(matrix)) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: A__ = [list(lowercase_ ) for x in zip(*lowercase_ )] return matrix def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: A__ = matrix[::-1] return matrix def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[list[int]]: A__ = [x[::-1] for x in matrix] return matrix def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> None: for i in matrix: print(*lowercase_ ) if __name__ == "__main__": lowercase = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) lowercase = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) lowercase = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
370
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off SCREAMING_SNAKE_CASE = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCAmelCase_ ( A_ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ['''input_ids''', '''attention_mask'''] lowercase__ = NllbTokenizer lowercase__ = [] lowercase__ = [] def __init__( self : int , snake_case_ : int=None , snake_case_ : Any=None , snake_case_ : int="<s>" , snake_case_ : List[Any]="</s>" , snake_case_ : Optional[int]="</s>" , snake_case_ : int="<s>" , snake_case_ : str="<unk>" , snake_case_ : str="<pad>" , snake_case_ : Optional[int]="<mask>" , snake_case_ : str=None , snake_case_ : List[Any]=None , snake_case_ : Tuple=None , snake_case_ : Optional[int]=False , **snake_case_ : List[str] , ) -> Tuple: '''simple docstring''' A__ = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token A__ = legacy_behaviour super().__init__( vocab_file=snake_case_ , tokenizer_file=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , legacy_behaviour=snake_case_ , **snake_case_ , ) A__ = vocab_file A__ = False if not self.vocab_file else True A__ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) A__ = { lang_code: self.convert_tokens_to_ids(snake_case_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A__ = src_lang if src_lang is not None else "eng_Latn" A__ = self.convert_tokens_to_ids(self._src_lang ) A__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __magic_name__ ( self : Union[str, Any] ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def __magic_name__ ( self : Optional[int] , snake_case_ : str ) -> None: '''simple docstring''' A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self : int , snake_case_ : Tuple , snake_case_ : str , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : Tuple ) -> List[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A__ = src_lang A__ = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) A__ = self.convert_tokens_to_ids(snake_case_ ) A__ = tgt_lang_id return inputs def __magic_name__ ( self : int , snake_case_ : List[str] , snake_case_ : str = "eng_Latn" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "fra_Latn" , **snake_case_ : Dict , ) -> BatchEncoding: '''simple docstring''' A__ = src_lang A__ = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self : Tuple ) -> Dict: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self : List[Any] , snake_case_ : Dict ) -> None: '''simple docstring''' A__ = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: A__ = [] A__ = [self.eos_token_id, self.cur_lang_code] else: A__ = [self.cur_lang_code] A__ = [self.eos_token_id] A__ = self.convert_ids_to_tokens(self.prefix_tokens ) A__ = self.convert_ids_to_tokens(self.suffix_tokens ) A__ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __magic_name__ ( self : List[Any] , snake_case_ : str ) -> None: '''simple docstring''' A__ = self.convert_tokens_to_ids(snake_case_ ) if self.legacy_behaviour: A__ = [] A__ = [self.eos_token_id, self.cur_lang_code] else: A__ = [self.cur_lang_code] A__ = [self.eos_token_id] A__ = self.convert_ids_to_tokens(self.prefix_tokens ) A__ = self.convert_ids_to_tokens(self.suffix_tokens ) A__ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __magic_name__ ( self : List[str] , snake_case_ : str , snake_case_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return A__ = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
230
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase_ : '''simple docstring''' @staticmethod def _A ( *A : int , **A : Tuple ): pass @is_pipeline_test @require_vision class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @require_torch def _A ( self : str ): _UpperCAmelCase : Tuple = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) _UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : Optional[Any] = image_classifier(A , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) _UpperCAmelCase : Tuple = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], ] , ) @require_tf def _A ( self : Optional[Any] ): _UpperCAmelCase : Tuple = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) _UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : List[str] = image_classifier(A , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(A ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) _UpperCAmelCase : Any = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], [ {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, {"score": 0.333, "label": ANY(A )}, ], ] , ) @slow @require_torch def _A ( self : int ): _UpperCAmelCase : Tuple = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : List[str] = image_classifier(A , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(A ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) _UpperCAmelCase : Optional[Any] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _A ( self : Union[str, Any] ): _UpperCAmelCase : Tuple = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase : Optional[int] = image_classifier(A , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(A ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) _UpperCAmelCase : Dict = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(A ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
31
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (): # Get the sagemaker specific mp parameters from smp_options variable. __lowerCAmelCase = os.getenv("""SM_HP_MP_PARAMETERS""" , """{}""" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __lowerCAmelCase = json.loads(_lowerCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __lowerCAmelCase = os.getenv("""SM_FRAMEWORK_PARAMS""" , """{}""" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __lowerCAmelCase = json.loads(_lowerCAmelCase ) if not mpi_options.get("""sagemaker_mpi_enabled""" , _lowerCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("""smdistributed""" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def A__ ( self ) -> Tuple: super().__post_init__() warnings.warn( """`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use """ """`TrainingArguments` instead.""" , snake_case_ , ) @cached_property def A__ ( self ) -> "torch.device": logger.info("""PyTorch: setting up devices""" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( """torch.distributed process group is initialized, but local_rank == -1. """ """In order to use Torch DDP, launch your script with `python -m torch.distributed.launch""" ) if self.no_cuda: __lowerCAmelCase = torch.device("""cpu""" ) __lowerCAmelCase = 0 elif is_sagemaker_model_parallel_available(): __lowerCAmelCase = smp.local_rank() __lowerCAmelCase = torch.device("""cuda""" , snake_case_ ) __lowerCAmelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="""smddp""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = int(os.getenv("""SMDATAPARALLEL_LOCAL_RANK""" ) ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __lowerCAmelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __lowerCAmelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="""nccl""" , timeout=self.ddp_timeout_delta ) __lowerCAmelCase = torch.device("""cuda""" , self.local_rank ) __lowerCAmelCase = 1 if device.type == "cuda": torch.cuda.set_device(snake_case_ ) return device @property def A__ ( self ) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self ) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def A__ ( self ) -> Tuple: return False
301
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class SCREAMING_SNAKE_CASE_ ( _a ): __magic_name__: Any = "mobilenet_v1" def __init__( self : int , _A : Tuple=3 , _A : str=224 , _A : Dict=1.0 , _A : List[Any]=8 , _A : Tuple="relu6" , _A : Dict=True , _A : Optional[int]=0.9_9_9 , _A : List[Any]=0.0_2 , _A : Optional[Any]=0.0_0_1 , **_A : Optional[int] , ) -> Dict: """simple docstring""" super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) snake_case_ : str = num_channels snake_case_ : Union[str, Any] = image_size snake_case_ : Dict = depth_multiplier snake_case_ : Union[str, Any] = min_depth snake_case_ : Any = hidden_act snake_case_ : int = tf_padding snake_case_ : Dict = classifier_dropout_prob snake_case_ : Any = initializer_range snake_case_ : List[str] = layer_norm_eps class SCREAMING_SNAKE_CASE_ ( _a ): __magic_name__: Any = version.parse("1.11" ) @property def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: """simple docstring""" return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def UpperCAmelCase_ ( self : Dict ) -> Any: """simple docstring""" return 1E-4
370
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE_ ( snake_case_ , snake_case_ ): @register_to_config def __init__( self : Optional[Any] , *, _A : int = 4 , _A : int = 768 , _A : int , _A : Tuple , ) -> Dict: """simple docstring""" super().__init__() snake_case_ : int = nn.Parameter(torch.zeros(_A ) ) # parameters for additional clip time embeddings snake_case_ : Tuple = nn.Linear(_A , _A ) snake_case_ : List[Any] = nn.Linear(_A , _A ) # parameters for encoder hidden states snake_case_ : Union[str, Any] = clip_extra_context_tokens snake_case_ : str = nn.Linear( _A , self.clip_extra_context_tokens * cross_attention_dim ) snake_case_ : Any = nn.Linear(_A , _A ) snake_case_ : Tuple = nn.LayerNorm(_A ) def UpperCAmelCase_ ( self : List[str] , *, _A : Tuple , _A : List[Any] , _A : str , _A : Optional[Any] ) -> List[Any]: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings snake_case_ : Optional[int] = image_embeddings.shape[0] snake_case_ : Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) snake_case_ : Optional[Any] = classifier_free_guidance_embeddings.expand( _A , -1 ) snake_case_ : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] snake_case_ : str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... snake_case_ : str = self.embedding_proj(_A ) snake_case_ : Dict = self.clip_image_embeddings_project_to_time_embeddings(_A ) snake_case_ : Tuple = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" snake_case_ : List[str] = self.clip_extra_context_tokens_proj(_A ) snake_case_ : Optional[Any] = clip_extra_context_tokens.reshape(_A , -1 , self.clip_extra_context_tokens ) snake_case_ : int = clip_extra_context_tokens.permute(0 , 2 , 1 ) snake_case_ : Optional[int] = self.encoder_hidden_states_proj(_A ) snake_case_ : Any = self.text_encoder_hidden_states_norm(_A ) snake_case_ : Dict = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
88
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :List[str] = '''table-transformer''' lowerCamelCase :Tuple = ['''past_key_values'''] lowerCamelCase :Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=1_00 , lowerCAmelCase_=6 , lowerCAmelCase_=20_48 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=20_48 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=2_56 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_="resnet50" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.1 , **lowerCAmelCase_ , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _A = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A = backbone_config.get("""model_type""" ) _A = CONFIG_MAPPING[backbone_model_type] _A = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None _A , _A , _A = None, None, None _A = use_timm_backbone _A = backbone_config _A = num_channels _A = num_queries _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = init_xavier_std _A = encoder_layerdrop _A = decoder_layerdrop _A = encoder_layers _A = auxiliary_loss _A = position_embedding_type _A = backbone _A = use_pretrained_backbone _A = dilation # Hungarian matcher _A = class_cost _A = bbox_cost _A = giou_cost # Loss coefficients _A = mask_loss_coefficient _A = dice_loss_coefficient _A = bbox_loss_coefficient _A = giou_loss_coefficient _A = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def UpperCAmelCase ( self ) -> int: return self.encoder_attention_heads @property def UpperCAmelCase ( self ) -> int: return self.d_model class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :Dict = version.parse('''1.11''' ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1E-5 @property def UpperCAmelCase ( self ) -> int: return 12
180
import math import sys def snake_case ( snake_case__ :int) -> int: if number != int(snake_case__): raise ValueError("""the value of input must be a natural number""") if number < 0: raise ValueError("""the value of input must not be a negative number""") if number == 0: return 1 _A = [-1] * (number + 1) _A = 0 for i in range(1 , number + 1): _A = sys.maxsize _A = int(math.sqrt(snake_case__)) for j in range(1 , root + 1): _A = 1 + answers[i - (j**2)] _A = min(snake_case__ , snake_case__) _A = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
180
1
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip A__ : int =logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return max(metric_fn(lowerCAmelCase , lowerCAmelCase ) for gt in ground_truths ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = [] if args.gold_data_mode == "qa": _lowerCAmelCase = pd.read_csv(lowerCAmelCase , sep="""\t""" , header=lowerCAmelCase ) for answer_list in data[1]: _lowerCAmelCase = ast.literal_eval(lowerCAmelCase ) answers.append(lowerCAmelCase ) else: _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = [[reference] for reference in references] _lowerCAmelCase = _lowerCAmelCase = _lowerCAmelCase = 0 for prediction, ground_truths in zip(lowerCAmelCase , lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) fa += metric_max_over_ground_truths(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = 100.0 * em / total _lowerCAmelCase = 100.0 * fa / total logger.info(f"F1: {fa:.2f}" ) logger.info(f"EM: {em:.2f}" ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = args.k _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = [line.strip() for line in open(lowerCAmelCase , """r""" ).readlines()] _lowerCAmelCase = _lowerCAmelCase = 0 for hypo, reference in zip(lowerCAmelCase , lowerCAmelCase ): _lowerCAmelCase = set(hypo.split("""\t""" )[:k] ) _lowerCAmelCase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _lowerCAmelCase = 100.0 * em / total logger.info(f"Precision@{k}: {em: .2f}" ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" def strip_title(lowerCAmelCase ): if title.startswith("""\"""" ): _lowerCAmelCase = title[1:] if title.endswith("""\"""" ): _lowerCAmelCase = title[:-1] return title _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase , return_tensors="""pt""" , padding=lowerCAmelCase , truncation=lowerCAmelCase , )["""input_ids"""].to(args.device ) _lowerCAmelCase = rag_model.rag.question_encoder(lowerCAmelCase ) _lowerCAmelCase = question_enc_outputs[0] _lowerCAmelCase = rag_model.retriever( lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) _lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _lowerCAmelCase = [] for docs in all_docs: _lowerCAmelCase = [strip_title(lowerCAmelCase ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(lowerCAmelCase ) ) return provenance_strings def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" with torch.no_grad(): _lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCAmelCase , return_tensors="""pt""" , padding=lowerCAmelCase , truncation=lowerCAmelCase ) _lowerCAmelCase = inputs_dict.input_ids.to(args.device ) _lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) _lowerCAmelCase = rag_model.generate( # rag_model overwrites generate lowerCAmelCase , attention_mask=lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) if args.print_predictions: for q, a in zip(lowerCAmelCase , lowerCAmelCase ): logger.info("""Q: {} - A: {}""".format(lowerCAmelCase , lowerCAmelCase ) ) return answers def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=lowerCAmelCase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=lowerCAmelCase , choices=["""exact""", """compressed""", """legacy"""] , type=lowerCAmelCase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=lowerCAmelCase , type=lowerCAmelCase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=lowerCAmelCase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=lowerCAmelCase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=lowerCAmelCase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=lowerCAmelCase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=lowerCAmelCase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=lowerCAmelCase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=lowerCAmelCase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=lowerCAmelCase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=lowerCAmelCase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = {} if args.model_type is None: _lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): _lowerCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration _lowerCAmelCase = args.n_docs if args.index_name is not None: _lowerCAmelCase = args.index_name if args.index_path is not None: _lowerCAmelCase = args.index_path else: _lowerCAmelCase = BartForConditionalGeneration _lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , lowerCAmelCase ) _lowerCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k _lowerCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(lowerCAmelCase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): _lowerCAmelCase = RagRetriever.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) _lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase , retriever=lowerCAmelCase , **lowerCAmelCase ) model.retriever.init_retrieval() else: _lowerCAmelCase = model_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: _lowerCAmelCase = [] for line in tqdm(lowerCAmelCase ): questions.append(line.strip() ) if len(lowerCAmelCase ) == args.eval_batch_size: _lowerCAmelCase = evaluate_batch_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) preds_file.write("""\n""".join(lowerCAmelCase ) + """\n""" ) preds_file.flush() _lowerCAmelCase = [] if len(lowerCAmelCase ) > 0: _lowerCAmelCase = evaluate_batch_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) preds_file.write("""\n""".join(lowerCAmelCase ) ) preds_file.flush() score_fn(lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": A__ : List[Any] =get_args() main(args)
356
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Union[str, Any]: _lowerCAmelCase = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 _lowerCAmelCase = test_metrics @require_cpu def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def lowercase__ ( self : Tuple ) -> Tuple: debug_launcher(self.test_metrics.main ) @require_single_gpu def lowercase__ ( self : Union[str, Any] ) -> str: self.test_metrics.main() @require_multi_gpu def lowercase__ ( self : str ) -> List[str]: print(f"Found {torch.cuda.device_count()} devices." ) _lowerCAmelCase = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
220
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE :Union[str, Any] = False SCREAMING_SNAKE_CASE :Any = True SCREAMING_SNAKE_CASE :Tuple = False if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } SCREAMING_SNAKE_CASE :Optional[int] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: SCREAMING_SNAKE_CASE :Dict = reader.read() SCREAMING_SNAKE_CASE :List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE :List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE :List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE :Optional[Any] = config[key] del config[key] SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) SCREAMING_SNAKE_CASE :Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue SCREAMING_SNAKE_CASE :List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: SCREAMING_SNAKE_CASE :List[Any] = param_value SCREAMING_SNAKE_CASE :str = True if not has_changed: SCREAMING_SNAKE_CASE :List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
15
lowercase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowercase = [{"type": "code", "content": INSTALL_CONTENT}] lowercase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
178
0
"""simple docstring""" import functools def __UpperCAmelCase ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase_ ) != 3 or not all(isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase_ ) == 0: return 0 if min(UpperCAmelCase_ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase_ ) >= 3_66: raise ValueError('All days elements should be less than 366' ) __snake_case : Optional[Any] = set(UpperCAmelCase_ ) @functools.cache def dynamic_programming(UpperCAmelCase_ : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCamelCase ( lowercase ): @require_torch def _lowercase (self : Union[str, Any]) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : Any = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __snake_case : Tuple = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __snake_case : int = '\nimport socket\ndef offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __snake_case : int = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_A) BertModel.from_pretrained(_A) BertTokenizer.from_pretrained(_A) pipeline(task='fill-mask' , model=_A) # baseline - just load from_pretrained with normal network __snake_case : Union[str, Any] = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __snake_case : Union[str, Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : str = '1' __snake_case : Union[str, Any] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : Union[str, Any]) -> Union[str, Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : Optional[Any] = '\nfrom transformers import BertConfig, BertModel, BertTokenizer, pipeline\n ' __snake_case : Optional[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nBertTokenizer.from_pretrained(mname)\npipe = pipeline(task="fill-mask", model=mname)\nprint("success")\n ' __snake_case : Union[str, Any] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")\nsocket.socket = offline_socket\n ' # Force fetching the files so that we can use the cache __snake_case : str = 'hf-internal-testing/tiny-random-bert' BertConfig.from_pretrained(_A) BertModel.from_pretrained(_A) BertTokenizer.from_pretrained(_A) pipeline(task='fill-mask' , model=_A) # baseline - just load from_pretrained with normal network __snake_case : Any = [sys.executable, '-c', '\n'.join([load, run, mock])] # should succeed __snake_case : int = self.get_env() __snake_case : Tuple = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : int) -> Any: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __snake_case : int = '\nfrom transformers import BertConfig, BertModel, BertTokenizer\n ' __snake_case : int = '\nmname = "hf-internal-testing/tiny-random-bert-sharded"\nBertConfig.from_pretrained(mname)\nBertModel.from_pretrained(mname)\nprint("success")\n ' __snake_case : Optional[int] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")\nsocket.socket = offline_socket\n ' # baseline - just load from_pretrained with normal network __snake_case : Optional[Any] = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __snake_case : Optional[int] = self.get_env() __snake_case : Dict = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # next emulate no network __snake_case : Optional[Any] = [sys.executable, '-c', '\n'.join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : Union[str, Any] = '1' __snake_case : str = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) @require_torch def _lowercase (self : str) -> Dict: __snake_case : Dict = '\nfrom transformers import pipeline\n ' __snake_case : List[Any] = '\nmname = "hf-internal-testing/tiny-random-bert"\npipe = pipeline(model=mname)\n ' __snake_case : List[str] = '\nimport socket\ndef offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")\nsocket.socket = offline_socket\n ' __snake_case : str = self.get_env() __snake_case : Tuple = '1' __snake_case : Tuple = [sys.executable, '-c', '\n'.join([load, mock, run])] __snake_case : Optional[Any] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( 'You cannot infer task automatically within `pipeline` when using offline mode' , result.stderr.decode().replace('\n' , '') , ) @require_torch def _lowercase (self : int) -> Optional[Any]: __snake_case : int = '\nfrom transformers import AutoModel\n ' __snake_case : str = '\nmname = "hf-internal-testing/test_dynamic_model"\nAutoModel.from_pretrained(mname, trust_remote_code=True)\nprint("success")\n ' # baseline - just load from_pretrained with normal network __snake_case : str = [sys.executable, '-c', '\n'.join([load, run])] # should succeed __snake_case : str = self.get_env() __snake_case : Dict = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __snake_case : List[str] = '1' __snake_case : Optional[int] = subprocess.run(_A , env=_A , check=_A , capture_output=_A) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn('success' , result.stdout.decode())
95
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a__ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __a = imread(R"""digital_image_processing/image_data/lena_small.jpg""") __a = cvtColor(img, COLOR_BGR2GRAY) def __snake_case( ) -> Union[str, Any]: snake_case__ : Optional[int] = cn.convert_to_negative(_lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def __snake_case( ) -> int: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(_lowerCAmelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __snake_case( ) -> str: snake_case__ : List[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __snake_case( ) -> Union[str, Any]: snake_case__ : Optional[Any] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case__ : Any = canny.canny(_lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def __snake_case( ) -> Optional[Any]: assert gg.gaussian_filter(_lowerCAmelCase , 5 , sigma=0.9 ).all() def __snake_case( ) -> Union[str, Any]: # laplace diagonals snake_case__ : List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case__ : Optional[int] = conv.img_convolve(_lowerCAmelCase , _lowerCAmelCase ).astype(_lowerCAmelCase ) assert res.any() def __snake_case( ) -> List[Any]: assert med.median_filter(_lowerCAmelCase , 3 ).any() def __snake_case( ) -> int: snake_case__ , snake_case__ : Optional[int] = sob.sobel_filter(_lowerCAmelCase ) assert grad.any() and theta.any() def __snake_case( ) -> List[Any]: snake_case__ : int = sp.make_sepia(_lowerCAmelCase , 20 ) assert sepia.all() def __snake_case( _lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> Dict: snake_case__ : Tuple = bs.Burkes(imread(_lowerCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __snake_case( _lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict: snake_case__ : Tuple = rs.NearestNeighbour(imread(_lowerCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __snake_case( ) -> Dict: snake_case__ : Union[str, Any] = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. snake_case__ : Optional[int] = imread(_lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None snake_case__ : Any = 0 snake_case__ : Tuple = 0 snake_case__ : Dict = image[x_coordinate][y_coordinate] snake_case__ : int = lbp.get_neighbors_pixel( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case__ : Union[str, Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case__ : Optional[Any] = lbp.local_binary_value(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) assert lbp_image.any()
359
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Any , snake_case_ : str , snake_case_ : Dict=7 , snake_case_ : str=3 , snake_case_ : List[str]=18 , snake_case_ : Tuple=30 , snake_case_ : int=400 , snake_case_ : Any=True , snake_case_ : List[str]=None , snake_case_ : List[str]=True , snake_case_ : Union[str, Any]=None , snake_case_ : Dict=True , ): snake_case__ : List[str] = size if size is not None else {"""shortest_edge""": 20} snake_case__ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} snake_case__ : Tuple = parent snake_case__ : Tuple = batch_size snake_case__ : List[str] = num_channels snake_case__ : Any = image_size snake_case__ : str = min_resolution snake_case__ : Dict = max_resolution snake_case__ : Optional[int] = do_resize snake_case__ : int = size snake_case__ : List[Any] = do_center_crop snake_case__ : int = crop_size snake_case__ : Dict = do_flip_channel_order def lowerCamelCase ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class UpperCAmelCase_ ( _a , unittest.TestCase ): """simple docstring""" lowercase = MobileViTImageProcessor if is_vision_available() else None def lowerCamelCase ( self : List[str] ): snake_case__ : List[str] = MobileViTImageProcessingTester(self ) @property def lowerCamelCase ( self : Optional[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Optional[Any] ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """do_flip_channel_order""" ) ) def lowerCamelCase ( self : List[str] ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) snake_case__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def lowerCamelCase ( self : str ): pass def lowerCamelCase ( self : int ): # Initialize image_processing snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : int ): # Initialize image_processing snake_case__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input snake_case__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : str = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def lowerCamelCase ( self : List[Any] ): # Initialize image_processing snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case__ : Optional[Any] = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
43
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Any = CycleDiffusionPipeline snake_case__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "negative_prompt", "height", "width", "negative_prompt_embeds", } snake_case__ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"source_prompt"}) snake_case__ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase_ ( self : Tuple ) -> str: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) __SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , num_train_timesteps=1_0_0_0 , clip_sample=UpperCAmelCase__ , set_alpha_to_one=UpperCAmelCase__ , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) __SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __SCREAMING_SNAKE_CASE = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=0 ) -> Any: __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "An astronaut riding an elephant", "source_prompt": "An astronaut riding a horse", "image": image, "generator": generator, "num_inference_steps": 2, "eta": 0.1, "strength": 0.8, "guidance_scale": 3, "source_guidance_scale": 1, "output_type": "numpy", } return inputs def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCAmelCase__ , "half" ): __SCREAMING_SNAKE_CASE = module.half() __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = pipe(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = output.images __SCREAMING_SNAKE_CASE = images[0, -3:, -3:, -1] assert images.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCAmelCase_ ( self : int ) -> Tuple: return super().test_save_load_local() @unittest.skip("non-deterministic pipeline" ) def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: return super().test_inference_batch_single_identical() @skip_mps def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: return super().test_dict_tuple_outputs_equivalent() @skip_mps def UpperCAmelCase_ ( self : Dict ) -> List[Any]: return super().test_save_load_optional_components() @skip_mps def UpperCAmelCase_ ( self : int ) -> str: return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy" ) __SCREAMING_SNAKE_CASE = init_image.resize((5_1_2, 5_1_2) ) __SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-4" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder="scheduler" ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained( UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ , torch_dtype=torch.floataa , revision="fp16" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = "A black colored car" __SCREAMING_SNAKE_CASE = "A blue colored car" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type="np" , ) __SCREAMING_SNAKE_CASE = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/cycle-diffusion/black_colored_car.png" ) __SCREAMING_SNAKE_CASE = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy" ) __SCREAMING_SNAKE_CASE = init_image.resize((5_1_2, 5_1_2) ) __SCREAMING_SNAKE_CASE = "CompVis/stable-diffusion-v1-4" __SCREAMING_SNAKE_CASE = DDIMScheduler.from_pretrained(UpperCAmelCase__ , subfolder="scheduler" ) __SCREAMING_SNAKE_CASE = CycleDiffusionPipeline.from_pretrained(UpperCAmelCase__ , scheduler=UpperCAmelCase__ , safety_checker=UpperCAmelCase__ ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE = "A black colored car" __SCREAMING_SNAKE_CASE = "A blue colored car" __SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( prompt=UpperCAmelCase__ , source_prompt=UpperCAmelCase__ , image=UpperCAmelCase__ , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCAmelCase__ , output_type="np" , ) __SCREAMING_SNAKE_CASE = output.images assert np.abs(image - expected_image ).max() < 2E-2
54
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if upper_limit < 0: raise ValueError("Limit for the Catalan sequence must be ≥ 0" ) __SCREAMING_SNAKE_CASE = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __SCREAMING_SNAKE_CASE = 1 if upper_limit > 0: __SCREAMING_SNAKE_CASE = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCAmelCase_ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: a__ : List[str] = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F"The Catalan numbers from 0 through {N} are:") print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
54
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowercase_ = get_logger(__name__) lowercase_ = Path(__file__).parent / '''model_card_template.md''' lowercase_ = uuida().hex lowercase_ = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES lowercase_ = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES lowercase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '''/api/telemetry/''' def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Union[Dict, str, None] = None ): '''simple docstring''' __snake_case : List[str] = F'''diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}''' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'''; torch/{_torch_version}''' if is_flax_available(): ua += F'''; jax/{_jax_version}''' ua += F'''; flax/{_flax_version}''' if is_onnx_available(): ua += F'''; onnxruntime/{_onnxruntime_version}''' # CI will set this value to True if os.environ.get("""DIFFUSERS_IS_CI""" , """""" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): ua += "; " + "; ".join(F'''{k}/{v}''' for k, v in user_agent.items() ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): ua += "; " + user_agent return ua def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if token is None: __snake_case : Optional[int] = HfFolder.get_token() if organization is None: __snake_case : Union[str, Any] = whoami(_UpperCAmelCase )['name'] return F'''{username}/{model_id}''' else: return F'''{organization}/{model_id}''' def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if not is_jinja_available(): raise ValueError( """Modelcard rendering is based on Jinja templates.""" """ Please make sure to have `jinja` installed before using `create_model_card`.""" """ To install it, please run `pip install Jinja2`.""" ) if hasattr(_UpperCAmelCase , """local_rank""" ) and args.local_rank not in [-1, 0]: return __snake_case : str = args.hub_token if hasattr(_UpperCAmelCase , """hub_token""" ) else None __snake_case : Optional[int] = get_full_repo_name(_UpperCAmelCase , token=_UpperCAmelCase ) __snake_case : int = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="""en""" , license="""apache-2.0""" , library_name="""diffusers""" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_UpperCAmelCase , model_name=_UpperCAmelCase , repo_name=_UpperCAmelCase , dataset_name=args.dataset_name if hasattr(_UpperCAmelCase , """dataset_name""" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_UpperCAmelCase , """gradient_accumulation_steps""" ) else None ) , adam_betaa=args.adam_betaa if hasattr(_UpperCAmelCase , """adam_beta1""" ) else None , adam_betaa=args.adam_betaa if hasattr(_UpperCAmelCase , """adam_beta2""" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_UpperCAmelCase , """adam_weight_decay""" ) else None , adam_epsilon=args.adam_epsilon if hasattr(_UpperCAmelCase , """adam_epsilon""" ) else None , lr_scheduler=args.lr_scheduler if hasattr(_UpperCAmelCase , """lr_scheduler""" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_UpperCAmelCase , """lr_warmup_steps""" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_UpperCAmelCase , """ema_inv_gamma""" ) else None , ema_power=args.ema_power if hasattr(_UpperCAmelCase , """ema_power""" ) else None , ema_max_decay=args.ema_max_decay if hasattr(_UpperCAmelCase , """ema_max_decay""" ) else None , mixed_precision=args.mixed_precision , ) __snake_case : List[Any] = os.path.join(args.output_dir , """README.md""" ) model_card.save(_UpperCAmelCase ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash __snake_case : List[str] = str(Path(_UpperCAmelCase ).as_posix() ) __snake_case : List[Any] = re.search(R"""snapshots/([^/]+)/""" , _UpperCAmelCase ) if search is None: return None __snake_case : str = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_UpperCAmelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowercase_ = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) lowercase_ = os.path.join(hf_cache_home, "diffusers") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if new_cache_dir is None: __snake_case : Tuple = DIFFUSERS_CACHE if old_cache_dir is None: __snake_case : str = old_diffusers_cache __snake_case : str = Path(_UpperCAmelCase ).expanduser() __snake_case : int = Path(_UpperCAmelCase ).expanduser() for old_blob_path in old_cache_dir.glob("""**/blobs/*""" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): __snake_case : Optional[Any] = new_cache_dir / old_blob_path.relative_to(_UpperCAmelCase ) new_blob_path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) os.replace(_UpperCAmelCase , _UpperCAmelCase ) try: os.symlink(_UpperCAmelCase , _UpperCAmelCase ) except OSError: logger.warning( """Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.""" ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowercase_ = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): lowercase_ = 0 else: with open(cache_version_file) as f: try: lowercase_ = int(f.read()) except ValueError: lowercase_ = 0 if cache_version < 1: lowercase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: lowercase_ = '''\n'''.join(traceback.format_tb(e.__traceback__)) logger.error( F'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( F'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' "the directory exists and can be written to." ) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if variant is not None: __snake_case : List[Any] = weights_name.split(""".""" ) __snake_case : Dict = splits[:-1] + [variant] + splits[-1:] __snake_case : Optional[Any] = '.'.join(_UpperCAmelCase ) return weights_name def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Dict , *, __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=None , ): '''simple docstring''' __snake_case : Optional[Any] = str(_UpperCAmelCase ) if os.path.isfile(_UpperCAmelCase ): return pretrained_model_name_or_path elif os.path.isdir(_UpperCAmelCase ): if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ): # Load from a PyTorch checkpoint __snake_case : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ): __snake_case : List[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return model_file else: raise EnvironmentError( F'''Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.''' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_UpperCAmelCase ).base_version ) >= version.parse("""0.20.0""" ) ): try: __snake_case : Optional[Any] = hf_hub_download( _UpperCAmelCase , filename=_add_variant(_UpperCAmelCase , _UpperCAmelCase ) , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , user_agent=_UpperCAmelCase , subfolder=_UpperCAmelCase , revision=revision or commit_hash , ) warnings.warn( F'''Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.''' , _UpperCAmelCase , ) return model_file except: # noqa: E722 warnings.warn( F'''You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_UpperCAmelCase , _UpperCAmelCase )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_UpperCAmelCase , _UpperCAmelCase )}\' so that the correct variant file can be added.''' , _UpperCAmelCase , ) try: # 2. Load model file as usual __snake_case : List[Any] = hf_hub_download( _UpperCAmelCase , filename=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , proxies=_UpperCAmelCase , resume_download=_UpperCAmelCase , local_files_only=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , user_agent=_UpperCAmelCase , subfolder=_UpperCAmelCase , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ''' """listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a """ """token having permission to this repo with `use_auth_token` or log in with `huggingface-cli """ """login`.""" ) except RevisionNotFoundError: raise EnvironmentError( F'''{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ''' """this model name. Check the model page at """ F'''\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.''' ) except EntryNotFoundError: raise EnvironmentError( F'''{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.''' ) except HTTPError as err: raise EnvironmentError( F'''There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}''' ) except ValueError: raise EnvironmentError( F'''We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it''' F''' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a''' F''' directory containing a file named {weights_name} or''' """ \nCheckout your internet connection or see how to run the library in""" """ offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.""" ) except EnvironmentError: raise EnvironmentError( F'''Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ''' """\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. """ F'''Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ''' F'''containing a file named {weights_name}''' )
350
import random def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Tuple = [], [], [] for element in data: if element < pivot: less.append(__SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(__SCREAMING_SNAKE_CASE ) else: equal.append(__SCREAMING_SNAKE_CASE ) return less, equal, greater def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list , __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__SCREAMING_SNAKE_CASE ) or index < 0: return None __snake_case : int = items[random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case : Tuple = 0 __snake_case , __snake_case , __snake_case : List[str] = _partition(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) __snake_case : int = len(__SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(__SCREAMING_SNAKE_CASE , index - (m + count) )
20
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : Tuple = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } UpperCAmelCase : Any = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } UpperCAmelCase : Optional[Any] = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _A ( ): """simple docstring""" a__ : Optional[int] =( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) a__ : Tuple =bs[:] a__ : List[str] =0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE__ ) cs.append(2**8 + n ) n += 1 a__ : List[str] =[chr(SCREAMING_SNAKE_CASE__ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _A ( SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" a__ : List[str] =set() a__ : int =word[0] for char in word[1:]: pairs.add((prev_char, char) ) a__ : List[str] =char return pairs class __lowerCAmelCase ( A_): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Dict = ["input_ids", "attention_mask"] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' a__ : Dict =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token a__ : Tuple =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token a__ : Optional[int] =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token a__ : List[str] =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token a__ : Optional[int] =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token a__ : List[str] =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : Dict =AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding="utf-8" ) as vocab_handle: a__ : int =json.load(A_ ) a__ : Union[str, Any] ={v: k for k, v in self.encoder.items()} a__ : List[Any] =errors # how to handle errors in decoding a__ : List[str] =bytes_to_unicode() a__ : List[Any] ={v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding="utf-8" ) as merges_handle: a__ : Dict =merges_handle.read().split("\n" )[1:-1] a__ : Tuple =[tuple(merge.split() ) for merge in bpe_merges] a__ : Any =dict(zip(A_ , range(len(A_ ) ) ) ) a__ : Any ={} a__ : List[Any] =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : int =re.compile(r"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if token in self.cache: return self.cache[token] a__ : Dict =tuple(A_ ) a__ : Optional[Any] =get_pairs(A_ ) if not pairs: return token while True: a__ : Union[str, Any] =min(A_ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(A_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : Union[str, Any] =bigram a__ : int =[] a__ : Union[str, Any] =0 while i < len(A_ ): try: a__ : Optional[int] =word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ : List[str] =j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : Optional[Any] =tuple(A_ ) a__ : Tuple =new_word if len(A_ ) == 1: break else: a__ : List[Any] =get_pairs(A_ ) a__ : List[Any] =" ".join(A_ ) a__ : int =word return word def _lowercase ( self , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : List[Any] =[] for token in re.findall(self.pat , A_ ): a__ : Union[str, Any] ="".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(" " ) ) return bpe_tokens def _lowercase ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def _lowercase ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return self.decoder.get(A_ ) def _lowercase ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' a__ : Dict ="".join(A_ ) a__ : Optional[Any] =bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : Tuple =os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a__ : Tuple =os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(A_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + "\n" ) a__ : Tuple =0 with open(A_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) a__ : Any =token_index writer.write(" ".join(A_ ) + "\n" ) index += 1 return vocab_file, merge_file def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: '''simple docstring''' a__ : Optional[int] =[self.sep_token_id] a__ : Union[str, Any] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : str =kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): a__ : Tuple =" " + text return (text, kwargs) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple: '''simple docstring''' return token_ids_a + [self.eos_token_id] def _lowercase ( self , lowerCAmelCase__ ) -> List[int]: '''simple docstring''' a__ : str =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(A_ ) a__ : Optional[int] =" ".join(A_ ) a__ : str =self.encode(A_ ) if len(A_ ) > self.model_max_length: a__ : str =input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
95
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "mvp" UpperCAmelCase__ : Tuple = ["past_key_values"] UpperCAmelCase__ : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , A_=50267 , A_=1024 , A_=12 , A_=4096 , A_=16 , A_=12 , A_=4096 , A_=16 , A_=0.0 , A_=0.0 , A_="gelu" , A_=1024 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=0.0 , A_=False , A_=True , A_=1 , A_=0 , A_=2 , A_=True , A_=2 , A_=2 , A_=False , A_=100 , A_=800 , **A_ , ) -> Union[str, Any]: __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =classifier_dropout __UpperCamelCase =use_cache __UpperCamelCase =encoder_layers __UpperCamelCase =scale_embedding # scale factor will be sqrt(d_model) if True __UpperCamelCase =use_prompt __UpperCamelCase =prompt_length __UpperCamelCase =prompt_mid_dim super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , is_encoder_decoder=A_ , decoder_start_token_id=A_ , forced_eos_token_id=A_ , **A_ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , A_ ): __UpperCamelCase =self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
62
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __a :int = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[Any]=None ): """simple docstring""" require_version(deps[pkg] ,__UpperCamelCase )
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = f'''Expected string as input, found {type(SCREAMING_SNAKE_CASE )}''' raise ValueError(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[str] = f'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE )}''' raise ValueError(SCREAMING_SNAKE_CASE ) A_ : int = input_str.split('''_''' ) A_ : Any = 0 if use_pascal else 1 A_ : List[str] = words[start_index:] A_ : Optional[int] = [word[0].upper() + word[1:] for word in words_to_capitalize] A_ : List[Any] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
186
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , )->List[str]: '''simple docstring''' A_ : str = parent A_ : int = batch_size A_ : List[str] = image_size A_ : Dict = num_channels A_ : Tuple = embeddings_size A_ : Union[str, Any] = hidden_sizes A_ : Dict = depths A_ : str = is_training A_ : Union[str, Any] = use_labels A_ : Union[str, Any] = hidden_act A_ : Optional[Any] = num_labels A_ : Tuple = scope A_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : str = None if self.use_labels: A_ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) A_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self )->Union[str, Any]: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Dict = RegNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : Any = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : Dict = RegNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Tuple = self.prepare_config_and_inputs() A_ , A_ , A_ : str = config_and_inputs A_ : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () snake_case = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False def _snake_case ( self )->Union[str, Any]: '''simple docstring''' A_ : Union[str, Any] = RegNetModelTester(self ) A_ : Union[str, Any] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self )->Tuple: '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _snake_case ( self )->Dict: '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _snake_case ( self )->str: '''simple docstring''' pass def _snake_case ( self )->List[Any]: '''simple docstring''' A_ , A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : str = model_class(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Any = [*signature.parameters.keys()] A_ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Any: '''simple docstring''' A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ , A_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _snake_case ( self )->List[Any]: '''simple docstring''' def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : str = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ : Optional[int] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A_ : int = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: A_ : int = layer_type A_ : List[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : str = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )->str: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Dict = RegNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self )->List[str]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _snake_case ( self )->Tuple: '''simple docstring''' A_ : List[Any] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = self.default_image_processor A_ : Any = prepare_img() A_ : Optional[Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits A_ : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = torch.tensor([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
186
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowercase ( a ): lowercase__ : jnp.ndarray @flax_register_to_config class lowercase ( nn.Module , a , a ): lowercase__ : int = 32 lowercase__ : int = 4 lowercase__ : int = 4 lowercase__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowercase__ : Union[bool, Tuple[bool]] = False lowercase__ : Tuple[int] = (320, 640, 1_280, 1_280) lowercase__ : int = 2 lowercase__ : Union[int, Tuple[int]] = 8 lowercase__ : Optional[Union[int, Tuple[int]]] = None lowercase__ : int = 1_280 lowercase__ : float = 0.0 lowercase__ : bool = False lowercase__ : jnp.dtype = jnp.floataa lowercase__ : bool = True lowercase__ : int = 0 lowercase__ : bool = False def __snake_case( self : Optional[int] , _UpperCamelCase : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' SCREAMING_SNAKE_CASE = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE = jnp.zeros(_UpperCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = jax.random.split(_UpperCamelCase ) SCREAMING_SNAKE_CASE = {"params": params_rng, "dropout": dropout_rng} return self.init(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )["params"] def __snake_case( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = self.block_out_channels SCREAMING_SNAKE_CASE = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19." ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE = FlaxTimestepEmbedding(_UpperCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE = self.only_cross_attention if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE = output_channel SCREAMING_SNAKE_CASE = block_out_channels[i] SCREAMING_SNAKE_CASE = i == len(_UpperCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE = FlaxCrossAttnDownBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE = FlaxDownBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCamelCase ) SCREAMING_SNAKE_CASE = down_blocks # mid SCREAMING_SNAKE_CASE = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = list(reversed(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = list(reversed(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = list(reversed(_UpperCamelCase ) ) SCREAMING_SNAKE_CASE = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE = output_channel SCREAMING_SNAKE_CASE = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE = reversed_block_out_channels[min(i + 1 , len(_UpperCamelCase ) - 1 )] SCREAMING_SNAKE_CASE = i == len(_UpperCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE = FlaxCrossAttnUpBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , prev_output_channel=_UpperCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE = FlaxUpBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , prev_output_channel=_UpperCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_UpperCamelCase ) SCREAMING_SNAKE_CASE = output_channel SCREAMING_SNAKE_CASE = up_blocks # out SCREAMING_SNAKE_CASE = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : str , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : bool = True , _UpperCamelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(_UpperCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE = jnp.expand_dims(_UpperCamelCase , 0 ) SCREAMING_SNAKE_CASE = self.time_proj(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.time_embedding(_UpperCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE = jnp.transpose(_UpperCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE = self.conv_in(_UpperCamelCase ) # 3. down SCREAMING_SNAKE_CASE = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = down_block(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = down_block(_UpperCamelCase , _UpperCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE = () for down_block_res_sample, down_block_additional_residual in zip( _UpperCamelCase , _UpperCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE = self.mid_block(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_UpperCamelCase , _UpperCamelCase ): SCREAMING_SNAKE_CASE = up_block( _UpperCamelCase , temb=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , res_hidden_states_tuple=_UpperCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE = up_block(_UpperCamelCase , temb=_UpperCamelCase , res_hidden_states_tuple=_UpperCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE = self.conv_norm_out(_UpperCamelCase ) SCREAMING_SNAKE_CASE = nn.silu(_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.conv_out(_UpperCamelCase ) SCREAMING_SNAKE_CASE = jnp.transpose(_UpperCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_UpperCamelCase )
364
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase : lowercase__ : str = None @experimental def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return _map_with_joblib(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = num_proc if num_proc <= len(UpperCAmelCase__ ) else len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // num_proc SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) % num_proc SCREAMING_SNAKE_CASE = div * index + min(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCAmelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(UpperCAmelCase__ )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(UpperCAmelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (RLock(),), tqdm.set_lock with Pool(UpperCAmelCase__ , initargs=UpperCAmelCase__ , initializer=UpperCAmelCase__ ) as pool: SCREAMING_SNAKE_CASE = pool.map(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"Finished {num_proc} processes" ) SCREAMING_SNAKE_CASE = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(UpperCAmelCase__ )} objects" ) return mapped def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCAmelCase__ ): return joblib.Parallel()( joblib.delayed(UpperCAmelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def __lowerCamelCase (UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE = None
206
0
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig A_ : Union[str, Any] = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """masked_bert""" def __init__( self ,a_=30_522 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_="topK" ,a_="constant" ,a_=0.0 ,**a_ ,) -> Optional[int]: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : Dict = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : str = max_position_embeddings _UpperCAmelCase : Optional[Any] = type_vocab_size _UpperCAmelCase : str = initializer_range _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : int = pruning_method _UpperCAmelCase : str = mask_init _UpperCAmelCase : List[str] = mask_scale
215
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Union[str, Any] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] A_ : int = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Dict = torch.load(lowerCAmelCase_ , map_location="""cpu""" ) return sd def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=rename_keys_prefix )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = OrderedDict() _UpperCAmelCase : Any = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _UpperCAmelCase : Dict = key for name_pair in rename_keys_prefix: _UpperCAmelCase : str = new_key.replace(name_pair[0] , name_pair[1] ) _UpperCAmelCase : str = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _UpperCAmelCase : int = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _UpperCAmelCase : Optional[int] = """pretraining""" if "vcr" in checkpoint_path: _UpperCAmelCase : Optional[int] = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase : List[Any] = {"""visual_embedding_dim""": 2048} elif "vqa" in checkpoint_path: _UpperCAmelCase : Any = {"""visual_embedding_dim""": 2048} elif "nlvr" in checkpoint_path: _UpperCAmelCase : Any = {"""visual_embedding_dim""": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _UpperCAmelCase : str = {"""visual_embedding_dim""": 512} _UpperCAmelCase : int = """multichoice""" elif "vqa_advanced" in checkpoint_path: _UpperCAmelCase : str = {"""visual_embedding_dim""": 2048} _UpperCAmelCase : int = """vqa_advanced""" elif "vqa" in checkpoint_path: _UpperCAmelCase : List[str] = {"""visual_embedding_dim""": 2048, """num_labels""": 3129} _UpperCAmelCase : int = """vqa""" elif "nlvr" in checkpoint_path: _UpperCAmelCase : int = { """visual_embedding_dim""": 1024, """num_labels""": 2, } _UpperCAmelCase : Optional[Any] = """nlvr""" _UpperCAmelCase : int = VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict _UpperCAmelCase : Any = load_state_dict(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = get_new_dict(lowerCAmelCase_ , lowerCAmelCase_ ) if model_type == "pretraining": _UpperCAmelCase : List[str] = VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": _UpperCAmelCase : Optional[int] = VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": _UpperCAmelCase : str = VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": _UpperCAmelCase : Dict = VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") A_ : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
215
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
139
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str=13 , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Any=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict=99 , lowerCAmelCase : Any=32 , lowerCAmelCase : int=5 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : str="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Any=5_12 , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : Dict=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Optional[int]=4 , ) -> List[Any]: """simple docstring""" __lowerCAmelCase : int = parent __lowerCAmelCase : Dict = batch_size __lowerCAmelCase : Dict = seq_length __lowerCAmelCase : Union[str, Any] = is_training __lowerCAmelCase : List[Any] = use_attention_mask __lowerCAmelCase : List[Any] = use_token_type_ids __lowerCAmelCase : Optional[int] = use_labels __lowerCAmelCase : str = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : Optional[int] = num_attention_heads __lowerCAmelCase : Dict = intermediate_size __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Dict = hidden_dropout_prob __lowerCAmelCase : Any = attention_probs_dropout_prob __lowerCAmelCase : Union[str, Any] = max_position_embeddings __lowerCAmelCase : int = type_vocab_size __lowerCAmelCase : Tuple = type_sequence_label_size __lowerCAmelCase : int = initializer_range __lowerCAmelCase : Optional[int] = num_choices def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase : Dict = None if self.use_attention_mask: __lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase : List[str] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.prepare_config_and_inputs() __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] = config_and_inputs __lowerCAmelCase : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Dict = config_and_inputs __lowerCAmelCase : Any = True __lowerCAmelCase : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int =True lowerCamelCase : Any =( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = FlaxBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: """simple docstring""" __lowerCAmelCase : int = FlaxBertModel.from_pretrained("""bert-base-cased""" ) __lowerCAmelCase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase )
139
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __snake_case : def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=[1, 1, 2] , lowercase=1 , lowercase=32 , lowercase=4 , lowercase=8 , lowercase=37 , lowercase="gelu_new" , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=5_12 , lowercase=3 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , lowercase=False , ) -> Tuple: '''simple docstring''' a__: Tuple = parent a__: Any = batch_size a__: List[Any] = seq_length a__: Any = is_training a__: Any = use_input_mask a__: Union[str, Any] = use_token_type_ids a__: Optional[Any] = use_labels a__: List[Any] = vocab_size a__: Dict = block_sizes a__: List[str] = num_decoder_layers a__: List[Any] = d_model a__: Optional[Any] = n_head a__: Dict = d_head a__: str = d_inner a__: Any = hidden_act a__: Tuple = hidden_dropout a__: str = attention_dropout a__: Optional[Any] = activation_dropout a__: List[Any] = max_position_embeddings a__: int = type_vocab_size a__: Dict = 2 a__: Dict = num_labels a__: Dict = num_choices a__: str = scope a__: List[str] = initializer_std # Used in the tests to check the size of the first attention layer a__: Union[str, Any] = n_head # Used in the tests to check the size of the first hidden state a__: Optional[int] = self.d_model # Used in the tests to check the number of output hidden states/attentions a__: Dict = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: a__: List[Any] = self.num_hidden_layers + 2 def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a__: Dict = None if self.use_input_mask: a__: Any = random_attention_mask([self.batch_size, self.seq_length]) a__: str = None if self.use_token_type_ids: a__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a__: int = None a__: Dict = None a__: str = None if self.use_labels: a__: Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a__: Tuple = ids_tensor([self.batch_size] , self.num_choices) a__: Any = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Optional[int]: '''simple docstring''' a__: Union[str, Any] = TFFunnelModel(config=lowercase) a__: List[str] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__: List[Any] = model(lowercase) a__: int = [input_ids, input_mask] a__: Dict = model(lowercase) a__: Dict = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) a__: Dict = False a__: str = TFFunnelModel(config=lowercase) a__: List[Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) a__: Optional[int] = False a__: Optional[int] = TFFunnelModel(config=lowercase) a__: Any = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Union[str, Any]: '''simple docstring''' a__: List[Any] = TFFunnelBaseModel(config=lowercase) a__: int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__: int = model(lowercase) a__: List[Any] = [input_ids, input_mask] a__: str = model(lowercase) a__: Any = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) a__: str = False a__: Any = TFFunnelBaseModel(config=lowercase) a__: int = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) a__: Union[str, Any] = False a__: Tuple = TFFunnelBaseModel(config=lowercase) a__: int = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> str: '''simple docstring''' a__: List[str] = TFFunnelForPreTraining(config=lowercase) a__: int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__: List[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Dict: '''simple docstring''' a__: Optional[Any] = TFFunnelForMaskedLM(config=lowercase) a__: Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__: str = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any: '''simple docstring''' a__: int = self.num_labels a__: Tuple = TFFunnelForSequenceClassification(config=lowercase) a__: Tuple = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__: Optional[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: '''simple docstring''' a__: List[Any] = self.num_choices a__: int = TFFunnelForMultipleChoice(config=lowercase) a__: Tuple = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__: Tuple = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__: Union[str, Any] = tf.tile(tf.expand_dims(lowercase , 1) , (1, self.num_choices, 1)) a__: List[str] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } a__: List[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> str: '''simple docstring''' a__: Optional[Any] = self.num_labels a__: str = TFFunnelForTokenClassification(config=lowercase) a__: Dict = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__: Dict = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def lowerCamelCase_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> List[Any]: '''simple docstring''' a__: Tuple = TFFunnelForQuestionAnswering(config=lowercase) a__: str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} a__: Optional[Any] = model(lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Any = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ): int = config_and_inputs a__: List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) a__ = ( { """feature-extraction""": (TFFunnelBaseModel, TFFunnelModel), """fill-mask""": TFFunnelForMaskedLM, """question-answering""": TFFunnelForQuestionAnswering, """text-classification""": TFFunnelForSequenceClassification, """token-classification""": TFFunnelForTokenClassification, """zero-shot""": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) a__ = False a__ = False def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Tuple = TFFunnelModelTester(self) a__: Tuple = ConfigTester(self , config_class=lowercase) def lowerCamelCase_ ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase) def lowerCamelCase_ ( self) -> Any: '''simple docstring''' a__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase) @require_tf class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) a__ = False a__ = False def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: List[Any] = TFFunnelModelTester(self , base=lowercase) a__: int = ConfigTester(self , config_class=lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase)
290
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __snake_case ( __lowerCAmelCase ): a__ = """audio-spectrogram-transformer""" def __init__( self , lowercase=7_68 , lowercase=12 , lowercase=12 , lowercase=30_72 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-12 , lowercase=16 , lowercase=True , lowercase=10 , lowercase=10 , lowercase=10_24 , lowercase=1_28 , **lowercase , ) -> str: '''simple docstring''' super().__init__(**lowercase) a__: Any = hidden_size a__: int = num_hidden_layers a__: Union[str, Any] = num_attention_heads a__: Any = intermediate_size a__: Union[str, Any] = hidden_act a__: int = hidden_dropout_prob a__: str = attention_probs_dropout_prob a__: str = initializer_range a__: Tuple = layer_norm_eps a__: Any = patch_size a__: int = qkv_bias a__: Optional[Any] = frequency_stride a__: int = time_stride a__: List[str] = max_length a__: Tuple = num_mel_bins
290
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase_ : str = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Union[str, Any] = ["""YolosFeatureExtractor"""] lowerCamelCase_ : Dict = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase_ : Any = random.Random() def _A ( lowercase , lowercase=1.0 , lowercase=None , lowercase=None ): """simple docstring""" if rng is None: a =global_rng a =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __A ( unittest.TestCase ): """simple docstring""" def __init__( self , __A , __A=7 , __A=400 , __A=2000 , __A=10 , __A=160 , __A=8 , __A=0.0 , __A=4000 , __A=False , __A=True , ) -> Optional[Any]: a =parent a =batch_size a =min_seq_length a =max_seq_length a =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a =padding_value a =sampling_rate a =return_attention_mask a =do_normalize a =feature_size a =chunk_length a =hop_length def SCREAMING_SNAKE_CASE ( self ) -> str: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def SCREAMING_SNAKE_CASE ( self , __A=False , __A=False ) -> str: def _flatten(__A ): return list(itertools.chain(*__A ) ) if equal_length: a =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a =[np.asarray(__A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __A ( _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = WhisperFeatureExtractor if is_speech_available() else None def SCREAMING_SNAKE_CASE ( self ) -> Dict: a =WhisperFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =feat_extract_first.save_pretrained(__A )[0] check_json_file_has_correct_format(__A ) a =self.feature_extraction_class.from_pretrained(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> str: a =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a =os.path.join(__A , '''feat_extract.json''' ) feat_extract_first.to_json_file(__A ) a =self.feature_extraction_class.from_json_file(__A ) a =feat_extract_first.to_dict() a =feat_extract_second.to_dict() a =feat_extract_first.mel_filters a =feat_extract_second.mel_filters self.assertTrue(np.allclose(__A , __A ) ) self.assertEqual(__A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: # Tests that all call wrap to encode_plus and batch_encode_plus a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] # Test feature size a =feature_extractor(__A , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a =feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features a =feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test batched a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. a =[floats_list((1, x) )[0] for x in (800, 800, 800)] a =np.asarray(__A ) a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) # Test truncation required a =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a =[np.asarray(__A ) for speech_input in speech_inputs] a =[x[: feature_extractor.n_samples] for x in speech_inputs] a =[np.asarray(__A ) for speech_input in speech_inputs_truncated] a =feature_extractor(__A , return_tensors='''np''' ).input_features a =feature_extractor(__A , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(__A , __A ): self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: import torch a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =np.random.rand(100 , 32 ).astype(np.floataa ) a =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a =feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Dict: a =load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a =ds.sort('''id''' ).select(range(__A ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self ) -> Any: # fmt: off a =torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on a =self._load_datasamples(1 ) a =WhisperFeatureExtractor() a =feature_extractor(__A , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __A , atol=1E-4 ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a =self._load_datasamples(1 )[0] a =((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__A )[0] self.assertTrue(np.all(np.mean(__A ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__A ) - 1 ) < 1E-3 ) )
215
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCamelCase = 0 UpperCamelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCamelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCamelCase = tuple[int, int] class snake_case_ : def __init__( self : Any , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : Node | None , ) -> None: lowercase__ : List[str] = pos_x lowercase__ : Optional[int] = pos_y lowercase__ : Tuple = (pos_y, pos_x) lowercase__ : Union[str, Any] = goal_x lowercase__ : int = goal_y lowercase__ : Any = g_cost lowercase__ : int = parent lowercase__ : Any = self.calculate_heuristic() lowercase__ : Union[str, Any] = self.g_cost + self.h_cost def __UpperCamelCase ( self : Optional[int] ) -> float: lowercase__ : Tuple = self.pos_x - self.goal_x lowercase__ : int = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowercase_ ) + abs(lowercase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Tuple , lowercase_ : Node ) -> bool: return self.f_cost < other.f_cost class snake_case_ : def __init__( self : Union[str, Any] , lowercase_ : TPosition , lowercase_ : TPosition ) -> Optional[int]: lowercase__ : int = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowercase_ ) lowercase__ : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowercase_ ) lowercase__ : Dict = [self.start] lowercase__ : list[Node] = [] lowercase__ : Tuple = False def __UpperCamelCase ( self : Dict ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowercase__ : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowercase_ ) self.closed_nodes.append(lowercase_ ) lowercase__ : str = self.get_successors(lowercase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowercase_ ) else: # retrieve the best current path lowercase__ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowercase_ ) else: self.open_nodes.append(lowercase_ ) return [self.start.pos] def __UpperCamelCase ( self : Optional[int] , lowercase_ : Node ) -> list[Node]: lowercase__ : List[str] = [] for action in delta: lowercase__ : List[Any] = parent.pos_x + action[1] lowercase__ : Dict = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowercase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowercase_ , lowercase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowercase_ , ) ) return successors def __UpperCamelCase ( self : str , lowercase_ : Node | None ) -> list[TPosition]: lowercase__ : List[str] = node lowercase__ : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowercase__ : Any = current_node.parent path.reverse() return path class snake_case_ : def __init__( self : Dict , lowercase_ : TPosition , lowercase_ : TPosition ) -> None: lowercase__ : Union[str, Any] = AStar(lowercase_ , lowercase_ ) lowercase__ : Tuple = AStar(lowercase_ , lowercase_ ) lowercase__ : str = False def __UpperCamelCase ( self : Tuple ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() lowercase__ : List[str] = self.fwd_astar.open_nodes.pop(0 ) lowercase__ : Union[str, Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowercase_ , lowercase_ ) self.fwd_astar.closed_nodes.append(lowercase_ ) self.bwd_astar.closed_nodes.append(lowercase_ ) lowercase__ : List[str] = current_bwd_node lowercase__ : Tuple = current_fwd_node lowercase__ : List[str] = { self.fwd_astar: self.fwd_astar.get_successors(lowercase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowercase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowercase_ ) else: # retrieve the best current path lowercase__ : List[str] = astar.open_nodes.pop( astar.open_nodes.index(lowercase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowercase_ ) else: astar.open_nodes.append(lowercase_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase ( self : Tuple , lowercase_ : Node , lowercase_ : Node ) -> list[TPosition]: lowercase__ : str = self.fwd_astar.retrace_path(lowercase_ ) lowercase__ : Dict = self.bwd_astar.retrace_path(lowercase_ ) bwd_path.pop() bwd_path.reverse() lowercase__ : Union[str, Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCamelCase = (0, 0) UpperCamelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCamelCase = time.time() UpperCamelCase = AStar(init, goal) UpperCamelCase = a_star.search() UpperCamelCase = time.time() - start_time print(f"AStar execution time = {end_time:f} seconds") UpperCamelCase = time.time() UpperCamelCase = BidirectionalAStar(init, goal) UpperCamelCase = time.time() - bd_start_time print(f"BidirectionalAStar execution time = {bd_end_time:f} seconds")
87
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class snake_case_ ( unittest.TestCase ): @require_torch def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: lowercase__ : Union[str, Any] = pipeline( task="zero-shot-audio-classification" , model="hf-internal-testing/tiny-clap-htsat-unfused" ) lowercase__ : List[str] = load_dataset("ashraq/esc50" ) lowercase__ : List[Any] = dataset["train"]["audio"][-1]["array"] lowercase__ : Dict = audio_classifier(lowercase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [{"score": 0.5_01, "label": "Sound of a dog"}, {"score": 0.4_99, "label": "Sound of vaccum cleaner"}] , ) @unittest.skip("No models are available in TF" ) def __UpperCamelCase ( self : str ) -> Optional[int]: pass @slow @require_torch def __UpperCamelCase ( self : List[str] ) -> int: lowercase__ : Tuple = pipeline( task="zero-shot-audio-classification" , model="laion/clap-htsat-unfused" , ) # This is an audio of a dog lowercase__ : Union[str, Any] = load_dataset("ashraq/esc50" ) lowercase__ : Tuple = dataset["train"]["audio"][-1]["array"] lowercase__ : List[Any] = audio_classifier(lowercase_ , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ] , ) lowercase__ : int = audio_classifier([audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) lowercase__ : Tuple = audio_classifier( [audio] * 5 , candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"] , batch_size=5 ) self.assertEqual( nested_simplify(lowercase_ ) , [ [ {"score": 0.9_99, "label": "Sound of a dog"}, {"score": 0.0_01, "label": "Sound of vaccum cleaner"}, ], ] * 5 , ) @unittest.skip("No models are available in TF" ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: pass
87
1
'''simple docstring''' def _a ( ) -> int: """simple docstring""" __snake_case : Union[str, Any] = 0 for i in range(1 , 1001 ): total += i**i return str(_lowerCamelCase )[-10:] if __name__ == "__main__": print(solution())
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } __UpperCamelCase = { "facebook/bart-base": 1024, "facebook/bart-large": 1024, "facebook/bart-large-mnli": 1024, "facebook/bart-large-cnn": 1024, "facebook/bart-large-xsum": 1024, "yjernite/bart_eli5": 1024, } class _A ( __lowercase ): lowercase__: Any = VOCAB_FILES_NAMES lowercase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__: Optional[Any] = ['''input_ids''', '''attention_mask'''] lowercase__: List[str] = BartTokenizer def __init__( self : Union[str, Any] , __magic_name__ : int=None , __magic_name__ : Tuple=None , __magic_name__ : Dict=None , __magic_name__ : Optional[Any]="replace" , __magic_name__ : int="<s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : str="<unk>" , __magic_name__ : List[Any]="<pad>" , __magic_name__ : Union[str, Any]="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Tuple , ) -> List[str]: """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) __snake_case : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : str = getattr(__magic_name__ , pre_tok_state.pop("""type""" ) ) __snake_case : str = add_prefix_space __snake_case : Union[str, Any] = pre_tok_class(**__magic_name__ ) __snake_case : str = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Any = """post_processor""" __snake_case : Any = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: __snake_case : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Tuple = tuple(state["""sep"""] ) if "cls" in state: __snake_case : int = tuple(state["""cls"""] ) __snake_case : Optional[int] = False if state.get("""add_prefix_space""" , __magic_name__ ) != add_prefix_space: __snake_case : Optional[Any] = add_prefix_space __snake_case : List[str] = True if state.get("""trim_offsets""" , __magic_name__ ) != trim_offsets: __snake_case : Optional[int] = trim_offsets __snake_case : Any = True if changes_to_apply: __snake_case : str = getattr(__magic_name__ , state.pop("""type""" ) ) __snake_case : List[Any] = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def lowercase__ ( self : List[Any] ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def lowercase__ ( self : Union[str, Any] , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" __snake_case : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value __snake_case : Union[str, Any] = value def lowercase__ ( self : Any , *__magic_name__ : Union[str, Any] , **__magic_name__ : Tuple ) -> BatchEncoding: """simple docstring""" __snake_case : Union[str, Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : Dict , *__magic_name__ : Optional[int] , **__magic_name__ : List[Any] ) -> BatchEncoding: """simple docstring""" __snake_case : Optional[Any] = kwargs.get("""is_split_into_words""" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" __snake_case : List[str] = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def lowercase__ ( self : Dict , __magic_name__ : List[str] , __magic_name__ : Optional[Any]=None ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase__ ( self : str , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
13
1
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int =PhobertTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] =False def _lowerCamelCase ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] __UpperCamelCase = dict(zip(__A , range(len(__A ) ) ) ) __UpperCamelCase = ['#version: 0.2', 'l à</w>'] __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__A ) ) def _lowerCamelCase ( self : Dict , **__A : Tuple ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__A ) def _lowerCamelCase ( self : str , __A : List[Any] ): __UpperCamelCase = 'Tôi là VinAI Research' __UpperCamelCase = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = 'Tôi là VinAI Research' __UpperCamelCase = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() __UpperCamelCase = tokenizer.tokenize(__A ) print(__A ) self.assertListEqual(__A , __A ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A )
53
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self : Any , __A : Dict , __A : str , __A : List[Any]=1_0_2_4 , __A : Tuple=1_0_2_4 , __A : str=3.6 ): __UpperCamelCase = tokenizer __UpperCamelCase = tokenizer.bos_token_id __UpperCamelCase = dataset __UpperCamelCase = seq_length __UpperCamelCase = seq_length * chars_per_token * num_of_sequences def __iter__( self : Any ): __UpperCamelCase = iter(self.dataset ) __UpperCamelCase = True while more_examples: __UpperCamelCase , __UpperCamelCase = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCamelCase = False break __UpperCamelCase = tokenizer(__A , truncation=__A )['input_ids'] __UpperCamelCase = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(__A ) , self.seq_length ): __UpperCamelCase = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def lowercase__ ( __lowercase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = {'streaming': True} __UpperCamelCase = load_dataset(args.dataset_name , split='train' , **__lowercase ) __UpperCamelCase = ConstantLengthDataset(__lowercase , __lowercase , seq_length=args.seq_length ) __UpperCamelCase = DataLoader(__lowercase , batch_size=args.batch_size ) return eval_dataloader def lowercase__ ( __lowercase : Tuple ) -> Optional[Any]: """simple docstring""" model.eval() __UpperCamelCase = [] for step, batch in enumerate(__lowercase ): with torch.no_grad(): __UpperCamelCase = model(__lowercase , labels=__lowercase ) __UpperCamelCase = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__lowercase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCamelCase = torch.mean(torch.cat(__lowercase ) ) try: __UpperCamelCase = torch.exp(__lowercase ) except OverflowError: __UpperCamelCase = float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator a__ : int =Accelerator() # Parse configuration a__ : Dict =HfArgumentParser(EvaluationArguments) a__ : Union[str, Any] =parser.parse_args() set_seed(args.seed) # Logging a__ : List[Any] =logging.getLogger(__name__) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) # Load model and tokenizer a__ : Union[str, Any] =AutoModelForCausalLM.from_pretrained(args.model_ckpt) a__ : List[Any] =AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader a__ : Union[str, Any] =create_dataloader(args) # Prepare everything with our `accelerator`. a__ , a__ : List[str] =accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('''Evaluating and saving model after training''') a__ , a__ : Any =evaluate(args) logger.info(f'loss/eval: {eval_loss}, perplexity: {perplexity}')
53
1
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowercase_ = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> List[Any]: '''simple docstring''' A__ = list(s_dict.keys() ) for key in keys: A__ = R'.*/layers_(\d+)' A__ = key if re.match(_UpperCamelCase , _UpperCamelCase ): A__ = re.sub(R'layers_(\d+)' , R'block/\1/layer' , _UpperCamelCase ) A__ = R'(encoder|decoder)\/' if re.match(_UpperCamelCase , _UpperCamelCase ): A__ = re.match(_UpperCamelCase , _UpperCamelCase ).groups() if groups[0] == "encoder": A__ = re.sub(R'/mlp/' , R'/1/mlp/' , _UpperCamelCase ) A__ = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , _UpperCamelCase ) elif groups[0] == "decoder": A__ = re.sub(R'/mlp/' , R'/2/mlp/' , _UpperCamelCase ) A__ = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , _UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: A__ = new_key.replace(_UpperCamelCase , _UpperCamelCase ) print(f'{key} -> {new_key}' ) A__ = s_dict.pop(_UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A__ = s_dict[ 'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: A__ = s_dict[ 'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: A__ = s_dict[key].shape[0] A__ = s_dict[key] for idx in range(_UpperCamelCase ): A__ = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(_UpperCamelCase ) return s_dict lowercase_ = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> int: '''simple docstring''' import regex as re with open(_UpperCamelCase , 'r' ) as f: A__ = f.read() A__ = re.findall(R'(.*) = ([0-9.]*)' , _UpperCamelCase ) A__ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": A__ = float(_UpperCamelCase ) if '.' in value else int(_UpperCamelCase ) A__ = re.findall(R'(.*activations) = \(\'(.*)\',\)' , _UpperCamelCase )[0] A__ = str(activation[1] ) A__ = num_experts A__ = SwitchTransformersConfig(**_UpperCamelCase ) return config def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any="./" , SCREAMING_SNAKE_CASE__ : Any=8 ) -> Any: '''simple docstring''' print(f'Loading flax weights from : {flax_checkpoint_path}' ) A__ = checkpoints.load_tax_checkpoint(_UpperCamelCase ) if gin_file is not None: A__ = convert_gin_to_config(_UpperCamelCase , _UpperCamelCase ) else: A__ = SwitchTransformersConfig.from_pretrained(_UpperCamelCase ) A__ = SwitchTransformersForConditionalGeneration(_UpperCamelCase ) A__ = flax_params['target'] A__ = flatten_dict(_UpperCamelCase , sep='/' ) A__ = rename_keys(_UpperCamelCase ) A__ = unflatten_dict(_UpperCamelCase , sep='/' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCamelCase , _UpperCamelCase ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowercase_ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
368
import argparse import struct import unittest class A : """simple docstring""" def __init__( self : Any,lowercase_ : bytes )-> None: '''simple docstring''' A__ = data # Initialize hash values A__ = [ 0X6_a_0_9_e_6_6_7, 0Xb_b_6_7_a_e_8_5, 0X3_c_6_e_f_3_7_2, 0Xa_5_4_f_f_5_3_a, 0X5_1_0_e_5_2_7_f, 0X9_b_0_5_6_8_8_c, 0X1_f_8_3_d_9_a_b, 0X5_b_e_0_c_d_1_9, ] # Initialize round constants A__ = [ 0X4_2_8_a_2_f_9_8, 0X7_1_3_7_4_4_9_1, 0Xb_5_c_0_f_b_c_f, 0Xe_9_b_5_d_b_a_5, 0X3_9_5_6_c_2_5_b, 0X5_9_f_1_1_1_f_1, 0X9_2_3_f_8_2_a_4, 0Xa_b_1_c_5_e_d_5, 0Xd_8_0_7_a_a_9_8, 0X1_2_8_3_5_b_0_1, 0X2_4_3_1_8_5_b_e, 0X5_5_0_c_7_d_c_3, 0X7_2_b_e_5_d_7_4, 0X8_0_d_e_b_1_f_e, 0X9_b_d_c_0_6_a_7, 0Xc_1_9_b_f_1_7_4, 0Xe_4_9_b_6_9_c_1, 0Xe_f_b_e_4_7_8_6, 0X0_f_c_1_9_d_c_6, 0X2_4_0_c_a_1_c_c, 0X2_d_e_9_2_c_6_f, 0X4_a_7_4_8_4_a_a, 0X5_c_b_0_a_9_d_c, 0X7_6_f_9_8_8_d_a, 0X9_8_3_e_5_1_5_2, 0Xa_8_3_1_c_6_6_d, 0Xb_0_0_3_2_7_c_8, 0Xb_f_5_9_7_f_c_7, 0Xc_6_e_0_0_b_f_3, 0Xd_5_a_7_9_1_4_7, 0X0_6_c_a_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_b_7_0_a_8_5, 0X2_e_1_b_2_1_3_8, 0X4_d_2_c_6_d_f_c, 0X5_3_3_8_0_d_1_3, 0X6_5_0_a_7_3_5_4, 0X7_6_6_a_0_a_b_b, 0X8_1_c_2_c_9_2_e, 0X9_2_7_2_2_c_8_5, 0Xa_2_b_f_e_8_a_1, 0Xa_8_1_a_6_6_4_b, 0Xc_2_4_b_8_b_7_0, 0Xc_7_6_c_5_1_a_3, 0Xd_1_9_2_e_8_1_9, 0Xd_6_9_9_0_6_2_4, 0Xf_4_0_e_3_5_8_5, 0X1_0_6_a_a_0_7_0, 0X1_9_a_4_c_1_1_6, 0X1_e_3_7_6_c_0_8, 0X2_7_4_8_7_7_4_c, 0X3_4_b_0_b_c_b_5, 0X3_9_1_c_0_c_b_3, 0X4_e_d_8_a_a_4_a, 0X5_b_9_c_c_a_4_f, 0X6_8_2_e_6_f_f_3, 0X7_4_8_f_8_2_e_e, 0X7_8_a_5_6_3_6_f, 0X8_4_c_8_7_8_1_4, 0X8_c_c_7_0_2_0_8, 0X9_0_b_e_f_f_f_a, 0Xa_4_5_0_6_c_e_b, 0Xb_e_f_9_a_3_f_7, 0Xc_6_7_1_7_8_f_2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( lowercase_ : bytes )-> bytes: '''simple docstring''' A__ = B'\x80' + (B'\x00' * (6_3 - (len(lowercase_ ) + 8) % 6_4)) A__ = struct.pack('>Q',(len(lowercase_ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self : Optional[int] )-> None: '''simple docstring''' A__ = [ self.preprocessed_data[x : x + 6_4] for x in range(0,len(self.preprocessed_data ),6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('>16L',lowercase_ ) ) # add 48 0-ed integers words += [0] * 4_8 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0,6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 1_5],7 ) ^ self.ror(words[index - 1_5],1_8 ) ^ (words[index - 1_5] >> 3) ) A__ = ( self.ror(words[index - 2],1_7 ) ^ self.ror(words[index - 2],1_9 ) ^ (words[index - 2] >> 1_0) ) A__ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression A__ = self.ror(lowercase_,6 ) ^ self.ror(lowercase_,1_1 ) ^ self.ror(lowercase_,2_5 ) A__ = (e & f) ^ ((~e & 0Xf_f_f_f_f_f_f_f) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 A__ = self.ror(lowercase_,2 ) ^ self.ror(lowercase_,1_3 ) ^ self.ror(lowercase_,2_2 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] A__ = ''.join([hex(lowercase_ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self : Union[str, Any],lowercase_ : int,lowercase_ : int )-> int: '''simple docstring''' return 0Xf_f_f_f_f_f_f_f & (value << (3_2 - rotations)) | (value >> rotations) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> None: '''simple docstring''' import hashlib A__ = bytes('Test String','utf-8' ) self.assertEqual(SHAaaa(lowercase_ ).hash,hashlib.shaaaa(lowercase_ ).hexdigest() ) def _snake_case( ) -> None: '''simple docstring''' import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: A__ = f.read() else: A__ = bytes(SCREAMING_SNAKE_CASE__ , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash ) if __name__ == "__main__": main()
282
0
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase ( _A , _A , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = IFPipeline SCREAMING_SNAKE_CASE_ : Optional[int] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} SCREAMING_SNAKE_CASE_ : int = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Any = PipelineTesterMixin.required_optional_params - {"latents"} def A ( self : Optional[int] ) -> Tuple: return self._get_dummy_components() def A ( self : Dict , A : Union[str, Any] , A : Optional[Any]=0 ) -> Optional[Any]: if str(A ).startswith('''mps''' ): lowercase_ : Optional[Any] = torch.manual_seed(A ) else: lowercase_ : Optional[int] = torch.Generator(device=A ).manual_seed(A ) lowercase_ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A ( self : int ) -> Dict: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def A ( self : Union[str, Any] ) -> int: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def A ( self : int ) -> Union[str, Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def A ( self : int ) -> Optional[int]: self._test_save_load_local() def A ( self : Tuple ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A ( self : Tuple ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Any ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple ) -> Optional[Any]: # if lowercase_ : Union[str, Any] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa ) lowercase_ : str = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=A , tokenizer=A ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''' ) lowercase_ , lowercase_ : List[str] = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase_ : Optional[int] = None lowercase_ : List[str] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase_ : List[Any] = IFImgaImgPipeline(**pipe_a.components ) lowercase_ : Optional[int] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A , A , A , A ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase_ : str = IFInpaintingPipeline(**pipe_a.components ) lowercase_ : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A , A , A , A ) def A ( self : Optional[Any] , A : int , A : List[str] , A : Optional[int] , A : List[Any] ) -> str: # pipeline 1 _start_torch_memory_measurement() lowercase_ : Optional[int] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : Optional[int] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , num_inference_steps=2 , generator=A , output_type='''np''' , ) lowercase_ : Optional[Any] = output.images[0] assert image.shape == (64, 64, 3) lowercase_ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 lowercase_ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''' ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() lowercase_ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) lowercase_ : str = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , generator=A , num_inference_steps=2 , output_type='''np''' , ) lowercase_ : Optional[int] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase_ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(A , A ) def A ( self : List[Any] , A : str , A : Tuple , A : Optional[int] , A : Optional[Any] ) -> int: # pipeline 1 _start_torch_memory_measurement() lowercase_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) lowercase_ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : List[Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , num_inference_steps=2 , generator=A , output_type='''np''' , ) lowercase_ : Any = output.images[0] assert image.shape == (64, 64, 3) lowercase_ : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase_ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''' ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() lowercase_ : str = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : Any = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(A ) lowercase_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) lowercase_ : Any = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , original_image=A , generator=A , num_inference_steps=2 , output_type='''np''' , ) lowercase_ : Optional[int] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase_ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(A , A ) def A ( self : str , A : int , A : Any , A : Tuple , A : Dict ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() lowercase_ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) lowercase_ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(A ) lowercase_ : int = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : Union[str, Any] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , num_inference_steps=2 , generator=A , output_type='''np''' , ) lowercase_ : Tuple = output.images[0] assert image.shape == (64, 64, 3) lowercase_ : str = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 lowercase_ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''' ) assert_mean_pixel_difference(A , A ) # pipeline 2 _start_torch_memory_measurement() lowercase_ : int = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(A ) lowercase_ : List[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(A ) lowercase_ : str = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(A ) lowercase_ : List[str] = pipe_a( prompt_embeds=A , negative_prompt_embeds=A , image=A , mask_image=A , original_image=A , generator=A , num_inference_steps=2 , output_type='''np''' , ) lowercase_ : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) lowercase_ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 lowercase_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''' ) assert_mean_pixel_difference(A , A ) def lowercase ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
33
from __future__ import annotations from functools import lru_cache from math import ceil A : Optional[int] = 1_0_0 A : int = set(range(3, NUM_PRIMES, 2)) primes.add(2) A : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( __magic_name__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} lowercase__ = set() lowercase__ = 42 lowercase__ = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( __magic_name__ : int = 5000 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , __magic_name__ ): if len(partition(__magic_name__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
305
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _a = logging.get_logger(__name__) _a = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = "van" def __init__( self : str, UpperCAmelCase__ : Dict=2_2_4, UpperCAmelCase__ : Dict=3, UpperCAmelCase__ : List[Any]=[7, 3, 3, 3], UpperCAmelCase__ : Optional[Any]=[4, 2, 2, 2], UpperCAmelCase__ : int=[6_4, 1_2_8, 3_2_0, 5_1_2], UpperCAmelCase__ : List[Any]=[3, 3, 1_2, 3], UpperCAmelCase__ : Dict=[8, 8, 4, 4], UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : Optional[Any]=0.02, UpperCAmelCase__ : Dict=1E-6, UpperCAmelCase__ : Union[str, Any]=1E-2, UpperCAmelCase__ : Optional[int]=0.0, UpperCAmelCase__ : Dict=0.0, **UpperCAmelCase__ : int, ): super().__init__(**UpperCAmelCase__ ) __lowercase = image_size __lowercase = num_channels __lowercase = patch_sizes __lowercase = strides __lowercase = hidden_sizes __lowercase = depths __lowercase = mlp_ratios __lowercase = hidden_act __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = layer_scale_init_value __lowercase = drop_path_rate __lowercase = dropout_rate
144
"""simple docstring""" import re from filelock import FileLock try: import nltk _a = True except (ImportError, ModuleNotFoundError): _a = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _A ( UpperCamelCase_ : str) -> str: '''simple docstring''' re.sub("<n>", "", UpperCamelCase_) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_))
144
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowercase : Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowercase : Optional[Any] = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) lowercase : Optional[int] = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 lowercase : Tuple = image.transpose(0 , 3 , 1 , 2 ) lowercase : Dict = 2.0 * image - 1.0 lowercase : Optional[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): lowercase : Any = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.9995 ) -> Any: if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): lowercase : Optional[Any] = True lowercase : Any = va.device lowercase : Tuple = va.cpu().numpy() lowercase : Dict = va.cpu().numpy() lowercase : Any = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: lowercase : Any = (1 - t) * va + t * va else: lowercase : int = np.arccos(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = np.sin(SCREAMING_SNAKE_CASE__ ) lowercase : str = theta_a * t lowercase : List[Any] = np.sin(SCREAMING_SNAKE_CASE__ ) lowercase : int = np.sin(theta_a - theta_t ) / sin_theta_a lowercase : int = sin_theta_t / sin_theta_a lowercase : Dict = sa * va + sa * va if inputs_are_torch: lowercase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Union[str, Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) lowercase : List[Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for param in model.parameters(): lowercase : List[str] = value class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ,snake_case=None ,snake_case=None ,): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case ,text_encoder=snake_case ,clip_model=snake_case ,tokenizer=snake_case ,unet=snake_case ,scheduler=snake_case ,feature_extractor=snake_case ,coca_model=snake_case ,coca_tokenizer=snake_case ,coca_transform=snake_case ,) lowercase : Optional[int] = ( feature_extractor.size if isinstance(feature_extractor.size ,snake_case ) else feature_extractor.size["""shortest_edge"""] ) lowercase : Dict = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,snake_case ) set_requires_grad(self.clip_model ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.enable_attention_slicing(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.vae ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.vae ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.unet ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.unet ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = min(int(num_inference_steps * strength ) ,snake_case ) lowercase : List[Any] = max(num_inference_steps - init_timestep ,0 ) lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' if not isinstance(snake_case ,torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(snake_case )}" ) lowercase : List[str] = image.to(device=snake_case ,dtype=snake_case ) if isinstance(snake_case ,snake_case ): lowercase : Optional[int] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case ) ] lowercase : Tuple = torch.cat(snake_case ,dim=0 ) else: lowercase : List[str] = self.vae.encode(snake_case ).latent_dist.sample(snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase : Any = 0.18_215 * init_latents lowercase : Dict = init_latents.repeat_interleave(snake_case ,dim=0 ) lowercase : List[str] = randn_tensor(init_latents.shape ,generator=snake_case ,device=snake_case ,dtype=snake_case ) # get latents lowercase : Optional[int] = self.scheduler.add_noise(snake_case ,snake_case ,snake_case ) lowercase : Optional[Any] = init_latents return latents def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.coca_transform(snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase : List[Any] = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.feature_extractor.preprocess(snake_case ) lowercase : Optional[int] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowercase : List[Any] = self.clip_model.get_image_features(snake_case ) lowercase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=snake_case ) lowercase : Tuple = image_embeddings_clip.repeat_interleave(snake_case ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = latents.detach().requires_grad_() lowercase : Optional[int] = self.scheduler.scale_model_input(snake_case ,snake_case ) # predict the noise residual lowercase : Optional[int] = self.unet(snake_case ,snake_case ,encoder_hidden_states=snake_case ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase : Optional[int] = self.scheduler.alphas_cumprod[timestep] lowercase : Union[str, Any] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : Tuple = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase : int = torch.sqrt(snake_case ) lowercase : Any = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,snake_case ): lowercase : Dict = self.scheduler.sigmas[index] lowercase : Tuple = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase : Optional[Any] = 1 / 0.18_215 * sample lowercase : Union[str, Any] = self.vae.decode(snake_case ).sample lowercase : str = (image / 2 + 0.5).clamp(0 ,1 ) lowercase : int = transforms.Resize(self.feature_extractor_size )(snake_case ) lowercase : Tuple = self.normalize(snake_case ).to(latents.dtype ) lowercase : Tuple = self.clip_model.get_image_features(snake_case ) lowercase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=snake_case ) lowercase : str = spherical_dist_loss(snake_case ,snake_case ).mean() * clip_guidance_scale lowercase : List[Any] = -torch.autograd.grad(snake_case ,snake_case )[0] if isinstance(self.scheduler ,snake_case ): lowercase : Any = latents.detach() + grads * (sigma**2) lowercase : Optional[Any] = noise_pred_original else: lowercase : int = noise_pred_original - torch.sqrt(snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self ,snake_case ,snake_case ,snake_case = None ,snake_case = None ,snake_case = 512 ,snake_case = 512 ,snake_case = 0.6 ,snake_case = 50 ,snake_case = 7.5 ,snake_case = 1 ,snake_case = 0.0 ,snake_case = 100 ,snake_case = None ,snake_case = "pil" ,snake_case = True ,snake_case = 0.8 ,snake_case = 0.1 ,snake_case = 0.1 ,): '''simple docstring''' if isinstance(snake_case ,snake_case ) and len(snake_case ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(snake_case )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(snake_case ,torch.Generator ) and batch_size > 1: lowercase : str = [generator] + [None] * (batch_size - 1) lowercase : Union[str, Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] lowercase : int = """, """.join(snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) lowercase : Optional[int] = self.get_image_description(snake_case ) if style_prompt is None: if len(snake_case ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) lowercase : str = self.get_image_description(snake_case ) # get prompt text embeddings for content and style lowercase : List[Any] = self.tokenizer( snake_case ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=snake_case ,return_tensors="""pt""" ,) lowercase : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase : Optional[int] = self.tokenizer( snake_case ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=snake_case ,return_tensors="""pt""" ,) lowercase : Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase : Optional[Any] = slerp(snake_case ,snake_case ,snake_case ) # duplicate text embeddings for each generation per prompt lowercase : str = text_embeddings.repeat_interleave(snake_case ,dim=0 ) # set timesteps lowercase : str = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase : Tuple = {} if accepts_offset: lowercase : int = 1 self.scheduler.set_timesteps(snake_case ,**snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase , lowercase : Optional[int] = self.get_timesteps(snake_case ,snake_case ,self.device ) lowercase : Tuple = timesteps[:1].repeat(snake_case ) # Preprocess image lowercase : str = preprocess(snake_case ,snake_case ,snake_case ) lowercase : int = self.prepare_latents( snake_case ,snake_case ,snake_case ,text_embeddings.dtype ,self.device ,snake_case ) lowercase : List[Any] = preprocess(snake_case ,snake_case ,snake_case ) lowercase : Tuple = self.prepare_latents( snake_case ,snake_case ,snake_case ,text_embeddings.dtype ,self.device ,snake_case ) lowercase : List[str] = slerp(snake_case ,snake_case ,snake_case ) if clip_guidance_scale > 0: lowercase : Union[str, Any] = self.get_clip_image_embeddings(snake_case ,snake_case ) lowercase : Optional[int] = self.get_clip_image_embeddings(snake_case ,snake_case ) lowercase : Optional[int] = slerp( snake_case ,snake_case ,snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase : List[str] = content_text_input.input_ids.shape[-1] lowercase : Optional[Any] = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=snake_case ,return_tensors="""pt""" ) lowercase : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase : Any = uncond_embeddings.repeat_interleave(snake_case ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase : str = torch.randn(snake_case ,generator=snake_case ,device="""cpu""" ,dtype=snake_case ).to( self.device ) else: lowercase : Optional[int] = torch.randn(snake_case ,generator=snake_case ,device=self.device ,dtype=snake_case ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowercase : Any = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase : str = {} if accepts_eta: lowercase : str = eta # check if the scheduler accepts generator lowercase : Optional[Any] = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase : Tuple = generator with self.progress_bar(total=snake_case ): for i, t in enumerate(snake_case ): # expand the latents if we are doing classifier free guidance lowercase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase : Optional[int] = self.scheduler.scale_model_input(snake_case ,snake_case ) # predict the noise residual lowercase : Dict = self.unet(snake_case ,snake_case ,encoder_hidden_states=snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase , lowercase : str = noise_pred.chunk(2 ) lowercase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase : int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase , lowercase : Union[str, Any] = self.cond_fn( snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,) # compute the previous noisy sample x_t -> x_t-1 lowercase : Any = self.scheduler.step(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase : Optional[Any] = 1 / 0.18_215 * latents lowercase : Any = self.vae.decode(snake_case ).sample lowercase : Optional[Any] = (image / 2 + 0.5).clamp(0 ,1 ) lowercase : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase : List[str] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case ,nsfw_content_detected=snake_case )
20
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowercase : str = """\ @inproceedings{wang2019glue, title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, note={In the Proceedings of ICLR.}, year={2019} } """ lowercase : Dict = """\ GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems. """ lowercase : int = """ Compute GLUE evaluation metric associated to each GLUE dataset. Args: predictions: list of predictions to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. Returns: depending on the GLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"pearson\": Pearson Correlation \"spearmanr\": Spearman Correlation \"matthews_correlation\": Matthew Correlation Examples: >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp' >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> glue_metric = datasets.load_metric('glue', 'stsb') >>> references = [0., 1., 2., 3., 4., 5.] >>> predictions = [0., 1., 2., 3., 4., 5.] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)}) {'pearson': 1.0, 'spearmanr': 1.0} >>> glue_metric = datasets.load_metric('glue', 'cola') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: return float((preds == labels).mean() ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Any = simple_accuracy(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Union[str, Any] = float(fa_score(y_true=SCREAMING_SNAKE_CASE__ , y_pred=SCREAMING_SNAKE_CASE__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: lowercase : Union[str, Any] = float(pearsonr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) lowercase : Dict = float(spearmanr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" ,) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(snake_case ,snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(snake_case ,snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(snake_case ,snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(snake_case ,snake_case )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
20
1
from maths.prime_factors import prime_factors def snake_case_ ( A_ : int ): '''simple docstring''' if not isinstance(A_, A_ ): _lowerCamelCase : str = F'''Input value of [number={number}] must be an integer''' raise TypeError(A_ ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(A_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
370
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/config.json''', # See all XGLM models at https://huggingface.co/models?filter=xglm } class __snake_case ( _lowercase): snake_case__ : List[Any] = "xglm" snake_case__ : Dict = ["past_key_values"] snake_case__ : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , __lowerCAmelCase : List[Any]=2_5_6_0_0_8 , __lowerCAmelCase : int=2_0_4_8 , __lowerCAmelCase : Dict=1_0_2_4 , __lowerCAmelCase : List[str]=4_0_9_6 , __lowerCAmelCase : Tuple=2_4 , __lowerCAmelCase : Dict=1_6 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : int=0.02 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=2 , __lowerCAmelCase : Dict=1 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[Any]=2 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : int = d_model _lowerCamelCase : Optional[Any] = ffn_dim _lowerCamelCase : Any = num_layers _lowerCamelCase : Union[str, Any] = attention_heads _lowerCamelCase : List[str] = activation_function _lowerCamelCase : Union[str, Any] = dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : List[str] = init_std _lowerCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCamelCase : str = use_cache super().__init__( pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , decoder_start_token_id=__lowerCAmelCase , **__lowerCAmelCase , )
175
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __A : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : List[Any] = nn.functional.normalize(_UpperCAmelCase ) lowerCAmelCase : int = nn.functional.normalize(_UpperCAmelCase ) return torch.mm(_UpperCAmelCase, normalized_text_embeds.t() ) class __A ( lowerCAmelCase ): lowerCAmelCase_ : Any = CLIPConfig lowerCAmelCase_ : Optional[Any] = ["CLIPEncoderLayer"] def __init__( self : str , UpperCAmelCase_ : CLIPConfig ): super().__init__(UpperCAmelCase_ ) lowerCAmelCase : int = CLIPVisionModel(config.vision_config ) lowerCAmelCase : List[Any] = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=UpperCAmelCase_ ) lowerCAmelCase : str = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=UpperCAmelCase_ ) lowerCAmelCase : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=UpperCAmelCase_ ) lowerCAmelCase : Tuple = nn.Parameter(torch.ones(17 ) , requires_grad=UpperCAmelCase_ ) lowerCAmelCase : Tuple = nn.Parameter(torch.ones(3 ) , requires_grad=UpperCAmelCase_ ) @torch.no_grad() def lowercase__ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any ): lowerCAmelCase : Any = self.vision_model(UpperCAmelCase_ )[1] # pooled_output lowerCAmelCase : Optional[Any] = self.visual_projection(UpperCAmelCase_ ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase : Dict = cosine_distance(UpperCAmelCase_ , self.special_care_embeds ).cpu().float().numpy() lowerCAmelCase : Optional[int] = cosine_distance(UpperCAmelCase_ , self.concept_embeds ).cpu().float().numpy() lowerCAmelCase : Dict = [] lowerCAmelCase : Any = image_embeds.shape[0] for i in range(UpperCAmelCase_ ): lowerCAmelCase : Tuple = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase : Optional[int] = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCAmelCase : Tuple = special_cos_dist[i][concept_idx] lowerCAmelCase : Optional[int] = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase : str = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) lowerCAmelCase : int = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCAmelCase : Union[str, Any] = cos_dist[i][concept_idx] lowerCAmelCase : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase : Optional[int] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(UpperCAmelCase_ ) result.append(UpperCAmelCase_ ) lowerCAmelCase : Optional[int] = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : torch.FloatTensor ): lowerCAmelCase : Tuple = self.vision_model(UpperCAmelCase_ )[1] # pooled_output lowerCAmelCase : int = self.visual_projection(UpperCAmelCase_ ) lowerCAmelCase : List[Any] = cosine_distance(UpperCAmelCase_ , self.special_care_embeds ) lowerCAmelCase : List[str] = cosine_distance(UpperCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase : Optional[int] = 0.0 lowerCAmelCase : Any = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase : str = torch.any(special_scores > 0 , dim=1 ) lowerCAmelCase : str = special_care * 0.01 lowerCAmelCase : Any = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCAmelCase : List[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase : Dict = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
138
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> str: '''simple docstring''' return " ".join( ''.join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
138
1
'''simple docstring''' import math def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 10001 ): """simple docstring""" try: lowerCAmelCase__ : int = int(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) lowerCAmelCase__ : str = [] lowerCAmelCase__ : Any = 2 while len(SCREAMING_SNAKE_CASE_ ) < nth: if is_prime(SCREAMING_SNAKE_CASE_ ): primes.append(SCREAMING_SNAKE_CASE_ ) num += 1 else: num += 1 return primes[len(SCREAMING_SNAKE_CASE_ ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
364
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" def count_of_possible_combinations(UpperCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" def count_of_possible_combinations_with_dp_array( UpperCamelCase , UpperCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCAmelCase__ : Any = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase ) for item in array ) lowerCAmelCase__ : Tuple = answer return answer lowerCAmelCase__ : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase , UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = [0] * (target + 1) lowerCAmelCase__ : List[Any] = 1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase = 3 _lowerCAmelCase = 5 _lowerCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
184
0
def a_ ( _A ) -> list: """simple docstring""" snake_case__ = len(_A ) for i in range(1 , _A ): snake_case__ = collection[i] snake_case__ = 0 snake_case__ = i - 1 while low <= high: snake_case__ = (low + high) // 2 if val < collection[mid]: snake_case__ = mid - 1 else: snake_case__ = mid + 1 for j in range(_A , _A , -1 ): snake_case__ = collection[j - 1] snake_case__ = val return collection if __name__ == "__main__": __UpperCamelCase : List[Any] = input("""Enter numbers separated by a comma:\n""").strip() __UpperCamelCase : Union[str, Any] = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
307
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
11
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'rwkv' __UpperCAmelCase : Optional[Any] = {'max_position_embeddings': 'context_length'} def __init__( self , _a=50_277 , _a=1_024 , _a=4_096 , _a=32 , _a=None , _a=None , _a=1E-5 , _a=0 , _a=0 , _a=6 , _a=False , _a=True , **_a , ): __a = vocab_size __a = context_length __a = hidden_size __a = num_hidden_layers __a = attention_hidden_size if attention_hidden_size is not None else hidden_size __a = intermediate_size if intermediate_size is not None else 4 * hidden_size __a = layer_norm_epsilon __a = rescale_every __a = use_cache __a = bos_token_id __a = eos_token_id super().__init__( tie_word_embeddings=_a , bos_token_id=_a , eos_token_id=_a , **_a )
11
1
'''simple docstring''' import cmath import math def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Tuple = math.radians(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = math.radians(UpperCAmelCase_ ) # Convert voltage and current to rectangular form _UpperCamelCase : int = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : int = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
83
'''simple docstring''' def __UpperCamelCase ( lowercase__ : list, lowercase__ : list, lowercase__ : int ): '''simple docstring''' __lowercase =len(lowercase__ ) __lowercase =[[0] * n for i in range(lowercase__ )] for i in range(lowercase__ ): __lowercase =y_points[i] for i in range(2, lowercase__ ): for j in range(lowercase__, lowercase__ ): __lowercase =( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
141
0
import math def lowerCamelCase_ ( _a ): """simple docstring""" return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num def lowerCamelCase_ ( _a ): """simple docstring""" lowerCAmelCase__ : int = 0 lowerCAmelCase__ : str = n while left <= right: lowerCAmelCase__ : Optional[Any] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase__ : Optional[Any] = mid - 1 else: lowerCAmelCase__ : List[str] = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
359
from __future__ import annotations def lowerCamelCase_ ( _a , _a , _a , _a ): # noqa: E741 """simple docstring""" while r - l > 1: lowerCAmelCase__ : Any = (l + r) // 2 if v[m] >= key: lowerCAmelCase__ : int = m else: lowerCAmelCase__ : Tuple = m # noqa: E741 return r def lowerCamelCase_ ( _a ): """simple docstring""" if len(_a ) == 0: return 0 lowerCAmelCase__ : Optional[int] = [0] * len(_a ) lowerCAmelCase__ : List[Any] = 1 lowerCAmelCase__ : int = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: lowerCAmelCase__ : str = v[i] elif v[i] > tail[length - 1]: lowerCAmelCase__ : Any = v[i] length += 1 else: lowerCAmelCase__ : int = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
211
0
'''simple docstring''' from __future__ import annotations from collections.abc import MutableSequence class _a : def __init__( self : Union[str, Any] , lowercase : int , lowercase : MutableSequence[float] ): '''simple docstring''' if len(lowercase ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCAmelCase = list(lowercase ) UpperCAmelCase = degree def __add__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: UpperCAmelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowercase ) else: UpperCAmelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowercase ) def __sub__( self : str , lowercase : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self : Optional[int] ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self : List[Any] , lowercase : Polynomial ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowercase ) def A ( self : Optional[int] , lowercase : int | float ): '''simple docstring''' UpperCAmelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : str ): '''simple docstring''' UpperCAmelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase ) return polynomial def __repr__( self : List[Any] ): '''simple docstring''' return self.__str__() def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = [0] * self.degree for i in range(self.degree ): UpperCAmelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowercase ) def A ( self : str , lowercase : int | float = 0 ): '''simple docstring''' UpperCAmelCase = [0] * (self.degree + 2) UpperCAmelCase = constant for i in range(self.degree + 1 ): UpperCAmelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowercase ) def __eq__( self : List[Any] , lowercase : object ): '''simple docstring''' if not isinstance(lowercase , lowercase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : Tuple , lowercase : object ): '''simple docstring''' return not self.__eq__(lowercase )
34
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : List[str] ): UpperCAmelCase = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: UpperCAmelCase = 1_2_8 elif "12-12" in model_name: UpperCAmelCase = 1_2 UpperCAmelCase = 1_2 elif "14-14" in model_name: UpperCAmelCase = 1_4 UpperCAmelCase = 1_4 elif "16-16" in model_name: UpperCAmelCase = 1_6 UpperCAmelCase = 1_6 else: raise ValueError('''Model not supported''' ) UpperCAmelCase = '''huggingface/label-files''' if "speech-commands" in model_name: UpperCAmelCase = 3_5 UpperCAmelCase = '''speech-commands-v2-id2label.json''' else: UpperCAmelCase = 5_2_7 UpperCAmelCase = '''audioset-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def snake_case_ (_a : Tuple ): if "module.v" in name: UpperCAmelCase = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: UpperCAmelCase = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: UpperCAmelCase = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: UpperCAmelCase = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: UpperCAmelCase = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: UpperCAmelCase = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: UpperCAmelCase = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: UpperCAmelCase = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def snake_case_ (_a : Dict , _a : List[Any] ): for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(_a ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = config.hidden_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] else: UpperCAmelCase = val return orig_state_dict def snake_case_ (_a : Tuple ): UpperCAmelCase = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(_a , _a ) @torch.no_grad() def snake_case_ (_a : int , _a : Union[str, Any] , _a : Dict=False ): UpperCAmelCase = get_audio_spectrogram_transformer_config(_a ) UpperCAmelCase = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict UpperCAmelCase = model_name_to_url[model_name] UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' ) # remove some keys remove_keys(_a ) # rename some keys UpperCAmelCase = convert_state_dict(_a , _a ) # load 🤗 model UpperCAmelCase = ASTForAudioClassification(_a ) model.eval() model.load_state_dict(_a ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 UpperCAmelCase = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 UpperCAmelCase = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 UpperCAmelCase = 1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 UpperCAmelCase = ASTFeatureExtractor(mean=_a , std=_a , max_length=_a ) if "speech-commands" in model_name: UpperCAmelCase = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) UpperCAmelCase = dataset[0]['''audio''']['''array'''] else: UpperCAmelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) UpperCAmelCase , UpperCAmelCase = torchaudio.load(_a ) UpperCAmelCase = waveform.squeeze().numpy() UpperCAmelCase = feature_extractor(_a , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass UpperCAmelCase = model(**_a ) UpperCAmelCase = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": UpperCAmelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": UpperCAmelCase = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": UpperCAmelCase = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": UpperCAmelCase = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": UpperCAmelCase = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": UpperCAmelCase = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": UpperCAmelCase = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": UpperCAmelCase = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , _a , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(_a ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
34
1
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass def A ( snake_case :Image ) -> str: __UpperCamelCase = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def A ( snake_case :Image ) -> Dict: __UpperCamelCase = np.array(snake_case ) __UpperCamelCase = npimg.shape return {"hash": hashimage(snake_case ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): lowercase = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowercase = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @slow @require_torch def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) __UpperCamelCase = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing __UpperCamelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_9_6_7}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.9_9_3}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_9_0_9}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_8_7_9}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_8_3_4}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_7_1_6}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_6_1_2}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_5_9_9}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_5_5_2}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_5_3_2}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_5_1_6}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_4_9_9}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_4_8_3}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_4_6_4}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.9_4_3}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_4_0_8}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_3_3_5}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_3_2_6}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_2_6_2}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_9_9_9}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_9_8_6}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_9_8_4}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_8_7_3}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'facebook/sam-vit-huge' __UpperCamelCase = pipeline('mask-generation' , model=__UpperCAmelCase ) __UpperCamelCase = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing __UpperCamelCase = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_4_4_4}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_2_1_0}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_1_6_7}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_1_3_2}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_0_5_3}, ] , )
365
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Dict = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "wavlm" def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=320 , __UpperCAmelCase=800 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.0_5 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) __UpperCamelCase = hidden_size __UpperCamelCase = feat_extract_norm __UpperCamelCase = feat_extract_activation __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = conv_bias __UpperCamelCase = num_buckets __UpperCamelCase = max_bucket_distance __UpperCamelCase = num_conv_pos_embeddings __UpperCamelCase = num_conv_pos_embedding_groups __UpperCamelCase = len(self.conv_dim ) __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = feat_proj_dropout __UpperCamelCase = final_dropout __UpperCamelCase = layerdrop __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = num_ctc_classes __UpperCamelCase = vocab_size __UpperCamelCase = do_stable_layer_norm __UpperCamelCase = use_weighted_layer_sum __UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length # parameters for pretraining with codevector quantized representations __UpperCamelCase = num_codevectors_per_group __UpperCamelCase = num_codevector_groups __UpperCamelCase = contrastive_logits_temperature __UpperCamelCase = num_negatives __UpperCamelCase = codevector_dim __UpperCamelCase = proj_codevector_dim __UpperCamelCase = diversity_loss_weight # ctc loss __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # adapter __UpperCamelCase = add_adapter __UpperCamelCase = adapter_kernel_size __UpperCamelCase = adapter_stride __UpperCamelCase = num_adapter_layers __UpperCamelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = list(__UpperCAmelCase ) __UpperCamelCase = xvector_output_dim @property def UpperCAmelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
263
0
def A_ ( ): SCREAMING_SNAKE_CASE_: List[Any] = 0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
13
def A_ ( _UpperCAmelCase , _UpperCAmelCase = False ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: str = f"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[Any] = f"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = input_str.split("_" ) SCREAMING_SNAKE_CASE_: str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE_: int = words[start_index:] SCREAMING_SNAKE_CASE_: List[str] = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE_: List[Any] = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
13
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a ( A_ , unittest.TestCase ): """simple docstring""" lowerCamelCase :Dict = LayoutLMTokenizer lowerCamelCase :Dict = LayoutLMTokenizerFast lowerCamelCase :int = True lowerCamelCase :str = True def UpperCAmelCase ( self ) -> Tuple: super().setUp() _A = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> List[Any]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Union[str, Any]: _A = """UNwant\u00E9d,running""" _A = """unwanted, running""" return input_text, output_text def UpperCAmelCase ( self ) -> Tuple: _A = self.tokenizer_class(self.vocab_file ) _A = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(_lowerCamelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def UpperCAmelCase ( self ) -> Optional[int]: pass
368
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
81
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __SCREAMING_SNAKE_CASE : str = 2 class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , *, # begin keyword-only arguments A : Union[str, Any]="<s>" , A : Dict="<pad>" , A : Any="</s>" , A : Tuple="<unk>" , A : List[Any]=None , ): _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = bos, unk, pad, eos _UpperCAmelCase : int = [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = {} _UpperCAmelCase : Optional[Any] = self.add_symbol(A ) _UpperCAmelCase : Dict = self.add_symbol(A ) _UpperCAmelCase : int = self.add_symbol(A ) _UpperCAmelCase : List[Any] = self.add_symbol(A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(A ) _UpperCAmelCase : Tuple = len(self.symbols ) def __eq__( self : Optional[Any] , A : Tuple ): return self.indices == other.indices def __getitem__( self : int , A : Optional[Any] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Union[str, Any] ): return len(self.symbols ) def __contains__( self : List[Any] , A : Dict ): return sym in self.indices @classmethod def _A ( cls : int , A : Union[str, Any] ): _UpperCAmelCase : List[Any] = cls() d.add_from_file(A ) return d def _A ( self : int , A : Tuple , A : Optional[Any]=1 , A : str=False ): if word in self.indices and not overwrite: _UpperCAmelCase : Union[str, Any] = self.indices[word] _UpperCAmelCase : Tuple = self.count[idx] + n return idx else: _UpperCAmelCase : List[Any] = len(self.symbols ) _UpperCAmelCase : int = idx self.symbols.append(A ) self.count.append(A ) return idx def _A ( self : int , A : List[Any] ): return 0 def _A ( self : Dict , A : Optional[int] ): if isinstance(A , A ): try: with open(A , "r" , encoding="utf-8" ) as fd: self.add_from_file(A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(A ) ) return _UpperCAmelCase : Union[str, Any] = f.readlines() _UpperCAmelCase : Optional[Any] = self._load_meta(A ) for line in lines[indices_start_line:]: try: _UpperCAmelCase , _UpperCAmelCase : Any = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": _UpperCAmelCase : Tuple = True _UpperCAmelCase , _UpperCAmelCase : List[Any] = line.rsplit(" " , 1 ) else: _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : str = int(A ) _UpperCAmelCase : Any = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(A ) ) self.add_symbol(A , n=A , overwrite=A ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def UpperCamelCase_ ( _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" _UpperCAmelCase : str = dict((re.sub(R"@@$" , "" , _UpperCAmelCase ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , _UpperCAmelCase ), v) for k, v in d.items() ) _UpperCAmelCase : str = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCAmelCase : Any = d[k] # restore return da def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" if not os.path.exists(_UpperCAmelCase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCAmelCase : List[str] = os.path.join(_UpperCAmelCase , "checkpoint.pt" ) if not os.path.isfile(_UpperCAmelCase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCAmelCase : List[str] = torch.load(_UpperCAmelCase , map_location="cpu" ) _UpperCAmelCase : Any = chkpt["cfg"]["model"] # dicts _UpperCAmelCase : Tuple = os.path.join(_UpperCAmelCase , "dict.txt" ) if not os.path.isfile(_UpperCAmelCase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCAmelCase : Any = Dictionary.load(_UpperCAmelCase ) _UpperCAmelCase : Dict = rewrite_dict_keys(src_dict.indices ) _UpperCAmelCase : Dict = len(_UpperCAmelCase ) _UpperCAmelCase : Any = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES["vocab_file"] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # merges_file (bpecodes) _UpperCAmelCase : Tuple = os.path.join(_UpperCAmelCase , "bpecodes" ) if not os.path.isfile(_UpperCAmelCase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCAmelCase : Optional[int] = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) # model config _UpperCAmelCase : Any = os.path.join(_UpperCAmelCase , "config.json" ) _UpperCAmelCase : Optional[int] = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.0_2, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1e-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # tokenizer config _UpperCAmelCase : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : List[Any] = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1_024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) ) # model _UpperCAmelCase : str = chkpt["model"] # remove unneeded keys _UpperCAmelCase : Optional[Any] = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : Any = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): _UpperCAmelCase : Optional[Any] = model_state_dict.pop(_UpperCAmelCase ) else: _UpperCAmelCase : Optional[Any] = model_state_dict.pop(_UpperCAmelCase ) _UpperCAmelCase : Any = BioGptConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase : str = BioGptForCausalLM(_UpperCAmelCase ) # check that it loads ok model_new.load_state_dict(_UpperCAmelCase ) # save _UpperCAmelCase : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print("Conversion is done!" ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
31
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : List[str] , lowercase : list[int] ): '''simple docstring''' _snake_case = len(lowercase ) _snake_case = [0] * len_array if len_array > 0: _snake_case = array[0] for i in range(1 , lowercase ): _snake_case = self.prefix_sum[i - 1] + array[i] def A ( self : Optional[Any] , lowercase : int , lowercase : int ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def A ( self : Union[str, Any] , lowercase : int ): '''simple docstring''' _snake_case = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowercase ) return False if __name__ == "__main__": import doctest doctest.testmod()
282
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_:List[str] = { """configuration_blenderbot""": [ """BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlenderbotConfig""", """BlenderbotOnnxConfig""", ], """tokenization_blenderbot""": ["""BlenderbotTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Any = ["""BlenderbotTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[Any] = [ """BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlenderbotForCausalLM""", """BlenderbotForConditionalGeneration""", """BlenderbotModel""", """BlenderbotPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:str = [ """TFBlenderbotForConditionalGeneration""", """TFBlenderbotModel""", """TFBlenderbotPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:Optional[int] = [ """FlaxBlenderbotForConditionalGeneration""", """FlaxBlenderbotModel""", """FlaxBlenderbotPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
115
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_:Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Any = { """xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""", """xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""", """xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""", """xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""", """xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""", """xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""", """xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""", """xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""", """xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""", """xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""", } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : List[str] = "xlm" __lowerCamelCase : Tuple = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self, lowerCamelCase__=3_0145, lowerCamelCase__=2048, lowerCamelCase__=12, lowerCamelCase__=16, lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=False, lowerCamelCase__=1, lowerCamelCase__=True, lowerCamelCase__=512, lowerCamelCase__=2048**-0.5, lowerCamelCase__=1e-12, lowerCamelCase__=0.02, lowerCamelCase__=0, lowerCamelCase__=1, lowerCamelCase__=2, lowerCamelCase__=3, lowerCamelCase__=5, lowerCamelCase__=True, lowerCamelCase__="first", lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=True, lowerCamelCase__=0.1, lowerCamelCase__=5, lowerCamelCase__=5, lowerCamelCase__=0, lowerCamelCase__=0, lowerCamelCase__=2, lowerCamelCase__=0, **lowerCamelCase__, ): A : Dict = vocab_size A : int = emb_dim A : str = n_layers A : Union[str, Any] = n_heads A : Optional[int] = dropout A : Union[str, Any] = attention_dropout A : Optional[Any] = gelu_activation A : Dict = sinusoidal_embeddings A : int = causal A : Optional[Any] = asm A : Any = n_langs A : List[str] = use_lang_emb A : Union[str, Any] = layer_norm_eps A : str = bos_index A : int = eos_index A : Tuple = pad_index A : str = unk_index A : Optional[Any] = mask_index A : Union[str, Any] = is_encoder A : Tuple = max_position_embeddings A : List[str] = embed_init_std A : Tuple = init_std A : Tuple = summary_type A : int = summary_use_proj A : List[Any] = summary_activation A : Optional[Any] = summary_proj_to_labels A : Optional[Any] = summary_first_dropout A : Optional[int] = start_n_top A : Optional[Any] = end_n_top A : List[str] = mask_token_id A : Tuple = lang_id if "n_words" in kwargs: A : List[str] = kwargs["""n_words"""] super().__init__(pad_token_id=lowerCamelCase__, bos_token_id=lowerCamelCase__, **lowerCamelCase__ ) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @property def _lowerCAmelCase ( self ): if self.task == "multiple-choice": A : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
115
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A__ : List[str] = pytest.mark.integration A__ : Any = {'comet'} A__ : str = importlib.util.find_spec('fairseq') is not None A__ : Optional[int] = {'code_eval'} A__ : Optional[int] = os.name == 'nt' A__ : Union[str, Any] = {'bertscore', 'frugalscore', 'perplexity'} A__ : int = importlib.util.find_spec('transformers') is not None def _snake_case ( lowerCamelCase__ : Dict ) -> Any: @wraps(lowerCamelCase__ ) def wrapper(self : int , lowerCamelCase__ : Optional[int] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _snake_case ( lowerCamelCase__ : str ) -> Dict: @wraps(lowerCamelCase__ ) def wrapper(self : str , lowerCamelCase__ : Optional[int] ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _snake_case ( lowerCamelCase__ : Dict ) -> Optional[Any]: @wraps(lowerCamelCase__ ) def wrapper(self : List[str] , lowerCamelCase__ : str ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , lowerCamelCase__ ) return wrapper def _snake_case ( ) -> Any: lowerCamelCase_ : List[Any] =[metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case__, snake_case__, snake_case__ ) @local class lowercase__ ( parameterized.TestCase ): _UpperCAmelCase :Union[str, Any] = {} _UpperCAmelCase :Optional[int] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Tuple ): lowerCamelCase_ : int ="[...]" lowerCamelCase_ : List[Any] =importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , snake_case__ ) ).module_path ) lowerCamelCase_ : int =datasets.load.import_main_class(metric_module.__name__ , dataset=snake_case__ ) # check parameters lowerCamelCase_ : int =inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(snake_case__ , metric_module.__name__ ): with self.use_local_metrics(): try: lowerCamelCase_ : Dict =doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Any ): lowerCamelCase_ : List[str] ="[...]" lowerCamelCase_ : List[str] =importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , snake_case__ ) ).module_path ) # run doctest with self.use_local_metrics(): lowerCamelCase_ : Any =doctest.testmod(snake_case__ , verbose=snake_case__ , raise_on_error=snake_case__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def UpperCAmelCase__ ( self : Any , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](snake_case__ ): yield else: yield @contextmanager def UpperCAmelCase__ ( self : Tuple ): def load_local_metric(snake_case__ : Tuple , *snake_case__ : int , **snake_case__ : Dict ): return load_metric(os.path.join("metrics" , snake_case__ ) , *snake_case__ , **snake_case__ ) with patch("datasets.load_metric" ) as mock_load_metric: lowerCamelCase_ : List[str] =load_local_metric yield @classmethod def UpperCAmelCase__ ( cls : Dict , snake_case__ : int ): def wrapper(snake_case__ : Optional[int] ): lowerCamelCase_ : int =contextmanager(snake_case__ ) lowerCamelCase_ : Dict =patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def _snake_case ( lowerCamelCase__ : Optional[int] ) -> Dict: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class lowercase__ ( snake_case__ ): def UpperCAmelCase__ ( self : List[str] , snake_case__ : Union[str, Any] ): assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: lowerCamelCase_ : int =MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def _snake_case ( lowerCamelCase__ : Tuple ) -> Optional[Any]: import torch def bert_cos_score_idf(lowerCamelCase__ : List[Any] , lowerCamelCase__ : Tuple , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(lowerCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: lowerCamelCase_ : Optional[int] =bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def _snake_case ( lowerCamelCase__ : str ) -> Optional[Any]: def load_from_checkpoint(lowerCamelCase__ : Optional[int] ): class lowercase__ : def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[str] , *snake_case__ : List[str] , **snake_case__ : Dict ): assert len(snake_case__ ) == 2 lowerCamelCase_ : int =[0.19, 0.92] return scores, sum(snake_case__ ) / len(snake_case__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: lowerCamelCase_ : Optional[int] =None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: lowerCamelCase_ : Union[str, Any] =load_from_checkpoint yield def _snake_case ( ) -> List[str]: lowerCamelCase_ : Any =load_metric(os.path.join("metrics" , "seqeval" ) ) lowerCamelCase_ : int ="ERROR" lowerCamelCase_ : int =F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(lowerCamelCase__ , match=re.escape(lowerCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=lowerCamelCase__ )
144
"""simple docstring""" def _snake_case ( lowerCamelCase__ : str ) -> str: if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) lowerCamelCase_ : Optional[Any] ="" while len(lowerCamelCase__ ) % 3 != 0: lowerCamelCase_ : Any ="0" + bin_string lowerCamelCase_ : int =[ bin_string[index : index + 3] for index in range(len(lowerCamelCase__ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCamelCase_ : int =0 for index, val in enumerate(lowerCamelCase__ ): oct_val += int(2 ** (2 - index) * int(lowerCamelCase__ ) ) oct_string += str(lowerCamelCase__ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
144
1
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __UpperCamelCase = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _A : def __init__( self : int , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=16 , __magic_name__ : Dict=13 , __magic_name__ : Optional[Any]=7 , __magic_name__ : Optional[Any]=14 , __magic_name__ : Optional[int]=10 , __magic_name__ : int=19 , __magic_name__ : Tuple=5 , __magic_name__ : List[str]=4 , __magic_name__ : Tuple=True , __magic_name__ : int=16 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Any=4 , __magic_name__ : str=4 , __magic_name__ : Tuple="gelu" , __magic_name__ : Tuple=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Optional[Any]=[1, 2, 3, 4, 5] , __magic_name__ : Optional[int]=25 , __magic_name__ : List[Any]=5 , ) -> Tuple: """simple docstring""" __snake_case : List[Any] = d_model __snake_case : str = parent __snake_case : int = batch_size __snake_case : Optional[Any] = prediction_length __snake_case : Tuple = context_length __snake_case : Tuple = cardinality __snake_case : List[Any] = num_time_features __snake_case : Optional[int] = lags_sequence __snake_case : List[str] = embedding_dimension __snake_case : List[str] = is_training __snake_case : Any = hidden_size __snake_case : List[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_act __snake_case : str = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Any = context_length __snake_case : Optional[int] = prediction_length + label_length __snake_case : Tuple = label_length __snake_case : List[Any] = moving_average __snake_case : Union[str, Any] = autocorrelation_factor def lowercase__ ( self : Any ) -> int: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowercase__ ( self : Tuple , __magic_name__ : Any ) -> Any: """simple docstring""" __snake_case : Union[str, Any] = config.context_length + max(config.lags_sequence ) __snake_case : List[str] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __snake_case : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __snake_case : Union[str, Any] = floats_tensor([self.batch_size, _past_length] ) __snake_case : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __snake_case : List[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __snake_case : int = floats_tensor([self.batch_size, config.prediction_length] ) __snake_case : List[Any] = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : int = self.get_config() __snake_case : Any = self.prepare_autoformer_inputs_dict(__A ) return config, inputs_dict def lowercase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __snake_case , __snake_case : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = AutoformerModel(config=__A ).to(__A ).eval() __snake_case : Optional[int] = model(**__A ) __snake_case : str = outputs.encoder_last_hidden_state __snake_case : List[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Optional[int] = model.get_encoder() encoder.save_pretrained(__A ) __snake_case : Tuple = AutoformerEncoder.from_pretrained(__A ).to(__A ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = model.create_network_inputs(**__A ) __snake_case , __snake_case : List[Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __snake_case : Any = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __snake_case : Optional[int] = encoder(inputs_embeds=__A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) __snake_case : str = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __snake_case : int = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __snake_case : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __snake_case : int = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[str] = model.get_decoder() decoder.save_pretrained(__A ) __snake_case : Optional[int] = AutoformerDecoder.from_pretrained(__A ).to(__A ) __snake_case : str = decoder( trend=__A , inputs_embeds=__A , encoder_hidden_states=__A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: str = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () lowercase__: Tuple = (AutoformerForPrediction,) if is_torch_available() else () lowercase__: str = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} lowercase__: Optional[int] = False lowercase__: List[str] = False lowercase__: Union[str, Any] = False lowercase__: int = False lowercase__: str = False lowercase__: Optional[Any] = False def lowercase__ ( self : int ) -> Optional[Any]: """simple docstring""" __snake_case : str = AutoformerModelTester(self ) __snake_case : int = ConfigTester(self , config_class=__A , has_text_modality=__A ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : Dict = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) __snake_case , __snake_case : Any = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info["""missing_keys"""] , [] ) def lowercase__ ( self : str ) -> Dict: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def lowercase__ ( self : Tuple ) -> Optional[int]: """simple docstring""" pass def lowercase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __snake_case : Tuple = inspect.signature(getattr(__A , """forward""" ) ) # The main input is the name of the argument after `self` __snake_case : Dict = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __A ) def lowercase__ ( self : Optional[int] ) -> str: """simple docstring""" __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(__A ) __snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : str = [*signature.parameters.keys()] __snake_case : Optional[int] = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__A )] , __A ) def lowercase__ ( self : Any ) -> List[str]: """simple docstring""" __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = True __snake_case : Optional[int] = getattr(self.model_tester , """seq_length""" , __A ) __snake_case : Any = getattr(self.model_tester , """decoder_seq_length""" , __A ) __snake_case : str = getattr(self.model_tester , """encoder_seq_length""" , __A ) __snake_case : Any = getattr(self.model_tester , """d_model""" , __A ) __snake_case : List[str] = getattr(self.model_tester , """num_attention_heads""" , __A ) __snake_case : Dict = d_model // num_attention_heads for model_class in self.all_model_classes: __snake_case : Any = True __snake_case : Dict = False __snake_case : Optional[int] = True __snake_case : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__A , __A ) ) __snake_case : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : List[str] = True __snake_case : str = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(__A , __A ) ) __snake_case : Tuple = outputs.encoder_attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __snake_case : Any = len(__A ) __snake_case : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__A , __A ) # decoder attentions __snake_case : int = outputs.decoder_attentions self.assertIsInstance(__A , (list, tuple) ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __snake_case : Any = outputs.cross_attentions self.assertIsInstance(__A , (list, tuple) ) self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __snake_case : str = True __snake_case : Tuple = True __snake_case : Optional[int] = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): __snake_case : List[Any] = model(**self._prepare_for_class(__A , __A ) ) self.assertEqual(out_len + 2 , len(__A ) ) __snake_case : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def _a ( _lowerCamelCase : Union[str, Any]="train-batch.pt" ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_lowercase , repo_type="""dataset""" ) __snake_case : Union[str, Any] = torch.load(_lowercase , map_location=_lowercase ) return batch @require_torch @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Optional[Any] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__A ) __snake_case : Union[str, Any] = prepare_batch() with torch.no_grad(): __snake_case : Tuple = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] __snake_case : List[Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __A ) __snake_case : Any = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__A ) self.assertTrue(torch.allclose(output[0, :3, :3] , __A , atol=__A ) ) def lowercase__ ( self : Any ) -> str: """simple docstring""" __snake_case : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__A ) __snake_case : Dict = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : List[str] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state __snake_case : Union[str, Any] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __A ) __snake_case : Tuple = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__A ) self.assertTrue(torch.allclose(output[0, :3, :3] , __A , atol=__A ) ) def lowercase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__A ) __snake_case : Tuple = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): __snake_case : str = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) __snake_case : Tuple = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __A ) __snake_case : Optional[int] = torch.tensor([31_30.67_63, 40_56.52_93, 70_53.07_86] , device=__A ) __snake_case : List[str] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __A , rtol=1E-1 ) )
358
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "Salesforce/codegen-350M-nl": "https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json", "Salesforce/codegen-350M-multi": "https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json", "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json", "Salesforce/codegen-2B-nl": "https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json", "Salesforce/codegen-2B-multi": "https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json", "Salesforce/codegen-2B-mono": "https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json", "Salesforce/codegen-6B-nl": "https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json", "Salesforce/codegen-6B-multi": "https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json", "Salesforce/codegen-6B-mono": "https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json", "Salesforce/codegen-16B-nl": "https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json", "Salesforce/codegen-16B-multi": "https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json", "Salesforce/codegen-16B-mono": "https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json", } class _A ( __lowercase ): lowercase__: str = '''codegen''' lowercase__: Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , __magic_name__ : Optional[Any]=5_04_00 , __magic_name__ : Any=20_48 , __magic_name__ : List[str]=20_48 , __magic_name__ : Union[str, Any]=40_96 , __magic_name__ : Tuple=28 , __magic_name__ : Dict=16 , __magic_name__ : List[str]=64 , __magic_name__ : str=None , __magic_name__ : Tuple="gelu_new" , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=0.0 , __magic_name__ : Dict=0.0 , __magic_name__ : Optional[Any]=1E-5 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=True , __magic_name__ : int=5_02_56 , __magic_name__ : int=5_02_56 , __magic_name__ : Any=False , **__magic_name__ : Optional[int] , ) -> int: """simple docstring""" __snake_case : List[str] = vocab_size __snake_case : Union[str, Any] = n_ctx __snake_case : int = n_positions __snake_case : str = n_embd __snake_case : Dict = n_layer __snake_case : List[Any] = n_head __snake_case : Any = n_inner __snake_case : str = rotary_dim __snake_case : List[str] = activation_function __snake_case : Tuple = resid_pdrop __snake_case : Dict = embd_pdrop __snake_case : int = attn_pdrop __snake_case : Tuple = layer_norm_epsilon __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = use_cache __snake_case : Dict = bos_token_id __snake_case : Union[str, Any] = eos_token_id super().__init__( bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , tie_word_embeddings=__magic_name__ , **__magic_name__ ) class _A ( __lowercase ): def __init__( self : int , __magic_name__ : PretrainedConfig , __magic_name__ : str = "default" , __magic_name__ : List[PatchingSpec] = None , __magic_name__ : bool = False , ) -> Tuple: """simple docstring""" super().__init__(__magic_name__ , task=__magic_name__ , patching_specs=__magic_name__ , use_past=__magic_name__ ) if not getattr(self._config , """pad_token_id""" , __magic_name__ ): # TODO: how to do that better? __snake_case : List[str] = 0 @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" __snake_case : Dict = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(__magic_name__ , direction="""inputs""" ) __snake_case : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowercase__ ( self : Tuple ) -> int: """simple docstring""" return self._config.n_layer @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self._config.n_head def lowercase__ ( self : Dict , __magic_name__ : PreTrainedTokenizer , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" __snake_case : Tuple = super(__magic_name__ , self ).generate_dummy_inputs( __magic_name__ , batch_size=__magic_name__ , seq_length=__magic_name__ , is_pair=__magic_name__ , framework=__magic_name__ ) # We need to order the input in the way they appears in the forward() __snake_case : Union[str, Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __snake_case , __snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case : Tuple = seqlen + 2 __snake_case : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case : List[str] = [ (torch.zeros(__magic_name__ ), torch.zeros(__magic_name__ )) for _ in range(self.num_layers ) ] __snake_case : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: __snake_case : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype __snake_case : Optional[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(__magic_name__ , __magic_name__ , dtype=__magic_name__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return 13
13
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int | str] ) -> None: create_state_space_tree(SCREAMING_SNAKE_CASE__, [], 0, [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int | str], SCREAMING_SNAKE_CASE__ : list[int | str], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : list[int], ) -> None: if index == len(SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ ) return for i in range(len(SCREAMING_SNAKE_CASE__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) UpperCAmelCase_ : str = True create_state_space_tree(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, index + 1, SCREAMING_SNAKE_CASE__ ) current_sequence.pop() UpperCAmelCase_ : Tuple = False snake_case_ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) snake_case_ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
125
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging snake_case_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class __a (lowerCamelCase ): def __init__( self : str , __magic_name__ : CLIPSegForImageSegmentation , __magic_name__ : CLIPSegProcessor , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , ) -> str: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Optional[int] = dict(scheduler.config ) UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = FrozenDict(__magic_name__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: UpperCAmelCase_ : Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , __magic_name__ , standard_warn=__magic_name__ ) UpperCAmelCase_ : Dict = dict(scheduler.config ) UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = FrozenDict(__magic_name__ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=__magic_name__ , segmentation_processor=__magic_name__ , vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> List[str]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def UpperCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase_ : Tuple = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__magic_name__ , __magic_name__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__magic_name__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : str , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) UpperCAmelCase_ : int = self.segmentation_model(**__magic_name__ ) UpperCAmelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCAmelCase_ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , )
125
1
from __future__ import annotations from scipy.special import comb # type: ignore class _snake_case : def __init__( self: str , __lowerCamelCase: list[tuple[float, float]] ) -> Optional[int]: __UpperCAmelCase : int = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __UpperCAmelCase : Dict = len(__lowerCamelCase ) - 1 def _lowerCamelCase ( self: List[str] , __lowerCamelCase: float ) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCAmelCase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__lowerCamelCase ) , 5 ) == 1 return output_values def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: float ) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." __UpperCAmelCase : Optional[int] = self.basis_function(__lowerCamelCase ) __UpperCAmelCase : Tuple = 0.0 __UpperCAmelCase : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: float = 0.01 ) -> Optional[Any]: from matplotlib import pyplot as plt # type: ignore __UpperCAmelCase : list[float] = [] # x coordinates of points to plot __UpperCAmelCase : list[float] = [] # y coordinates of points to plot __UpperCAmelCase : int = 0.0 while t <= 1: __UpperCAmelCase : Optional[Any] = self.bezier_curve_function(__lowerCamelCase ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __UpperCAmelCase : str = [i[0] for i in self.list_of_points] __UpperCAmelCase : str = [i[1] for i in self.list_of_points] plt.plot( __lowerCamelCase , __lowerCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , ) plt.scatter(__lowerCamelCase , __lowerCamelCase , color="red" , label="Control Points" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
342
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a : Tuple = logging.get_logger(__name__) a : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} a : Union[str, Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } a : List[Any] = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } a : Dict = '▁' class a ( snake_case__ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , lowercase_ : List[str] , lowercase_ : List[Any]="<s>" , lowercase_ : Optional[Any]="</s>" , lowercase_ : List[Any]="</s>" , lowercase_ : List[Any]="<s>" , lowercase_ : int="<unk>" , lowercase_ : str="<pad>" , lowercase_ : List[Any]="<mask>" , lowercase_ : List[str] = None , **lowercase_ : List[Any] , ): snake_case_ = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) snake_case_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} snake_case_ = len(self.sp_model ) - 1 snake_case_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A_ ( self : str , lowercase_ : List[Any] , lowercase_ : int = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A_ ( self : Optional[int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def A_ ( self : int , lowercase_ : Tuple , lowercase_ : str = None ): snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A_ ( self : List[Any] ): return len(self.sp_model ) def A_ ( self : Optional[int] ): snake_case_ = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : Tuple , lowercase_ : Optional[Any] ): return self.sp_model.encode(_A , out_type=_A ) def A_ ( self : int , lowercase_ : Tuple ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case_ = self.sp_model.PieceToId(_A ) return spm_id if spm_id else self.unk_token_id def A_ ( self : Dict , lowercase_ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_A ) def A_ ( self : int , lowercase_ : Dict ): snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_A ) snake_case_ = False out_string += self.sp_model.decode(_A ) return out_string.strip() def __getstate__( self : Union[str, Any] ): snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Optional[int] , lowercase_ : Union[str, Any] ): snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] = None ): if not os.path.isdir(_A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,)
56
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCamelCase__ = get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving model to {ckpt_dir}""" ) __lowerCAmelCase = {"model": state_dict} dist_cp.save_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(SCREAMING_SNAKE_CASE_ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __lowerCAmelCase = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCAmelCase = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading model from {input_model_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) __lowerCAmelCase = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=SCREAMING_SNAKE_CASE_ , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , planner=DefaultLoadPlanner() , ) __lowerCAmelCase = state_dict["model"] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=0 ): os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCAmelCase = FSDP.optim_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(SCREAMING_SNAKE_CASE_ ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( SCREAMING_SNAKE_CASE_ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCAmelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCAmelCase = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) __lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE_ ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: __lowerCAmelCase = ( os.path.join(SCREAMING_SNAKE_CASE_ , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) __lowerCAmelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(SCREAMING_SNAKE_CASE_ ) , ) __lowerCAmelCase = optim_state["optimizer"] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) __lowerCAmelCase = FSDP.optim_state_dict_to_load(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) optimizer.load_state_dict(SCREAMING_SNAKE_CASE_ )
92
0
class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = arr.split(',' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [int(self.array[0] )] * len(self.array ) __UpperCamelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __UpperCamelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __UpperCamelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase : List[Any] = input("please input some numbers:") UpperCamelCase : List[Any] = SubArray(whole_array) UpperCamelCase : Union[str, Any] = array.solve_sub_array() print(("the results is:", re))
369
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : int = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "distilbert" lowercase = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , __UpperCAmelCase=3_0522 , __UpperCAmelCase=512 , __UpperCAmelCase=False , __UpperCAmelCase=6 , __UpperCAmelCase=12 , __UpperCAmelCase=768 , __UpperCAmelCase=4 * 768 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2 , __UpperCAmelCase=0 , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = sinusoidal_pos_embds __UpperCamelCase = n_layers __UpperCamelCase = n_heads __UpperCamelCase = dim __UpperCamelCase = hidden_dim __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation __UpperCamelCase = initializer_range __UpperCamelCase = qa_dropout __UpperCamelCase = seq_classif_dropout super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @property def UpperCAmelCase ( self ): '''simple docstring''' if self.task == "multiple-choice": __UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
263
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
11
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any] ): _A , _A : Any = image.size _A , _A : str = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _A : List[str] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _A : Any = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_55.0 _A : Optional[Any] = image[None].transpose(0 , 3 , 1 , 2 ) _A : Union[str, Any] = torch.from_numpy(UpperCamelCase__ ) return 2.0 * image - 1.0 class lowerCAmelCase__ ( a): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Optional[int]: super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase) @torch.no_grad() def __call__( self , __lowerCamelCase = None , __lowerCamelCase = 1 , __lowerCamelCase = 1_0_0 , __lowerCamelCase = 0.0 , __lowerCamelCase = None , __lowerCamelCase = "pil" , __lowerCamelCase = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Tuple = 1 elif isinstance(__lowerCamelCase , torch.Tensor): _A : Union[str, Any] = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase)}") if isinstance(__lowerCamelCase , PIL.Image.Image): _A : Union[str, Any] = preprocess(__lowerCamelCase) _A , _A : Union[str, Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _A : Optional[Any] = (batch_size, self.unet.config.in_channels // 2, height, width) _A : str = next(self.unet.parameters()).dtype _A : Union[str, Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase) _A : List[Any] = image.to(device=self.device , dtype=__lowerCamelCase) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device) _A : Any = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _A : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _A : str = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) _A : Optional[int] = {} if accepts_eta: _A : List[Any] = eta for t in self.progress_bar(__lowerCamelCase): # concat latents and low resolution image in the channel dimension. _A : List[Any] = torch.cat([latents, image] , dim=1) _A : str = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase) # predict the noise residual _A : Any = self.unet(__lowerCamelCase , __lowerCamelCase).sample # compute the previous noisy sample x_t -> x_t-1 _A : Optional[int] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase).prev_sample # decode the image latents with the VQVAE _A : Union[str, Any] = self.vqvae.decode(__lowerCamelCase).sample _A : Dict = torch.clamp(__lowerCamelCase , -1.0 , 1.0) _A : Tuple = image / 2 + 0.5 _A : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _A : Optional[int] = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase)
11
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( __snake_case, unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any = KandinskyVaaControlnetPipeline SCREAMING_SNAKE_CASE_ : Any = ["""image_embeds""", """negative_image_embeds""", """hint"""] SCREAMING_SNAKE_CASE_ : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] SCREAMING_SNAKE_CASE_ : Any = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] SCREAMING_SNAKE_CASE_ : str = False @property def lowercase_ ( self : Any)-> Union[str, Any]: '''simple docstring''' return 3_2 @property def lowercase_ ( self : int)-> List[Any]: '''simple docstring''' return 3_2 @property def lowercase_ ( self : Any)-> int: '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self : List[str])-> Tuple: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self : int)-> Optional[int]: '''simple docstring''' return 1_0_0 @property def lowercase_ ( self : Dict)-> Optional[int]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: List[Any] = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } __lowerCAmelCase: str = UNetaDConditionModel(**UpperCamelCase__) return model @property def lowercase_ ( self : List[Any])-> Optional[Any]: '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase_ ( self : Dict)-> Tuple: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: str = VQModel(**self.dummy_movq_kwargs) return model def lowercase_ ( self : List[str])-> Optional[int]: '''simple docstring''' __lowerCAmelCase: Any = self.dummy_unet __lowerCAmelCase: Any = self.dummy_movq __lowerCAmelCase: List[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCamelCase__ , ) __lowerCAmelCase: Optional[int] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase_ ( self : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : int=0)-> str: '''simple docstring''' __lowerCAmelCase: Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__)).to(UpperCamelCase__) __lowerCAmelCase: int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( UpperCamelCase__) # create hint __lowerCAmelCase: str = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(UpperCamelCase__)).to(UpperCamelCase__) if str(UpperCamelCase__).startswith("mps"): __lowerCAmelCase: Optional[Any] = torch.manual_seed(UpperCamelCase__) else: __lowerCAmelCase: str = torch.Generator(device=UpperCamelCase__).manual_seed(UpperCamelCase__) __lowerCAmelCase: List[Any] = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowercase_ ( self : int)-> List[str]: '''simple docstring''' __lowerCAmelCase: Dict = "cpu" __lowerCAmelCase: Optional[int] = self.get_dummy_components() __lowerCAmelCase: Optional[Any] = self.pipeline_class(**UpperCamelCase__) __lowerCAmelCase: List[Any] = pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Union[str, Any] = pipe(**self.get_dummy_inputs(UpperCamelCase__)) __lowerCAmelCase: int = output.images __lowerCAmelCase: int = pipe( **self.get_dummy_inputs(UpperCamelCase__) , return_dict=UpperCamelCase__ , )[0] __lowerCAmelCase: str = image[0, -3:, -3:, -1] __lowerCAmelCase: List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __lowerCAmelCase: Any = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : List[Any])-> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Optional[int])-> List[str]: '''simple docstring''' __lowerCAmelCase: Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy") __lowerCAmelCase: Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") __lowerCAmelCase: Union[str, Any] = torch.from_numpy(np.array(UpperCamelCase__)).float() / 255.0 __lowerCAmelCase: List[Any] = hint.permute(2 , 0 , 1).unsqueeze(0) __lowerCAmelCase: List[Any] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa) pipe_prior.to(UpperCamelCase__) __lowerCAmelCase: List[str] = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa) __lowerCAmelCase: Union[str, Any] = pipeline.to(UpperCamelCase__) pipeline.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = "A robot, 4k photo" __lowerCAmelCase: Tuple = torch.Generator(device="cuda").manual_seed(0) __lowerCAmelCase , __lowerCAmelCase: Dict = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __lowerCAmelCase: Tuple = torch.Generator(device="cuda").manual_seed(0) __lowerCAmelCase: List[Any] = pipeline( image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , hint=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=1_0_0 , output_type="np" , ) __lowerCAmelCase: Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__)
108
"""simple docstring""" import math import sys def a__ ( __SCREAMING_SNAKE_CASE ) -> int: if number != int(__SCREAMING_SNAKE_CASE ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 __lowerCAmelCase: int = [-1] * (number + 1) __lowerCAmelCase: Optional[Any] = 0 for i in range(1 , number + 1 ): __lowerCAmelCase: List[str] = sys.maxsize __lowerCAmelCase: int = int(math.sqrt(__SCREAMING_SNAKE_CASE ) ) for j in range(1 , root + 1 ): __lowerCAmelCase: Optional[Any] = 1 + answers[i - (j**2)] __lowerCAmelCase: List[Any] = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
108
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case : int = '''Create a default config file for Accelerate with only a few flags set.''' def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any]="no" , UpperCAmelCase_ : str = default_json_config_file , UpperCAmelCase_ : bool = False ): """simple docstring""" a :List[str] = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False a :Optional[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) a :List[Any] = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): a :Dict = torch.cuda.device_count() a :Tuple = num_gpus a :int = False if num_gpus > 1: a :str = '''MULTI_GPU''' else: a :List[Any] = '''NO''' elif is_xpu_available() and use_xpu: a :List[Any] = torch.xpu.device_count() a :Optional[int] = num_xpus a :List[Any] = False if num_xpus > 1: a :int = '''MULTI_XPU''' else: a :str = '''NO''' elif is_npu_available(): a :List[str] = torch.npu.device_count() a :Any = num_npus a :Optional[int] = False if num_npus > 1: a :List[str] = '''MULTI_NPU''' else: a :Dict = '''NO''' else: a :str = 0 a :Optional[Any] = True a :Optional[Any] = 1 a :str = '''NO''' a :List[str] = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :List[Any] = parser.add_parser('''default''' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '''--config_file''' , default=UpperCAmelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=UpperCAmelCase_ , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
94
from __future__ import annotations import collections import pprint from pathlib import Path def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return "".join(sorted(UpperCAmelCase_ ) ) def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" return word_by_signature[signature(UpperCAmelCase_ )] snake_case : str = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') snake_case : Optional[int] = sorted({word.strip().lower() for word in data.splitlines()}) snake_case : str = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": snake_case : Optional[int] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
94
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
1
from __future__ import annotations __snake_case :str = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __a = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCAmelCase ) ) ] # the reference grid __a = 1 __a = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_UpperCAmelCase ) ) ] # the action grid __a = init[0] __a = init[1] __a = 0 __a = g + heuristic[x][y] # cost from starting cell to destination cell __a = [[f, g, x, y]] __a = False # flag that is set when search is complete __a = False # flag set if we can't find expand while not found and not resign: if len(_UpperCAmelCase ) == 0: raise ValueError('''Algorithm is unable to find solution''' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __a = cell.pop() __a = next_cell[2] __a = next_cell[3] __a = next_cell[1] if x == goal[0] and y == goal[1]: __a = True else: for i in range(len(_UpperCAmelCase ) ): # to try out different valid actions __a = x + DIRECTIONS[i][0] __a = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __a = g + cost __a = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __a = 1 __a = i __a = [] __a = goal[0] __a = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __a = x - DIRECTIONS[action[x][y]][0] __a = y - DIRECTIONS[action[x][y]][1] __a = xa __a = ya invpath.append([x, y] ) __a = [] for i in range(len(_UpperCAmelCase ) ): path.append(invpath[len(_UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __snake_case :Dict = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __snake_case :List[Any] = [0, 0] # all coordinates are given in format [y,x] __snake_case :Tuple = [len(grid) - 1, len(grid[0]) - 1] __snake_case :Any = 1 # the cost map which pushes the path closer to the goal __snake_case :Optional[int] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __snake_case :Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __snake_case :int = 99 __snake_case ,__snake_case :int = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
49
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _A ( __UpperCAmelCase ): def __init__( self : List[Any] , *__SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : str): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = eval_examples __a = post_process_function def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Dataset] = None , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , __SCREAMING_SNAKE_CASE : str = "eval" , **__SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' __a = gen_kwargs.copy() __a = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''') is not None else self.args.generation_max_length ) __a = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''') is not None else self.args.generation_num_beams ) __a = gen_kwargs __a = self.eval_dataset if eval_dataset is None else eval_dataset __a = self.get_eval_dataloader(__SCREAMING_SNAKE_CASE) __a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( __SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __a = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = self.compute_metrics(__SCREAMING_SNAKE_CASE) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'{metric_key_prefix}_'): __a = metrics.pop(__SCREAMING_SNAKE_CASE) metrics.update(output.metrics) else: __a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__SCREAMING_SNAKE_CASE) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) __a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __SCREAMING_SNAKE_CASE) return metrics def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : str = "test" , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = gen_kwargs.copy() __a = self.get_test_dataloader(__SCREAMING_SNAKE_CASE) # Temporarily disable metric computation, we will do it in the loop here. __a = self.compute_metrics __a = None __a = time.time() __a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __a = eval_loop( __SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: __a = compute_metrics __a = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output __a = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''predict''') __a = self.compute_metrics(__SCREAMING_SNAKE_CASE) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'{metric_key_prefix}_'): __a = metrics.pop(__SCREAMING_SNAKE_CASE) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__SCREAMING_SNAKE_CASE)
49
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _SCREAMING_SNAKE_CASE ( lowercase : NDArray[floataa] , lowercase : NDArray[floataa] , lowercase : list[int] , lowercase : int , ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = coefficient_matrix.shape lowerCamelCase_ , lowerCamelCase_ = constant_matrix.shape if rowsa != colsa: lowerCamelCase_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(lowercase ) if colsa != 1: lowerCamelCase_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(lowercase ) if rowsa != rowsa: lowerCamelCase_ = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(lowercase ) if len(lowercase ) != rowsa: lowerCamelCase_ = ( 'Number of initial values must be equal to number of rows in coefficient ' f"""matrix but received {len(lowercase )} and {rowsa}""" ) raise ValueError(lowercase ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) lowerCamelCase_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_ , lowerCamelCase_ = table.shape strictly_diagonally_dominant(lowercase ) # Iterates the whole matrix for given number of times for _ in range(lowercase ): lowerCamelCase_ = [] for row in range(lowercase ): lowerCamelCase_ = 0 for col in range(lowercase ): if col == row: lowerCamelCase_ = table[row][col] elif col == cols - 1: lowerCamelCase_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ = (temp + val) / denom new_val.append(lowercase ) lowerCamelCase_ = new_val return [float(lowercase ) for i in new_val] def _SCREAMING_SNAKE_CASE ( lowercase : NDArray[floataa] ): '''simple docstring''' lowerCamelCase_ , lowerCamelCase_ = table.shape lowerCamelCase_ = True for i in range(0 , lowercase ): lowerCamelCase_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
352
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = 42 class A( UpperCamelCase , UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self : Tuple , A_ : int = 32 , A_ : int = 64 , A_ : int = 20 , A_ : int = 768 , A_ : Optional[Any]=77 , A_ : Optional[int]=4 , A_ : float = 0.0 , A_ : str = "silu" , A_ : Optional[str] = None , A_ : Optional[str] = None , A_ : Optional[str] = "linear" , A_ : Optional[str] = "prd" , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : Optional[int] = None , ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = additional_embeddings lowerCamelCase_ = time_embed_dim or inner_dim lowerCamelCase_ = embedding_proj_dim or embedding_dim lowerCamelCase_ = clip_embed_dim or embedding_dim lowerCamelCase_ = Timesteps(A_ , A_ , 0 ) lowerCamelCase_ = TimestepEmbedding(A_ , A_ , out_dim=A_ , act_fn=A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if embedding_proj_norm_type is None: lowerCamelCase_ = None elif embedding_proj_norm_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCamelCase_ = nn.Linear(A_ , A_ ) if encoder_hid_proj_type is None: lowerCamelCase_ = None elif encoder_hid_proj_type == "linear": lowerCamelCase_ = nn.Linear(A_ , A_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , A_ ) ) if added_emb_type == "prd": lowerCamelCase_ = nn.Parameter(torch.zeros(1 , 1 , A_ ) ) elif added_emb_type is None: lowerCamelCase_ = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( A_ , A_ , A_ , dropout=A_ , activation_fn='gelu' , attention_bias=A_ , ) for d in range(A_ ) ] ) if norm_in_type == "layer": lowerCamelCase_ = nn.LayerNorm(A_ ) elif norm_in_type is None: lowerCamelCase_ = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCamelCase_ = nn.LayerNorm(A_ ) lowerCamelCase_ = nn.Linear(A_ , A_ ) lowerCamelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) lowerCamelCase_ = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , A_ , persistent=A_ ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , A_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self : str ) -> Dict[str, AttentionProcessor]: """simple docstring""" lowerCamelCase_ = {} def fn_recursive_add_processors(A_ : str , A_ : torch.nn.Module , A_ : Dict[str, AttentionProcessor] ): if hasattr(A_ , 'set_processor' ): lowerCamelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , A_ , A_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(A_ , A_ , A_ ) return processors def a__ ( self : List[Any] , A_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Dict: """simple docstring""" lowerCamelCase_ = len(self.attn_processors.keys() ) if isinstance(A_ , A_ ) and len(A_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(A_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(A_ : str , A_ : torch.nn.Module , A_ : Union[str, Any] ): if hasattr(A_ , 'set_processor' ): if not isinstance(A_ , A_ ): module.set_processor(A_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , A_ , A_ ) for name, module in self.named_children(): fn_recursive_attn_processor(A_ , A_ , A_ ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" self.set_attn_processor(AttnProcessor() ) def a__ ( self : Dict , A_ : List[Any] , A_ : Union[torch.Tensor, float, int] , A_ : torch.FloatTensor , A_ : Optional[torch.FloatTensor] = None , A_ : Optional[torch.BoolTensor] = None , A_ : bool = True , ) -> str: """simple docstring""" lowerCamelCase_ = hidden_states.shape[0] lowerCamelCase_ = timestep if not torch.is_tensor(A_ ): lowerCamelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(A_ ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps * torch.ones(A_ , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase_ = self.time_proj(A_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCamelCase_ = timesteps_projected.to(dtype=self.dtype ) lowerCamelCase_ = self.time_embedding(A_ ) if self.embedding_proj_norm is not None: lowerCamelCase_ = self.embedding_proj_norm(A_ ) lowerCamelCase_ = self.embedding_proj(A_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCamelCase_ = self.encoder_hidden_states_proj(A_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCamelCase_ = self.proj_in(A_ ) lowerCamelCase_ = self.positional_embedding.to(hidden_states.dtype ) lowerCamelCase_ = [] lowerCamelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(A_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCamelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCamelCase_ = hidden_states[:, None, :] lowerCamelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCamelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(A_ , -1 , -1 ) additional_embeds.append(A_ ) lowerCamelCase_ = torch.cat( A_ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCamelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCamelCase_ = F.pad( A_ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCamelCase_ = hidden_states + positional_embeddings if attention_mask is not None: lowerCamelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 lowerCamelCase_ = F.pad(A_ , (0, self.additional_embeddings) , value=0.0 ) lowerCamelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCamelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCamelCase_ = self.norm_in(A_ ) for block in self.transformer_blocks: lowerCamelCase_ = block(A_ , attention_mask=A_ ) lowerCamelCase_ = self.norm_out(A_ ) if self.prd_embedding is not None: lowerCamelCase_ = hidden_states[:, -1] else: lowerCamelCase_ = hidden_states[:, additional_embeddings_len:] lowerCamelCase_ = self.proj_to_clip_embeddings(A_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=A_ ) def a__ ( self : Tuple , A_ : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
208
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class A__ ( _lowerCamelCase): A_ : Optional[Any] = ['pixel_values'] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 2_55 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ): super().__init__(**_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = size if size is not None else {'shortest_edge': 2_24} __lowerCAmelCase : List[str] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} __lowerCAmelCase : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name='crop_size' ) __lowerCAmelCase : Tuple = do_resize __lowerCAmelCase : Union[str, Any] = size __lowerCAmelCase : str = resample __lowerCAmelCase : Optional[int] = do_center_crop __lowerCAmelCase : List[Any] = crop_size __lowerCAmelCase : Any = do_rescale __lowerCAmelCase : List[str] = rescale_factor __lowerCAmelCase : Tuple = do_normalize __lowerCAmelCase : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowerCAmelCase : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD __lowerCAmelCase : str = do_convert_rgb def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : str = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) __lowerCAmelCase : List[Any] = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size['shortest_edge'] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : Dict = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ): __lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase : Dict = size if size is not None else self.size __lowerCAmelCase : Optional[int] = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='size' , default_to_square=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = resample if resample is not None else self.resample __lowerCAmelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase : Any = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' , default_to_square=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase : int = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase : int = image_std if image_std is not None else self.image_std __lowerCAmelCase : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowerCAmelCase : Optional[Any] = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowerCAmelCase : Union[str, Any] = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. __lowerCAmelCase : Dict = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __lowerCAmelCase : int = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: __lowerCAmelCase : Any = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __lowerCAmelCase : str = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __lowerCAmelCase : List[Any] = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] __lowerCAmelCase : Dict = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] __lowerCAmelCase : Tuple = {'pixel_values': images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
86
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCamelCase__ = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): for attribute in key.split('.' ): __lowerCAmelCase : str = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: __lowerCAmelCase : Tuple = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: __lowerCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": __lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_g": __lowerCAmelCase : List[Any] = value elif weight_type == "weight_v": __lowerCAmelCase : Any = value elif weight_type == "bias": __lowerCAmelCase : List[str] = value else: __lowerCAmelCase : List[Any] = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : Any = [] __lowerCAmelCase : Optional[int] = fairseq_model.state_dict() __lowerCAmelCase : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) __lowerCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCAmelCase : int = True if "*" in mapped_key: __lowerCAmelCase : List[str] = name.split(_UpperCamelCase )[0].split('.' )[-2] __lowerCAmelCase : Optional[Any] = mapped_key.replace('*' , _UpperCamelCase ) if "weight_g" in name: __lowerCAmelCase : Union[str, Any] = 'weight_g' elif "weight_v" in name: __lowerCAmelCase : int = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __lowerCAmelCase : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __lowerCAmelCase : List[str] = 'weight' else: __lowerCAmelCase : Optional[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"Unused weights: {unused_weights}" ) def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[Any] = full_name.split('conv_layers.' )[-1] __lowerCAmelCase : Any = name.split('.' ) __lowerCAmelCase : List[Any] = int(items[0] ) __lowerCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __lowerCAmelCase : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __lowerCAmelCase : int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) __lowerCAmelCase : Optional[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"{full_name} has size {value.shape}, but" F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) __lowerCAmelCase : Any = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): # load the pre-trained checkpoints __lowerCAmelCase : Any = torch.load(_UpperCamelCase ) __lowerCAmelCase : List[str] = WavLMConfigOrig(checkpoint['cfg'] ) __lowerCAmelCase : Optional[Any] = WavLMOrig(_UpperCamelCase ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __lowerCAmelCase : Dict = WavLMConfig.from_pretrained(_UpperCamelCase ) else: __lowerCAmelCase : List[str] = WavLMConfig() __lowerCAmelCase : List[str] = WavLMModel(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase ) hf_wavlm.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCamelCase__ = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
86
1
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase( )-> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
350
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :int = KandinskyVaaImgaImgPipeline UpperCamelCase_ :Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image"""] UpperCamelCase_ :Dict = [ """image_embeds""", """negative_image_embeds""", """image""", ] UpperCamelCase_ :Tuple = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCamelCase_ :int = False @property def UpperCAmelCase_ ( self )-> List[str]: return 32 @property def UpperCAmelCase_ ( self )-> List[Any]: return 32 @property def UpperCAmelCase_ ( self )-> Tuple: return self.time_input_dim @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self )-> Any: return 100 @property def UpperCAmelCase_ ( self )-> Tuple: torch.manual_seed(0 ) UpperCamelCase_ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase_ = UNetaDConditionModel(**_lowercase ) return model @property def UpperCAmelCase_ ( self )-> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self )-> Any: torch.manual_seed(0 ) UpperCamelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self )-> Tuple: UpperCamelCase_ = self.dummy_unet UpperCamelCase_ = self.dummy_movq UpperCamelCase_ = { "num_train_timesteps": 1_000, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCamelCase_ = DDIMScheduler(**_lowercase ) UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self , _lowercase , _lowercase=0 )-> Tuple: UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase_ = Image.fromarray(np.uinta(_lowercase ) ).convert("RGB" ).resize((256, 256) ) if str(_lowercase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self )-> Optional[int]: UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_lowercase ) UpperCamelCase_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(_lowercase ) ) UpperCamelCase_ = output.images UpperCamelCase_ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def UpperCAmelCase_ ( self )-> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self )-> List[str]: UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase_ = "A red cartoon frog, 4k" UpperCamelCase_ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) UpperCamelCase_ = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCamelCase_ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) UpperCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase_ , UpperCamelCase_ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase_ = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) UpperCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
60
0
from abc import ABC, abstractmethod from typing import List, Optional class _snake_case ( snake_case ): def __init__( self ): # test for the above condition self.test() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = 0 __magic_name__ : Dict = False while not completed: if counter == 1: self.reset() __magic_name__ : Dict = self.advance() if not self.does_advance(_a ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = self.update(_a ) counter += 1 if counter > 10_000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def SCREAMING_SNAKE_CASE ( self ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self , _a=False ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case ( snake_case ): def __init__( self , _a ): super(_a , self ).__init__() if not isinstance(_a , _a ) or len(_a ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_a , _a ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __magic_name__ : List[str] = token_ids __magic_name__ : List[str] = len(self.token_ids ) __magic_name__ : Dict = -1 # the index of the currently fulfilled step __magic_name__ : Optional[int] = False def SCREAMING_SNAKE_CASE ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE ( self , _a ): if not isinstance(_a , _a ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_a )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE ( self , _a ): if not isinstance(_a , _a ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_a )}''' ) __magic_name__ : Tuple = False __magic_name__ : List[str] = False __magic_name__ : Any = False if self.does_advance(_a ): self.fulfilled_idx += 1 __magic_name__ : Optional[int] = True if self.fulfilled_idx == (self.seqlen - 1): __magic_name__ : Any = True __magic_name__ : Optional[int] = completed else: # failed to make progress. __magic_name__ : Any = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = False __magic_name__ : str = 0 def SCREAMING_SNAKE_CASE ( self ): return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE ( self , _a=False ): __magic_name__ : str = PhrasalConstraint(self.token_ids ) if stateful: __magic_name__ : str = self.seqlen __magic_name__ : Any = self.fulfilled_idx __magic_name__ : Tuple = self.completed return new_constraint class _snake_case : def __init__( self , _a , _a=True ): __magic_name__ : Union[str, Any] = max([len(_a ) for one in nested_token_ids] ) __magic_name__ : List[Any] = {} for token_ids in nested_token_ids: __magic_name__ : Optional[int] = root for tidx, token_id in enumerate(_a ): if token_id not in level: __magic_name__ : List[Any] = {} __magic_name__ : Optional[int] = level[token_id] if no_subsets and self.has_subsets(_a , _a ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f''' {nested_token_ids}.''' ) __magic_name__ : int = root def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : int = self.trie for current_token in current_seq: __magic_name__ : Union[str, Any] = start[current_token] __magic_name__ : int = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : int = self.next_tokens(_a ) return len(_a ) == 0 def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Tuple = list(root.values() ) if len(_a ) == 0: return 1 else: return sum([self.count_leaves(_a ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : List[Any] = self.count_leaves(_a ) return len(_a ) != leaf_count class _snake_case ( snake_case ): def __init__( self , _a ): super(_a , self ).__init__() if not isinstance(_a , _a ) or len(_a ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_a , _a ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_a , _a ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __magic_name__ : Any = DisjunctiveTrie(_a ) __magic_name__ : str = nested_token_ids __magic_name__ : List[str] = self.trie.max_height __magic_name__ : Optional[Any] = [] __magic_name__ : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = self.trie.next_tokens(self.current_seq ) if len(_a ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE ( self , _a ): if not isinstance(_a , _a ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_a )}''' ) __magic_name__ : List[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE ( self , _a ): if not isinstance(_a , _a ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_a )}''' ) __magic_name__ : str = False __magic_name__ : List[str] = False __magic_name__ : Tuple = False if self.does_advance(_a ): self.current_seq.append(_a ) __magic_name__ : Optional[int] = True else: __magic_name__ : Optional[int] = True self.reset() __magic_name__ : str = self.trie.reached_leaf(self.current_seq ) __magic_name__ : int = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = False __magic_name__ : Dict = [] def SCREAMING_SNAKE_CASE ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE ( self , _a=False ): __magic_name__ : Union[str, Any] = DisjunctiveConstraint(self.token_ids ) if stateful: __magic_name__ : Any = self.seqlen __magic_name__ : Dict = self.current_seq __magic_name__ : Optional[int] = self.completed return new_constraint class _snake_case : def __init__( self , _a ): __magic_name__ : Optional[int] = constraints # max # of steps required to fulfill a given constraint __magic_name__ : int = max([c.seqlen for c in constraints] ) __magic_name__ : List[Any] = len(_a ) __magic_name__ : Tuple = False self.init_state() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = [] __magic_name__ : Any = None __magic_name__ : Optional[Any] = [constraint.copy(stateful=_a ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __magic_name__ : Optional[Any] = constraint.advance() if isinstance(_a , _a ): token_list.append(_a ) elif isinstance(_a , _a ): token_list.extend(_a ) else: __magic_name__ : List[str] = self.inprogress_constraint.advance() if isinstance(_a , _a ): token_list.append(_a ) elif isinstance(_a , _a ): token_list.extend(_a ) if len(_a ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE ( self , _a ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __magic_name__ , __magic_name__ : Optional[Any] = self.add(_a ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE ( self , _a ): if not isinstance(_a , _a ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) __magic_name__ , __magic_name__ : int = False, False if self.completed: __magic_name__ : str = True __magic_name__ : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __magic_name__ , __magic_name__ , __magic_name__ : List[str] = self.inprogress_constraint.update(_a ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_a ) ) __magic_name__ : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __magic_name__ : Dict = None if len(self.pending_constraints ) == 0: # we're done! __magic_name__ : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_a ): __magic_name__ , __magic_name__ , __magic_name__ : str = pending_constraint.update(_a ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(_a ) __magic_name__ : Any = None if not complete and stepped: __magic_name__ : str = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __magic_name__ : Optional[int] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __magic_name__ : Optional[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE ( self , _a=True ): __magic_name__ : Optional[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __magic_name__ : Optional[Any] = [ constraint.copy(stateful=_a ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __magic_name__ : Optional[int] = self.inprogress_constraint.copy(stateful=_a ) __magic_name__ : str = [constraint.copy() for constraint in self.pending_constraints] return new_state
281
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ): __magic_name__ : List[Any] = parent __magic_name__ : Optional[Any] = batch_size __magic_name__ : Dict = seq_length __magic_name__ : Union[str, Any] = is_training __magic_name__ : Optional[Any] = use_attention_mask __magic_name__ : Optional[Any] = use_token_type_ids __magic_name__ : int = use_labels __magic_name__ : List[Any] = vocab_size __magic_name__ : Union[str, Any] = hidden_size __magic_name__ : Optional[Any] = num_hidden_layers __magic_name__ : int = num_attention_heads __magic_name__ : Any = intermediate_size __magic_name__ : List[Any] = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : List[Any] = max_position_embeddings __magic_name__ : Tuple = type_vocab_size __magic_name__ : List[str] = type_sequence_label_size __magic_name__ : Dict = initializer_range __magic_name__ : List[Any] = num_choices def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : List[Any] = None if self.use_attention_mask: __magic_name__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : str = None if self.use_token_type_ids: __magic_name__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : List[Any] = config_and_inputs __magic_name__ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = config_and_inputs __magic_name__ : Tuple = True __magic_name__ : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = True UpperCamelCase__ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self ): for model_class_name in self.all_model_classes: __magic_name__ : Optional[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Union[str, Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : List[str] = model(_a )[0] __magic_name__ : str = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _a ) # compare the actual values for a slice. __magic_name__ : List[str] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_a ) __magic_name__ : Tuple = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __magic_name__ : Tuple = model(_a )[0] # compare the actual values for a slice. __magic_name__ : Dict = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
281
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> List[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class __lowerCamelCase ( __snake_case ): @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": snake_case_ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
34
import argparse import collections import json import os import re import string import sys import numpy as np lowerCamelCase_ = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) lowerCamelCase_ = None def UpperCamelCase( ) -> List[Any]: '''simple docstring''' snake_case_ = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=lowercase_ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=lowercase_ , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCamelCase( lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' def remove_articles(lowercase_ ): return ARTICLES_REGEX.sub(""" """ , lowercase_ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def UpperCamelCase( lowercase_ ) -> Dict: '''simple docstring''' if not s: return [] return normalize_answer(lowercase_ ).split() def UpperCamelCase( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' return int(normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = get_tokens(lowercase_ ) snake_case_ = get_tokens(lowercase_ ) snake_case_ = collections.Counter(lowercase_ ) & collections.Counter(lowercase_ ) snake_case_ = sum(common.values() ) if len(lowercase_ ) == 0 or len(lowercase_ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(lowercase_ ) snake_case_ = 1.0 * num_same / len(lowercase_ ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = {} snake_case_ = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: snake_case_ = qa["""id"""] snake_case_ = [t for t in qa["""answers"""]["""text"""] if normalize_answer(lowercase_ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string snake_case_ = [""""""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue snake_case_ = preds[qid] # Take max over all gold answers snake_case_ = max(compute_exact(lowercase_ , lowercase_ ) for a in gold_answers ) snake_case_ = max(compute_fa(lowercase_ , lowercase_ ) for a in gold_answers ) return exact_scores, fa_scores def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = {} for qid, s in scores.items(): snake_case_ = na_probs[qid] > na_prob_thresh if pred_na: snake_case_ = float(not qid_to_has_ans[qid] ) else: snake_case_ = s return new_scores def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None ) -> Dict: '''simple docstring''' if not qid_list: snake_case_ = len(lowercase_ ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_00.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: snake_case_ = len(lowercase_ ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' for k in new_eval: snake_case_ = new_eval[k] def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' plt.step(lowercase_ , lowercase_ , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(lowercase_ , lowercase_ , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowercase_ ) plt.savefig(lowercase_ ) plt.clf() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Dict: '''simple docstring''' snake_case_ = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) snake_case_ = 0.0 snake_case_ = 1.0 snake_case_ = 0.0 snake_case_ = [1.0] snake_case_ = [0.0] snake_case_ = 0.0 for i, qid in enumerate(lowercase_ ): if qid_to_has_ans[qid]: true_pos += scores[qid] snake_case_ = true_pos / float(i + 1 ) snake_case_ = true_pos / float(lowercase_ ) if i == len(lowercase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowercase_ ) recalls.append(lowercase_ ) if out_image: plot_pr_curve(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) return {"ap": 1_00.0 * avg_prec} def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: '''simple docstring''' if out_image_dir and not os.path.exists(lowercase_ ): os.makedirs(lowercase_ ) snake_case_ = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return snake_case_ = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) snake_case_ = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) snake_case_ = {k: float(lowercase_ ) for k, v in qid_to_has_ans.items()} snake_case_ = make_precision_recall_eval( lowercase_ , lowercase_ , lowercase_ , lowercase_ , out_image=os.path.join(lowercase_ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(lowercase_ , lowercase_ , """pr_exact""" ) merge_eval(lowercase_ , lowercase_ , """pr_f1""" ) merge_eval(lowercase_ , lowercase_ , """pr_oracle""" ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' if not qid_list: return snake_case_ = [na_probs[k] for k in qid_list] snake_case_ = np.ones_like(lowercase_ ) / float(len(lowercase_ ) ) plt.hist(lowercase_ , weights=lowercase_ , bins=20 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(lowercase_ , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' snake_case_ = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) snake_case_ = num_no_ans snake_case_ = cur_score snake_case_ = 0.0 snake_case_ = sorted(lowercase_ , key=lambda lowercase_ : na_probs[k] ) for i, qid in enumerate(lowercase_ ): if qid not in scores: continue if qid_to_has_ans[qid]: snake_case_ = scores[qid] else: if preds[qid]: snake_case_ = -1 else: snake_case_ = 0 cur_score += diff if cur_score > best_score: snake_case_ = cur_score snake_case_ = na_probs[qid] return 1_00.0 * best_score / len(lowercase_ ), best_thresh def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ , snake_case_ = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ , snake_case_ = find_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) snake_case_ = best_exact snake_case_ = exact_thresh snake_case_ = best_fa snake_case_ = fa_thresh def UpperCamelCase( ) -> Union[str, Any]: '''simple docstring''' with open(OPTS.data_file ) as f: snake_case_ = json.load(lowercase_ ) snake_case_ = dataset_json["""data"""] with open(OPTS.pred_file ) as f: snake_case_ = json.load(lowercase_ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: snake_case_ = json.load(lowercase_ ) else: snake_case_ = {k: 0.0 for k in preds} snake_case_ = make_qid_to_has_ans(lowercase_ ) # maps qid to True/False snake_case_ = [k for k, v in qid_to_has_ans.items() if v] snake_case_ = [k for k, v in qid_to_has_ans.items() if not v] snake_case_ , snake_case_ = get_raw_scores(lowercase_ , lowercase_ ) snake_case_ = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) snake_case_ = apply_no_ans_threshold(lowercase_ , lowercase_ , lowercase_ , OPTS.na_prob_thresh ) snake_case_ = make_eval_dict(lowercase_ , lowercase_ ) if has_ans_qids: snake_case_ = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , """HasAns""" ) if no_ans_qids: snake_case_ = make_eval_dict(lowercase_ , lowercase_ , qid_list=lowercase_ ) merge_eval(lowercase_ , lowercase_ , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , OPTS.out_image_dir ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(lowercase_ , lowercase_ , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) else: print(json.dumps(lowercase_ , indent=2 ) ) if __name__ == "__main__": lowerCamelCase_ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
34
1
'''simple docstring''' from math import loga def a_ ( __snake_case : int ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__snake_case , __snake_case ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
75
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): SCREAMING_SNAKE_CASE_: Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_: int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_: Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_: Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowerCAmelCase : List[Any] = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _A = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _A = parser.parse_args() if args.model_type == "roberta": _A = RobertaForMaskedLM.from_pretrained(args.model_name) _A = 'roberta' elif args.model_type == "gpt2": _A = GPTaLMHeadModel.from_pretrained(args.model_name) _A = 'transformer' _A = model.state_dict() _A = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _A = state_dict[f"""{prefix}.{param_name}"""] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _A = f"""{prefix}.embeddings.{w}.weight""" _A = state_dict[param_name] for w in ["weight", "bias"]: _A = f"""{prefix}.embeddings.LayerNorm.{w}""" _A = state_dict[param_name] # Transformer Blocks # _A = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _A = state_dict[ f"""{prefix}.h.{teacher_idx}.{layer}.{w}""" ] _A = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _A = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}""" ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _A = state_dict[f"""{layer}"""] if args.vocab_transform: for w in ["weight", "bias"]: _A = state_dict[f"""lm_head.dense.{w}"""] _A = state_dict[f"""lm_head.layer_norm.{w}"""] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _A = state_dict[f"""{prefix}.ln_f.{w}"""] _A = state_dict['lm_head.weight'] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
356
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _UpperCAmelCase ( ): print('Making key files...' ) make_key_files('rsa' , 10_24 ) print('Key files generation successful.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): print('Generating prime p...' ) __UpperCamelCase =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) print('Generating prime q...' ) __UpperCamelCase =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __UpperCamelCase =random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __UpperCamelCase =cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) __UpperCamelCase =(n, e) __UpperCamelCase =(n, d) return (public_key, private_key) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print('\nWARNING:' ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __UpperCamelCase , __UpperCamelCase =generate_key(SCREAMING_SNAKE_CASE__ ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
117
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class a ( unittest.TestCase ): def __init__( self :Dict ,__lowercase :Dict ,__lowercase :int=1_3 ,__lowercase :Any=7 ,__lowercase :Optional[Any]=True ,__lowercase :Optional[Any]=True ,__lowercase :Dict=True ,__lowercase :Optional[Any]=True ,__lowercase :Dict=9_9 ,__lowercase :str=3_2 ,__lowercase :Optional[Any]=5 ,__lowercase :Any=4 ,__lowercase :Optional[Any]=3_7 ,__lowercase :Tuple="gelu" ,__lowercase :Dict=0.1 ,__lowercase :Dict=0.1 ,__lowercase :Union[str, Any]=5_1_2 ,__lowercase :Tuple=1_6 ,__lowercase :Optional[int]=2 ,__lowercase :Optional[int]=0.02 ,__lowercase :int=4 ,): snake_case__ : List[Any] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : int = seq_length snake_case__ : str = is_training snake_case__ : List[str] = use_attention_mask snake_case__ : int = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : str = vocab_size snake_case__ : str = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : str = hidden_act snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Tuple = type_vocab_size snake_case__ : Dict = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : List[str] = num_choices def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : int = None if self.use_attention_mask: snake_case__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : List[str] = None if self.use_token_type_ids: snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : Dict = AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def __lowerCamelCase ( self :int ): snake_case__ : str = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = config_and_inputs snake_case__ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[str] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : int = FlaxAlbertModelTester(self ) @slow def __lowerCamelCase ( self :Tuple ): for model_class_name in self.all_model_classes: snake_case__ : Tuple = model_class_name.from_pretrained('''albert-base-v2''' ) snake_case__ : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowercase ) @require_flax class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :int ): snake_case__ : List[str] = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) snake_case__ : str = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) snake_case__ : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) snake_case__ : str = model(__lowercase ,attention_mask=__lowercase )[0] snake_case__ : Any = (1, 1_1, 7_6_8) self.assertEqual(output.shape ,__lowercase ) snake_case__ : int = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,__lowercase ,atol=1e-4 ) )
230
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A__ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> List[Any]: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main snake_case__ : Dict = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase )
230
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _lowercase : Any = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _lowercase : Tuple = get_tests_dir("fixtures/vocab.json") _lowercase : Optional[int] = get_tests_dir("fixtures") class __magic_name__ ( unittest.TestCase): UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : Union[str, Any] = 0 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): lowercase_ : int = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : int = WavaVecaConfig() lowercase_ : str = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) lowercase_ : Tuple = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : int ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) copyfile(lowercase_ , os.path.join(lowercase_ , """vocab.json""" ) ) lowercase_ : str = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : List[str] = WavaVecaFeatureExtractor() lowercase_ : List[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase_ : Optional[Any] = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_ ) , """r""" ) as f: lowercase_ : List[Any] = json.load(lowercase_ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write(json.dumps(lowercase_ ) ) lowercase_ : Optional[int] = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Tuple = WavaVecaFeatureExtractor() lowercase_ : List[Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowercase_ : Tuple = WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_ ) , """r""" ) as f: lowercase_ : Optional[Any] = json.load(lowercase_ ) config_dict.pop("""processor_class""" ) with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write(json.dumps(lowercase_ ) ) lowercase_ : Any = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Any = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_ ) , """w""" ) as f: f.write("""{}""" ) lowercase_ : Any = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(lowercase_ ): lowercase_ : List[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): lowercase_ : Optional[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) lowercase_ : Optional[int] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowercase_ : Optional[Any] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowercase_ : Optional[int] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowercase_ : Optional[Any] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ , use_fast=lowercase_ ) lowercase_ : List[Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): try: AutoConfig.register("""custom""" , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API lowercase_ : str = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase_ : Any = CustomTokenizer(lowercase_ ) lowercase_ : Tuple = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) lowercase_ : Any = AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = False class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = False class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = '''AutoFeatureExtractor''' UpperCamelCase__ = '''AutoTokenizer''' UpperCamelCase__ = False try: AutoConfig.register("""custom""" , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local classes. lowercase_ : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowercase_ : List[str] = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowercase_ : int = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Optional[int] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class __magic_name__ ( unittest.TestCase): UpperCamelCase__ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] ): lowercase_ : int = TOKEN HfFolder.save_token(lowercase_ ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Dict ): try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): lowercase_ : int = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , """test-processor""" ) , push_to_hub=lowercase_ , use_auth_token=self._token ) lowercase_ : str = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): lowercase_ : Any = WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , """test-processor-org""" ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization="""valid_org""" , ) lowercase_ : int = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowercase_ : Dict = CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : Optional[int] = os.path.join(lowercase_ , """vocab.txt""" ) with open(lowercase_ , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowercase_ : int = CustomTokenizer(lowercase_ ) lowercase_ : Any = CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) lowercase_ : Optional[int] = Repository(lowercase_ , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) ) as f: lowercase_ : Dict = json.load(lowercase_ ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , """custom_processing.py""" ) ) ) repo.push_to_hub() lowercase_ : Optional[int] = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
21
'''simple docstring''' from __future__ import annotations from typing import Any def lowerCamelCase ( UpperCAmelCase__ : list ) -> int: if not postfix_notation: return 0 lowercase_ : Any = {"""+""", """-""", """*""", """/"""} lowercase_ : list[Any] = [] for token in postfix_notation: if token in operations: lowercase_ , lowercase_ : Dict = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
21
1