code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json''' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase_ ( a__ ): '''simple docstring''' __A : Optional[int] = """roformer""" def __init__( self , __A=5_0000 , __A=None , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=1536 , __A=2 , __A=0.02 , __A=1e-12 , __A=0 , __A=False , __A=True , **__A , ): """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) lowerCamelCase : Any = vocab_size lowerCamelCase : Any = hidden_size if embedding_size is None else embedding_size lowerCamelCase : Optional[Any] = hidden_size lowerCamelCase : List[str] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : Any = intermediate_size lowerCamelCase : str = hidden_dropout_prob lowerCamelCase : Tuple = attention_probs_dropout_prob lowerCamelCase : str = max_position_embeddings lowerCamelCase : List[Any] = type_vocab_size lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : str = rotary_value lowerCamelCase : str = use_cache class UpperCAmelCase_ ( a__ ): '''simple docstring''' @property def _snake_case ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase : Any = {0: "batch", 1: "sequence"} lowerCamelCase : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
283
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->str: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) a : Tuple = precision a : str = ceil(precision / 14 ) a : List[Any] = 42_6880 * Decimal(1_0005 ).sqrt() a : Union[str, Any] = 1 a : Dict = 1359_1409 a : Optional[int] = Decimal(_lowercase ) for k in range(1 , _lowercase ): a : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a : Optional[Any] = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
105
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = '''ResNetConfig''' # Base docstring _lowerCAmelCase = '''microsoft/resnet-50''' _lowerCAmelCase = [1, 2048, 7, 7] # Image classification docstring _lowerCAmelCase = '''microsoft/resnet-50''' _lowerCAmelCase = '''tiger cat''' _lowerCAmelCase = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 3 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> Optional[int]: super().__init__() lowerCAmelCase__ : int = nn.Convad( __lowerCamelCase ,__lowerCamelCase ,kernel_size=__lowerCamelCase ,stride=__lowerCamelCase ,padding=kernel_size // 2 ,bias=__lowerCamelCase ) lowerCAmelCase__ : int = nn.BatchNormad(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Tuple = self.convolution(__lowerCamelCase ) lowerCAmelCase__ : Dict = self.normalization(__lowerCamelCase ) lowerCAmelCase__ : str = self.activation(__lowerCamelCase ) return hidden_state class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> List[str]: super().__init__() lowerCAmelCase__ : Optional[Any] = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) lowerCAmelCase__ : Optional[int] = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) lowerCAmelCase__ : str = config.num_channels def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Dict = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" ) lowerCAmelCase__ : int = self.embedder(__lowerCamelCase ) lowerCAmelCase__ : Tuple = self.pooler(__lowerCamelCase ) return embedding class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ) -> Union[str, Any]: super().__init__() lowerCAmelCase__ : Optional[Any] = nn.Convad(__lowerCamelCase ,__lowerCamelCase ,kernel_size=1 ,stride=__lowerCamelCase ,bias=__lowerCamelCase ) lowerCAmelCase__ : Dict = nn.BatchNormad(__lowerCamelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : str = self.convolution(__lowerCamelCase ) lowerCAmelCase__ : Dict = self.normalization(__lowerCamelCase ) return hidden_state class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ) -> Tuple: super().__init__() lowerCAmelCase__ : List[str] = in_channels != out_channels or stride != 1 lowerCAmelCase__ : Union[str, Any] = ( ResNetShortCut(__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : Optional[int] = nn.Sequential( ResNetConvLayer(__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ) ,ResNetConvLayer(__lowerCamelCase ,__lowerCamelCase ,activation=__lowerCamelCase ) ,) lowerCAmelCase__ : Optional[int] = ACTaFN[activation] def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: lowerCAmelCase__ : Tuple = hidden_state lowerCAmelCase__ : List[Any] = self.layer(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.shortcut(__lowerCamelCase ) hidden_state += residual lowerCAmelCase__ : int = self.activation(__lowerCamelCase ) return hidden_state class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 1 ,__UpperCAmelCase = "relu" ,__UpperCAmelCase = 4 ) -> List[str]: super().__init__() lowerCAmelCase__ : str = in_channels != out_channels or stride != 1 lowerCAmelCase__ : List[Any] = out_channels // reduction lowerCAmelCase__ : List[Any] = ( ResNetShortCut(__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) lowerCAmelCase__ : Optional[Any] = nn.Sequential( ResNetConvLayer(__lowerCamelCase ,__lowerCamelCase ,kernel_size=1 ) ,ResNetConvLayer(__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ) ,ResNetConvLayer(__lowerCamelCase ,__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ) ,) lowerCAmelCase__ : str = ACTaFN[activation] def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Union[str, Any] = hidden_state lowerCAmelCase__ : str = self.layer(__lowerCamelCase ) lowerCAmelCase__ : Tuple = self.shortcut(__lowerCamelCase ) hidden_state += residual lowerCAmelCase__ : Union[str, Any] = self.activation(__lowerCamelCase ) return hidden_state class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = 2 ,__UpperCAmelCase = 2 ,) -> int: super().__init__() lowerCAmelCase__ : Dict = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer lowerCAmelCase__ : str = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,activation=config.hidden_act ) ,*[layer(__lowerCamelCase ,__lowerCamelCase ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : Dict = input for layer in self.layers: lowerCAmelCase__ : Optional[int] = layer(__lowerCamelCase ) return hidden_state class lowerCAmelCase_( nn.Module ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Any: super().__init__() lowerCAmelCase__ : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( __lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) lowerCAmelCase__ : Optional[int] = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__lowerCamelCase ,config.depths[1:] ): self.stages.append(ResNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = False ,__UpperCAmelCase = True ) -> str: lowerCAmelCase__ : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ : Any = hidden_states + (hidden_state,) lowerCAmelCase__ : Dict = stage_module(__lowerCamelCase ) if output_hidden_states: lowerCAmelCase__ : Any = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase ,) class lowerCAmelCase_( _a ): '''simple docstring''' __lowercase : Any = ResNetConfig __lowercase : Dict = """resnet""" __lowercase : str = """pixel_values""" __lowercase : Tuple = True def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: if isinstance(__lowerCamelCase ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode="""fan_out""" ,nonlinearity="""relu""" ) elif isinstance(__lowerCamelCase ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase=False ) -> int: if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Union[str, Any] = value _lowerCAmelCase = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCAmelCase = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _a , ) class lowerCAmelCase_( _a ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Tuple: super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Tuple = config lowerCAmelCase__ : str = ResNetEmbeddings(__lowerCamelCase ) lowerCAmelCase__ : Dict = ResNetEncoder(__lowerCamelCase ) lowerCAmelCase__ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality="""vision""" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> str: lowerCAmelCase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Optional[Any] = self.embedder(__lowerCamelCase ) lowerCAmelCase__ : Tuple = self.encoder( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ) lowerCAmelCase__ : Dict = encoder_outputs[0] lowerCAmelCase__ : Optional[Any] = self.pooler(__lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _a , ) class lowerCAmelCase_( _a ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Tuple: super().__init__(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = config.num_labels lowerCAmelCase__ : int = ResNetModel(__lowerCamelCase ) # classification head lowerCAmelCase__ : Optional[Any] = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,) -> str: lowerCAmelCase__ : str = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Optional[int] = self.resnet(__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : Tuple = self.classifier(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : List[str] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : List[str] = """single_label_classification""" else: lowerCAmelCase__ : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": lowerCAmelCase__ : Optional[Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : Dict = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase__ : Optional[int] = loss_fct(__lowerCamelCase ,__lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : Any = CrossEntropyLoss() lowerCAmelCase__ : List[str] = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : Dict = BCEWithLogitsLoss() lowerCAmelCase__ : Any = loss_fct(__lowerCamelCase ,__lowerCamelCase ) if not return_dict: lowerCAmelCase__ : Tuple = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _a , ) class lowerCAmelCase_( _a , _a ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> List[Any]: super().__init__(__lowerCamelCase ) super()._init_backbone(__lowerCamelCase ) lowerCAmelCase__ : int = [config.embedding_size] + config.hidden_sizes lowerCAmelCase__ : Any = ResNetEmbeddings(__lowerCamelCase ) lowerCAmelCase__ : Dict = ResNetEncoder(__lowerCamelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @replace_return_docstrings(output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ) -> str: lowerCAmelCase__ : Dict = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : str = self.embedder(__lowerCamelCase ) lowerCAmelCase__ : List[str] = self.encoder(__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ) lowerCAmelCase__ : List[str] = outputs.hidden_states lowerCAmelCase__ : int = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: lowerCAmelCase__ : Dict = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=__lowerCamelCase ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=__lowerCamelCase ,)
368
'''simple docstring''' import os def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = len(grid[0] ) lowerCAmelCase__ : int = len(UpperCamelCase ) lowerCAmelCase__ : Optional[int] = 0 lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Optional[Any] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(UpperCamelCase ): for j in range(n_rows - 3 ): lowerCAmelCase__ : str = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCAmelCase__ : Optional[int] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCAmelCase__ : Optional[int] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCAmelCase__ : Tuple = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCAmelCase__ : Dict = max( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if max_product > largest: lowerCAmelCase__ : Any = max_product return largest def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = [] with open(os.path.dirname(UpperCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) lowerCAmelCase__ : Dict = [[int(UpperCamelCase ) for i in grid[j]] for j in range(len(UpperCamelCase ) )] return largest_product(UpperCamelCase ) if __name__ == "__main__": print(solution())
184
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Union[str, Any] = {'''configuration_beit''': ['''BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BeitConfig''', '''BeitOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['''BeitFeatureExtractor'''] __UpperCamelCase : Optional[int] = ['''BeitImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''BEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BeitForImageClassification''', '''BeitForMaskedImageModeling''', '''BeitForSemanticSegmentation''', '''BeitModel''', '''BeitPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ '''FlaxBeitForImageClassification''', '''FlaxBeitForMaskedImageModeling''', '''FlaxBeitModel''', '''FlaxBeitPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
"""simple docstring""" import math class a : def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : list[list[float]] , __lowerCAmelCase : list[int] ): _UpperCAmelCase = 0.0 _UpperCAmelCase = 0.0 for i in range(len(__lowerCAmelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : list[list[int | float]] , __lowerCAmelCase : list[int] , __lowerCAmelCase : int , __lowerCAmelCase : float ): for i in range(len(__lowerCAmelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __UpperCAmelCase ( ): """simple docstring""" # Training Examples ( m, n ) _UpperCAmelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCAmelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCAmelCase = SelfOrganizingMap() _UpperCAmelCase = 3 _UpperCAmelCase = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _UpperCAmelCase = training_samples[j] # Compute the winning vector _UpperCAmelCase = self_organizing_map.get_winner(lowercase ,lowercase ) # Update the winning vector _UpperCAmelCase = self_organizing_map.update(lowercase ,lowercase ,lowercase ,lowercase ) # classify test sample _UpperCAmelCase = [0, 0, 0, 1] _UpperCAmelCase = self_organizing_map.get_winner(lowercase ,lowercase ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
289
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a :Any = logging.get_logger(__name__) a :List[str] = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :str = """layoutlmv3""" def __init__( self , _a=50_265 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-5 , _a=1 , _a=0 , _a=2 , _a=1_024 , _a=128 , _a=128 , _a=True , _a=32 , _a=128 , _a=64 , _a=256 , _a=True , _a=True , _a=True , _a=224 , _a=3 , _a=16 , _a=None , **_a , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_a , hidden_size=_a , num_hidden_layers=_a , num_attention_heads=_a , intermediate_size=_a , hidden_act=_a , hidden_dropout_prob=_a , attention_probs_dropout_prob=_a , max_position_embeddings=_a , type_vocab_size=_a , initializer_range=_a , layer_norm_eps=_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a , ) SCREAMING_SNAKE_CASE__ : List[str] = max_ad_position_embeddings SCREAMING_SNAKE_CASE__ : List[str] = coordinate_size SCREAMING_SNAKE_CASE__ : List[str] = shape_size SCREAMING_SNAKE_CASE__ : Tuple = has_relative_attention_bias SCREAMING_SNAKE_CASE__ : Union[str, Any] = rel_pos_bins SCREAMING_SNAKE_CASE__ : Tuple = max_rel_pos SCREAMING_SNAKE_CASE__ : Any = has_spatial_attention_bias SCREAMING_SNAKE_CASE__ : List[str] = rel_ad_pos_bins SCREAMING_SNAKE_CASE__ : Optional[int] = max_rel_ad_pos SCREAMING_SNAKE_CASE__ : Tuple = text_embed SCREAMING_SNAKE_CASE__ : Dict = visual_embed SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_size SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : Any = patch_size SCREAMING_SNAKE_CASE__ : Optional[Any] = classifier_dropout class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = version.parse("""1.12""") @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) else: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ("""bbox""", {0: """batch""", 1: """sequence"""}), ("""attention_mask""", {0: """batch""", 1: """sequence"""}), ("""pixel_values""", {0: """batch""", 1: """num_channels"""}), ] ) @property def _a ( self ) -> float: """simple docstring""" return 1E-5 @property def _a ( self ) -> int: """simple docstring""" return 12 def _a ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , """apply_ocr""" , _a ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : List[Any] = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : List[Any] = processor.tokenizer.num_special_tokens_to_add(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_a ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : int = [[""" """.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes SCREAMING_SNAKE_CASE__ : List[Any] = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) SCREAMING_SNAKE_CASE__ : Dict = self._generate_dummy_images(_a , _a , _a , _a ) SCREAMING_SNAKE_CASE__ : str = dict( processor( _a , text=_a , boxes=_a , return_tensors=_a , ) ) return inputs
56
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters a :Optional[Any] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[str]: # Recurse if needed if "." in tensor_name: SCREAMING_SNAKE_CASE__ : List[Any] = tensor_name.split(""".""" ) for split in splits[:-1]: SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_module SCREAMING_SNAKE_CASE__ : Any = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = tensor_name in module._buffers SCREAMING_SNAKE_CASE__ : Dict = getattr(__lowerCAmelCase , __lowerCAmelCase ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if is_buffer or not is_bitsandbytes_available(): SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : List[Any] = False else: SCREAMING_SNAKE_CASE__ : str = hasattr(bnb.nn , """Params4bit""" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) SCREAMING_SNAKE_CASE__ : str = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: SCREAMING_SNAKE_CASE__ : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: SCREAMING_SNAKE_CASE__ : Tuple = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : int = value.to("""cpu""" ) if value.dtype == torch.inta: SCREAMING_SNAKE_CASE__ : str = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor(__lowerCAmelCase , device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCAmelCase ) and fpaa_statistics is None: SCREAMING_SNAKE_CASE__ : Optional[int] = new_value.T SCREAMING_SNAKE_CASE__ : Union[str, Any] = old_value.__dict__ if is_abit: SCREAMING_SNAKE_CASE__ : str = bnb.nn.IntaParams(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) elif is_abit: SCREAMING_SNAKE_CASE__ : Union[str, Any] = bnb.nn.Paramsabit(__lowerCAmelCase , requires_grad=__lowerCAmelCase , **__lowerCAmelCase ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_value if fpaa_statistics is not None: setattr(module.weight , """SCB""" , fpaa_statistics.to(__lowerCAmelCase ) ) else: if value is None: SCREAMING_SNAKE_CASE__ : str = old_value.to(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , torch.Tensor ): SCREAMING_SNAKE_CASE__ : List[str] = value.to(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.tensor(__lowerCAmelCase , device=__lowerCAmelCase ) if is_buffer: SCREAMING_SNAKE_CASE__ : List[str] = new_value else: SCREAMING_SNAKE_CASE__ : List[Any] = nn.Parameter(__lowerCAmelCase , requires_grad=old_value.requires_grad ) SCREAMING_SNAKE_CASE__ : Dict = new_value def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=False ) -> List[Any]: for name, module in model.named_children(): if current_key_name is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] current_key_name.append(__lowerCAmelCase ) if (isinstance(__lowerCAmelCase , nn.Linear ) or isinstance(__lowerCAmelCase , __lowerCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(__lowerCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = module.weight.shape else: SCREAMING_SNAKE_CASE__ : str = module.in_features SCREAMING_SNAKE_CASE__ : Dict = module.out_features if quantization_config.quantization_method() == "llm_int8": SCREAMING_SNAKE_CASE__ : Dict = bnb.nn.LinearabitLt( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) SCREAMING_SNAKE_CASE__ : Tuple = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = bnb.nn.Linearabit( __lowerCAmelCase , __lowerCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) SCREAMING_SNAKE_CASE__ : int = True # Store the module class in case we need to transpose the weight later SCREAMING_SNAKE_CASE__ : Dict = type(__lowerCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCAmelCase ) if len(list(module.children() ) ) > 0: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , has_been_replaced=__lowerCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> str: SCREAMING_SNAKE_CASE__ : int = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = _replace_with_bnb_linear( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any: warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""" , __lowerCAmelCase , ) return replace_with_bnb_linear(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]: warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""" , __lowerCAmelCase , ) return set_module_quantized_tensor_to_device(*__lowerCAmelCase , **__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : List[Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() SCREAMING_SNAKE_CASE__ : List[str] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: SCREAMING_SNAKE_CASE__ : List[Any] = sum(__lowerCAmelCase , [] ) SCREAMING_SNAKE_CASE__ : str = len(__lowerCAmelCase ) > 0 # Check if it is a base model SCREAMING_SNAKE_CASE__ : Optional[int] = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head SCREAMING_SNAKE_CASE__ : int = list(model.named_children() ) SCREAMING_SNAKE_CASE__ : str = [list_modules[-1][0]] # add last module together with tied weights SCREAMING_SNAKE_CASE__ : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys SCREAMING_SNAKE_CASE__ : Any = [""".weight""", """.bias"""] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: SCREAMING_SNAKE_CASE__ : Optional[int] = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names
56
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class _lowerCamelCase ( a_ ): _lowerCamelCase :Optional[int] = "lilt" def __init__( self : Union[str, Any] , UpperCamelCase : List[str]=3_05_22 , UpperCamelCase : Any=7_68 , UpperCamelCase : Union[str, Any]=12 , UpperCamelCase : str=12 , UpperCamelCase : List[str]=30_72 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : List[Any]=0.1 , UpperCamelCase : Dict=5_12 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : List[Any]=1E-1_2 , UpperCamelCase : Dict=0 , UpperCamelCase : str="absolute" , UpperCamelCase : Optional[Any]=None , UpperCamelCase : str=4 , UpperCamelCase : Optional[int]=10_24 , **UpperCamelCase : Union[str, Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Union[str, Any] = hidden_act lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Optional[Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : Optional[Any] = layer_norm_eps lowerCAmelCase__ : Dict = position_embedding_type lowerCAmelCase__ : Optional[int] = classifier_dropout lowerCAmelCase__ : List[str] = channel_shrink_ratio lowerCAmelCase__ : Union[str, Any] = max_ad_position_embeddings
242
"""simple docstring""" from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _lowerCamelCase ( a_ ): def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[Any] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self._create_example_records() lowerCAmelCase__ : Tuple = Dataset.from_list(UpperCamelCase ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(UpperCamelCase ): self.assertDictEqual(UpperCamelCase , example_records[i] ) def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Any = self._create_example_records() lowerCAmelCase__ : Optional[Any] = Dataset.from_list(UpperCamelCase ) lowerCAmelCase__ : int = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _lowerCAmelCase ( self : Tuple ) -> List[Any]: # checks what happens with missing columns """simple docstring""" lowerCAmelCase__ : str = [{"""col_1""": 1}, {"""col_2""": """x"""}] lowerCAmelCase__ : int = Dataset.from_list(UpperCamelCase ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def _lowerCAmelCase ( self : str ) -> Dict: # checks if the type can be inferred from the second record """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [{"""col_1""": []}, {"""col_1""": [1, 2]}] lowerCAmelCase__ : Optional[int] = Dataset.from_list(UpperCamelCase ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def _lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[int] = Dataset.from_list([] ) self.assertEqual(len(UpperCamelCase ) , 0 ) self.assertListEqual(dset.column_names , [] )
242
1
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger() def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True ) -> Dict: '''simple docstring''' print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": UpperCamelCase = timm.create_model("""levit_128s""" , pretrained=UpperCamelCase_ ) else: UpperCamelCase = timm.create_model("""levit_128""" , pretrained=UpperCamelCase_ ) if hidden_sizes == 192: UpperCamelCase = timm.create_model("""levit_192""" , pretrained=UpperCamelCase_ ) if hidden_sizes == 256: UpperCamelCase = timm.create_model("""levit_256""" , pretrained=UpperCamelCase_ ) if hidden_sizes == 384: UpperCamelCase = timm.create_model("""levit_384""" , pretrained=UpperCamelCase_ ) from_model.eval() UpperCamelCase = LevitForImageClassificationWithTeacher(UpperCamelCase_ ).eval() UpperCamelCase = OrderedDict() UpperCamelCase = from_model.state_dict() UpperCamelCase = list(from_model.state_dict().keys() ) UpperCamelCase = list(our_model.state_dict().keys() ) print(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for i in range(len(UpperCamelCase_ ) ): UpperCamelCase = weights[og_keys[i]] our_model.load_state_dict(UpperCamelCase_ ) UpperCamelCase = torch.randn((2, 3, 224, 224) ) UpperCamelCase = from_model(UpperCamelCase_ ) UpperCamelCase = our_model(UpperCamelCase_ ).logits assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ ), "The model logits don't match the original one." UpperCamelCase = name print(UpperCamelCase_ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) UpperCamelCase = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def lowercase( UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = True ) -> Dict: '''simple docstring''' UpperCamelCase = """imagenet-1k-id2label.json""" UpperCamelCase = 1000 UpperCamelCase = (1, num_labels) UpperCamelCase = """huggingface/label-files""" UpperCamelCase = num_labels UpperCamelCase = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = partial(UpperCamelCase_ , num_labels=UpperCamelCase_ , idalabel=UpperCamelCase_ , labelaid=UpperCamelCase_ ) UpperCamelCase = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } UpperCamelCase = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , UpperCamelCase_ , names_to_config[model_name] , UpperCamelCase_ , UpperCamelCase_ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, expected_shape if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""levit-dump-folder/""", type=Path, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
165
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""YolosFeatureExtractor"""] _SCREAMING_SNAKE_CASE = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
165
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , snake_case ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): lowercase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_UpperCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sgugger/tiny-distilbert-classification' lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , only_pretrain_model=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , torchscript=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , fpaa=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = AutoConfig.from_pretrained(_UpperCamelCase ) # set architectures equal to `None` lowercase = None lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_UpperCamelCase , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = AutoConfig.from_pretrained(_UpperCamelCase ) lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tinier_bart' lowercase = AutoConfig.from_pretrained(_UpperCamelCase ) lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' lowercase = AutoConfig.from_pretrained(_UpperCamelCase ) lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tinier_bart' lowercase = AutoConfig.from_pretrained(_UpperCamelCase ) lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase , configs=[config] ) lowercase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , save_to_csv=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCamelCase , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(_UpperCamelCase , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(_UpperCamelCase , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(_UpperCamelCase , 'train_time.csv' ) , env_info_csv_file=os.path.join(_UpperCamelCase , 'env.csv' ) , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCamelCase , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'env.csv' ) ).exists() ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(snake_case ): self.assertTrue(hasattr(_UpperCamelCase , 'sequential' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'cumulative' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'current' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowercase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=_UpperCamelCase , inference=_UpperCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCamelCase , 'log.txt' ) , log_print=_UpperCamelCase , trace_memory_line_by_line=_UpperCamelCase , multi_process=_UpperCamelCase , ) lowercase = PyTorchBenchmark(_UpperCamelCase ) lowercase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_UpperCamelCase , 'log.txt' ) ).exists() )
195
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _A = { "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
231
0
"""simple docstring""" import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) __snake_case = logging.getLogger() def __lowerCAmelCase ( lowercase : Path , lowercase : list ) -> List[Any]: """simple docstring""" snake_case : Tuple = "\n".join(__lowerCAmelCase ) Path(__lowerCAmelCase ).open("w" ).writelines(__lowerCAmelCase ) __snake_case = '''patrickvonplaten/t5-tiny-random''' __snake_case = '''sshleifer/bart-tiny-random''' __snake_case = '''sshleifer/tiny-mbart''' __snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _lowerCAmelCase ( lowerCamelCase_ ): def lowerCamelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" snake_case : Tuple = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() snake_case : int = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."] _dump_articles(__snake_case , __snake_case ) snake_case : List[Any] = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) snake_case : int = "translation_en_to_de" if model == T5_TINY else "summarization" snake_case : Any = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(__snake_case , "argv" , __snake_case ): run_generate() assert Path(__snake_case ).exists() # os.remove(Path(output_file_name)) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.run_eval_tester(__snake_case ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' self.run_eval_tester(__snake_case ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def lowerCamelCase ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : str = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source" snake_case : Tuple = input_file_name.parent / "utest_output.txt" assert not output_file_name.exists() snake_case : Union[str, Any] = { "en": ["Machine learning is great, isn\'t it?", "I like to eat bananas", "Tomorrow is another great day!"], "de": [ "Maschinelles Lernen ist großartig, oder?", "Ich esse gerne Bananen", "Morgen ist wieder ein toller Tag!", ], } snake_case : Union[str, Any] = Path(self.get_auto_remove_tmp_dir() ) snake_case : Dict = str(tmp_dir / "scores.json" ) snake_case : Any = str(tmp_dir / "val.target" ) _dump_articles(__snake_case , text["en"] ) _dump_articles(__snake_case , text["de"] ) snake_case : Optional[Any] = "translation_en_to_de" if model == T5_TINY else "summarization" snake_case : Dict = F'\n run_eval_search.py\n {model}\n {str(__snake_case )}\n {str(__snake_case )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(__snake_case , "argv" , __snake_case ): with CaptureStdout() as cs: run_search() snake_case : int = [" num_beams | length_penalty", model, "Best score args"] snake_case : List[Any] = ["Info"] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(__snake_case ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__snake_case ).exists() os.remove(Path(__snake_case ) )
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
112
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCamelCase__ : List[Any] = '''src/transformers''' lowerCamelCase__ : Union[str, Any] = '''docs/source/en''' lowerCamelCase__ : Optional[int] = '''.''' def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: with open(_lowerCAmelCase, """r""", encoding="""utf-8""", newline="""\n""" ) as f: _UpperCAmelCase : str = f.readlines() # Find the start prompt. _UpperCAmelCase : Dict = 0 while not lines[start_index].startswith(_lowerCAmelCase ): start_index += 1 start_index += 1 _UpperCAmelCase : List[Any] = start_index while not lines[end_index].startswith(_lowerCAmelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCamelCase__ : Dict = '''Model|Encoder|Decoder|ForConditionalGeneration''' # Regexes that match TF/Flax/PT model names. lowerCamelCase__ : Union[str, Any] = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') lowerCamelCase__ : Optional[int] = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ : Any = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) def UpperCamelCase ( _lowerCAmelCase : Union[str, Any] ) -> Any: _UpperCAmelCase : Optional[int] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""", _lowerCAmelCase ) return [m.group(0 ) for m in matches] def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : int ) -> Any: _UpperCAmelCase : Union[str, Any] = 2 if text == """✅""" or text == """❌""" else len(_lowerCAmelCase ) _UpperCAmelCase : str = (width - text_length) // 2 _UpperCAmelCase : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def UpperCamelCase ( ) -> List[Any]: _UpperCAmelCase : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase : List[Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCAmelCase : int = {name: config.replace("""Config""", """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCAmelCase : Dict = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : List[str] = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : List[str] = collections.defaultdict(_lowerCAmelCase ) _UpperCAmelCase : str = collections.defaultdict(_lowerCAmelCase ) # Let's lookup through all transformers object (once). for attr_name in dir(_lowerCAmelCase ): _UpperCAmelCase : List[str] = None if attr_name.endswith("""Tokenizer""" ): _UpperCAmelCase : Optional[int] = slow_tokenizers _UpperCAmelCase : Optional[int] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): _UpperCAmelCase : List[Any] = fast_tokenizers _UpperCAmelCase : str = attr_name[:-13] elif _re_tf_models.match(_lowerCAmelCase ) is not None: _UpperCAmelCase : Tuple = tf_models _UpperCAmelCase : Any = _re_tf_models.match(_lowerCAmelCase ).groups()[0] elif _re_flax_models.match(_lowerCAmelCase ) is not None: _UpperCAmelCase : Any = flax_models _UpperCAmelCase : List[Any] = _re_flax_models.match(_lowerCAmelCase ).groups()[0] elif _re_pt_models.match(_lowerCAmelCase ) is not None: _UpperCAmelCase : Union[str, Any] = pt_models _UpperCAmelCase : List[Any] = _re_pt_models.match(_lowerCAmelCase ).groups()[0] if lookup_dict is not None: while len(_lowerCAmelCase ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCAmelCase : List[str] = True break # Try again after removing the last word in the name _UpperCAmelCase : Optional[Any] = """""".join(camel_case_split(_lowerCAmelCase )[:-1] ) # Let's build that table! _UpperCAmelCase : List[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCAmelCase : List[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCAmelCase : List[Any] = [len(_lowerCAmelCase ) + 2 for c in columns] _UpperCAmelCase : Optional[int] = max([len(_lowerCAmelCase ) for name in model_names] ) + 2 # Build the table per se _UpperCAmelCase : Tuple = """|""" + """|""".join([_center_text(_lowerCAmelCase, _lowerCAmelCase ) for c, w in zip(_lowerCAmelCase, _lowerCAmelCase )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" _UpperCAmelCase : Dict = {True: """✅""", False: """❌"""} for name in model_names: _UpperCAmelCase : Optional[int] = model_name_to_prefix[name] _UpperCAmelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_lowerCAmelCase, _lowerCAmelCase ) for l, w in zip(_lowerCAmelCase, _lowerCAmelCase )] ) + "|\n" return table def UpperCamelCase ( _lowerCAmelCase : Any=False ) -> Dict: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = _find_text_in_file( filename=os.path.join(_lowerCAmelCase, """index.md""" ), start_prompt="""<!--This table is updated automatically from the auto modules""", end_prompt="""<!-- End table-->""", ) _UpperCAmelCase : List[str] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_lowerCAmelCase, """index.md""" ), """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCamelCase__ : List[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
246
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : List[str], _lowerCAmelCase : Dict ) -> str: _UpperCAmelCase : Union[str, Any] = OmegaConf.load(_lowerCAmelCase ) _UpperCAmelCase : str = torch.load(_lowerCAmelCase, map_location="""cpu""" )["""model"""] _UpperCAmelCase : Dict = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase : List[str] = {} _UpperCAmelCase : List[str] = """first_stage_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Dict = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase : str = {} _UpperCAmelCase : Tuple = """model.diffusion_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Tuple = state_dict[key] _UpperCAmelCase : Optional[Any] = config.model.params.first_stage_config.params _UpperCAmelCase : Optional[Any] = config.model.params.unet_config.params _UpperCAmelCase : List[str] = VQModel(**_lowerCAmelCase ).eval() vqvae.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = UNetLDMModel(**_lowerCAmelCase ).eval() unet.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule="""scaled_linear""", beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=_lowerCAmelCase, ) _UpperCAmelCase : Tuple = LDMPipeline(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) pipeline.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCamelCase__ : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
246
1
"""simple docstring""" import cva import numpy as np class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[int] ,lowercase_ : float ,lowercase_ : int ): if k in (0.04, 0.06): lowerCAmelCase__ : str = k lowerCAmelCase__ : Optional[Any] = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : Tuple ): return str(self.k ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ): lowerCAmelCase__ : List[Any] = cva.imread(lowercase_ ,0 ) lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = img.shape lowerCAmelCase__ : list[list[int]] = [] lowerCAmelCase__ : Union[str, Any] = img.copy() lowerCAmelCase__ : Tuple = cva.cvtColor(lowercase_ ,cva.COLOR_GRAY2RGB ) lowerCAmelCase__ ,lowerCAmelCase__ : Dict = np.gradient(lowercase_ ) lowerCAmelCase__ : List[str] = dx**2 lowerCAmelCase__ : Any = dy**2 lowerCAmelCase__ : Optional[int] = dx * dy lowerCAmelCase__ : Optional[int] = 0.04 lowerCAmelCase__ : int = self.window_size // 2 for y in range(lowercase_ ,h - offset ): for x in range(lowercase_ ,w - offset ): lowerCAmelCase__ : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCAmelCase__ : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCAmelCase__ : Any = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCAmelCase__ : str = (wxx * wyy) - (wxy**2) lowerCAmelCase__ : Any = wxx + wyy lowerCAmelCase__ : Dict = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_5_5 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase : str = HarrisCorner(0.0_4, 3) __UpperCamelCase , __UpperCamelCase : str = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
74
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __UpperCamelCase : Optional[Any] = '''Create a default config file for Accelerate with only a few flags set.''' def __SCREAMING_SNAKE_CASE ( A_="no" , A_ = default_json_config_file , A_ = False ): lowerCAmelCase__ : List[Any] = Path(A_ ) path.parent.mkdir(parents=A_ , exist_ok=A_ ) if path.exists(): print( f'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowerCAmelCase__ : Optional[int] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowerCAmelCase__ : Optional[Any] = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase__ : Union[str, Any] = torch.cuda.device_count() lowerCAmelCase__ : Tuple = num_gpus lowerCAmelCase__ : List[str] = False if num_gpus > 1: lowerCAmelCase__ : Any = '''MULTI_GPU''' else: lowerCAmelCase__ : Union[str, Any] = '''NO''' elif is_xpu_available() and use_xpu: lowerCAmelCase__ : Optional[Any] = torch.xpu.device_count() lowerCAmelCase__ : Tuple = num_xpus lowerCAmelCase__ : List[str] = False if num_xpus > 1: lowerCAmelCase__ : Union[str, Any] = '''MULTI_XPU''' else: lowerCAmelCase__ : List[Any] = '''NO''' elif is_npu_available(): lowerCAmelCase__ : Optional[int] = torch.npu.device_count() lowerCAmelCase__ : List[Any] = num_npus lowerCAmelCase__ : Optional[int] = False if num_npus > 1: lowerCAmelCase__ : Any = '''MULTI_NPU''' else: lowerCAmelCase__ : int = '''NO''' else: lowerCAmelCase__ : List[Any] = 0 lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : Optional[Any] = '''NO''' lowerCAmelCase__ : Optional[Any] = ClusterConfig(**A_ ) config.to_json_file(A_ ) return path def __SCREAMING_SNAKE_CASE ( A_ , A_ ): lowerCAmelCase__ : Any = parser.add_parser('''default''' , parents=A_ , help=A_ , formatter_class=A_ ) parser.add_argument( '''--config_file''' , default=A_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=A_ , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=A_ ) return parser def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : List[str] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'accelerate configuration saved at {config_file}' )
74
1
from __future__ import annotations def __lowerCAmelCase ( a__ , a__ ) -> list[int]: __a = 0 __a = len(a__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __a = i + 1 else: __a = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"{two_pointer([2, 7, 1_1, 1_5], 9) = }")
6
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ : Optional[int] = { '''vocab_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''', }, '''merges_file''': { '''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''', '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''', '''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''', '''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''', '''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''', '''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''', }, } UpperCamelCase__ : List[Any] = { '''facebook/bart-base''': 10_24, '''facebook/bart-large''': 10_24, '''facebook/bart-large-mnli''': 10_24, '''facebook/bart-large-cnn''': 10_24, '''facebook/bart-large-xsum''': 10_24, '''yjernite/bart_eli5''': 10_24, } @lru_cache() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ( list(range(ord("""!""" ) , ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ) , ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ) , ord("""ÿ""" ) + 1 ) ) ) __SCREAMING_SNAKE_CASE : int = bs[:] __SCREAMING_SNAKE_CASE : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 __SCREAMING_SNAKE_CASE : Dict = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def lowerCAmelCase_ ( _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : List[str] = set() __SCREAMING_SNAKE_CASE : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __SCREAMING_SNAKE_CASE : Optional[int] = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : List[str] = VOCAB_FILES_NAMES _A : Tuple = PRETRAINED_VOCAB_FILES_MAP _A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : int = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple="replace" , lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Dict="</s>" , lowerCAmelCase__ : Union[str, Any]="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : Tuple="<pad>" , lowerCAmelCase__ : Union[str, Any]="<mask>" , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __SCREAMING_SNAKE_CASE : Dict = json.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in self.encoder.items()} __SCREAMING_SNAKE_CASE : Dict = errors # how to handle errors in decoding __SCREAMING_SNAKE_CASE : Optional[int] = bytes_to_unicode() __SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __SCREAMING_SNAKE_CASE : Tuple = merges_handle.read().split("""\n""" )[1:-1] __SCREAMING_SNAKE_CASE : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] __SCREAMING_SNAKE_CASE : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Optional[int] = {} __SCREAMING_SNAKE_CASE : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __SCREAMING_SNAKE_CASE : Tuple = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" return len(self.encoder ) def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" if token in self.cache: return self.cache[token] __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __SCREAMING_SNAKE_CASE : Optional[int] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = bigram __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : List[str] = 0 while i < len(lowerCAmelCase__ ): try: __SCREAMING_SNAKE_CASE : Any = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __SCREAMING_SNAKE_CASE : Dict = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __SCREAMING_SNAKE_CASE : Optional[int] = tuple(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __SCREAMING_SNAKE_CASE : Tuple = get_pairs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = word return word def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Tuple ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = """""".join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __SCREAMING_SNAKE_CASE : str = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." """ Please check that the tokenizer is not corrupted!""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict=False , **lowerCAmelCase__ : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __SCREAMING_SNAKE_CASE : List[str] = """ """ + text return (text, kwargs)
112
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: stooge(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) return arr def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: lowerCAmelCase__ , lowerCAmelCase__ : Tuple = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: lowerCAmelCase__ : Union[str, Any] = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) # Recursively sort last 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , i + t , (SCREAMING_SNAKE_CASE_) ) # Recursively sort first 2/3 elements stooge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (h - t) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
307
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = UnCLIPImageVariationPipeline lowercase = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} lowercase = IMAGE_VARIATION_BATCH_PARAMS lowercase = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] lowercase = False @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return 32 @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return 100 @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(a ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(a ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } lowerCAmelCase__ : Optional[Any] = UnCLIPTextProjModel(**a ) return model @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : str = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } lowerCAmelCase__ : str = UNetaDConditionModel(**a ) return model @property def _lowerCamelCase ( self : str ): '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _lowerCamelCase ( self : str ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Any = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ : List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.dummy_decoder lowerCAmelCase__ : Optional[int] = self.dummy_text_proj lowerCAmelCase__ : Any = self.dummy_text_encoder lowerCAmelCase__ : Any = self.dummy_tokenizer lowerCAmelCase__ : Any = self.dummy_super_res_first lowerCAmelCase__ : Optional[int] = self.dummy_super_res_last lowerCAmelCase__ : Dict = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_000 , ) lowerCAmelCase__ : Any = CLIPImageProcessor(crop_size=32 , size=32 ) lowerCAmelCase__ : Optional[int] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _lowerCamelCase ( self : Any , a : Dict , a : List[str]=0 , a : List[str]=True ): '''simple docstring''' lowerCAmelCase__ : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) if str(a ).startswith('mps' ): lowerCAmelCase__ : Optional[int] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) if pil_image: lowerCAmelCase__ : Optional[int] = input_image * 0.5 + 0.5 lowerCAmelCase__ : Dict = input_image.clamp(0 , 1 ) lowerCAmelCase__ : List[Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ : Union[str, Any] = DiffusionPipeline.numpy_to_pil(a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = 'cpu' lowerCAmelCase__ : Any = self.get_dummy_components() lowerCAmelCase__ : List[str] = self.pipeline_class(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : str = pipe(**a ) lowerCAmelCase__ : Optional[Any] = output.images lowerCAmelCase__ : str = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = np.array( [ 0.9_9_9_7, 0.0_0_0_2, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_6_9, 0.0_0_2_3, 0.9_9_9_7, 0.9_9_6_9, 0.9_9_7_0, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = 'cpu' lowerCAmelCase__ : Dict = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**a ) lowerCAmelCase__ : int = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = pipe(**a ) lowerCAmelCase__ : Union[str, Any] = output.images lowerCAmelCase__ : int = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : int = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**a ) lowerCAmelCase__ : Union[str, Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] lowerCAmelCase__ : Optional[int] = pipe(**a ) lowerCAmelCase__ : Tuple = output.images lowerCAmelCase__ : List[str] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] lowerCAmelCase__ : str = pipe( **a , return_dict=a , )[0] lowerCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) lowerCAmelCase__ : Union[str, Any] = np.array( [ 0.9_9_9_7, 0.9_9_8_9, 0.0_0_0_8, 0.0_0_2_1, 0.9_9_6_0, 0.0_0_1_8, 0.0_0_1_4, 0.0_0_0_2, 0.9_9_3_3, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch.device('cpu' ) class A__ : lowercase = 1 lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : Dict = self.pipeline_class(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[int] = torch.Generator(device=a ).manual_seed(0 ) lowerCAmelCase__ : Optional[int] = pipe.decoder.dtype lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ : List[Any] = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ : Any = pipe.prepare_latents( a , dtype=a , device=a , generator=a , latents=a , scheduler=DummyScheduler() ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a , pil_image=a ) lowerCAmelCase__ : Optional[int] = pipe( **a , decoder_latents=a , super_res_latents=a ).images lowerCAmelCase__ : Optional[Any] = self.get_dummy_inputs(a , pil_image=a ) # Don't pass image, instead pass embedding lowerCAmelCase__ : Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ : Union[str, Any] = pipe.image_encoder(a ).image_embeds lowerCAmelCase__ : List[Any] = pipe( **a , decoder_latents=a , super_res_latents=a , image_embeddings=a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ : int = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=a , expected_max_diff=a ) @skip_mps def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch_device == 'cpu' lowerCAmelCase__ : Any = True lowerCAmelCase__ : Optional[Any] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , additional_params_copy_to_batched_inputs=a , ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ : List[str] = [2, 3] self._test_inference_batch_consistent( batch_sizes=a , additional_params_copy_to_batched_inputs=a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=a ) @skip_mps def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return super().test_save_load_local() @skip_mps def _lowerCamelCase ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ : Tuple = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ : Union[str, Any] = pipeline.to(a ) pipeline.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ : List[str] = pipeline( a , generator=a , output_type='np' , ) lowerCAmelCase__ : Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(a , a , 15 )
307
1
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( __UpperCAmelCase: float , __UpperCAmelCase: float , __UpperCAmelCase: int ) -> float: UpperCamelCase__ : str = x UpperCamelCase__ : Optional[Any] = y for step in range(__UpperCAmelCase ): # noqa: B007 UpperCamelCase__ : Union[str, Any] = a * a - b * b + x UpperCamelCase__ : Optional[int] = 2 * a * b + y UpperCamelCase__ : Optional[int] = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( __UpperCAmelCase: float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def lowerCAmelCase_ ( __UpperCAmelCase: float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(__UpperCAmelCase , 1 , 1 ) ) def lowerCAmelCase_ ( __UpperCAmelCase: int = 800 , __UpperCAmelCase: int = 600 , __UpperCAmelCase: float = -0.6 , __UpperCAmelCase: float = 0 , __UpperCAmelCase: float = 3.2 , __UpperCAmelCase: int = 50 , __UpperCAmelCase: bool = True , ) -> Image.Image: UpperCamelCase__ : Optional[int] = Image.new('''RGB''' , (image_width, image_height) ) UpperCamelCase__ : Optional[int] = img.load() # loop through the image-coordinates for image_x in range(__UpperCAmelCase ): for image_y in range(__UpperCAmelCase ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase__ : Any = figure_width / image_width * image_height UpperCamelCase__ : int = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase__ : List[Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase__ : Union[str, Any] = get_distance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase__ : Union[str, Any] = get_color_coded_rgb(__UpperCAmelCase ) else: UpperCamelCase__ : Dict = get_black_and_white_rgb(__UpperCAmelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure UpperCAmelCase_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
201
def lowerCAmelCase_ ( __UpperCAmelCase: int = 100_0000 ) -> int: UpperCamelCase__ : str = limit + 1 UpperCamelCase__ : List[str] = [0] * limit for first_term in range(1 , __UpperCAmelCase ): for n in range(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase__ : str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCamelCase__ : Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
201
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = k_size // 2 _lowerCAmelCase : int = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowerCAmelCase : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__lowerCAmelCase ) + square(__lowerCAmelCase )) / (2 * square(__lowerCAmelCase )) ) return g def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Any = image.shape[0], image.shape[1] # dst image height and width _lowerCAmelCase : str = height - k_size + 1 _lowerCAmelCase : int = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowerCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) _lowerCAmelCase : str = 0 for i, j in product(range(__lowerCAmelCase ) , range(__lowerCAmelCase ) ): _lowerCAmelCase : Tuple = ravel(image[i : i + k_size, j : j + k_size] ) _lowerCAmelCase : Optional[Any] = window row += 1 # turn the kernel into shape(k*k, 1) _lowerCAmelCase : Tuple = gen_gaussian_kernel(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase : Tuple = ravel(__lowerCAmelCase ) # reshape and get the dst image _lowerCAmelCase : Tuple = dot(__lowerCAmelCase , __lowerCAmelCase ).reshape(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) return dst if __name__ == "__main__": # read original image _snake_case = imread(R"../image_data/lena.jpg") # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _snake_case = gaussian_filter(gray, 3, sigma=1) _snake_case = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
350
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
0
import numpy as np def lowerCAmelCase__( lowercase : np.ndarray , lowercase : np.ndarray , lowercase : float = 1E-12 , lowercase : int = 100 , ) -> tuple[float, np.ndarray]: assert np.shape(lowercase )[0] == np.shape(lowercase )[1] # Ensure proper dimensionality. assert np.shape(lowercase )[0] == np.shape(lowercase )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowercase ) == np.iscomplexobj(lowercase ) __snake_case : str = np.iscomplexobj(lowercase ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowercase , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __snake_case : Tuple = False __snake_case : List[Any] = 0 __snake_case : Union[str, Any] = 0 __snake_case : Any = 1E12 while not convergence: # Multiple matrix by the vector. __snake_case : Dict = np.dot(lowercase , lowercase ) # Normalize the resulting output vector. __snake_case : List[Any] = w / np.linalg.norm(lowercase ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __snake_case : Optional[int] = vector.conj().T if is_complex else vector.T __snake_case : Union[str, Any] = np.dot(lowercase , np.dot(lowercase , lowercase ) ) # Check convergence. __snake_case : int = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __snake_case : List[Any] = True __snake_case : str = lambda_ if is_complex: __snake_case : Any = np.real(lambda_ ) return lambda_, vector def lowerCAmelCase__( ) -> None: __snake_case : List[Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __snake_case : Dict = np.array([41, 4, 20] ) __snake_case : Tuple = real_input_matrix.astype(np.complexaaa ) __snake_case : str = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __snake_case : Optional[int] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __snake_case : Optional[int] = real_input_matrix __snake_case : List[str] = real_vector elif problem_type == "complex": __snake_case : Any = complex_input_matrix __snake_case : int = complex_vector # Our implementation. __snake_case , __snake_case : Any = power_iteration(lowercase , lowercase ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __snake_case , __snake_case : Dict = np.linalg.eigh(lowercase ) # Last eigenvalue is the maximum one. __snake_case : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __snake_case : str = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowercase ) - np.abs(lowercase ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
326
from __future__ import annotations def lowerCAmelCase__( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: __snake_case : List[str] = word_bank or [] # create a table __snake_case : int = len(lowercase ) + 1 __snake_case : list[list[list[str]]] = [] for _ in range(lowercase ): table.append([] ) # seed value __snake_case : Optional[int] = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: __snake_case : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
326
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str: _snake_case = len(lowerCAmelCase__ ) _snake_case = len(lowerCAmelCase__ ) _snake_case = ( first_str_length if first_str_length > second_str_length else second_str_length ) _snake_case = [] for char_count in range(lowerCAmelCase__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowerCAmelCase__ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
360
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def SCREAMING_SNAKE_CASE__ ( __A , __A=1_000 ) -> str: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__A , __A , __A ) if b != 1: _snake_case = True for _ in range(__A ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase : Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
160
0
from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: return np.maximum(0 , _UpperCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
50
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def SCREAMING_SNAKE_CASE ( _UpperCAmelCase=None ) -> Tuple: if subparsers is not None: lowerCamelCase__ : Any = subparsers.add_parser('test' ) else: lowerCamelCase__ : int = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=_UpperCAmelCase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_UpperCAmelCase ) return parser def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Union[str, Any]: lowerCamelCase__ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCamelCase__ : List[str] = script_name else: lowerCamelCase__ : List[Any] = F"""--config_file={args.config_file} {script_name}""" lowerCamelCase__ : str = ['accelerate-launch'] + test_args.split() lowerCamelCase__ : Dict = execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def SCREAMING_SNAKE_CASE ( ) -> Any: lowerCamelCase__ : Any = test_command_parser() lowerCamelCase__ : List[Any] = parser.parse_args() test_command(_UpperCAmelCase ) if __name__ == "__main__": main()
50
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass SCREAMING_SNAKE_CASE :List[str] = (3, 9, -11, 0, 7, 5, 1, -1) SCREAMING_SNAKE_CASE :Union[str, Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = 42 class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : Iterable[int] ): __A = None for i in sorted(A ,reverse=A ): __A = Node(A ,self.head ) def __iter__( self : Optional[int] ): __A = self.head while node: yield node.data __A = node.next_node def __len__( self : List[str] ): return sum(1 for _ in self ) def __str__( self : List[str] ): return " -> ".join([str(A ) for node in self] ) def UpperCAmelCase ( a_ , a_ ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(a_ ) + list(a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE :List[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
124
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] ,A : List[str] ,A : List[Any]=7 ,A : Any=3 ,A : int=30 ,A : List[Any]=4_00 ,A : str=True ,A : int=None ,A : List[str]=0.9 ,A : Dict=None ,A : int=True ,A : Any=[0.5, 0.5, 0.5] ,A : Optional[int]=[0.5, 0.5, 0.5] ,): __A = size if size is not None else {"shortest_edge": 30} __A = crop_size if crop_size is not None else {"height": 30, "width": 30} __A = parent __A = batch_size __A = num_channels __A = min_resolution __A = max_resolution __A = do_resize_and_center_crop __A = size __A = crop_pct __A = crop_size __A = do_normalize __A = image_mean __A = image_std def UpperCamelCase_ ( self : int ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Optional[Any] ): __A = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase_ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : Tuple ): __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A ,"do_resize_and_center_crop" ) ) self.assertTrue(hasattr(A ,"size" ) ) self.assertTrue(hasattr(A ,"crop_pct" ) ) self.assertTrue(hasattr(A ,"do_normalize" ) ) self.assertTrue(hasattr(A ,"image_mean" ) ) self.assertTrue(hasattr(A ,"image_std" ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size ,{"height": 30, "width": 30} ) __A = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size ,{"height": 84, "width": 84} ) def UpperCamelCase_ ( self : List[str] ): pass def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A ,Image.Image ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,numpify=A ) for image in image_inputs: self.assertIsInstance(A ,np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) def UpperCamelCase_ ( self : List[Any] ): # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A ,torchify=A ) for image in image_inputs: self.assertIsInstance(A ,torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,) # Test batched __A = image_processing(A ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) ,)
124
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip snake_case_ : Dict = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A__ ( UpperCAmelCase_ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return max(metric_fn(UpperCAmelCase_ , UpperCAmelCase_ ) for gt in ground_truths ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : int = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": _UpperCamelCase : List[str] = pd.read_csv(UpperCAmelCase_ , sep='\t' , header=UpperCAmelCase_ ) for answer_list in data[1]: _UpperCamelCase : Any = ast.literal_eval(UpperCAmelCase_ ) answers.append(UpperCAmelCase_ ) else: _UpperCamelCase : Optional[int] = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : Union[str, Any] = [[reference] for reference in references] _UpperCamelCase : List[str] = 0 for prediction, ground_truths in zip(UpperCAmelCase_ , UpperCAmelCase_ ): total += 1 em += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) fa += metric_max_over_ground_truths(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Dict = 100.0 * em / total _UpperCamelCase : int = 100.0 * fa / total logger.info(f'F1: {fa:.2f}' ) logger.info(f'EM: {em:.2f}' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = args.k _UpperCamelCase : Dict = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : str = [line.strip() for line in open(UpperCAmelCase_ , 'r' ).readlines()] _UpperCamelCase : Union[str, Any] = 0 for hypo, reference in zip(UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[Any] = set(hypo.split('\t' )[:k] ) _UpperCamelCase : List[Any] = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k _UpperCamelCase : Any = 100.0 * em / total logger.info(f'Precision@{k}: {em: .2f}' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): def strip_title(UpperCAmelCase_ ): if title.startswith('"' ): _UpperCamelCase : List[str] = title[1:] if title.endswith('"' ): _UpperCamelCase : Any = title[:-1] return title _UpperCamelCase : Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors='pt' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , )['input_ids'].to(args.device ) _UpperCamelCase : List[str] = rag_model.rag.question_encoder(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = question_enc_outputs[0] _UpperCamelCase : str = rag_model.retriever( UpperCAmelCase_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) _UpperCamelCase : Tuple = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) _UpperCamelCase : Optional[Any] = [] for docs in all_docs: _UpperCamelCase : Any = [strip_title(UpperCAmelCase_ ) for title in docs['title']] provenance_strings.append('\t'.join(UpperCAmelCase_ ) ) return provenance_strings def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): with torch.no_grad(): _UpperCamelCase : int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase_ , return_tensors='pt' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = inputs_dict.input_ids.to(args.device ) _UpperCamelCase : Optional[int] = inputs_dict.attention_mask.to(args.device ) _UpperCamelCase : str = rag_model.generate( # rag_model overwrites generate UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCAmelCase_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _UpperCamelCase : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) if args.print_predictions: for q, a in zip(UpperCAmelCase_ , UpperCAmelCase_ ): logger.info('Q: {} - A: {}'.format(UpperCAmelCase_ , UpperCAmelCase_ ) ) return answers def A__ ( ): _UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=UpperCAmelCase_ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=UpperCAmelCase_ , choices=['exact', 'compressed', 'legacy'] , type=UpperCAmelCase_ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=UpperCAmelCase_ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=UpperCAmelCase_ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=UpperCAmelCase_ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=UpperCAmelCase_ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=UpperCAmelCase_ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=UpperCAmelCase_ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=UpperCAmelCase_ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=UpperCAmelCase_ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=5_0 , type=UpperCAmelCase_ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) _UpperCamelCase : Optional[Any] = parser.parse_args() _UpperCamelCase : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = {} if args.model_type is None: _UpperCamelCase : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): _UpperCamelCase : str = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration _UpperCamelCase : Dict = args.n_docs if args.index_name is not None: _UpperCamelCase : int = args.index_name if args.index_path is not None: _UpperCamelCase : int = args.index_path else: _UpperCamelCase : Any = BartForConditionalGeneration _UpperCamelCase : int = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , UpperCAmelCase_ ) _UpperCamelCase : Tuple = get_scores if args.eval_mode == 'e2e' else get_precision_at_k _UpperCamelCase : Dict = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(UpperCAmelCase_ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): _UpperCamelCase : Dict = RagRetriever.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = model_class.from_pretrained(UpperCAmelCase_ , retriever=UpperCAmelCase_ , **UpperCAmelCase_ ) model.retriever.init_retrieval() else: _UpperCamelCase : int = model_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: _UpperCamelCase : str = [] for line in tqdm(UpperCAmelCase_ ): questions.append(line.strip() ) if len(UpperCAmelCase_ ) == args.eval_batch_size: _UpperCamelCase : List[str] = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write('\n'.join(UpperCAmelCase_ ) + '\n' ) preds_file.flush() _UpperCamelCase : Optional[Any] = [] if len(UpperCAmelCase_ ) > 0: _UpperCamelCase : Optional[Any] = evaluate_batch_fn(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) preds_file.write('\n'.join(UpperCAmelCase_ ) ) preds_file.flush() score_fn(UpperCAmelCase_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": snake_case_ : int = get_args() main(args)
83
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A__ ( snake_case__ ): """simple docstring""" def __init__( self , *__snake_case , __snake_case=None , __snake_case=None , __snake_case=None , **__snake_case ): super().__init__(*__snake_case , **__snake_case ) snake_case = eval_examples snake_case = post_process_function snake_case = quant_trainer_args snake_case = 1_2_8 # default number of calibration samples def a_ ( self , __snake_case=None ): if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) snake_case = calib_dataset if calib_dataset is not None else self.calib_dataset snake_case = self._remove_unused_columns(__snake_case , description='''Calibration''' ) return DataLoader( __snake_case , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__snake_case , ) def a_ ( self , __snake_case=None ): snake_case = self.train_dataset if calib_dataset is None else calib_dataset snake_case = self.get_calib_dataloader(__snake_case ) snake_case = self.model quant_trainer.configure_model(__snake_case , self.quant_trainer_args , calib=__snake_case ) model.eval() quant_trainer.enable_calibration(__snake_case ) logger.info('''***** Running calibration *****''' ) logger.info(F''' Num examples = {self.calib_num}''' ) logger.info(F''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(__snake_case ): # Prediction step snake_case , snake_case , snake_case = self.prediction_step(__snake_case , __snake_case , prediction_loss_only=__snake_case ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__snake_case , self.quant_trainer_args ) snake_case = model def a_ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case = "eval" ): snake_case = self.eval_dataset if eval_dataset is None else eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) self.log(__snake_case ) else: snake_case = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , __snake_case ) return metrics def a_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case = "test" ): snake_case = self.get_test_dataloader(__snake_case ) # Temporarily disable metric computation, we will do it in the loop here. snake_case = self.compute_metrics snake_case = None snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case = eval_loop( __snake_case , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , ) finally: snake_case = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output snake_case = self.post_process_function(__snake_case , __snake_case , output.predictions , '''predict''' ) snake_case = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case = metrics.pop(__snake_case ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__snake_case ) def a_ ( self , __snake_case="./" ): snake_case = self.eval_dataset snake_case = self.get_eval_dataloader(__snake_case ) snake_case = next(iter(__snake_case ) ) # saving device - to make it consistent snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple snake_case = tuple(v.to(__snake_case ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer snake_case = True snake_case = self.model.to(__snake_case ) model.eval() model.float() snake_case = model.module if hasattr(__snake_case , '''module''' ) else model quant_trainer.configure_model(__snake_case , self.quant_trainer_args ) snake_case = os.path.join(__snake_case , '''model.onnx''' ) logger.info(F'''exporting model to {output_model_file}''' ) snake_case = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( __snake_case , __snake_case , __snake_case , export_params=__snake_case , opset_version=1_3 , do_constant_folding=__snake_case , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=__snake_case , ) logger.info('''onnx export finished''' )
127
0
def _a ( lowerCamelCase: int = 1_00_00_00 ) -> int: '''simple docstring''' __A = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
250
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification snake_case__ : Dict = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co snake_case__ : Any = 'main' # Default branch name snake_case__ : Union[str, Any] = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) snake_case__ : Optional[int] = 'aaaaaaa' # This commit does not exist, so we should 404. snake_case__ : int = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes snake_case__ : Any = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def _a ( ) -> Tuple: '''simple docstring''' print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def _a ( ) -> Optional[int]: '''simple docstring''' print('''Bonjour!''' ) yield print('''Au revoir!''' ) class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Any )-> Optional[Any]: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class A_ ( unittest.TestCase ): @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :str , _UpperCamelCase :str )-> Optional[int]: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> Union[str, Any]: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def _lowerCAmelCase (self :int , _UpperCamelCase :Union[str, Any] )-> int: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def _lowerCAmelCase (self :int )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_tf def _lowerCAmelCase (self :Any )-> str: self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_flax def _lowerCAmelCase (self :Optional[int] )-> Dict: # Flax models don't have labels self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) class A_ ( _lowerCamelCase ): pass self.assertEqual(find_labels(_UpperCamelCase ) , [] )
250
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] A_ = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
64
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : Any=7 ): """simple docstring""" _snake_case : Any = None if token is not None: _snake_case : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"Bearer {token}"} # The id of a workflow (not of a workflow run) _snake_case : List[str] = """636036""" _snake_case : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" _snake_case : str = requests.get(snake_case__ , headers=snake_case__ ).json() return result["workflow_runs"] def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : str = get_daily_ci_runs(snake_case__ ) _snake_case : str = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _snake_case : List[str] = workflow_run["""id"""] break return workflow_run_id def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): """simple docstring""" _snake_case : Optional[Any] = get_last_daily_ci_runs(snake_case__ ) if workflow_run_id is not None: _snake_case : Optional[Any] = get_artifacts_links(worflow_run_id=snake_case__ , token=snake_case__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: _snake_case : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case__ , artifact_url=snake_case__ , output_dir=snake_case__ , token=snake_case__ ) def UpperCAmelCase__ (snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int ): """simple docstring""" get_last_daily_ci_artifacts(snake_case__ , snake_case__ , snake_case__ ) _snake_case : int = {} for artifact_name in artifact_names: _snake_case : int = os.path.join(snake_case__ , F"{artifact_name}.zip" ) if os.path.isfile(snake_case__ ): _snake_case : Tuple = {} with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file with z.open(snake_case__ ) as f: _snake_case : Any = f.read().decode("""UTF-8""" ) return results
64
1
"""simple docstring""" from __future__ import annotations _lowerCAmelCase :str = 1.6_021E-19 # units = C def lowerCamelCase_ (UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
68
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =TransfoXLTokenizer a__ =False a__ =False def __lowerCAmelCase ( self ) -> List[str]: super().setUp() _UpperCAmelCase : Dict = [ '''<unk>''', '''[CLS]''', '''[SEP]''', '''want''', '''unwanted''', '''wa''', '''un''', '''running''', ''',''', '''low''', '''l''', ] _UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , **A ) -> Dict: _UpperCAmelCase : Union[str, Any] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **A ) def __lowerCAmelCase ( self , A ) -> str: _UpperCAmelCase : str = '''<unk> UNwanted , running''' _UpperCAmelCase : Union[str, Any] = '''<unk> unwanted, running''' return input_text, output_text def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Any = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=A ) _UpperCAmelCase : Union[str, Any] = tokenizer.tokenize('''<unk> UNwanted , running''' ) self.assertListEqual(A , ['''<unk>''', '''unwanted''', ''',''', '''running'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [0, 4, 8, 7] ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : str = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo ! how \n Are yoU ? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __lowerCAmelCase ( self ) -> int: _UpperCAmelCase : Tuple = TransfoXLTokenizer(lower_case=A ) _UpperCAmelCase : Optional[Any] = '''Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?''' _UpperCAmelCase : Optional[Any] = [ '''Hello''', '''(''', '''bracket''', ''')''', '''and''', '''side''', '''@-@''', '''scrolled''', '''[''', '''and''', ''']''', '''Henry''', '''\'s''', '''$''', '''5''', '''@,@''', '''000''', '''with''', '''3''', '''@.@''', '''34''', '''m''', '''.''', '''What''', '''\'s''', '''up''', '''!''', '''?''', ] self.assertListEqual(tokenizer.tokenize(A ) , A ) self.assertEqual(tokenizer.convert_tokens_to_string(A ) , A ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : List[Any] = len(A ) tokenizer.add_tokens(['''new1''', '''new2'''] ) tokenizer.move_added_token('''new1''' , 1 ) # Check that moved token is not copied (duplicate) self.assertEqual(len(A ) , original_len + 2 ) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('''new1''' ) , [1] ) self.assertEqual(tokenizer.decode([1] ) , '''new1''' )
68
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : List[Any] = logging.get_logger(__name__) A : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Dict = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Any = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Tuple = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : List[Any] = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : str = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRContextEncoderTokenizer class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ = DPRQuestionEncoderTokenizer A : Optional[Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : Tuple = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(a ) class __A: def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) elif titles is None or texts is None: __a = titles if texts is None else texts return super().__call__( _snake_case , _snake_case , padding=_snake_case , truncation=_snake_case , max_length=_snake_case , return_tensors=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) __a = titles if not isinstance(_snake_case , _snake_case ) else [titles] __a = texts if not isinstance(_snake_case , _snake_case ) else [texts] __a = len(_snake_case ) __a = questions if not isinstance(_snake_case , _snake_case ) else [questions] * n_passages assert len(_snake_case ) == len( _snake_case ), F"""There should be as many titles than texts but got {len(_snake_case )} titles and {len(_snake_case )} texts.""" __a = super().__call__(_snake_case , _snake_case , padding=_snake_case , truncation=_snake_case )['''input_ids'''] __a = super().__call__(_snake_case , add_special_tokens=_snake_case , padding=_snake_case , truncation=_snake_case )['''input_ids'''] __a = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_snake_case , _snake_case ) ] } if return_attention_mask is not False: __a = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) __a = attention_mask return self.pad(_snake_case , padding=_snake_case , max_length=_snake_case , return_tensors=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case = 16 , _snake_case = 64 , _snake_case = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' __a = reader_input['''input_ids'''] __a , __a , __a = reader_output[:3] __a = len(_snake_case ) __a = sorted(range(_snake_case ) , reverse=_snake_case , key=relevance_logits.__getitem__ ) __a = [] for doc_id in sorted_docs: __a = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence __a = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __a = sequence_ids.index(self.pad_token_id ) else: __a = len(_snake_case ) __a = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_snake_case , top_spans=_snake_case , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_snake_case , start_index=_snake_case , end_index=_snake_case , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case , _snake_case , _snake_case , ) -> List[DPRSpanPrediction]: '''simple docstring''' __a = [] for start_index, start_score in enumerate(_snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) __a = sorted(_snake_case , key=lambda _snake_case : x[1] , reverse=_snake_case ) __a = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" __a = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(a ) class __A( a , a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = READER_PRETRAINED_VOCAB_FILES_MAP snake_case_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = READER_PRETRAINED_INIT_CONFIGURATION snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = DPRReaderTokenizer
6
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel A : int = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class __A( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' __a = TOKEN HfFolder.save_token(_snake_case ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls ) -> Union[str, Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_snake_case , repo_id='''test-model-flax''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_snake_case , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( a__ , a__ ) -> str: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __A( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_snake_case ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_snake_case , _snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertTrue(check_models_equal(_snake_case , _snake_case ) ) def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_snake_case ): __a = FlaxBertModel.from_pretrained(_snake_case ) __a = FlaxBertModel.from_pretrained(_snake_case , subfolder=_snake_case ) self.assertIsNotNone(_snake_case )
6
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=3_2 , lowerCamelCase__=3 , lowerCamelCase__=1_0 , lowerCamelCase__=[1_0, 2_0, 3_0, 4_0] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = self.get_config() return config, pixel_values def snake_case__ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = FlaxRegNetModel(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = FlaxRegNetForImageClassification(config=lowerCamelCase__ ) _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class lowerCamelCase_( A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Union[str, Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () lowercase__ : List[Any] = False lowercase__ : Tuple = False lowercase__ : Union[str, Any] = False def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def snake_case__ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self ): return def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def snake_case__ ( self ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase = model_class(lowerCamelCase__ ) @jax.jit def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ): return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ ) with self.subTest('''JIT Enabled''' ): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_( ) -> Optional[Any]: _lowerCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def snake_case__ ( self ): _lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=lowerCamelCase__ , return_tensors='''np''' ) _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
73
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( a__ , a__ , a__ , unittest.TestCase ): UpperCamelCase = StableDiffusionInpaintPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase = frozenset([] ) def _lowerCamelCase ( self : Tuple) -> Tuple: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__lowerCAmelCase , ) _UpperCAmelCase = PNDMScheduler(skip_prk_steps=__lowerCAmelCase) torch.manual_seed(0) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) _UpperCAmelCase = CLIPTextModel(__lowerCAmelCase) _UpperCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self : List[str] , A : Any , A : Optional[int]=0) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase)).to(__lowerCAmelCase) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] _UpperCAmelCase = Image.fromarray(np.uinta(__lowerCAmelCase)).convert('RGB').resize((64, 64)) _UpperCAmelCase = Image.fromarray(np.uinta(image + 4)).convert('RGB').resize((64, 64)) if str(__lowerCAmelCase).startswith('mps'): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase).manual_seed(__lowerCAmelCase) _UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInpaintPipeline(**__lowerCAmelCase) _UpperCAmelCase = sd_pipe.to(__lowerCAmelCase) sd_pipe.set_progress_bar_config(disable=__lowerCAmelCase) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase) _UpperCAmelCase = sd_pipe(**__lowerCAmelCase).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def _lowerCamelCase ( self : Union[str, Any]) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Dict) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Dict) -> str: """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy') _UpperCAmelCase = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(__lowerCAmelCase , safety_checker=__lowerCAmelCase) pipe.to(__lowerCAmelCase) pipe.set_progress_bar_config(disable=__lowerCAmelCase) pipe.enable_attention_slicing() _UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , generator=__lowerCAmelCase , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image).max() < 9E-3 def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy') _UpperCAmelCase = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( __lowerCAmelCase , torch_dtype=torch.floataa , safety_checker=__lowerCAmelCase , ) pipe.to(__lowerCAmelCase) pipe.set_progress_bar_config(disable=__lowerCAmelCase) pipe.enable_attention_slicing() _UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , generator=__lowerCAmelCase , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image).max() < 5E-1 def _lowerCamelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png') _UpperCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png') _UpperCAmelCase = '''stabilityai/stable-diffusion-2-inpainting''' _UpperCAmelCase = PNDMScheduler.from_pretrained(__lowerCAmelCase , subfolder='scheduler') _UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained( __lowerCAmelCase , safety_checker=__lowerCAmelCase , scheduler=__lowerCAmelCase , torch_dtype=torch.floataa , ) pipe.to(__lowerCAmelCase) pipe.set_progress_bar_config(disable=__lowerCAmelCase) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = '''Face of a yellow cat, high resolution, sitting on a park bench''' _UpperCAmelCase = torch.manual_seed(0) _UpperCAmelCase = pipe( prompt=__lowerCAmelCase , image=__lowerCAmelCase , mask_image=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=2 , output_type='np' , ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
339
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = CTRLTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _lowerCAmelCase( self ) -> Dict: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ : Optional[Any] = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] lowercase__ : str = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) lowercase__ : Tuple = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] lowercase__ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__lowerCAmelCase ) ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> List[str]: lowercase__ : List[str] = '''adapt react readapt apt''' lowercase__ : Union[str, Any] = '''adapt react readapt apt''' return input_text, output_text def _lowerCAmelCase( self ) -> Optional[Any]: lowercase__ : Union[str, Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase__ : Optional[Any] = '''adapt react readapt apt''' lowercase__ : Dict = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() lowercase__ : Union[str, Any] = tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokens + [tokenizer.unk_token] lowercase__ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase )
198
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _UpperCAmelCase : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCAmelCase ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase : List[Any] ) -> List[Any]: super().__init__() lowerCamelCase__ : Union[str, Any] = torchvision.models.resnetaaa(pretrained=UpperCAmelCase ) lowerCamelCase__ : Any = list(model.children() )[:-2] lowerCamelCase__ : int = nn.Sequential(*UpperCAmelCase ) lowerCamelCase__ : str = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def A_ ( self : List[Any] , UpperCAmelCase : Union[str, Any] ) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 lowerCamelCase__ : Union[str, Any] = self.pool(self.model(UpperCAmelCase ) ) lowerCamelCase__ : Optional[Any] = torch.flatten(UpperCAmelCase , start_dim=2 ) lowerCamelCase__ : List[str] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCAmelCase ( __UpperCamelCase ): def __init__( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple ) -> Union[str, Any]: lowerCamelCase__ : Dict = [json.loads(UpperCAmelCase ) for l in open(UpperCAmelCase )] lowerCamelCase__ : Optional[int] = os.path.dirname(UpperCAmelCase ) lowerCamelCase__ : List[Any] = tokenizer lowerCamelCase__ : Optional[int] = labels lowerCamelCase__ : Optional[int] = len(UpperCAmelCase ) lowerCamelCase__ : Dict = max_seq_length lowerCamelCase__ : List[str] = transforms def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.data ) def __getitem__( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=UpperCAmelCase ) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = sentence[0], sentence[1:-1], sentence[-1] lowerCamelCase__ : Optional[Any] = sentence[: self.max_seq_length] lowerCamelCase__ : Union[str, Any] = torch.zeros(self.n_classes ) lowerCamelCase__ : Any = 1 lowerCamelCase__ : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) lowerCamelCase__ : Dict = self.transforms(UpperCAmelCase ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def A_ ( self : Union[str, Any] ) -> Tuple: lowerCamelCase__ : Optional[Any] = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : str = [len(row['sentence'] ) for row in batch] lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = len(_UpperCAmelCase ), max(_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = torch.zeros(_UpperCAmelCase , _UpperCAmelCase , dtype=torch.long ) lowerCamelCase__ : Dict = torch.zeros(_UpperCAmelCase , _UpperCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase ) ): lowerCamelCase__ : int = input_row['sentence'] lowerCamelCase__ : Optional[Any] = 1 lowerCamelCase__ : List[str] = torch.stack([row['image'] for row in batch] ) lowerCamelCase__ : Dict = torch.stack([row['label'] for row in batch] ) lowerCamelCase__ : Optional[int] = torch.stack([row['image_start_token'] for row in batch] ) lowerCamelCase__ : str = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def SCREAMING_SNAKE_CASE ( ) -> Tuple: return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
45
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowerCAmelCase ( yaml.SafeLoader ): def A_ ( self : List[str] , UpperCAmelCase : Dict ) -> Optional[Any]: lowerCamelCase__ : List[Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] lowerCamelCase__ : str = [tuple(UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else key for key in keys] lowerCamelCase__ : Optional[Any] = Counter(UpperCAmelCase ) lowerCamelCase__ : Tuple = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"""Got duplicate yaml keys: {duplicate_keys}""" ) def A_ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=False ) -> int: lowerCamelCase__ : int = super().construct_mapping(UpperCAmelCase , deep=UpperCAmelCase ) self._check_no_duplicates_on_constructed_node(UpperCAmelCase ) return mapping def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Tuple[Optional[str], str]: lowerCamelCase__ : Tuple = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCamelCase__ : List[str] = full_content[1:].index('---' ) + 1 lowerCamelCase__ : Tuple = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_UpperCAmelCase ) class lowerCAmelCase ( __UpperCamelCase ): # class attributes UpperCAmelCase__ = {"""train_eval_index"""} # train-eval-index in the YAML metadata @classmethod def A_ ( cls : str , UpperCAmelCase : Path ) -> "DatasetMetadata": with open(UpperCAmelCase , encoding='utf-8' ) as readme_file: lowerCamelCase__ , lowerCamelCase__ : List[Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(UpperCAmelCase ) else: return cls() def A_ ( self : List[str] , UpperCAmelCase : Path ) -> Any: if path.exists(): with open(UpperCAmelCase , encoding='utf-8' ) as readme_file: lowerCamelCase__ : Any = readme_file.read() else: lowerCamelCase__ : Any = None lowerCamelCase__ : List[str] = self._to_readme(UpperCAmelCase ) with open(UpperCAmelCase , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(UpperCAmelCase ) def A_ ( self : Union[str, Any] , UpperCAmelCase : Optional[str] = None ) -> str: if readme_content is not None: lowerCamelCase__ , lowerCamelCase__ : int = _split_yaml_from_readme(UpperCAmelCase ) lowerCamelCase__ : Dict = '---\n' + self.to_yaml_string() + '---\n' + content else: lowerCamelCase__ : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def A_ ( cls : Union[str, Any] , UpperCAmelCase : str ) -> "DatasetMetadata": lowerCamelCase__ : Any = yaml.load(UpperCAmelCase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCamelCase__ : Tuple = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCAmelCase ) def A_ ( self : Optional[Any] ) -> str: return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCAmelCase , allow_unicode=UpperCAmelCase , encoding='utf-8' , ).decode('utf-8' ) _UpperCAmelCase : Tuple = { """image-classification""": [], """translation""": [], """image-segmentation""": [], """fill-mask""": [], """automatic-speech-recognition""": [], """token-classification""": [], """sentence-similarity""": [], """audio-classification""": [], """question-answering""": [], """summarization""": [], """zero-shot-classification""": [], """table-to-text""": [], """feature-extraction""": [], """other""": [], """multiple-choice""": [], """text-classification""": [], """text-to-image""": [], """text2text-generation""": [], """zero-shot-image-classification""": [], """tabular-classification""": [], """tabular-regression""": [], """image-to-image""": [], """tabular-to-text""": [], """unconditional-image-generation""": [], """text-retrieval""": [], """text-to-speech""": [], """object-detection""": [], """audio-to-audio""": [], """text-generation""": [], """conversational""": [], """table-question-answering""": [], """visual-question-answering""": [], """image-to-text""": [], """reinforcement-learning""": [], """voice-activity-detection""": [], """time-series-forecasting""": [], """document-question-answering""": [], } if __name__ == "__main__": from argparse import ArgumentParser _UpperCAmelCase : Tuple = ArgumentParser(usage="""Validate the yaml metadata block of a README.md file.""") ap.add_argument("""readme_filepath""") _UpperCAmelCase : str = ap.parse_args() _UpperCAmelCase : Optional[int] = Path(args.readme_filepath) _UpperCAmelCase : Union[str, Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
45
1
from ...configuration_utils import PretrainedConfig A__ = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''tapas''' def __init__( self , _snake_case=30522 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=1024 , _snake_case=[3, 256, 256, 2, 256, 256, 10] , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=0 , _snake_case=10.0 , _snake_case=0 , _snake_case=1.0 , _snake_case=None , _snake_case=1.0 , _snake_case=False , _snake_case=None , _snake_case=1.0 , _snake_case=1.0 , _snake_case=False , _snake_case=False , _snake_case="ratio" , _snake_case=None , _snake_case=None , _snake_case=64 , _snake_case=32 , _snake_case=False , _snake_case=True , _snake_case=False , _snake_case=False , _snake_case=True , _snake_case=False , _snake_case=None , _snake_case=None , **_snake_case , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_sizes _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps # Fine-tuning task hyperparameters _lowerCAmelCase = positive_label_weight _lowerCAmelCase = num_aggregation_labels _lowerCAmelCase = aggregation_loss_weight _lowerCAmelCase = use_answer_as_supervision _lowerCAmelCase = answer_loss_importance _lowerCAmelCase = use_normalized_answer_loss _lowerCAmelCase = huber_loss_delta _lowerCAmelCase = temperature _lowerCAmelCase = aggregation_temperature _lowerCAmelCase = use_gumbel_for_cells _lowerCAmelCase = use_gumbel_for_aggregation _lowerCAmelCase = average_approximation_function _lowerCAmelCase = cell_selection_preference _lowerCAmelCase = answer_loss_cutoff _lowerCAmelCase = max_num_rows _lowerCAmelCase = max_num_columns _lowerCAmelCase = average_logits_per_cell _lowerCAmelCase = select_one_column _lowerCAmelCase = allow_empty_column_selection _lowerCAmelCase = init_cell_selection_weights_to_zero _lowerCAmelCase = reset_position_index_per_cell _lowerCAmelCase = disable_per_token_loss # Aggregation hyperparameters _lowerCAmelCase = aggregation_labels _lowerCAmelCase = no_aggregation_label_index if isinstance(self.aggregation_labels , _snake_case ): _lowerCAmelCase = {int(_snake_case ): v for k, v in aggregation_labels.items()}
82
def _UpperCAmelCase ( snake_case = 50 ): """simple docstring""" _lowerCAmelCase = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"{solution() = }")
82
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Any ): A = tempfile.mkdtemp() # fmt: off A = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) A = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A = {"""unk_token""": """<unk>"""} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCamelCase_ ) ) A = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } A = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def A (self : List[Any] , **_lowerCAmelCase : List[str] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def A (self : Tuple , **_lowerCAmelCase : Union[str, Any] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def A (self : Optional[int] , **_lowerCAmelCase : int ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def A (self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def A (self : Optional[int] ): A = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A (self : Union[str, Any] ): A = self.get_tokenizer() A = self.get_rust_tokenizer() A = self.get_image_processor() A = CLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) A = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) A = CLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) A = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def A (self : List[str] ): A = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) A = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def A (self : Union[str, Any] ): A = self.get_image_processor() A = self.get_tokenizer() A = CLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) A = self.prepare_image_inputs() A = image_processor(UpperCamelCase_ , return_tensors="""np""" ) A = processor(images=UpperCamelCase_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A (self : Optional[Any] ): A = self.get_image_processor() A = self.get_tokenizer() A = CLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) A = """lower newer""" A = processor(text=UpperCamelCase_ ) A = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A (self : Optional[Any] ): A = self.get_image_processor() A = self.get_tokenizer() A = CLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) A = """lower newer""" A = self.prepare_image_inputs() A = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def A (self : Tuple ): A = self.get_image_processor() A = self.get_tokenizer() A = CLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(UpperCamelCase_ ) A = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def A (self : int ): A = self.get_image_processor() A = self.get_tokenizer() A = CLIPProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) A = """lower newer""" A = self.prepare_image_inputs() A = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
355
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
0
from __future__ import annotations import collections import pprint from pathlib import Path def snake_case_ ( snake_case ) -> str: return "".join(sorted(_lowerCAmelCase ) ) def snake_case_ ( snake_case ) -> list[str]: return word_by_signature[signature(_lowerCAmelCase )] __lowerCAmelCase = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') __lowerCAmelCase = sorted({word.strip().lower() for word in data.splitlines()}) __lowerCAmelCase = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __lowerCAmelCase = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
196
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
0
from __future__ import annotations __snake_case : Union[str, Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class __SCREAMING_SNAKE_CASE : def __init__( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowerCAmelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase__ = {} lowerCAmelCase__ = source_vertex def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase__ = {self.source_vertex} lowerCAmelCase__ = None lowerCAmelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_UpperCamelCase ) lowerCAmelCase__ = vertex queue.append(_UpperCamelCase ) def UpperCamelCase__ ( self , _UpperCamelCase ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase__ = self.parent.get(_UpperCamelCase ) if target_vertex_parent is None: lowerCAmelCase__ = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(_UpperCamelCase ) return self.shortest_path(_UpperCamelCase ) + F"->{target_vertex}" if __name__ == "__main__": __snake_case : Any = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
122
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __snake_case : Optional[int] = """\ @inproceedings{snover-etal-2006-study, title = \"A Study of Translation Edit Rate with Targeted Human Annotation\", author = \"Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John\", booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\", month = aug # \" 8-12\", year = \"2006\", address = \"Cambridge, Massachusetts, USA\", publisher = \"Association for Machine Translation in the Americas\", url = \"https://aclanthology.org/2006.amta-papers.25\", pages = \"223--231\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __snake_case : List[str] = """\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. """ __snake_case : Dict = """ Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: 'score' (float): TER score (num_edits / sum_ref_lengths * 100) 'num_edits' (int): The cumulative number of edits 'ref_length' (float): The cumulative average reference length Examples: Example 1: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0} Example 2: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0} Example 3: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5} Example 4: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0} Example 5: >>> predictions = [\"does this sentence match??\", ... \"what about this sentence?\", ... \"What did the TER metric user say to the developer?\"] >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"], ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"], ... [\"Your jokes are...\", \"...TERrible\"]] >>> ter = datasets.load_metric(\"ter\") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCamelCase__ ( self ): """simple docstring""" if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def UpperCamelCase__ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , ): """simple docstring""" lowerCAmelCase__ = len(references[0] ) if any(len(_UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowerCAmelCase__ = [[refs[i] for refs in references] for i in range(_UpperCamelCase )] lowerCAmelCase__ = TER( normalized=_UpperCamelCase , no_punct=_UpperCamelCase , asian_support=_UpperCamelCase , case_sensitive=_UpperCamelCase , ) lowerCAmelCase__ = sb_ter.corpus_score(_UpperCamelCase , _UpperCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
122
1
'''simple docstring''' def lowerCamelCase ( __lowerCamelCase : int ) ->int: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
58
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
1
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer lowerCAmelCase_ = logging.getLogger(__name__) def lowerCamelCase_ ( ): """simple docstring""" snake_case_ : List[Any] = argparse.ArgumentParser( description='''Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.''' ) parser.add_argument( '''--dataset_name''' , type=lowerCamelCase_ , default='''wikitext''' , help='''Name of the training. Explore datasets at: hf.co/datasets.''' , ) parser.add_argument( '''--dataset_config''' , type=lowerCamelCase_ , default='''wikitext-103-raw-v1''' , help='''Configuration name of the dataset.''' ) parser.add_argument( '''--tokenizer_name_or_path''' , type=lowerCamelCase_ , default='''sayakpaul/unigram-tokenizer-wikitext''' , help='''Tokenizer identifier. Can be a local filepath or a Hub identifier.''' , ) parser.add_argument( '''--shard_size''' , type=lowerCamelCase_ , default=1_000 , help='''Number of entries to go in a single shard.''' , ) parser.add_argument('''--split''' , type=lowerCamelCase_ , default='''train''' , choices=['''train''', '''test''', '''validation'''] ) parser.add_argument( '''--limit''' , default=lowerCamelCase_ , type=lowerCamelCase_ , help='''Limit the number of shards (used for debugging).''' , ) parser.add_argument( '''--max_length''' , type=lowerCamelCase_ , default=512 , help='''Maximum sequence length. For training on TPUs, it helps to have a maximum''' ''' sequence length that is a multiple of 8.''' , ) parser.add_argument( '''--output_dir''' , default='''tf-tpu''' , type=lowerCamelCase_ , help='''Output directory where the TFRecord shards will be saved. If the''' ''' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord''' ''' shards will be directly saved to a Google Cloud Storage bucket.''' , ) snake_case_ : Optional[int] = parser.parse_args() return args def lowerCamelCase_ ( _UpperCamelCase ): """simple docstring""" def fn(_UpperCamelCase ): return tokenizer(examples['''text'''] ) return fn def lowerCamelCase_ ( _UpperCamelCase ): """simple docstring""" snake_case_ : Optional[Any] = [] for i in range(len(tokenized_data['''input_ids'''] ) ): snake_case_ : List[Any] = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['''input_ids'''][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['''attention_mask'''][i] ) ), } snake_case_ : Tuple = tf.train.Features(feature=lowerCamelCase_ ) snake_case_ : Union[str, Any] = tf.train.Example(features=lowerCamelCase_ ) snake_case_ : List[Any] = example.SerializeToString() records.append(lowerCamelCase_ ) return records def lowerCamelCase_ ( _UpperCamelCase ): """simple docstring""" snake_case_ : List[str] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: snake_case_ : List[str] = min(len(lowerCamelCase_ ) , args.limit ) snake_case_ : Optional[Any] = dataset.select(range(lowerCamelCase_ ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) snake_case_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) snake_case_ : int = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) else: snake_case_ : List[str] = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. snake_case_ : List[str] = tokenize_function(lowerCamelCase_ ) snake_case_ : Optional[int] = dataset.map(lowerCamelCase_ , batched=lowerCamelCase_ , num_proc=4 , remove_columns=['''text'''] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_UpperCamelCase ): # Concatenate all texts. snake_case_ : Any = {k: sum(examples[k] , [] ) for k in examples.keys()} snake_case_ : Tuple = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 snake_case_ : str = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. snake_case_ : Tuple = { k: [t[i : i + args.max_length] for i in range(0 , lowerCamelCase_ , args.max_length )] for k, t in concatenated_examples.items() } return result snake_case_ : List[str] = dataset_tokenized.map(lowerCamelCase_ , batched=lowerCamelCase_ , batch_size=1_000 , num_proc=4 ) snake_case_ : Optional[Any] = 0 snake_case_ : str = 0 for shard in range(0 , len(lowerCamelCase_ ) , args.shard_size ): snake_case_ : List[Any] = grouped_dataset[shard : shard + args.shard_size] snake_case_ : Dict = len(dataset_snapshot['''input_ids'''] ) snake_case_ : int = os.path.join(lowerCamelCase_ , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) snake_case_ : List[Any] = get_serialized_examples(lowerCamelCase_ ) with tf.io.TFRecordWriter(lowerCamelCase_ ) as out_file: for i in range(len(lowerCamelCase_ ) ): snake_case_ : Dict = serialized_examples[i] out_file.write(lowerCamelCase_ ) print('''Wrote file {} containing {} records'''.format(lowerCamelCase_ , lowerCamelCase_ ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , '''w''' ) as f: print(f'''Total {args.split} records: {total_records}''' , file=lowerCamelCase_ ) if __name__ == "__main__": lowerCAmelCase_ = parse_args() main(args)
358
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ : List[Any] = '''BlipImageProcessor''' lowerCamelCase_ : Union[str, Any] = '''AutoTokenizer''' def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) # add QFormer tokenizer snake_case_ : Optional[Any] = qformer_tokenizer def __call__(self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) snake_case_ : Tuple = BatchFeature() if text is not None: snake_case_ : Tuple = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) encoding.update(__magic_name__ ) snake_case_ : Optional[Any] = self.qformer_tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) snake_case_ : Optional[int] = qformer_text_encoding.pop('''input_ids''' ) snake_case_ : Tuple = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: snake_case_ : Any = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer.model_input_names snake_case_ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase (self , __magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' if os.path.isfile(__magic_name__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) snake_case_ : Any = os.path.join(__magic_name__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__magic_name__ ) return super().save_pretrained(__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = AutoTokenizer.from_pretrained(__magic_name__ , subfolder='''qformer_tokenizer''' ) snake_case_ : str = cls._get_arguments_from_pretrained(__magic_name__ , **__magic_name__ ) args.append(__magic_name__ ) return cls(*__magic_name__ )
279
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __lowerCamelCase = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : jnp.ndarray @flax_register_to_config class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ): """simple docstring""" _snake_case : int = 3_2 _snake_case : int = 4 _snake_case : int = 4 _snake_case : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _snake_case : Union[bool, Tuple[bool]] = False _snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _snake_case : int = 2 _snake_case : Union[int, Tuple[int]] = 8 _snake_case : Optional[Union[int, Tuple[int]]] = None _snake_case : int = 1_2_8_0 _snake_case : float = 0.0 _snake_case : bool = False _snake_case : jnp.dtype = jnp.floataa _snake_case : bool = True _snake_case : int = 0 _snake_case : bool = False def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' _UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa ) _UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ ) _UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"] def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.block_out_channels _UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype ) _UpperCamelCase = self.only_cross_attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase = [] _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = down_blocks # mid _UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _UpperCamelCase = [] _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = output_channel _UpperCamelCase = up_blocks # out _UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , jnp.ndarray ): _UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 ) _UpperCamelCase = self.time_proj(lowerCAmelCase__ ) _UpperCamelCase = self.time_embedding(lowerCAmelCase__ ) # 2. pre-process _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) _UpperCamelCase = self.conv_in(lowerCAmelCase__ ) # 3. down _UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( lowerCAmelCase__ , lowerCAmelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase = new_down_block_res_samples # 4. mid _UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = up_block( lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , ) else: _UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train ) # 6. post-process _UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ ) _UpperCamelCase = nn.silu(lowerCAmelCase__ ) _UpperCamelCase = self.conv_out(lowerCAmelCase__ ) _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
324
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __UpperCAmelCase =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __UpperCAmelCase =" def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class a__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) __lowerCamelCase = self.transformer_dir shutil.copy( os.path.join(a , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" __lowerCamelCase = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def SCREAMING_SNAKE_CASE__ ( self : Any , a : List[Any] , a : Optional[Any] , a : List[str] , a : Tuple=None ): """simple docstring""" __lowerCamelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __lowerCamelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __lowerCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) __lowerCamelCase = black.format_str(a , mode=a ) __lowerCamelCase = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(a , '''w''' , newline='''\n''' ) as f: f.write(a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=a ) with open(a , '''r''' ) as f: self.assertTrue(f.read() , a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(a , a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , a , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , a ) , ) # Copy consistency with a really long name __lowerCamelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , a , a ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , a , overwrite_result=re.sub('''Bert''' , '''TestModel''' , a ) , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" __lowerCamelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] __lowerCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) __lowerCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __lowerCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) __lowerCamelCase , __lowerCamelCase = check_copies.convert_to_localized_md( a , a , localized_readme['''format_model_list'''] ) self.assertFalse(a ) self.assertEqual(a , a ) __lowerCamelCase , __lowerCamelCase = check_copies.convert_to_localized_md( a , a , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(a ) __lowerCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) __lowerCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __lowerCamelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __lowerCamelCase , __lowerCamelCase = check_copies.convert_to_localized_md( a , a , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(a , a )
237
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase =logging.get_logger(__name__) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict =["pixel_values"] def __init__( self : List[str] , a : bool = True , a : Dict[str, int] = None , a : int = 0.9 , a : PILImageResampling = PILImageResampling.BICUBIC , a : bool = True , a : Dict[str, int] = None , a : Union[int, float] = 1 / 2_55 , a : bool = True , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Dict , ): """simple docstring""" super().__init__(**a ) __lowerCamelCase = size if size is not None else {'''shortest_edge''': 2_24} __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = do_resize __lowerCamelCase = size __lowerCamelCase = crop_pct __lowerCamelCase = resample __lowerCamelCase = do_center_crop __lowerCamelCase = crop_size __lowerCamelCase = do_rescale __lowerCamelCase = rescale_factor __lowerCamelCase = do_normalize __lowerCamelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCamelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE__ ( self : Any , a : np.ndarray , a : Dict[str, int] , a : Optional[float] = None , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : List[str] , ): """simple docstring""" __lowerCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __lowerCamelCase = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __lowerCamelCase = int(size['''height'''] / crop_pct ) else: __lowerCamelCase = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) __lowerCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) else: if "shortest_edge" in size: __lowerCamelCase = get_resize_output_image_size(a , size=size['''shortest_edge'''] , default_to_square=a ) elif "height" in size and "width" in size: __lowerCamelCase = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(a ) ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , ): """simple docstring""" __lowerCamelCase = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(a , size=(size['''height'''], size['''width''']) , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Union[str, Any] , ): """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Any , ): """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : ImageInput , a : bool = None , a : Dict[str, int] = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : Dict[str, int] = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : Tuple , ): """simple docstring""" __lowerCamelCase = do_resize if do_resize is not None else self.do_resize __lowerCamelCase = crop_pct if crop_pct is not None else self.crop_pct __lowerCamelCase = resample if resample is not None else self.resample __lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCamelCase = image_mean if image_mean is not None else self.image_mean __lowerCamelCase = image_std if image_std is not None else self.image_std __lowerCamelCase = size if size is not None else self.size __lowerCamelCase = get_size_dict(a , default_to_square=a ) __lowerCamelCase = crop_size if crop_size is not None else self.crop_size __lowerCamelCase = get_size_dict(a , param_name='''crop_size''' ) __lowerCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __lowerCamelCase = [to_numpy_array(a ) for image in images] if do_resize: __lowerCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_center_crop: __lowerCamelCase = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: __lowerCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: __lowerCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] __lowerCamelCase = [to_channel_dimension_format(a , a ) for image in images] __lowerCamelCase = {'''pixel_values''': images} return BatchFeature(data=a , tensor_type=a )
237
1
'''simple docstring''' from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging A =logging.get_logger(__name__) class _a ( __a ): __a : Dict = ["""pixel_values"""] def __init__( self : int , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : int = 8 , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_pad UpperCAmelCase = pad_size def A ( self : Any , lowercase : np.ndarray , lowercase : float , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : str ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : Optional[int] , lowercase : np.ndarray , lowercase : int , lowercase : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = get_image_size(lowercase ) UpperCAmelCase = (old_height // size + 1) * size - old_height UpperCAmelCase = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowercase ) def A ( self : Union[str, Any] , lowercase : ImageInput , lowercase : Optional[bool] = None , lowercase : Optional[float] = None , lowercase : Optional[bool] = None , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowercase : Optional[Any] , ): '''simple docstring''' UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_pad if do_pad is not None else self.do_pad UpperCAmelCase = pad_size if pad_size is not None else self.pad_size UpperCAmelCase = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(lowercase ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: UpperCAmelCase = [self.pad(lowercase , size=lowercase ) for image in images] UpperCAmelCase = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
34
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A =logging.getLogger(__name__) def snake_case_ (_a : Dict , _a : Union[str, Any] ): return (preds == labels).mean() @dataclass class _a : __a : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _a : __a : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) __a : str = field(metadata={"""help""": """Should contain the data files for the task."""} ) __a : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def snake_case_ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _a ) # Set seed set_seed(training_args.seed ) try: UpperCAmelCase = processors[data_args.task_name]() UpperCAmelCase = processor.get_labels() UpperCAmelCase = len(_a ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , ) # Get datasets UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_a , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_a : EvalPrediction ) -> Dict: UpperCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_a , p.label_ids )} # Data collator UpperCAmelCase = DataCollatorWithPadding(_a , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCAmelCase = Trainer( model=_a , args=_a , train_dataset=_a , eval_dataset=_a , compute_metrics=_a , data_collator=_a , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase = trainer.evaluate() UpperCAmelCase = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_a , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _a , _a ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_a ) return results def snake_case_ (_a : Optional[int] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
34
1
def __magic_name__ ( __a : int ): '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def __magic_name__ ( __a : int ): '''simple docstring''' UpperCamelCase__ = 0 UpperCamelCase__ = number while duplicate > 0: UpperCamelCase__ , UpperCamelCase__ = divmod(__a , 10 ) fact_sum += factorial(__a ) return fact_sum == number if __name__ == "__main__": print('''Program to check whether a number is a Krisnamurthy Number or not.''') lowerCamelCase_ = int(input('''Enter number: ''').strip()) print( f'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
359
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( __a : Dict , __a : Tuple , __a : int , __a : Dict="attention" ): '''simple docstring''' UpperCamelCase__ = params[f"{prefix}/layers_{i}/{layer_name}/key/kernel"] UpperCamelCase__ = params[f"{prefix}/layers_{i}/{layer_name}/out/kernel"] UpperCamelCase__ = params[f"{prefix}/layers_{i}/{layer_name}/query/kernel"] UpperCamelCase__ = params[f"{prefix}/layers_{i}/{layer_name}/value/kernel"] return k, o, q, v def __magic_name__ ( __a : Dict , __a : Any , __a : Dict , __a : Optional[Any]=False ): '''simple docstring''' if split_mlp_wi: UpperCamelCase__ = params[f"{prefix}/layers_{i}/mlp/wi_0/kernel"] UpperCamelCase__ = params[f"{prefix}/layers_{i}/mlp/wi_1/kernel"] UpperCamelCase__ = (wi_a, wi_a) else: UpperCamelCase__ = params[f"{prefix}/layers_{i}/mlp/wi/kernel"] UpperCamelCase__ = params[f"{prefix}/layers_{i}/mlp/wo/kernel"] return wi, wo def __magic_name__ ( __a : Tuple , __a : Tuple , __a : Optional[int] , __a : Dict ): '''simple docstring''' return params[f"{prefix}/layers_{i}/{layer_name}/scale"] def __magic_name__ ( __a : dict , *, __a : int , __a : bool ): '''simple docstring''' UpperCamelCase__ = traverse_util.flatten_dict(variables["""target"""] ) UpperCamelCase__ = {"""/""".join(__a ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCamelCase__ = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , __a ) UpperCamelCase__ = collections.OrderedDict() # Shared embeddings. UpperCamelCase__ = old["""token_embedder/embedding"""] # Encoder. for i in range(__a ): # Block i, layer 0 (Self Attention). UpperCamelCase__ = tax_layer_norm_lookup(__a , __a , """encoder""" , """pre_attention_layer_norm""" ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = tax_attention_lookup(__a , __a , """encoder""" , """attention""" ) UpperCamelCase__ = layer_norm UpperCamelCase__ = k.T UpperCamelCase__ = o.T UpperCamelCase__ = q.T UpperCamelCase__ = v.T # Block i, layer 1 (MLP). UpperCamelCase__ = tax_layer_norm_lookup(__a , __a , """encoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase__ , UpperCamelCase__ = tax_mlp_lookup(__a , __a , """encoder""" , __a ) UpperCamelCase__ = layer_norm if split_mlp_wi: UpperCamelCase__ = wi[0].T UpperCamelCase__ = wi[1].T else: UpperCamelCase__ = wi.T UpperCamelCase__ = wo.T UpperCamelCase__ = old[ """encoder/relpos_bias/rel_embedding""" ].T UpperCamelCase__ = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(__a ): # Block i, layer 0 (Self Attention). UpperCamelCase__ = tax_layer_norm_lookup(__a , __a , """decoder""" , """pre_self_attention_layer_norm""" ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = tax_attention_lookup(__a , __a , """decoder""" , """self_attention""" ) UpperCamelCase__ = layer_norm UpperCamelCase__ = k.T UpperCamelCase__ = o.T UpperCamelCase__ = q.T UpperCamelCase__ = v.T # Block i, layer 1 (Cross Attention). UpperCamelCase__ = tax_layer_norm_lookup(__a , __a , """decoder""" , """pre_cross_attention_layer_norm""" ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = tax_attention_lookup(__a , __a , """decoder""" , """encoder_decoder_attention""" ) UpperCamelCase__ = layer_norm UpperCamelCase__ = k.T UpperCamelCase__ = o.T UpperCamelCase__ = q.T UpperCamelCase__ = v.T # Block i, layer 2 (MLP). UpperCamelCase__ = tax_layer_norm_lookup(__a , __a , """decoder""" , """pre_mlp_layer_norm""" ) UpperCamelCase__ , UpperCamelCase__ = tax_mlp_lookup(__a , __a , """decoder""" , __a ) UpperCamelCase__ = layer_norm if split_mlp_wi: UpperCamelCase__ = wi[0].T UpperCamelCase__ = wi[1].T else: UpperCamelCase__ = wi.T UpperCamelCase__ = wo.T UpperCamelCase__ = old["""decoder/decoder_norm/scale"""] UpperCamelCase__ = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCamelCase__ = old["""decoder/logits_dense/kernel"""].T return new def __magic_name__ ( __a : List[Any] , __a : bool ): '''simple docstring''' UpperCamelCase__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCamelCase__ = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCamelCase__ = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) UpperCamelCase__ = state_dict["""shared.weight"""] return state_dict def __magic_name__ ( __a : Optional[int] , __a : Optional[int] , __a : int , __a : Dict ): '''simple docstring''' UpperCamelCase__ = checkpoints.load_tax_checkpoint(__a ) UpperCamelCase__ = convert_tax_to_pytorch(__a , num_layers=config.num_layers , is_encoder_only=__a ) UpperCamelCase__ = make_state_dict(__a , __a ) model.load_state_dict(__a , strict=__a ) def __magic_name__ ( __a : Optional[Any] , __a : Optional[Any] , __a : Any , __a : bool = False ): '''simple docstring''' UpperCamelCase__ = TaConfig.from_json_file(__a ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCamelCase__ = TaEncoderModel(__a ) else: UpperCamelCase__ = TaForConditionalGeneration(__a ) # Load weights from tf checkpoint load_tax_weights_in_ta(__a , __a , __a , __a ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(__a ) # Verify that we can load the checkpoint. model.from_pretrained(__a ) print("""Done""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) lowerCamelCase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
178
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __snake_case ( lowerCamelCase_ , lowerCamelCase_ ): @register_to_config def __init__( self : List[str] , _lowercase : Dict = 1_28 , _lowercase : List[Any] = 2_56 , _lowercase : str = 20_00.0 , _lowercase : List[Any] = 7_68 , _lowercase : Union[str, Any] = 12 , _lowercase : Dict = 12 , _lowercase : Any = 64 , _lowercase : Union[str, Any] = 20_48 , _lowercase : List[str] = 0.1 , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Sequential( nn.Linear(_a , d_model * 4 , bias=_a ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_a ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE__ = nn.Embedding(_a , _a ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = nn.Linear(_a , _a , bias=_a ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=_a ) SCREAMING_SNAKE_CASE__ = nn.ModuleList() for lyr_num in range(_a ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE__ = DecoderLayer(d_model=_a , d_kv=_a , num_heads=_a , d_ff=_a , dropout_rate=_a ) self.decoders.append(_a ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(_a ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=_a ) SCREAMING_SNAKE_CASE__ = nn.Linear(_a , _a , bias=_a ) def __a ( self : List[Any] , _lowercase : Dict , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __a ( self : Optional[int] , _lowercase : str , _lowercase : Optional[int] , _lowercase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE__ = self.conditioning_emb(_a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE__ = torch.broadcast_to( torch.arange(_a , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE__ = self.position_encoding(_a ) SCREAMING_SNAKE_CASE__ = self.continuous_inputs_projection(_a ) inputs += position_encodings SCREAMING_SNAKE_CASE__ = self.dropout(_a ) # decoder: No padding present. SCREAMING_SNAKE_CASE__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE__ = [(x, self.encoder_decoder_mask(_a , _a )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE__ = lyr( _a , conditioning_emb=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , )[0] SCREAMING_SNAKE_CASE__ = self.decoder_norm(_a ) SCREAMING_SNAKE_CASE__ = self.post_dropout(_a ) SCREAMING_SNAKE_CASE__ = self.spec_out(_a ) return spec_out class __snake_case ( nn.Module ): def __init__( self : Tuple , _lowercase : Any , _lowercase : List[str] , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : str , _lowercase : List[str]=1E-6 ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_a , d_kv=_a , num_heads=_a , dropout_rate=_a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_a , d_kv=_a , num_heads=_a , dropout_rate=_a , layer_norm_epsilon=_a , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_a , d_ff=_a , dropout_rate=_a , layer_norm_epsilon=_a ) ) def __a ( self : int , _lowercase : Optional[Any] , _lowercase : Union[str, Any]=None , _lowercase : Optional[int]=None , _lowercase : Dict=None , _lowercase : List[Any]=None , _lowercase : int=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer[0]( _a , conditioning_emb=_a , attention_mask=_a , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE__ = self.layer[1]( _a , key_value_states=_a , attention_mask=_a , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE__ = self.layer[-1](_a , _a ) return (hidden_states,) class __snake_case ( nn.Module ): def __init__( self : List[Any] , _lowercase : Any , _lowercase : Tuple , _lowercase : Dict , _lowercase : int ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = TaLayerNorm(_a ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_a ) SCREAMING_SNAKE_CASE__ = Attention(query_dim=_a , heads=_a , dim_head=_a , out_bias=_a , scale_qk=_a ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_a ) def __a ( self : Dict , _lowercase : Any , _lowercase : Optional[int]=None , _lowercase : Optional[int]=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer_norm(_a ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.FiLMLayer(_a , _a ) # Self-attention block SCREAMING_SNAKE_CASE__ = self.attention(_a ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(_a ) return hidden_states class __snake_case ( nn.Module ): def __init__( self : Any , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Dict ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = Attention(query_dim=_a , heads=_a , dim_head=_a , out_bias=_a , scale_qk=_a ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(_a , eps=_a ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_a ) def __a ( self : Tuple , _lowercase : Dict , _lowercase : List[Any]=None , _lowercase : Any=None , ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer_norm(_a ) SCREAMING_SNAKE_CASE__ = self.attention( _a , encoder_hidden_states=_a , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(_a ) return layer_output class __snake_case ( nn.Module ): def __init__( self : List[str] , _lowercase : int , _lowercase : int , _lowercase : str , _lowercase : List[Any] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = TaDenseGatedActDense(d_model=_a , d_ff=_a , dropout_rate=_a ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_a ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(_a , eps=_a ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_a ) def __a ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : int=None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.layer_norm(_a ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.film(_a , _a ) SCREAMING_SNAKE_CASE__ = self.DenseReluDense(_a ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(_a ) return hidden_states class __snake_case ( nn.Module ): def __init__( self : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Tuple ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(_a , _a , bias=_a ) SCREAMING_SNAKE_CASE__ = nn.Linear(_a , _a , bias=_a ) SCREAMING_SNAKE_CASE__ = nn.Linear(_a , _a , bias=_a ) SCREAMING_SNAKE_CASE__ = nn.Dropout(_a ) SCREAMING_SNAKE_CASE__ = NewGELUActivation() def __a ( self : str , _lowercase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.act(self.wi_a(_a ) ) SCREAMING_SNAKE_CASE__ = self.wi_a(_a ) SCREAMING_SNAKE_CASE__ = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE__ = self.dropout(_a ) SCREAMING_SNAKE_CASE__ = self.wo(_a ) return hidden_states class __snake_case ( nn.Module ): def __init__( self : List[Any] , _lowercase : Any , _lowercase : List[str]=1E-6 ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.ones(_a ) ) SCREAMING_SNAKE_CASE__ = eps def __a ( self : Optional[int] , _lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_a ) SCREAMING_SNAKE_CASE__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __snake_case ( nn.Module ): def __a ( self : Any , _lowercase : str ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(_a , 3.0 )) )) class __snake_case ( nn.Module ): def __init__( self : List[Any] , _lowercase : Any , _lowercase : List[str] ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(_a , out_features * 2 , bias=_a ) def __a ( self : Union[str, Any] , _lowercase : Any , _lowercase : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.scale_bias(_a ) SCREAMING_SNAKE_CASE__ = torch.chunk(_a , 2 , -1 ) SCREAMING_SNAKE_CASE__ = x * (1 + scale) + shift return x
219
import math def lowerCAmelCase_ ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' return math.pow(_snake_case , 2 ) - a def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' return 2 * x def lowerCAmelCase_ ( _snake_case : float ) -> float: '''simple docstring''' __magic_name__ : Optional[int] = 2.0 while start <= a: __magic_name__ : str = math.pow(_snake_case , 2 ) return start def lowerCAmelCase_ ( _snake_case : float , _snake_case : int = 9999 , _snake_case : float = 0.00_000_000_000_001 ) -> float: '''simple docstring''' if a < 0: raise ValueError("math domain error" ) __magic_name__ : Optional[int] = get_initial_point(_snake_case ) for _ in range(_snake_case ): __magic_name__ : int = value __magic_name__ : str = value - fx(_snake_case , _snake_case ) / fx_derivative(_snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
281
0
'''simple docstring''' from ... import PretrainedConfig lowerCAmelCase : List[str] = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCAmelCase_ = """nezha""" def __init__( self , A_=21128 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=64 , A_=2 , A_=0.02 , A_=1e-12 , A_=0.1 , A_=0 , A_=2 , A_=3 , A_=True , **A_ , )-> List[str]: '''simple docstring''' super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = max_relative_position UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = classifier_dropout UpperCamelCase = use_cache
365
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Tuple = { 'configuration_instructblip': [ 'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InstructBlipConfig', 'InstructBlipQFormerConfig', 'InstructBlipVisionConfig', ], 'processing_instructblip': ['InstructBlipProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ 'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'InstructBlipQFormerModel', 'InstructBlipPreTrainedModel', 'InstructBlipForConditionalGeneration', 'InstructBlipVisionModel', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
251
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class __lowerCAmelCase ( __lowerCamelCase ): """simple docstring""" _snake_case : Optional[Any] = 'falcon' _snake_case : Union[str, Any] = ['past_key_values'] def __init__( self : List[Any] , lowerCAmelCase__ : Optional[Any]=65024 , lowerCAmelCase__ : str=4544 , lowerCAmelCase__ : Optional[int]=32 , lowerCAmelCase__ : str=71 , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Any=11 , lowerCAmelCase__ : Union[str, Any]=11 , **lowerCAmelCase__ : Any , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = vocab_size # Backward compatibility with n_embed kwarg _UpperCamelCase = kwargs.pop('''n_embed''' , SCREAMING_SNAKE_CASE_ ) _UpperCamelCase = hidden_size if n_embed is None else n_embed _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = layer_norm_epsilon _UpperCamelCase = initializer_range _UpperCamelCase = use_cache _UpperCamelCase = hidden_dropout _UpperCamelCase = attention_dropout _UpperCamelCase = bos_token_id _UpperCamelCase = eos_token_id _UpperCamelCase = num_attention_heads if num_kv_heads is None else num_kv_heads _UpperCamelCase = alibi _UpperCamelCase = new_decoder_architecture _UpperCamelCase = multi_query # Ignored when new_decoder_architecture is True _UpperCamelCase = parallel_attn _UpperCamelCase = bias super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return not self.alibi
324
import torch from diffusers import StableDiffusionPipeline lowerCamelCase_ = '''path-to-your-trained-model''' lowerCamelCase_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') lowerCamelCase_ = '''A photo of sks dog in a bucket''' lowerCamelCase_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
244
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCamelCase : List[str] = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def _a ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int=None ) -> str: '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE__ : Optional[int] = random.Random() SCREAMING_SNAKE_CASE__ : List[str] = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for _ in range(SCREAMING_SNAKE_CASE__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa ).reshape(SCREAMING_SNAKE_CASE__ ) return output def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = ids_tensor(SCREAMING_SNAKE_CASE__ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE__ ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 return attn_mask @require_flax class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = None UpperCAmelCase_ = () def A_ ( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs["input_ids"].shape[-1] // 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs["input_ids"][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE__ : Optional[int] = jnp.ones_like(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE__ : str = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def A_ ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Any = max_length SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = pt_model_class(_UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE__ : Tuple = load_flax_weights_in_pytorch_model(_UpperCAmelCase, flax_model.params ) SCREAMING_SNAKE_CASE__ : Optional[Any] = flax_model.generate(_UpperCAmelCase ).sequences SCREAMING_SNAKE_CASE__ : List[str] = pt_model.generate(torch.tensor(_UpperCAmelCase, dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE__ : Dict = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist() ) def A_ ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Dict = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Tuple = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Dict = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_length SCREAMING_SNAKE_CASE__ : Optional[Any] = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : List[str] = max_length SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Any = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences ) def A_ ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Optional[Any] = max_length SCREAMING_SNAKE_CASE__ : List[Any] = 0.8 SCREAMING_SNAKE_CASE__ : Tuple = 1_0 SCREAMING_SNAKE_CASE__ : Dict = 0.3 SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : int = 8 SCREAMING_SNAKE_CASE__ : Dict = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Optional[int] = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : str = max_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE__ : Dict = 8 SCREAMING_SNAKE_CASE__ : str = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE__ : Tuple = max_length SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : List[str] = 8 SCREAMING_SNAKE_CASE__ : str = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = model.generate(_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Tuple = jit_generate(_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE__ : Tuple = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : Any = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = jit(model.generate ) SCREAMING_SNAKE_CASE__ : int = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE__ : Dict = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = True SCREAMING_SNAKE_CASE__ : List[Any] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : List[str] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Optional[int] = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def A_ ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE__ : Tuple = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = 2 SCREAMING_SNAKE_CASE__ : Optional[int] = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model.generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1], _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = jit(model.generate ) SCREAMING_SNAKE_CASE__ : Any = jit_generate(_UpperCAmelCase, attention_mask=_UpperCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) @require_flax class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) SCREAMING_SNAKE_CASE__ : Optional[int] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = "Hello world" SCREAMING_SNAKE_CASE__ : Dict = tokenizer(_UpperCAmelCase, return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_UpperCAmelCase, "do_samples" ): model.generate(_UpperCAmelCase, do_samples=_UpperCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_UpperCAmelCase, "foo" ): SCREAMING_SNAKE_CASE__ : int = {"foo": "bar"} model.generate(_UpperCAmelCase, **_UpperCAmelCase )
191
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE__ : list[float] , SCREAMING_SNAKE_CASE__ : list[float] ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = sorted(numsa + numsa ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = divmod(len(SCREAMING_SNAKE_CASE__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase : List[str] = [float(x) for x in input('''Enter the elements of first array: ''').split()] _lowerCamelCase : Any = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
191
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
157
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case = logging.getLogger(__name__) _snake_case = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={ "help": ( "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." ) } , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_lowercase )} , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase__: bool = field( default=_lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase__: str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase__: bool = field( default=_lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def _lowerCamelCase ( self: str ) -> Tuple: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class _snake_case : lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCamelCase__: Optional[str] = field(default=_lowercase , metadata={"help": "The input training data file (a text file)."} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "An optional input train ref data file for whole word masking in Chinese."} , ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."} , ) lowerCamelCase__: bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) lowerCamelCase__: Optional[int] = field( default=5 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated. Default to the max input length of the model." ) } , ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase__: float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) lowerCamelCase__: bool = field( default=_lowercase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) def _lowerCamelCase ( self: Any ) -> Tuple: if self.train_file is not None: __UpperCAmelCase : Optional[int] = self.train_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __UpperCAmelCase : str = self.validation_file.split("." )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]: with open(snake_case__, "r", encoding="utf-8" ) as f: __UpperCAmelCase : List[str] = [json.loads(snake_case__ ) for line in f.read().splitlines() if (len(snake_case__ ) > 0 and not line.isspace())] assert len(snake_case__ ) == len(snake_case__ ) __UpperCAmelCase : Optional[int] = {c: dataset[c] for c in dataset.column_names} __UpperCAmelCase : Any = refs return Dataset.from_dict(snake_case__ ) def _UpperCamelCase ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __UpperCAmelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s", snake_case__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCAmelCase : Optional[Any] = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __UpperCAmelCase : Dict = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f'''train[:{data_args.validation_split_percentage}%]''', ) __UpperCAmelCase : List[str] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f'''train[{data_args.validation_split_percentage}%:]''', ) else: __UpperCAmelCase : List[Any] = {} if data_args.train_file is not None: __UpperCAmelCase : Optional[int] = data_args.train_file if data_args.validation_file is not None: __UpperCAmelCase : List[str] = data_args.validation_file __UpperCAmelCase : Tuple = data_args.train_file.split("." )[-1] if extension == "txt": __UpperCAmelCase : str = "text" __UpperCAmelCase : List[Any] = load_dataset(snake_case__, data_files=snake_case__ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Tuple = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: __UpperCAmelCase : Any = AutoConfig.from_pretrained(model_args.config_name, **snake_case__ ) elif model_args.model_name_or_path: __UpperCAmelCase : int = AutoConfig.from_pretrained(model_args.model_name_or_path, **snake_case__ ) else: __UpperCAmelCase : str = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) __UpperCAmelCase : List[Any] = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **snake_case__ ) elif model_args.model_name_or_path: __UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **snake_case__ ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: __UpperCAmelCase : int = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path ), config=snake_case__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch" ) __UpperCAmelCase : Any = AutoModelForMaskedLM.from_config(snake_case__ ) model.resize_token_embeddings(len(snake_case__ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __UpperCAmelCase : List[str] = datasets["train"].column_names else: __UpperCAmelCase : Union[str, Any] = datasets["validation"].column_names __UpperCAmelCase : Union[str, Any] = "text" if "text" in column_names else column_names[0] __UpperCAmelCase : Any = "max_length" if data_args.pad_to_max_length else False def tokenize_function(snake_case__ ): # Remove empty lines __UpperCAmelCase : Any = [line for line in examples["text"] if len(snake_case__ ) > 0 and not line.isspace()] return tokenizer(examples["text"], padding=snake_case__, truncation=snake_case__, max_length=data_args.max_seq_length ) __UpperCAmelCase : List[str] = datasets.map( snake_case__, batched=snake_case__, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __UpperCAmelCase : str = add_chinese_references(tokenized_datasets["train"], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __UpperCAmelCase : List[str] = add_chinese_references( tokenized_datasets["validation"], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __UpperCAmelCase : List[str] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __UpperCAmelCase : Tuple = False # Data collator # This one will take care of randomly masking the tokens. __UpperCAmelCase : Optional[Any] = DataCollatorForWholeWordMask(tokenizer=snake_case__, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __UpperCAmelCase : str = Trainer( model=snake_case__, args=snake_case__, train_dataset=tokenized_datasets["train"] if training_args.do_train else None, eval_dataset=tokenized_datasets["validation"] if training_args.do_eval else None, tokenizer=snake_case__, data_collator=snake_case__, ) # Training if training_args.do_train: if last_checkpoint is not None: __UpperCAmelCase : int = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __UpperCAmelCase : Any = model_args.model_name_or_path else: __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = trainer.train(resume_from_checkpoint=snake_case__ ) trainer.save_model() # Saves the tokenizer too for easy upload __UpperCAmelCase : str = os.path.join(training_args.output_dir, "train_results.txt" ) if trainer.is_world_process_zero(): with open(snake_case__, "w" ) as writer: logger.info("***** Train results *****" ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json" ) ) # Evaluation __UpperCAmelCase : Dict = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : List[Any] = trainer.evaluate() __UpperCAmelCase : int = math.exp(eval_output["eval_loss"] ) __UpperCAmelCase : Union[str, Any] = perplexity __UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir, "eval_results_mlm_wwm.txt" ) if trainer.is_world_process_zero(): with open(snake_case__, "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def _UpperCamelCase ( snake_case__ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
157
1
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase : Dict = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase : Tuple = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase : Tuple = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase : Optional[int] = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase : int = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Optional[int]: snake_case : Optional[int] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" ,lowercase ) return [m.group(0 ) for m in matches] def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: snake_case : List[str] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES snake_case : Any = { config.replace("""Config""" ,"""""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. snake_case : Any = collections.defaultdict(lowercase ) snake_case : Tuple = collections.defaultdict(lowercase ) snake_case : Any = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): snake_case : List[Any] = None if _re_tf_models.match(lowercase ) is not None: snake_case : List[Any] = tf_models snake_case : List[Any] = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: snake_case : Any = flax_models snake_case : Optional[Any] = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: snake_case : str = pt_models snake_case : Dict = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: snake_case : Any = True break # Try again after removing the last word in the name snake_case : List[Any] = """""".join(camel_case_split(lowercase )[:-1] ) snake_case : Any = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) snake_case : str = list(lowercase ) all_models.sort() snake_case : Union[str, Any] = {"""model_type""": all_models} snake_case : int = [pt_models[t] for t in all_models] snake_case : Union[str, Any] = [tf_models[t] for t in all_models] snake_case : List[Any] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure snake_case : Tuple = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: snake_case : Optional[int] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: snake_case : Dict = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: snake_case : Union[str, Any] = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. snake_case : Tuple = """AutoTokenizer""" snake_case : List[str] = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> List[str]: snake_case : List[Any] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: snake_case : Dict = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] snake_case : Optional[Any] = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase ,lowercase ,lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase ,lowercase ): continue # First extract all model_names snake_case : Tuple = [] for name in getattr(lowercase ,lowercase ).values(): if isinstance(lowercase ,lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Optional[int]: snake_case : Union[str, Any] = get_frameworks_table() snake_case : Optional[Any] = Dataset.from_pandas(lowercase ) snake_case : List[Any] = hf_hub_download( """huggingface/transformers-metadata""" ,"""pipeline_tags.json""" ,repo_type="""dataset""" ,token=lowercase ) snake_case : Union[str, Any] = Dataset.from_json(lowercase ) snake_case : Dict = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(lowercase ) ) } snake_case : Optional[int] = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. snake_case : Optional[int] = sorted(table.keys() ) snake_case : str = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) snake_case : List[Any] = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase ,"""frameworks.json""" ) ) tags_dataset.to_json(os.path.join(lowercase ,"""pipeline_tags.json""" ) ) if commit_sha is not None: snake_case : Any = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: snake_case : List[str] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" ,folder_path=lowercase ,repo_type="""dataset""" ,token=lowercase ,commit_message=lowercase ,) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: snake_case : Tuple = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} snake_case : Dict = transformers_module.pipelines.SUPPORTED_TASKS snake_case : List[str] = [] for key in pipeline_tasks: if key not in in_table: snake_case : List[Any] = pipeline_tasks[key]["""pt"""] if isinstance(lowercase ,(list, tuple) ): snake_case : Tuple = model[0] snake_case : List[str] = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: snake_case : List[str] = """, """.join(lowercase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCamelCase : Union[str, Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
358
# using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase=None ) -> Any: snake_case : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case , snake_case : int = True, True snake_case : List[Any] = dfs(lowercase ,lowercase ,lowercase ,lowercase ) return path def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: snake_case : Union[str, Any] = 0 snake_case : Union[str, Any] = -1 for i in range(lowercase ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case : str = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> List[str]: snake_case : Tuple = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case , snake_case : Any = check_circuit_or_path(lowercase ,lowercase ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return snake_case : str = 1 if check == 2: snake_case : Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) snake_case : Dict = dfs(lowercase ,lowercase ,lowercase ) print(lowercase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: snake_case : Union[str, Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case : Optional[int] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case : Optional[int] = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case : Tuple = { 1: [], 2: [] # all degree is zero } snake_case : Tuple = 10 check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) check_euler(lowercase ,lowercase ) if __name__ == "__main__": main()
176
0
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def lowercase__ ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = [False] * len(__snake_case ) UpperCAmelCase_ : Dict = [-1] * len(__snake_case ) def dfs(__snake_case : Dict , __snake_case : Tuple ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Dict = c for u in graph[v]: if not visited[u]: dfs(__snake_case , 1 - c ) for i in range(len(__snake_case ) ): if not visited[i]: dfs(__snake_case , 0 ) for i in range(len(__snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph __UpperCAmelCase = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
29
import os # Precomputes a list of the 100 first triangular numbers __UpperCAmelCase = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = os.path.dirname(os.path.realpath(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , 'words.txt' ) UpperCAmelCase_ : Union[str, Any] = '' with open(__snake_case ) as f: UpperCAmelCase_ : List[Any] = f.readline() UpperCAmelCase_ : Optional[int] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase_ : Optional[int] = [ word for word in [sum(ord(__snake_case ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__snake_case ) if __name__ == "__main__": print(solution())
29
1
def __snake_case ( __UpperCamelCase : int = 5000_0000 ): """simple docstring""" A_ = set() A_ = int((limit - 24) ** (1 / 2) ) A_ = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,__UpperCamelCase ) ) ) for primea in primes: A_ = primea * primea for primea in primes: A_ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: A_ = primea * primea * primea * primea A_ = square + cube + tetr if total >= limit: break ret.add(__UpperCamelCase ) return len(__UpperCamelCase ) if __name__ == "__main__": print(F"{solution() = }")
369
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Dict =RoFormerTokenizer A__ : Any =RoFormerTokenizerFast A__ : Any =True A__ : int =True def A_ ( self : List[Any] ): super().setUp() def A_ ( self : int , **UpperCAmelCase_ : int ): return self.tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCAmelCase_ ) def A_ ( self : Union[str, Any] , **UpperCAmelCase_ : int ): return self.rust_tokenizer_class.from_pretrained('junnyu/roformer_chinese_base' , **UpperCAmelCase_ ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = '永和服装饰品有限公司,今天天气非常好' SCREAMING_SNAKE_CASE__ = '永和 服装 饰品 有限公司 , 今 天 天 气 非常 好' return input_text, output_text def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_chinese_input_output_texts() SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , output_text.split() ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.get_chinese_input_output_texts() SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , output_text.split() ) SCREAMING_SNAKE_CASE__ = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : int ): pass def A_ ( self : Dict ): pass def A_ ( self : Tuple ): pass
176
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __snake_case = { """facebook/bart-base""": 10_24, """facebook/bart-large""": 10_24, """facebook/bart-large-mnli""": 10_24, """facebook/bart-large-cnn""": 10_24, """facebook/bart-large-xsum""": 10_24, """yjernite/bart_eli5""": 10_24, } class lowercase__ ( _UpperCAmelCase ): A__ : Tuple =VOCAB_FILES_NAMES A__ : Any =PRETRAINED_VOCAB_FILES_MAP A__ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Tuple =["""input_ids""", """attention_mask"""] A__ : Optional[int] =BartTokenizer def __init__( self : str , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : List[Any]="</s>" , UpperCAmelCase_ : int="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Any="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[str]=True , **UpperCAmelCase_ : List[Any] , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = pre_tok_class(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE__ = 'post_processor' SCREAMING_SNAKE_CASE__ = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE__ = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE__ = tuple(state['cls'] ) SCREAMING_SNAKE_CASE__ = False if state.get('add_prefix_space' , UpperCAmelCase_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = True if state.get('trim_offsets' , UpperCAmelCase_ ) != trim_offsets: SCREAMING_SNAKE_CASE__ = trim_offsets SCREAMING_SNAKE_CASE__ = True if changes_to_apply: SCREAMING_SNAKE_CASE__ = getattr(UpperCAmelCase_ , state.pop('type' ) ) SCREAMING_SNAKE_CASE__ = component_class(**UpperCAmelCase_ ) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_ ) @property def A_ ( self : Tuple ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A_ ( self : Any , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else value SCREAMING_SNAKE_CASE__ = value def A_ ( self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = kwargs.get('is_split_into_words' , UpperCAmelCase_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A_ ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
176
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowerCAmelCase_ = CLIPImageProcessor() lowerCAmelCase_ = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowerCAmelCase_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
359
def snake_case( __magic_name__ , __magic_name__ ) -> bool: '''simple docstring''' lowercase : List[Any] = len(__magic_name__ ) lowercase : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowercase : List[str] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowercase : str = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowercase : Optional[Any] = subset[i - 1][j] if arr[i - 1] <= j: lowercase : Dict = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
116
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def snake_case_ ( )-> None: '''simple docstring''' print("""Making key files...""" ) make_key_files("""rsa""" , 1024 ) print("""Key files generation successful.""" ) def snake_case_ ( lowerCAmelCase_ )-> tuple[tuple[int, int], tuple[int, int]]: '''simple docstring''' print("""Generating prime p...""" ) _UpperCAmelCase : Optional[Any] = rabinMiller.generate_large_prime(lowerCAmelCase_ ) print("""Generating prime q...""" ) _UpperCAmelCase : List[Any] = rabinMiller.generate_large_prime(lowerCAmelCase_ ) _UpperCAmelCase : int = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: _UpperCAmelCase : List[str] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCAmelCase_ , (p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) _UpperCAmelCase : Any = cryptoMath.find_mod_inverse(lowerCAmelCase_ , (p - 1) * (q - 1) ) _UpperCAmelCase : Union[str, Any] = (n, e) _UpperCAmelCase : List[Any] = (n, d) return (public_key, private_key) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = generate_key(lowerCAmelCase_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , """w""" ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
215
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A_ : List[str] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. A_ : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) A_ : Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING A_ : Dict = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): _UpperCAmelCase : Tuple = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , lowerCAmelCase_ , ) is not None ): _UpperCAmelCase : Any = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _UpperCAmelCase : List[str] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _UpperCAmelCase : Dict = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] _UpperCAmelCase : int = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed _UpperCAmelCase : Optional[Any] = True if not attribute_used: _UpperCAmelCase : List[Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _UpperCAmelCase : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: _UpperCAmelCase : Any = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _UpperCAmelCase : Dict = True elif attribute.endswith("""_token_id""" ): _UpperCAmelCase : Optional[int] = True # configuration class specific cases if not case_allowed: _UpperCAmelCase : int = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _UpperCAmelCase : Union[str, Any] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) _UpperCAmelCase : Optional[int] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] _UpperCAmelCase : Optional[int] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _UpperCAmelCase : List[Any] = {} if len(config_class.attribute_map ) > 0: _UpperCAmelCase : Optional[int] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _UpperCAmelCase : int = inspect.getsourcefile(lowerCAmelCase_ ) _UpperCAmelCase : str = os.path.dirname(lowerCAmelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _UpperCAmelCase : Optional[int] = [os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) for fn in os.listdir(lowerCAmelCase_ ) if fn.startswith("""modeling_""" )] # Get the source code strings _UpperCAmelCase : str = [] for path in modeling_paths: if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ ) as fp: modeling_sources.append(fp.read() ) _UpperCAmelCase : Any = [] for config_param, default_value in zip(lowerCAmelCase_ , lowerCAmelCase_ ): # `attributes` here is all the variant names for `config_param` _UpperCAmelCase : List[str] = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): unused_attributes.append(attributes[0] ) return sorted(lowerCAmelCase_ ) def snake_case_ ( )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _UpperCAmelCase : List[Any] = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowerCAmelCase_ : inspect.isclass(lowerCAmelCase_ ) and issubclass(lowerCAmelCase_ , lowerCAmelCase_ ) and inspect.getmodule(lowerCAmelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _UpperCAmelCase : Optional[int] = check_config_attributes_being_used(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: _UpperCAmelCase : Tuple = unused_attributes if len(lowerCAmelCase_ ) > 0: _UpperCAmelCase : Dict = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": check_config_attributes()
215
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class a_ ( lowerCamelCase ): lowercase = """deta""" lowercase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=900 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.2_5 , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: """simple docstring""" if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase = backbone_config.pop("""model_type""" ) UpperCamelCase = CONFIG_MAPPING[backbone_model_type] UpperCamelCase = config_class.from_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = backbone_config UpperCamelCase = num_queries UpperCamelCase = max_position_embeddings UpperCamelCase = d_model UpperCamelCase = encoder_ffn_dim UpperCamelCase = encoder_layers UpperCamelCase = encoder_attention_heads UpperCamelCase = decoder_ffn_dim UpperCamelCase = decoder_layers UpperCamelCase = decoder_attention_heads UpperCamelCase = dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = activation_function UpperCamelCase = init_std UpperCamelCase = init_xavier_std UpperCamelCase = encoder_layerdrop UpperCamelCase = auxiliary_loss UpperCamelCase = position_embedding_type # deformable attributes UpperCamelCase = num_feature_levels UpperCamelCase = encoder_n_points UpperCamelCase = decoder_n_points UpperCamelCase = two_stage UpperCamelCase = two_stage_num_proposals UpperCamelCase = with_box_refine UpperCamelCase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = mask_loss_coefficient UpperCamelCase = dice_loss_coefficient UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient UpperCamelCase = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def A__ ( self ) -> int: """simple docstring""" return self.encoder_attention_heads @property def A__ ( self ) -> int: """simple docstring""" return self.d_model def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = copy.deepcopy(self.__dict__ ) UpperCamelCase = self.backbone_config.to_dict() UpperCamelCase = self.__class__.model_type return output
183
'''simple docstring''' import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE__ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' SCREAMING_SNAKE_CASE__ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' SCREAMING_SNAKE_CASE__ = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , ) -> List[Any]: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCamelCase = np.array([re.sub(_SCREAMING_SNAKE_CASE , """""" , _SCREAMING_SNAKE_CASE ) for x in predictions] ) UpperCamelCase = np.array([re.sub(_SCREAMING_SNAKE_CASE , """""" , _SCREAMING_SNAKE_CASE ) for x in references] ) else: UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) if ignore_case: UpperCamelCase = np.char.lower(_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.lower(_SCREAMING_SNAKE_CASE ) if ignore_punctuation: UpperCamelCase = string.punctuation.maketrans("""""" , """""" , string.punctuation ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) if ignore_numbers: UpperCamelCase = string.digits.maketrans("""""" , """""" , string.digits ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = np.char.translate(_SCREAMING_SNAKE_CASE , table=_SCREAMING_SNAKE_CASE ) UpperCamelCase = predictions == references return {"exact_match": np.mean(_SCREAMING_SNAKE_CASE ) * 100}
183
1
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _lowerCAmelCase = imread(R'''digital_image_processing/image_data/lena_small.jpg''') _lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __lowerCAmelCase ( ): __UpperCamelCase : Tuple = cn.convert_to_negative(snake_case__ ) # assert negative_img array for at least one True assert negative_img.any() def __lowerCAmelCase ( ): with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case__ , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def __lowerCAmelCase ( ): __UpperCamelCase : int = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowerCAmelCase ( ): __UpperCamelCase : Tuple = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCamelCase : List[str] = canny.canny(snake_case__ ) # assert canny array for at least one True assert canny_array.any() def __lowerCAmelCase ( ): assert gg.gaussian_filter(snake_case__ , 5 , sigma=0.9 ).all() def __lowerCAmelCase ( ): # laplace diagonals __UpperCamelCase : str = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __UpperCamelCase : Union[str, Any] = conv.img_convolve(snake_case__ , snake_case__ ).astype(snake_case__ ) assert res.any() def __lowerCAmelCase ( ): assert med.median_filter(snake_case__ , 3 ).any() def __lowerCAmelCase ( ): __UpperCamelCase , __UpperCamelCase : Dict = sob.sobel_filter(snake_case__ ) assert grad.any() and theta.any() def __lowerCAmelCase ( ): __UpperCamelCase : Optional[Any] = sp.make_sepia(snake_case__ , 20 ) assert sepia.all() def __lowerCAmelCase ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" ): __UpperCamelCase : int = bs.Burkes(imread(snake_case__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __lowerCAmelCase ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" , ): __UpperCamelCase : Tuple = rs.NearestNeighbour(imread(snake_case__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __lowerCAmelCase ( ): __UpperCamelCase : Dict = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. __UpperCamelCase : Tuple = imread(snake_case__ , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCamelCase : List[str] = 0 __UpperCamelCase : Any = 0 __UpperCamelCase : Optional[int] = image[x_coordinate][y_coordinate] __UpperCamelCase : List[str] = lbp.get_neighbors_pixel( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCamelCase : Tuple = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCamelCase : Union[str, Any] = lbp.local_binary_value(snake_case__ , snake_case__ , snake_case__ ) assert lbp_image.any()
298
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger() @dataclass class A : '''simple docstring''' A = 42 A = field(default_factory=SCREAMING_SNAKE_CASE__ ) A = field(default_factory=SCREAMING_SNAKE_CASE__ ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : str = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_UpperCAmelCase ) def __call__(self , _UpperCAmelCase ) -> Optional[int]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def a_ (self ) -> Tuple: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class A : '''simple docstring''' A = 42 A = 42 A = 0 A = field(default_factory=SCREAMING_SNAKE_CASE__ ) A = field(default_factory=SCREAMING_SNAKE_CASE__ ) def __call__(self , _UpperCAmelCase ) -> Any: __UpperCamelCase : List[str] = Tracker(self.dest )(_UpperCAmelCase ).parametrized __UpperCamelCase : List[Any] = Tracker(self.src )(_UpperCAmelCase ).parametrized __UpperCamelCase : Optional[int] = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) ) __UpperCamelCase : List[Any] = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise Exception( f"Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while" f" destination module has {len(_UpperCAmelCase )}." ) for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}" ) def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = True ): print(F"Converting {name}..." ) with torch.no_grad(): __UpperCamelCase : int = timm.create_model(snake_case__ , pretrained=snake_case__ ).eval() __UpperCamelCase : Union[str, Any] = ResNetForImageClassification(snake_case__ ).eval() __UpperCamelCase : Tuple = ModuleTransfer(src=snake_case__ , dest=snake_case__ ) __UpperCamelCase : List[Any] = torch.randn((1, 3, 224, 224) ) module_transfer(snake_case__ ) assert torch.allclose(from_model(snake_case__ ) , our_model(snake_case__ ).logits ), "The model logits don't match the original one." __UpperCamelCase : Any = F"resnet{'-'.join(name.split('resnet' ) )}" print(snake_case__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=snake_case__ , ) # we can use the convnext one __UpperCamelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=snake_case__ , ) print(F"Pushed {checkpoint_name}" ) def __lowerCAmelCase ( snake_case__ , snake_case__ = None , snake_case__ = True ): __UpperCamelCase : str = "imagenet-1k-id2label.json" __UpperCamelCase : Any = 1_000 __UpperCamelCase : List[str] = (1, num_labels) __UpperCamelCase : List[str] = "huggingface/label-files" __UpperCamelCase : str = num_labels __UpperCamelCase : str = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="dataset" ) , "r" ) ) __UpperCamelCase : List[str] = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCamelCase : Any = idalabel __UpperCamelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCamelCase : Tuple = partial(snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ ) __UpperCamelCase : Dict = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(snake_case__ , names_to_config[model_name] , snake_case__ , snake_case__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
298
1
import os import sys import unittest _UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers") class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = find_backend(' if not is_torch_available():' ) self.assertEqual(A_ , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCamelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(A_ , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCamelCase = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(A_ , 'torch_and_transformers_and_onnx' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , A_ ) self.assertIn('torch_and_transformers' , A_ ) self.assertIn('flax_and_transformers' , A_ ) self.assertIn('torch_and_transformers_and_onnx' , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(A_ , '\nCONSTANT = None\n' ) UpperCamelCase = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( A_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' UpperCamelCase = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , A_ )
110
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase : def __init__( self , A_ , A_=2 , A_=3 , A_=4 , A_=2 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=36 , A_=3 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=6 , A_=6 , A_=3 , A_=4 , A_=None , A_=1_000 , ) -> str: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = text_seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = coordinate_size UpperCamelCase = shape_size UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope UpperCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase = text_seq_length UpperCamelCase = (image_size // patch_size) ** 2 + 1 UpperCamelCase = self.text_seq_length + self.image_seq_length def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase = bbox[i, j, 3] UpperCamelCase = bbox[i, j, 1] UpperCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase = bbox[i, j, 2] UpperCamelCase = bbox[i, j, 0] UpperCamelCase = t UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = LayoutLMvaModel(config=A_ ) model.to(A_ ) model.eval() # text + image UpperCamelCase = model(A_ , pixel_values=A_ ) UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ ) UpperCamelCase = model(A_ , bbox=A_ , pixel_values=A_ , token_type_ids=A_ ) UpperCamelCase = model(A_ , bbox=A_ , pixel_values=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase = model(pixel_values=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LayoutLMvaForSequenceClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = LayoutLMvaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = LayoutLMvaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Tuple = False __lowercase : List[Any] = False __lowercase : str = False __lowercase : Tuple = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : List[str] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ ) -> int: """simple docstring""" # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = LayoutLMvaModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase ( self , A_ , A_ , A_=False ) -> int: """simple docstring""" UpperCamelCase = copy.deepcopy(A_ ) if model_class in get_values(A_ ): UpperCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): UpperCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in get_values(A_ ): UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A_ , ) return inputs_dict def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = LayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> int: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) UpperCamelCase = torch.tensor([[1, 2]] ) UpperCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCamelCase = model( input_ids=input_ids.to(A_ ) , bbox=bbox.to(A_ ) , pixel_values=pixel_values.to(A_ ) , ) # verify the logits UpperCamelCase = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A_ ) UpperCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1e-4 ) )
110
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : List[Any] = logging.get_logger(__name__) snake_case_ : Tuple = {'vocab_file': 'spiece.model'} snake_case_ : int = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } snake_case_ : Any = { 'albert-base-v1': 5_12, 'albert-large-v1': 5_12, 'albert-xlarge-v1': 5_12, 'albert-xxlarge-v1': 5_12, 'albert-base-v2': 5_12, 'albert-large-v2': 5_12, 'albert-xlarge-v2': 5_12, 'albert-xxlarge-v2': 5_12, } snake_case_ : Dict = '▁' class __a (_lowerCamelCase ): __a : Tuple = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=True , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=False , __magic_name__ : Optional[int]="[CLS]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : str="<unk>" , __magic_name__ : Dict="[SEP]" , __magic_name__ : Optional[Any]="<pad>" , __magic_name__ : Union[str, Any]="[CLS]" , __magic_name__ : Tuple="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Dict , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = ( AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase , normalized=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token ) UpperCAmelCase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCamelCase , remove_space=_UpperCamelCase , keep_accents=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) UpperCAmelCase_ : List[Any] = do_lower_case UpperCAmelCase_ : Union[str, Any] = remove_space UpperCAmelCase_ : Dict = keep_accents UpperCAmelCase_ : Dict = vocab_file UpperCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self : Dict , __magic_name__ : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Any ) -> List[Any]: """simple docstring""" if self.remove_space: UpperCAmelCase_ : int = ''' '''.join(inputs.strip().split() ) else: UpperCAmelCase_ : Union[str, Any] = inputs UpperCAmelCase_ : Union[str, Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: UpperCAmelCase_ : List[str] = unicodedata.normalize('''NFKD''' , _UpperCamelCase ) UpperCAmelCase_ : str = ''''''.join([c for c in outputs if not unicodedata.combining(_UpperCamelCase )] ) if self.do_lower_case: UpperCAmelCase_ : Union[str, Any] = outputs.lower() return outputs def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.preprocess_text(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) UpperCAmelCase_ : Any = [] for piece in pieces: if len(_UpperCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCAmelCase_ : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase_ : int = cur_pieces[1:] else: UpperCAmelCase_ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCamelCase ) else: new_pieces.append(_UpperCamelCase ) return new_pieces def UpperCAmelCase__ ( self : Any , __magic_name__ : int ) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(_UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(_UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : int = [] UpperCAmelCase_ : Dict = '''''' UpperCAmelCase_ : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token UpperCAmelCase_ : Any = True UpperCAmelCase_ : int = [] else: current_sub_tokens.append(_UpperCamelCase ) UpperCAmelCase_ : int = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def UpperCAmelCase__ ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None , __magic_name__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : Union[str, Any] = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,)
125
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class A_ ( _lowerCamelCase ): lowerCAmelCase__ = 42 @flax_register_to_config class A_ ( nn.Module , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase__ = 32 lowerCAmelCase__ = 4 lowerCAmelCase__ = 4 lowerCAmelCase__ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowerCAmelCase__ = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowerCAmelCase__ = False lowerCAmelCase__ = (320, 640, 1280, 1280) lowerCAmelCase__ = 2 lowerCAmelCase__ = 8 lowerCAmelCase__ = None lowerCAmelCase__ = 1280 lowerCAmelCase__ = 0.0 lowerCAmelCase__ = False lowerCAmelCase__ = jnp.floataa lowerCAmelCase__ = True lowerCAmelCase__ = 0 lowerCAmelCase__ = False def _lowerCAmelCase (self :Tuple , _UpperCamelCase :jax.random.KeyArray )-> FrozenDict: # init input tensors __A = (1, self.in_channels, self.sample_size, self.sample_size) __A = jnp.zeros(_UpperCamelCase , dtype=jnp.floataa ) __A = jnp.ones((1,) , dtype=jnp.intaa ) __A = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __A , __A = jax.random.split(_UpperCamelCase ) __A = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )["params"] def _lowerCAmelCase (self :Tuple )-> Optional[int]: __A = self.block_out_channels __A = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __A = self.num_attention_heads or self.attention_head_dim # input __A = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __A = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __A = FlaxTimestepEmbedding(_UpperCamelCase , dtype=self.dtype ) __A = self.only_cross_attention if isinstance(_UpperCamelCase , _UpperCamelCase ): __A = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_UpperCamelCase , _UpperCamelCase ): __A = (num_attention_heads,) * len(self.down_block_types ) # down __A = [] __A = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __A = output_channel __A = block_out_channels[i] __A = i == len(_UpperCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __A = FlaxCrossAttnDownBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __A = FlaxDownBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_UpperCamelCase ) __A = down_blocks # mid __A = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __A = [] __A = list(reversed(_UpperCamelCase ) ) __A = list(reversed(_UpperCamelCase ) ) __A = list(reversed(_UpperCamelCase ) ) __A = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __A = output_channel __A = reversed_block_out_channels[i] __A = reversed_block_out_channels[min(i + 1 , len(_UpperCamelCase ) - 1 )] __A = i == len(_UpperCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __A = FlaxCrossAttnUpBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , prev_output_channel=_UpperCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __A = FlaxUpBlockaD( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , prev_output_channel=_UpperCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_UpperCamelCase ) __A = output_channel __A = up_blocks # out __A = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __A = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self :Union[str, Any] , _UpperCamelCase :Any , _UpperCamelCase :List[str] , _UpperCamelCase :str , _UpperCamelCase :int=None , _UpperCamelCase :Optional[int]=None , _UpperCamelCase :bool = True , _UpperCamelCase :bool = False , )-> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_UpperCamelCase , jnp.ndarray ): __A = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_UpperCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __A = timesteps.astype(dtype=jnp.floataa ) __A = jnp.expand_dims(_UpperCamelCase , 0 ) __A = self.time_proj(_UpperCamelCase ) __A = self.time_embedding(_UpperCamelCase ) # 2. pre-process __A = jnp.transpose(_UpperCamelCase , (0, 2, 3, 1) ) __A = self.conv_in(_UpperCamelCase ) # 3. down __A = (sample,) for down_block in self.down_blocks: if isinstance(_UpperCamelCase , _UpperCamelCase ): __A , __A = down_block(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , deterministic=not train ) else: __A , __A = down_block(_UpperCamelCase , _UpperCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __A = () for down_block_res_sample, down_block_additional_residual in zip( _UpperCamelCase , _UpperCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __A = new_down_block_res_samples # 4. mid __A = self.mid_block(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __A = down_block_res_samples[-(self.layers_per_block + 1) :] __A = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_UpperCamelCase , _UpperCamelCase ): __A = up_block( _UpperCamelCase , temb=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , res_hidden_states_tuple=_UpperCamelCase , deterministic=not train , ) else: __A = up_block(_UpperCamelCase , temb=_UpperCamelCase , res_hidden_states_tuple=_UpperCamelCase , deterministic=not train ) # 6. post-process __A = self.conv_norm_out(_UpperCamelCase ) __A = nn.silu(_UpperCamelCase ) __A = self.conv_out(_UpperCamelCase ) __A = jnp.transpose(_UpperCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_UpperCamelCase )
117
0
def snake_case_ ( snake_case ) -> bool: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowercase__: Any = sorted(string.lower() ) return len(snake_case ) == len(set(snake_case ) ) if __name__ == "__main__": __lowerCAmelCase = input('''Enter a string ''').strip() __lowerCAmelCase = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
288
def snake_case_ ( snake_case ) -> list[int]: lowercase__: Dict = [0 for i in range(len(snake_case ) )] # initialize interval's left pointer and right pointer lowercase__ , lowercase__: Union[str, Any] = 0, 0 for i in range(1 , len(snake_case ) ): # case when current index is inside the interval if i <= right_pointer: lowercase__: List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] ) lowercase__: List[str] = min_edge while go_next(snake_case , snake_case , snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: lowercase__ , lowercase__: List[Any] = i, i + z_result[i] - 1 return z_result def snake_case_ ( snake_case , snake_case , snake_case ) -> bool: return i + z_result[i] < len(snake_case ) and s[z_result[i]] == s[i + z_result[i]] def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Tuple = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string lowercase__: Any = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
288
1
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCAmelCase__ ( UpperCAmelCase_): def __init__( self , lowercase , lowercase=None , lowercase=True , lowercase=None , **lowercase ) -> Union[str, Any]: __UpperCamelCase = parent __UpperCamelCase = config_class __UpperCamelCase = has_text_modality __UpperCamelCase = kwargs __UpperCamelCase = common_properties def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.config_class(**self.inputs_dict ) __UpperCamelCase = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(lowercase , lowercase ) , msg=f"`{prop}` does not exist" ) # Test that config has the common properties as setter for idx, name in enumerate(lowercase ): try: setattr(lowercase , lowercase , lowercase ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(lowercase ): try: __UpperCamelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(lowercase , lowercase ) , lowercase , msg=f"`{name} value {idx} expected, but was {getattr(lowercase , lowercase )}" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = self.config_class(**self.inputs_dict ) __UpperCamelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = os.path.join(lowercase , """config.json""" ) config_first.to_json_file(lowercase ) __UpperCamelCase = self.config_class.from_json_file(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(lowercase ) __UpperCamelCase = self.config_class.from_pretrained(lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.config_class(**self.inputs_dict ) __UpperCamelCase = """test""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = os.path.join(lowercase , lowercase ) config_first.save_pretrained(lowercase ) __UpperCamelCase = self.config_class.from_pretrained(lowercase , subfolder=lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCamelCase ( self ) -> List[Any]: __UpperCamelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) __UpperCamelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __lowerCamelCase ( self ) -> List[str]: if self.config_class.is_composition: return __UpperCamelCase = self.config_class() self.parent.assertIsNotNone(lowercase ) def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = copy.deepcopy(lowercase ) __UpperCamelCase = self.config_class(**lowercase ) __UpperCamelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(lowercase , lowercase ) != value: wrong_values.append((key, getattr(lowercase , lowercase ), value) ) if len(lowercase ) > 0: __UpperCamelCase = """\n""".join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values] ) raise ValueError(f"The following keys were not properly set in the config:\n{errors}" ) def __lowerCamelCase ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
349
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a__ : List[str] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = {} with open(__A ,"""r""" ) as file: for line_number, line in enumerate(__A ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' for attribute in key.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(__A ,__A ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCamelCase = getattr(__A ,__A ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__A ): __UpperCamelCase = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCamelCase = """param""" if weight_type is not None and weight_type != "param": __UpperCamelCase = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = """.""".join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if """lm_head""" in full_key else value[0] a__ : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _lowercase ( __A ,__A ,__A=None ,__A=None ): '''simple docstring''' __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(__A )[0].split(""".""" )[-2] __UpperCamelCase = mapped_key.replace("""*""" ,__A ) if "weight_g" in name: __UpperCamelCase = """weight_g""" elif "weight_v" in name: __UpperCamelCase = """weight_v""" elif "bias" in name: __UpperCamelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = """weight""" else: __UpperCamelCase = None if hf_dict is not None: rename_dict(__A ,__A ,__A ,__A ,__A ) else: set_recursively(__A ,__A ,__A ,__A ,__A ) return is_used return is_used def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( __A ,__A ,__A ,__A ,hf_model.config.feat_extract_norm == """group""" ,) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(__A ,__A ,__A ) if not is_used: unused_weights.append(__A ) logger.warning(f"Unused weights: {unused_weights}" ) def _lowercase ( __A ,__A ,__A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = full_name.split("""conv_layers.""" )[-1] __UpperCamelCase = name.split(""".""" ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) __UpperCamelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(__A ) @torch.no_grad() def _lowercase ( __A ,__A ,__A=None ,__A=None ,__A=True ,__A=False ): '''simple docstring''' if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(__A ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(__A ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(__A ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) feature_extractor.save_pretrained(__A ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(__A ,"""vocab.json""" ) if not os.path.isdir(__A ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__A ) ) return os.makedirs(__A ,exist_ok=__A ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(__A ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(__A ,__A ) __UpperCamelCase = WavaVecaCTCTokenizer( __A ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=__A ,) __UpperCamelCase = True if config.feat_extract_norm == """layer""" else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16_000 ,padding_value=0 ,do_normalize=__A ,return_attention_mask=__A ,) __UpperCamelCase = WavaVecaProcessor(feature_extractor=__A ,tokenizer=__A ) processor.save_pretrained(__A ) __UpperCamelCase = WavaVecaForCTC(__A ) else: __UpperCamelCase = WavaVecaForPreTraining(__A ) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task="""audio_pretraining""" ) __UpperCamelCase = fairseq.tasks.setup_task(__A ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=__A ) __UpperCamelCase = model[0].eval() recursively_load_weights(__A ,__A ,not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": a__ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a__ : Optional[int] = parser.parse_args() a__ : str = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
174
'''simple docstring''' def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 1 for i in range(0 , len(__lowercase ) ): total *= numbers[i] _A = str(__lowercase ) steps += 1 return steps def __lowercase ( __lowercase ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) _A = 0 _A = str(__lowercase ) while len(__lowercase ) != 1: _A = [int(__lowercase ) for i in num_string] _A = 0 for i in range(0 , len(__lowercase ) ): total += numbers[i] _A = str(__lowercase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
174
1
"""simple docstring""" _lowerCamelCase : Optional[Any] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
167
"""simple docstring""" import os def lowercase_ ( _UpperCAmelCase = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) as input_file: A_ : List[Any] = [ [int(_UpperCAmelCase ) for element in line.split(''',''' )] for line in input_file.readlines() ] A_ : Dict = len(_UpperCAmelCase ) A_ : Union[str, Any] = len(matrix[0] ) A_ : Optional[Any] = [[-1 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )] for i in range(_UpperCAmelCase ): A_ : str = matrix[i][0] for j in range(1 , _UpperCAmelCase ): for i in range(_UpperCAmelCase ): A_ : Any = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _UpperCAmelCase ): A_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): A_ : int = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
167
1
import argparse import collections import json import os import re import string import sys import numpy as np _lowerCamelCase : Dict = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) _lowerCamelCase : Optional[int] = None def __lowerCamelCase (): SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=UpperCAmelCase__ , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=UpperCAmelCase__ , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase (UpperCAmelCase__ : Optional[int] ): SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE = bool(qa["answers"]["text"] ) return qid_to_has_ans def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] ): def remove_articles(UpperCAmelCase__ : List[str] ): return ARTICLES_REGEX.sub(" " , UpperCAmelCase__ ) def white_space_fix(UpperCAmelCase__ : Dict ): return " ".join(text.split() ) def remove_punc(UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCAmelCase__ : Dict ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase__ ) ) ) ) def __lowerCamelCase (UpperCAmelCase__ : List[str] ): if not s: return [] return normalize_answer(UpperCAmelCase__ ).split() def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ): return int(normalize_answer(UpperCAmelCase__ ) == normalize_answer(UpperCAmelCase__ ) ) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = get_tokens(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = get_tokens(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = collections.Counter(UpperCAmelCase__ ) & collections.Counter(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = sum(common.values() ) if len(UpperCAmelCase__ ) == 0 or len(UpperCAmelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: SCREAMING_SNAKE_CASE = qa["id"] SCREAMING_SNAKE_CASE = [t for t in qa["answers"]["text"] if normalize_answer(UpperCAmelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string SCREAMING_SNAKE_CASE = [""] if qid not in preds: print(F"Missing prediction for {qid}" ) continue SCREAMING_SNAKE_CASE = preds[qid] # Take max over all gold answers SCREAMING_SNAKE_CASE = max(compute_exact(UpperCAmelCase__ , UpperCAmelCase__ ) for a in gold_answers ) SCREAMING_SNAKE_CASE = max(compute_fa(UpperCAmelCase__ , UpperCAmelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = {} for qid, s in scores.items(): SCREAMING_SNAKE_CASE = na_probs[qid] > na_prob_thresh if pred_na: SCREAMING_SNAKE_CASE = float(not qid_to_has_ans[qid] ) else: SCREAMING_SNAKE_CASE = s return new_scores def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=None ): if not qid_list: SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): for k in new_eval: SCREAMING_SNAKE_CASE = new_eval[k] def __lowerCamelCase (UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] ): plt.step(UpperCAmelCase__ , UpperCAmelCase__ , color="b" , alpha=0.2 , where="post" ) plt.fill_between(UpperCAmelCase__ , UpperCAmelCase__ , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(UpperCAmelCase__ ) plt.savefig(UpperCAmelCase__ ) plt.clf() def __lowerCamelCase (UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=None , UpperCAmelCase__ : str=None ): SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : na_probs[k] ) SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = 1.0 SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = [1.0] SCREAMING_SNAKE_CASE = [0.0] SCREAMING_SNAKE_CASE = 0.0 for i, qid in enumerate(UpperCAmelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] SCREAMING_SNAKE_CASE = true_pos / float(i + 1 ) SCREAMING_SNAKE_CASE = true_pos / float(UpperCAmelCase__ ) if i == len(UpperCAmelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(UpperCAmelCase__ ) recalls.append(UpperCAmelCase__ ) if out_image: plot_pr_curve(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase (UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] ): if out_image_dir and not os.path.exists(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) SCREAMING_SNAKE_CASE = {k: float(UpperCAmelCase__ ) for k, v in qid_to_has_ans.items()} SCREAMING_SNAKE_CASE = make_precision_recall_eval( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , out_image=os.path.join(UpperCAmelCase__ , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_exact" ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_f1" ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "pr_oracle" ) def __lowerCamelCase (UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int ): if not qid_list: return SCREAMING_SNAKE_CASE = [na_probs[k] for k in qid_list] SCREAMING_SNAKE_CASE = np.ones_like(UpperCAmelCase__ ) / float(len(UpperCAmelCase__ ) ) plt.hist(UpperCAmelCase__ , weights=UpperCAmelCase__ , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F"Histogram of no-answer probability: {name}" ) plt.savefig(os.path.join(UpperCAmelCase__ , F"na_prob_hist_{name}.png" ) ) plt.clf() def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) SCREAMING_SNAKE_CASE = num_no_ans SCREAMING_SNAKE_CASE = cur_score SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = sorted(UpperCAmelCase__ , key=lambda UpperCAmelCase__ : na_probs[k] ) for i, qid in enumerate(UpperCAmelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: SCREAMING_SNAKE_CASE = scores[qid] else: if preds[qid]: SCREAMING_SNAKE_CASE = -1 else: SCREAMING_SNAKE_CASE = 0 cur_score += diff if cur_score > best_score: SCREAMING_SNAKE_CASE = cur_score SCREAMING_SNAKE_CASE = na_probs[qid] return 100.0 * best_score / len(UpperCAmelCase__ ), best_thresh def __lowerCamelCase (UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = find_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = best_exact SCREAMING_SNAKE_CASE = exact_thresh SCREAMING_SNAKE_CASE = best_fa SCREAMING_SNAKE_CASE = fa_thresh def __lowerCamelCase (): with open(OPTS.data_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = dataset_json["data"] with open(OPTS.pred_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: SCREAMING_SNAKE_CASE = json.load(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE = {k: 0.0 for k in preds} SCREAMING_SNAKE_CASE = make_qid_to_has_ans(UpperCAmelCase__ ) # maps qid to True/False SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if v] SCREAMING_SNAKE_CASE = [k for k, v in qid_to_has_ans.items() if not v] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_raw_scores(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = apply_no_ans_threshold(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE = apply_no_ans_threshold(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.na_prob_thresh ) SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ ) if has_ans_qids: SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ , qid_list=UpperCAmelCase__ ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "HasAns" ) if no_ans_qids: SCREAMING_SNAKE_CASE = make_eval_dict(UpperCAmelCase__ , UpperCAmelCase__ , qid_list=UpperCAmelCase__ ) merge_eval(UpperCAmelCase__ , UpperCAmelCase__ , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir ) histogram_na_prob(UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(UpperCAmelCase__ , UpperCAmelCase__ , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(UpperCAmelCase__ , UpperCAmelCase__ ) else: print(json.dumps(UpperCAmelCase__ , indent=2 ) ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
206
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a ): lowercase__ : Dict = (UniPCMultistepScheduler,) lowercase__ : Optional[int] = (("""num_inference_steps""", 25),) def __snake_case( self : List[str] , **_UpperCamelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "num_train_timesteps": 1_000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**_UpperCamelCase ) return config def __snake_case( self : List[str] , _UpperCamelCase : Dict=0 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sample, sample for t in range(_UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : Any , _UpperCamelCase : Union[str, Any]=0 , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = new_scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __snake_case( self : List[str] , _UpperCamelCase : Tuple=None , **_UpperCamelCase : List[Any] ) -> str: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample return sample def __snake_case( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , _UpperCamelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config() SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = self.dummy_sample SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(_UpperCamelCase ) elif num_inference_steps is not None and not hasattr(_UpperCamelCase , "set_timesteps" ): SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] SCREAMING_SNAKE_CASE = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE = scheduler.timesteps[5] SCREAMING_SNAKE_CASE = scheduler.timesteps[6] SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __snake_case( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 SCREAMING_SNAKE_CASE = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE = self.full_loop(scheduler=_UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def __snake_case( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self.check_over_configs(thresholding=_UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_UpperCamelCase , prediction_type=_UpperCamelCase , sample_max_value=_UpperCamelCase , solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , ) def __snake_case( self : Tuple ) -> int: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def __snake_case( self : Dict ) -> int: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = self.full_loop( solver_order=_UpperCamelCase , solver_type=_UpperCamelCase , prediction_type=_UpperCamelCase , ) assert not torch.isnan(_UpperCamelCase ).any(), "Samples have nan numbers" def __snake_case( self : List[str] ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=_UpperCamelCase ) self.check_over_configs(lower_order_final=_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[Any]: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=_UpperCamelCase , time_step=0 ) def __snake_case( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop() SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1e-3 def __snake_case( self : List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.full_loop(prediction_type="v_prediction" ) SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1e-3 def __snake_case( self : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.scheduler_classes[0] SCREAMING_SNAKE_CASE = self.get_scheduler_config(thresholding=_UpperCamelCase , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = self.dummy_model() SCREAMING_SNAKE_CASE = self.dummy_sample_deter.half() scheduler.set_timesteps(_UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE = model(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def __snake_case( self : List[str] , **_UpperCamelCase : Dict ) -> Union[str, Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
206
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "upernet" def __init__( self : int ,lowerCamelCase__ : Any=None ,lowerCamelCase__ : List[Any]=512 ,lowerCamelCase__ : str=0.0_2 ,lowerCamelCase__ : List[Any]=[1, 2, 3, 6] ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Optional[Any]=0.4 ,lowerCamelCase__ : int=384 ,lowerCamelCase__ : int=256 ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : Optional[int]=False ,lowerCamelCase__ : Union[str, Any]=255 ,**lowerCamelCase__ : str ,): super().__init__(**lowerCamelCase__ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) UpperCAmelCase__ = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ): UpperCAmelCase__ = backbone_config.get('model_type' ) UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase__ = config_class.from_dict(lowerCamelCase__ ) UpperCAmelCase__ = backbone_config UpperCAmelCase__ = hidden_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = pool_scales UpperCAmelCase__ = use_auxiliary_head UpperCAmelCase__ = auxiliary_loss_weight UpperCAmelCase__ = auxiliary_in_channels UpperCAmelCase__ = auxiliary_channels UpperCAmelCase__ = auxiliary_num_convs UpperCAmelCase__ = auxiliary_concat_input UpperCAmelCase__ = loss_ignore_index def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
98
"""simple docstring""" import gc import threading import time import psutil import torch class A__ : '''simple docstring''' def __init__( self: str) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = psutil.Process() __lowerCAmelCase : str = False def _SCREAMING_SNAKE_CASE ( self: int) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = -1 while True: __lowerCAmelCase : str = max(self.process.memory_info().rss , self.cpu_memory_peak) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _SCREAMING_SNAKE_CASE ( self: Tuple) -> int: """simple docstring""" __lowerCAmelCase : List[str] = True __lowerCAmelCase : str = threading.Thread(target=self.peak_monitor) __lowerCAmelCase : Tuple = True self.thread.start() def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = False self.thread.join() return self.cpu_memory_peak __snake_case : Tuple = PeakCPUMemory() def _lowercase ( ) -> str: # Time __lowerCAmelCase : str = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : Optional[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Union[str, Any] = torch.cuda.memory_allocated(__snake_case ) torch.cuda.reset_peak_memory_stats() return measures def _lowercase ( __snake_case ) -> Optional[Any]: # Time __lowerCAmelCase : str = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCAmelCase : str = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __lowerCAmelCase : List[str] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCAmelCase : Union[str, Any] = (torch.cuda.memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 __lowerCAmelCase : Any = (torch.cuda.max_memory_allocated(__snake_case ) - start_measures[str(__snake_case )]) / 2**20 return measures def _lowercase ( __snake_case ,__snake_case ) -> Dict: print(F"""{description}:""" ) print(F"""- Time: {measures['time']:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(__snake_case )]:.2f}MiB""" ) __lowerCAmelCase : Optional[Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures['cpu']:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures['cpu-peak']:.2f}MiB""" )
269
0
from __future__ import annotations import pandas as pd def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ) -> list[int]: SCREAMING_SNAKE_CASE_ = [0] * no_of_processes SCREAMING_SNAKE_CASE_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(a__ ): SCREAMING_SNAKE_CASE_ = burst_time[i] SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 9_99_99_99_99 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(a__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: SCREAMING_SNAKE_CASE_ = remaining_time[j] SCREAMING_SNAKE_CASE_ = j SCREAMING_SNAKE_CASE_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 SCREAMING_SNAKE_CASE_ = remaining_time[short] if minm == 0: SCREAMING_SNAKE_CASE_ = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 SCREAMING_SNAKE_CASE_ = False # Find finish time of current process SCREAMING_SNAKE_CASE_ = increment_time + 1 # Calculate waiting time SCREAMING_SNAKE_CASE_ = finish_time - arrival_time[short] SCREAMING_SNAKE_CASE_ = finar - burst_time[short] if waiting_time[short] < 0: SCREAMING_SNAKE_CASE_ = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[int] ) -> list[int]: SCREAMING_SNAKE_CASE_ = [0] * no_of_processes for i in range(a__ ): SCREAMING_SNAKE_CASE_ = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase_ ( __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ) -> None: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 0 for i in range(a__ ): SCREAMING_SNAKE_CASE_ = total_waiting_time + waiting_time[i] SCREAMING_SNAKE_CASE_ = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') lowerCamelCase__ : Union[str, Any] = int(input()) lowerCamelCase__ : List[Any] = [0] * no_of_processes lowerCamelCase__ : Tuple = [0] * no_of_processes lowerCamelCase__ : Union[str, Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) lowerCamelCase__ , lowerCamelCase__ : Dict = map(int, input().split()) lowerCamelCase__ : Tuple = calculate_waitingtime(arrival_time, burst_time, no_of_processes) lowerCamelCase__ : List[str] = burst_time lowerCamelCase__ : Union[str, Any] = no_of_processes lowerCamelCase__ : List[Any] = waiting_time lowerCamelCase__ : Dict = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) lowerCamelCase__ : Union[str, Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
360
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Any=False , _lowerCAmelCase : Tuple=10 , _lowerCAmelCase : Optional[int]=3 , _lowerCAmelCase : Dict=32 * 8 , _lowerCAmelCase : List[str]=32 * 8 , _lowerCAmelCase : List[Any]=4 , _lowerCAmelCase : Optional[Any]=64 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_auxiliary_loss SCREAMING_SNAKE_CASE_ = num_queries SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = min_size SCREAMING_SNAKE_CASE_ = max_size SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = hidden_dim SCREAMING_SNAKE_CASE_ = hidden_dim def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() SCREAMING_SNAKE_CASE_ = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE_ = self.num_queries SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = [1, 1, 1, 1] SCREAMING_SNAKE_CASE_ = self.num_channels SCREAMING_SNAKE_CASE_ = 64 SCREAMING_SNAKE_CASE_ = 128 SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim SCREAMING_SNAKE_CASE_ = self.hidden_dim return config def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple ): SCREAMING_SNAKE_CASE_ = output.encoder_hidden_states SCREAMING_SNAKE_CASE_ = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_layers ) def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ = MaskaFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : str , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(_lowerCAmelCase : List[str] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowercase_ = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def lowerCAmelCase_ ( self : Tuple ): pass @unittest.skip(reason='Mask2Former is not a generative model' ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def lowerCAmelCase_ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def lowerCAmelCase_ ( self : Any ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCAmelCase_ ( self : int ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def lowerCAmelCase_ ( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_lowerCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_lowerCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_lowerCAmelCase ).long(), } SCREAMING_SNAKE_CASE_ = self.model_tester.get_config() SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase_ ( self : List[str] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = self.all_model_classes[1] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) model.train() SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ : Tuple = 1E-4 def UpperCAmelCase_ ( ) -> List[Any]: SCREAMING_SNAKE_CASE_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[int] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase_ ( self : int ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(_lowerCAmelCase , return_tensors='pt' ).to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) # masks_queries_logits SCREAMING_SNAKE_CASE_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE_ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits SCREAMING_SNAKE_CASE_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE_ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCAmelCase ).eval() SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = inputs['pixel_values'].to(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE_ = [el.to(_lowerCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
210
0
"""simple docstring""" import math def _snake_case ( lowercase__ : int = 1_0_0 ) -> int: '''simple docstring''' lowerCAmelCase_ :int = sum(i * i for i in range(1 , n + 1 ) ) lowerCAmelCase_ :Tuple = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
84
"""simple docstring""" def _snake_case ( lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ :int = [False] * len(lowercase__ ) lowerCAmelCase_ :str = [] queue.append(lowercase__ ) lowerCAmelCase_ :Any = True while queue: lowerCAmelCase_ :Optional[int] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = True lowerCAmelCase_ :int = u return visited[t] def _snake_case ( lowercase__ : int , lowercase__ : Optional[int] , lowercase__ : str ) -> Dict: '''simple docstring''' lowerCAmelCase_ :List[Any] = [-1] * (len(lowercase__ )) lowerCAmelCase_ :str = 0 while bfs(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowerCAmelCase_ :List[str] = float("""Inf""" ) lowerCAmelCase_ :List[str] = sink while s != source: # Find the minimum value in select path lowerCAmelCase_ :Any = min(lowercase__ , graph[parent[s]][s] ) lowerCAmelCase_ :Union[str, Any] = parent[s] max_flow += path_flow lowerCAmelCase_ :Tuple = sink while v != source: lowerCAmelCase_ :List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCAmelCase_ :Union[str, Any] = parent[v] return max_flow __UpperCAmelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] __UpperCAmelCase , __UpperCAmelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
84
1
"""simple docstring""" from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker A : List[Any] = "CompVis/stable-diffusion-v1-1" A : Dict = "CompVis/stable-diffusion-v1-2" A : Optional[Any] = "CompVis/stable-diffusion-v1-3" A : str = "CompVis/stable-diffusion-v1-4" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a , __a , __a , __a = True , ): super()._init_() __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(__a ) __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(__a ) __lowerCAmelCase = StableDiffusionPipeline.from_pretrained(__a ) __lowerCAmelCase = StableDiffusionPipeline( vae=__a , text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , safety_checker=__a , feature_extractor=__a , requires_safety_checker=__a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def snake_case ( self ): return {k: getattr(self , __a ) for k in self.config.keys() if not k.startswith("_" )} def snake_case ( self , __a = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__a ) def snake_case ( self ): self.enable_attention_slicing(__a ) @torch.no_grad() def snake_case ( self , __a , __a = 5_12 , __a = 5_12 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def snake_case ( self , __a , __a = 5_12 , __a = 5_12 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def snake_case ( self , __a , __a = 5_12 , __a = 5_12 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def snake_case ( self , __a , __a = 5_12 , __a = 5_12 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ): return self.pipea( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) @torch.no_grad() def snake_case ( self , __a , __a = 5_12 , __a = 5_12 , __a = 50 , __a = 7.5 , __a = None , __a = 1 , __a = 0.0 , __a = None , __a = None , __a = "pil" , __a = True , __a = None , __a = 1 , **__a , ): __lowerCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" self.to(__a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 __lowerCAmelCase = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.2 __lowerCAmelCase = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.3 __lowerCAmelCase = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get first result from Stable Diffusion Checkpoint v1.4 __lowerCAmelCase = self.textaimg_sda_a( prompt=__a , height=__a , width=__a , num_inference_steps=__a , guidance_scale=__a , negative_prompt=__a , num_images_per_prompt=__a , eta=__a , generator=__a , latents=__a , output_type=__a , return_dict=__a , callback=__a , callback_steps=__a , **__a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
259
"""simple docstring""" import string def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "" for i in sequence: __lowerCAmelCase = ord(_UpperCamelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = string.ascii_letters __lowerCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(_UpperCamelCase )] if c in letters else c for c in sequence ) def _lowerCamelCase ( ): '''simple docstring''' from timeit import timeit print("Running performance benchmarks..." ) __lowerCAmelCase = "from string import printable ; from __main__ import atbash, atbash_slow" print(f"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=_UpperCamelCase )} seconds" ) print(f"> atbash(): {timeit('atbash(printable)' , setup=_UpperCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
259
1
'''simple docstring''' def a ( __a , __a ) -> float: '''simple docstring''' if digit_amount > 0: return round(number - int(__a ) , __a ) return number - int(__a ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
97
'''simple docstring''' def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): __UpperCamelCase : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: __UpperCamelCase : str = 1 - (matter_density + radiation_density + dark_energy) __UpperCamelCase : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __UpperCamelCase : Optional[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _lowerCAmelCase = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
298
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=13,__SCREAMING_SNAKE_CASE=7,__SCREAMING_SNAKE_CASE=6,__SCREAMING_SNAKE_CASE=17,__SCREAMING_SNAKE_CASE=23,__SCREAMING_SNAKE_CASE=11,__SCREAMING_SNAKE_CASE=True,): '''simple docstring''' __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = act_dim __lowerCAmelCase = state_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_length __lowerCAmelCase = is_training def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCAmelCase = floats_tensor((self.batch_size, self.seq_length, 1) ) __lowerCAmelCase = ids_tensor((self.batch_size, self.seq_length),vocab_size=10_00 ) __lowerCAmelCase = random_attention_mask((self.batch_size, self.seq_length) ) __lowerCAmelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCamelCase__ ( self ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size,seq_length=self.seq_length,act_dim=self.act_dim,state_dim=self.state_dim,hidden_size=self.hidden_size,max_length=self.max_length,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = DecisionTransformerModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.state_preds.shape,states.shape ) self.parent.assertEqual(result.action_preds.shape,actions.shape ) self.parent.assertEqual(result.return_preds.shape,returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape,(self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): a : Any =(DecisionTransformerModel,) if is_torch_available() else () a : Tuple =() a : Dict ={"""feature-extraction""": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids a : List[Any] =False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features a : Dict =False a : str =False a : Optional[int] =False a : int =False a : Tuple =False a : List[str] =False a : Any =False a : Dict =False a : List[Any] =False def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = DecisionTransformerModelTester(self ) __lowerCAmelCase = ConfigTester(self,config_class=__SCREAMING_SNAKE_CASE,hidden_size=37 ) def lowerCamelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @slow def lowerCamelCase__ ( self ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DecisionTransformerModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(__SCREAMING_SNAKE_CASE )],__SCREAMING_SNAKE_CASE ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = 2 # number of steps of autoregressive prediction we will perform __lowerCAmelCase = 10 # defined by the RL environment, may be normalized __lowerCAmelCase = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) __lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = model.config torch.manual_seed(0 ) __lowerCAmelCase = torch.randn(1,1,config.state_dim ).to(device=__SCREAMING_SNAKE_CASE,dtype=torch.floataa ) # env.reset() __lowerCAmelCase = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]],device=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.tensor(__SCREAMING_SNAKE_CASE,device=__SCREAMING_SNAKE_CASE,dtype=torch.floataa ).reshape(1,1,1 ) __lowerCAmelCase = state __lowerCAmelCase = torch.zeros(1,0,config.act_dim,device=__SCREAMING_SNAKE_CASE,dtype=torch.floataa ) __lowerCAmelCase = torch.zeros(1,0,device=__SCREAMING_SNAKE_CASE,dtype=torch.floataa ) __lowerCAmelCase = torch.tensor(0,device=__SCREAMING_SNAKE_CASE,dtype=torch.long ).reshape(1,1 ) for step in range(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = torch.cat([actions, torch.zeros(1,1,config.act_dim,device=__SCREAMING_SNAKE_CASE )],dim=1 ) __lowerCAmelCase = torch.cat([rewards, torch.zeros(1,1,device=__SCREAMING_SNAKE_CASE )],dim=1 ) __lowerCAmelCase = torch.ones(1,states.shape[1] ).to(dtype=torch.long,device=states.device ) with torch.no_grad(): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = model( states=__SCREAMING_SNAKE_CASE,actions=__SCREAMING_SNAKE_CASE,rewards=__SCREAMING_SNAKE_CASE,returns_to_go=__SCREAMING_SNAKE_CASE,timesteps=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,return_dict=__SCREAMING_SNAKE_CASE,) self.assertEqual(action_pred.shape,actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1],expected_outputs[step],atol=1e-4 ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = ( # env.step(action) torch.randn(1,1,config.state_dim ).to(device=__SCREAMING_SNAKE_CASE,dtype=torch.floataa ), 1.0, False, {}, ) __lowerCAmelCase = action_pred[0, -1] __lowerCAmelCase = torch.cat([states, state],dim=1 ) __lowerCAmelCase = returns_to_go[0, -1] - reward __lowerCAmelCase = torch.cat([returns_to_go, pred_return.reshape(1,1,1 )],dim=1 ) __lowerCAmelCase = torch.cat( [timesteps, torch.ones((1, 1),device=__SCREAMING_SNAKE_CASE,dtype=torch.long ) * (step + 1)],dim=1 )
46
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "geglu",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE = "layer_norm",__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__() __lowerCAmelCase = only_cross_attention __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" __lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __lowerCAmelCase = AdaLayerNorm(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase = AdaLayerNormZero(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Attention( query_dim=__SCREAMING_SNAKE_CASE,heads=__SCREAMING_SNAKE_CASE,dim_head=__SCREAMING_SNAKE_CASE,dropout=__SCREAMING_SNAKE_CASE,bias=__SCREAMING_SNAKE_CASE,cross_attention_dim=cross_attention_dim if only_cross_attention else None,upcast_attention=__SCREAMING_SNAKE_CASE,) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __lowerCAmelCase = ( AdaLayerNorm(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = Attention( query_dim=__SCREAMING_SNAKE_CASE,cross_attention_dim=cross_attention_dim if not double_self_attention else None,heads=__SCREAMING_SNAKE_CASE,dim_head=__SCREAMING_SNAKE_CASE,dropout=__SCREAMING_SNAKE_CASE,bias=__SCREAMING_SNAKE_CASE,upcast_attention=__SCREAMING_SNAKE_CASE,) # is self-attn if encoder_hidden_states is none else: __lowerCAmelCase = None __lowerCAmelCase = None # 3. Feed-forward __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FeedForward(__SCREAMING_SNAKE_CASE,dropout=__SCREAMING_SNAKE_CASE,activation_fn=__SCREAMING_SNAKE_CASE,final_dropout=__SCREAMING_SNAKE_CASE ) # let chunk size default to None __lowerCAmelCase = None __lowerCAmelCase = 0 def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = chunk_size __lowerCAmelCase = dim def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = None,): '''simple docstring''' if self.use_ada_layer_norm: __lowerCAmelCase = self.norma(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.norma( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,hidden_dtype=hidden_states.dtype ) else: __lowerCAmelCase = self.norma(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} __lowerCAmelCase = self.attna( __SCREAMING_SNAKE_CASE,encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,attention_mask=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output __lowerCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __lowerCAmelCase = ( self.norma(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = self.attna( __SCREAMING_SNAKE_CASE,encoder_hidden_states=__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = attn_output + hidden_states # 3. Feed-forward __lowerCAmelCase = self.norma(__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) __lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __lowerCAmelCase = torch.cat( [self.ff(__SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(__SCREAMING_SNAKE_CASE,dim=self._chunk_dim )],dim=self._chunk_dim,) else: __lowerCAmelCase = self.ff(__SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: __lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output __lowerCAmelCase = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = 4,__SCREAMING_SNAKE_CASE = 0.0,__SCREAMING_SNAKE_CASE = "geglu",__SCREAMING_SNAKE_CASE = False,): '''simple docstring''' super().__init__() __lowerCAmelCase = int(dim * mult ) __lowerCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": __lowerCAmelCase = GELU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) if activation_fn == "gelu-approximate": __lowerCAmelCase = GELU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,approximate="""tanh""" ) elif activation_fn == "geglu": __lowerCAmelCase = GEGLU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) elif activation_fn == "geglu-approximate": __lowerCAmelCase = ApproximateGELU(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.ModuleList([] ) # project in self.net.append(__SCREAMING_SNAKE_CASE ) # project dropout self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) ) # project out self.net.append(nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' for module in self.net: __lowerCAmelCase = module(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "none" ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = approximate def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__SCREAMING_SNAKE_CASE,approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ),approximate=self.approximate ).to(dtype=gate.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.proj(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.gelu(__SCREAMING_SNAKE_CASE ) return hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,dim_out * 2 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(__SCREAMING_SNAKE_CASE ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = self.proj(__SCREAMING_SNAKE_CASE ).chunk(2,dim=-1 ) return hidden_states * self.gelu(__SCREAMING_SNAKE_CASE ) class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.proj(__SCREAMING_SNAKE_CASE ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = nn.Embedding(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,embedding_dim * 2 ) __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2 ) __lowerCAmelCase = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__() __lowerCAmelCase = CombinedTimestepLabelEmbeddings(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.SiLU() __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,6 * embedding_dim,bias=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.LayerNorm(__SCREAMING_SNAKE_CASE,elementwise_affine=__SCREAMING_SNAKE_CASE,eps=1e-6 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __lowerCAmelCase = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,hidden_dtype=__SCREAMING_SNAKE_CASE ) ) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = emb.chunk(6,dim=1 ) __lowerCAmelCase = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = 1e-5 ): '''simple docstring''' super().__init__() __lowerCAmelCase = num_groups __lowerCAmelCase = eps if act_fn is None: __lowerCAmelCase = None else: __lowerCAmelCase = get_activation(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = nn.Linear(__SCREAMING_SNAKE_CASE,out_dim * 2 ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.act: __lowerCAmelCase = self.act(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.linear(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = emb[:, :, None, None] __lowerCAmelCase , __lowerCAmelCase = emb.chunk(2,dim=1 ) __lowerCAmelCase = F.group_norm(__SCREAMING_SNAKE_CASE,self.num_groups,eps=self.eps ) __lowerCAmelCase = x * (1 + scale) + shift return x
46
1
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = BlenderbotSmallTokenizer _A : List[Any] = False def lowerCAmelCase_ ( self: Any ) -> Dict: super().setUp() snake_case_ :Dict = ["""__start__""", """adapt""", """act""", """ap@@""", """te""", """__end__""", """__unk__"""] snake_case_ :Dict = dict(zip(snake_case , range(len(snake_case ) ) ) ) snake_case_ :Union[str, Any] = ["""#version: 0.2""", """a p""", """t e</w>""", """ap t</w>""", """a d""", """ad apt</w>""", """a c""", """ac t</w>""", """"""] snake_case_ :Dict = {"""unk_token""": """__unk__""", """bos_token""": """__start__""", """eos_token""": """__end__"""} snake_case_ :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case_ :str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case ) ) def lowerCAmelCase_ ( self: List[Any] , **snake_case: Optional[int] ) -> str: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCAmelCase_ ( self: Any , snake_case: Optional[Any] ) -> Any: snake_case_ :Any = """adapt act apte""" snake_case_ :int = """adapt act apte""" return input_text, output_text def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[int]: snake_case_ :Any = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ :Dict = """adapt act apte""" snake_case_ :Optional[Any] = ["""adapt""", """act""", """ap@@""", """te"""] snake_case_ :List[str] = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) snake_case_ :int = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] snake_case_ :str = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Union[str, Any]: snake_case_ :List[Any] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) assert tok("""sam""" ).input_ids == [1_384] snake_case_ :str = """I am a small frog.""" snake_case_ :Dict = tok([src_text] , padding=snake_case , truncation=snake_case )["""input_ids"""] snake_case_ :Optional[Any] = tok.batch_decode(snake_case , skip_special_tokens=snake_case , clean_up_tokenization_spaces=snake_case )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def lowerCAmelCase_ ( self: str ) -> str: snake_case_ :Optional[int] = BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) snake_case_ :str = """I am a small frog .""" snake_case_ :Dict = """.""" snake_case_ :int = tok(snake_case )["""input_ids"""] snake_case_ :List[Any] = tok(snake_case )["""input_ids"""] assert encoded[-1] == encoded_dot[0]
66
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline a_ : Any = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, **lowerCAmelCase ): """simple docstring""" super().__init__(**lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self, lowerCAmelCase, **lowerCAmelCase ): """simple docstring""" return super().__call__(lowerCAmelCase, **lowerCAmelCase ) def lowercase__ ( self, **lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={} if "candidate_labels" in kwargs: lowerCamelCase_ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCamelCase_ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase="This is a sound of {}." ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCamelCase_ =requests.get(lowerCAmelCase ).content else: with open(lowerCAmelCase, '''rb''' ) as f: lowerCamelCase_ =f.read() if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =ffmpeg_read(lowerCAmelCase, self.feature_extractor.sampling_rate ) if not isinstance(lowerCAmelCase, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowerCamelCase_ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) lowerCamelCase_ =candidate_labels lowerCamelCase_ =[hypothesis_template.format(lowerCAmelCase ) for x in candidate_labels] lowerCamelCase_ =self.tokenizer(lowerCAmelCase, return_tensors=self.framework, padding=lowerCAmelCase ) lowerCamelCase_ =[text_inputs] return inputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_inputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowerCAmelCase ): lowerCamelCase_ =text_inputs[0] else: # Batching case. lowerCamelCase_ =text_inputs[0][0] lowerCamelCase_ =self.model(**lowerCAmelCase, **lowerCAmelCase ) lowerCamelCase_ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =model_outputs.pop('''candidate_labels''' ) lowerCamelCase_ =model_outputs['''logits'''][0] if self.framework == "pt": lowerCamelCase_ =logits.softmax(dim=0 ) lowerCamelCase_ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowerCamelCase_ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase, lowerCAmelCase ), key=lambda lowerCAmelCase : -x[0] ) ] return result
75
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__=0.01 , lowerCAmelCase__=1_000 ) -> Dict: SCREAMING_SNAKE_CASE = p_stop SCREAMING_SNAKE_CASE = max_length def __iter__( self ) -> List[Any]: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE = random.random() < self.p_stop class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=True ) -> List[str]: SCREAMING_SNAKE_CASE = [ BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) for i in range(2 ) ] SCREAMING_SNAKE_CASE = [list(lowerCAmelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCAmelCase__ ) for shard in batch_sampler_shards] , [len(lowerCAmelCase__ ) for e in expected] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) def __A ( self ) -> Union[str, Any]: # Check the shards when the dataset is a round multiple of total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) def __A ( self ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[], []] self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE = [BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=2 , lowerCAmelCase__=False ) -> List[str]: random.seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = list(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [ IterableDatasetShard( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , drop_last=lowerCAmelCase__ , num_processes=lowerCAmelCase__ , process_index=lowerCAmelCase__ , split_batches=lowerCAmelCase__ , ) for i in range(lowerCAmelCase__ ) ] SCREAMING_SNAKE_CASE = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCAmelCase__ ) iterable_dataset_lists.append(list(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) self.assertTrue(len(lowerCAmelCase__ ) % shard_batch_size == 0 ) SCREAMING_SNAKE_CASE = [] for idx in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCAmelCase__ ) < len(lowerCAmelCase__ ): reference += reference self.assertListEqual(lowerCAmelCase__ , reference[: len(lowerCAmelCase__ )] ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) # Edge case with a very small dataset SCREAMING_SNAKE_CASE = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = SkipBatchSampler(lowerCAmelCase__ , 2 ) self.assertListEqual(list(lowerCAmelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = DataLoader(list(range(16 ) ) , batch_size=4 ) SCREAMING_SNAKE_CASE = skip_first_batches(lowerCAmelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __A ( self ) -> Dict: Accelerator() SCREAMING_SNAKE_CASE = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCAmelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
38
"""simple docstring""" class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = [0] * size SCREAMING_SNAKE_CASE = [0] * size @staticmethod def __A ( lowerCAmelCase__ ) -> int: return index | (index + 1) @staticmethod def __A ( lowerCAmelCase__ ) -> int: return (index & (index + 1)) - 1 def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = value while index < self.size: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) + 1 if current_left_border == index: SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.get_next(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: right -= 1 # Because of right is exclusive SCREAMING_SNAKE_CASE = 0 while left <= right: SCREAMING_SNAKE_CASE = self.get_prev(lowerCAmelCase__ ) if left <= current_left: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.tree[right] ) SCREAMING_SNAKE_CASE = current_left else: SCREAMING_SNAKE_CASE = max(lowerCAmelCase__ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
38
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[str] = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
114
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCAmelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a__ ) class lowerCAmelCase_ (a__ ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __call__(self , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , **SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" return {}, {}, {} def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = load_image(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = image.size SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = model_outputs.predicted_depth SCREAMING_SNAKE_CASE__ : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = prediction.squeeze().cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = (output * 2_55 / np.max(SCREAMING_SNAKE_CASE__ )).astype("""uint8""" ) SCREAMING_SNAKE_CASE__ : List[str] = Image.fromarray(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = {} SCREAMING_SNAKE_CASE__ : Any = predicted_depth SCREAMING_SNAKE_CASE__ : Dict = depth return output_dict
25
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase : str = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase__ ( A : Any , A : Optional[Any] , A : Any=8 ): '''simple docstring''' UpperCAmelCase = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCamelCase__( lowerCAmelCase ): def __init__( self : Union[str, Any] , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : DDPMScheduler , lowerCAmelCase : VQModel , )-> List[str]: """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase , scheduler=lowerCAmelCase , movq=lowerCAmelCase , ) UpperCAmelCase = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a__( self : int , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : str )-> str: """simple docstring""" if latents is None: UpperCAmelCase = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase = latents.to(lowerCAmelCase ) UpperCAmelCase = latents * scheduler.init_noise_sigma return latents def a__( self : Dict , lowerCAmelCase : Union[str, Any]=0 )-> Optional[Any]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCAmelCase = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase , lowerCAmelCase ) def a__( self : str , lowerCAmelCase : Union[str, Any]=0 )-> List[str]: """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCAmelCase = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase = cpu_offload_with_hook(lowerCAmelCase , lowerCAmelCase , prev_module_hook=lowerCAmelCase ) # We'll offload the last model manually. UpperCAmelCase = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a__( self : int )-> Union[str, Any]: """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase ) def __call__( self : Union[str, Any] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 512 , lowerCAmelCase : int = 100 , lowerCAmelCase : float = 4.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , )-> int: """simple docstring""" UpperCAmelCase = self._execution_device UpperCAmelCase = guidance_scale > 1.0 if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = torch.cat(lowerCAmelCase , dim=0 ) UpperCAmelCase = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase = torch.cat(lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase = image_embeds.repeat_interleave(lowerCAmelCase , dim=0 ) UpperCAmelCase = negative_image_embeds.repeat_interleave(lowerCAmelCase , dim=0 ) UpperCAmelCase = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase ) self.scheduler.set_timesteps(lowerCAmelCase , device=lowerCAmelCase ) UpperCAmelCase = self.scheduler.timesteps UpperCAmelCase = self.unet.config.in_channels UpperCAmelCase , UpperCAmelCase = downscale_height_and_width(lowerCAmelCase , lowerCAmelCase , self.movq_scale_factor ) # create initial latent UpperCAmelCase = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase = {'''image_embeds''': image_embeds} UpperCAmelCase = self.unet( sample=lowerCAmelCase , timestep=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , added_cond_kwargs=lowerCAmelCase , return_dict=lowerCAmelCase , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase = variance_pred.chunk(2 ) UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase = self.scheduler.step( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase , )[0] # post-processing UpperCAmelCase = self.movq.decode(lowerCAmelCase , force_not_quantize=lowerCAmelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase = image * 0.5 + 0.5 UpperCAmelCase = image.clamp(0 , 1 ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase = self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase )
369
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions if self.add_downsample: UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=True )-> Optional[int]: """simple docstring""" UpperCAmelCase = () for resnet, attn in zip(self.resnets , self.attentions ): UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=lowerCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets if self.add_downsample: UpperCAmelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : List[str]=True )-> Optional[int]: """simple docstring""" UpperCAmelCase = () for resnet in self.resnets: UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase = self.downsamplers_a(lowerCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : List[str] )-> Tuple: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions if self.add_upsample: UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any]=True )-> Optional[int]: """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states UpperCAmelCase = res_hidden_states_tuple[-1] UpperCAmelCase = res_hidden_states_tuple[:-1] UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def a__( self : Optional[int] )-> str: """simple docstring""" UpperCAmelCase = [] for i in range(self.num_layers ): UpperCAmelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets if self.add_upsample: UpperCAmelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=True )-> Tuple: """simple docstring""" for resnet in self.resnets: # pop res hidden states UpperCAmelCase = res_hidden_states_tuple[-1] UpperCAmelCase = res_hidden_states_tuple[:-1] UpperCAmelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) if self.add_upsample: UpperCAmelCase = self.upsamplers_a(lowerCAmelCase ) return hidden_states class UpperCamelCase__( nn.Module ): __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] UpperCAmelCase = [] for _ in range(self.num_layers ): UpperCAmelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCAmelCase ) UpperCAmelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCAmelCase ) UpperCAmelCase = resnets UpperCAmelCase = attentions def __call__( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : Any=True )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.resnets[0](lowerCAmelCase , lowerCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): UpperCAmelCase = attn(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) UpperCAmelCase = resnet(lowerCAmelCase , lowerCAmelCase , deterministic=lowerCAmelCase ) return hidden_states
91
0
def lowerCamelCase__ ( A__ : list[list[int]] , A__ : int , A__ : int , A__ : set ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = len(A__ ), len(grid[0] ) if ( min(A__ , A__ ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) __lowerCamelCase = 0 count += depth_first_search(A__ , row + 1 , A__ , A__ ) count += depth_first_search(A__ , row - 1 , A__ , A__ ) count += depth_first_search(A__ , A__ , col + 1 , A__ ) count += depth_first_search(A__ , A__ , col - 1 , A__ ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
12
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCamelCase__( unittest.TestCase): def __init__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[Any]=56 , UpperCamelCase_: Tuple=True , UpperCamelCase_: Union[str, Any]=True , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: str=True , UpperCamelCase_: str=99 , UpperCamelCase_: Tuple=32 , UpperCamelCase_: int=2 , UpperCamelCase_: Optional[int]=2 , UpperCamelCase_: Tuple=7 , UpperCamelCase_: Optional[int]="gelu_new" , UpperCamelCase_: Any=0.1 , UpperCamelCase_: List[str]=0.1 , UpperCamelCase_: List[Any]=5_12 , UpperCamelCase_: Union[str, Any]=16 , UpperCamelCase_: int=2 , UpperCamelCase_: Dict=0.02 , UpperCamelCase_: Tuple=4 , UpperCamelCase_: Union[str, Any]="block_sparse" , UpperCamelCase_: Optional[Any]=True , UpperCamelCase_: Any=False , UpperCamelCase_: Any=2 , UpperCamelCase_: int=3 , ): __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices __lowerCamelCase = rescale_embeddings __lowerCamelCase = attention_type __lowerCamelCase = use_bias __lowerCamelCase = block_size __lowerCamelCase = num_random_blocks def lowerCAmelCase__ ( self: int ): __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase = config_and_inputs __lowerCamelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask, } return config, inputs_dict @require_flax class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Optional[int] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: Optional[Any] ): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[str] ): super().test_hidden_states_output() @slow def lowerCAmelCase__ ( self: Optional[Any] ): for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained("""google/bigbird-roberta-base""" ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Dict ): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase, __lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __lowerCamelCase = model_class(UpperCamelCase_ ) @jax.jit def model_jitted(UpperCamelCase_: Tuple , UpperCamelCase_: List[Any]=None , **UpperCamelCase_: Union[str, Any] ): return model(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , **UpperCamelCase_ ) with self.subTest("""JIT Enabled""" ): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCamelCase = model_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int , UpperCamelCase_: List[str] , UpperCamelCase_: Any , UpperCamelCase_: Dict=1E-5 , UpperCamelCase_: List[str]="outputs" , UpperCamelCase_: List[str]=None ): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("""outputs.attentions""" ): return else: super().check_pt_flax_outputs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
12
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _a = logging.get_logger(__name__) class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : int, *UpperCAmelCase__ : Any, **UpperCAmelCase__ : List[Any] ): warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead.", UpperCAmelCase__, ) super().__init__(*UpperCAmelCase__, **UpperCAmelCase__ )
144
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict ): __lowercase = dataset __lowercase = process __lowercase = params def __len__( self : str ): return len(self.dataset ) def __getitem__( self : List[Any], UpperCAmelCase__ : int ): __lowercase = self.dataset[i] __lowercase = self.process(UpperCAmelCase__, **self.params ) return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any]=None ): __lowercase = loader __lowercase = infer __lowercase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __lowercase = None __lowercase = loader_batch_size # Internal bookkeeping __lowercase = None __lowercase = None def __len__( self : str ): return len(self.loader ) def __iter__( self : List[str] ): __lowercase = iter(self.loader ) return self def _lowercase ( self : Union[str, Any] ): if isinstance(self._loader_batch_data, torch.Tensor ): # Batch data is simple tensor, just fetch the slice __lowercase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __lowercase = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): # Convert ModelOutput to tuple first __lowercase = element.to_tuple() if isinstance(element[0], torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase__, UpperCAmelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __lowercase = None elif isinstance(element[self._loader_batch_index], torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index], np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = np.expand_dims(element[self._loader_batch_index], 0 ) else: # This is typically a list, so no need to `unsqueeze`. __lowercase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __lowercase = self._loader_batch_data.__class__(UpperCAmelCase__ ) self._loader_batch_index += 1 return result def _lowercase ( self : Tuple ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __lowercase = next(self.iterator ) __lowercase = self.infer(UpperCAmelCase__, **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = len(UpperCAmelCase__ ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size # Setting internal index to unwrap the batch __lowercase = processed __lowercase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : str=None ): super().__init__(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def __iter__( self : str ): __lowercase = iter(self.loader ) __lowercase = None return self def _lowercase ( self : int ): if self.subiterator is None: __lowercase = self.infer(next(self.iterator ), **self.params ) try: # Try to return next item __lowercase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __lowercase = self.infer(next(self.iterator ), **self.params ) __lowercase = next(self.subiterator ) return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __iter__( self : int ): __lowercase = iter(self.loader ) return self def _lowercase ( self : List[str] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __lowercase = False __lowercase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) if is_last: return accumulator while not is_last: __lowercase = self.infer(next(self.iterator ), **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = len(UpperCAmelCase__ ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size __lowercase = processed __lowercase = 0 while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) if is_last: return accumulator else: __lowercase = processed __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) return accumulator class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : Dataset, UpperCAmelCase__ : str ): __lowercase = dataset __lowercase = key def __len__( self : Optional[Any] ): return len(self.dataset ) def __getitem__( self : Union[str, Any], UpperCAmelCase__ : Any ): return self.dataset[i][self.key] class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : Dataset, UpperCAmelCase__ : str, UpperCAmelCase__ : str ): __lowercase = dataset __lowercase = keya __lowercase = keya def __len__( self : Optional[int] ): return len(self.dataset ) def __getitem__( self : Dict, UpperCAmelCase__ : Tuple ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
144
1
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Optional[Any] , lowercase_ :Optional[Any] , lowercase_ :List[str]=13 , lowercase_ :Tuple=30 , lowercase_ :str=2 , lowercase_ :Optional[int]=3 , lowercase_ :Dict=True , lowercase_ :List[str]=True , lowercase_ :str=32 , lowercase_ :Dict=5 , lowercase_ :Optional[int]=4 , lowercase_ :Optional[Any]=37 , lowercase_ :Dict="gelu" , lowercase_ :int=0.1 , lowercase_ :int=0.1 , lowercase_ :Union[str, Any]=10 , lowercase_ :str=0.02 , ) -> Optional[int]: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 1 def UpperCAmelCase__ ( self :str ) -> List[str]: UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase__ ( self :str , lowercase_ :Union[str, Any] , lowercase_ :List[Any] ) -> List[Any]: UpperCAmelCase = FlaxViTModel(config=lowercase_ ) UpperCAmelCase = model(lowercase_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase = (self.image_size, self.image_size) UpperCAmelCase = (self.patch_size, self.patch_size) UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self :List[Any] , lowercase_ :Optional[int] , lowercase_ :Dict ) -> List[Any]: UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = FlaxViTForImageClassification(config=lowercase_ ) UpperCAmelCase = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = FlaxViTForImageClassification(lowercase_ ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(lowercase_ ) def UpperCAmelCase__ ( self :str ) -> Optional[int]: UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class A_ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self :int ) -> None: UpperCAmelCase = FlaxViTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def UpperCAmelCase__ ( self :Optional[Any] ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self :Dict ) -> Tuple: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def UpperCAmelCase__ ( self :str ) -> Dict: UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def UpperCAmelCase__ ( self :Any ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase_ ) UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) def UpperCAmelCase__ ( self :str ) -> Optional[int]: UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase = self._prepare_for_class(lowercase_ , lowercase_ ) UpperCAmelCase = model_class(lowercase_ ) @jax.jit def model_jitted(lowercase_ :Tuple , **lowercase_ :Dict ): return model(pixel_values=lowercase_ , **lowercase_ ) with self.subTest('JIT Enabled' ): UpperCAmelCase = model_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCAmelCase = model_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self :List[Any] ) -> str: for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('google/vit-base-patch16-224' ) UpperCAmelCase = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(lowercase_ )
78
def __UpperCamelCase ( lowerCAmelCase__ : int = 5_0_0_0_0_0_0_0 ): __a : int = set() __a : str = int((limit - 2_4) ** (1 / 2) ) __a : int = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowerCAmelCase__ ) ) ) for primea in primes: __a : Union[str, Any] = primea * primea for primea in primes: __a : Union[str, Any] = primea * primea * primea if square + cube >= limit - 1_6: break for primea in primes: __a : int = primea * primea * primea * primea __a : Union[str, Any] = square + cube + tetr if total >= limit: break ret.add(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
216
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
1
import warnings from ..trainer import Trainer from ..utils import logging __A : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )-> Optional[int]: warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(args=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
154
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) def __UpperCamelCase ( _A : Union[str, Any] ) ->List[str]: """simple docstring""" lowerCamelCase_ =MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) lowerCamelCase_ =re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""" , _A ) if matches: lowerCamelCase_ =float(matches[1] ) lowerCamelCase_ =int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". lowerCamelCase_ =1001 lowerCamelCase_ ="""imagenet-1k-id2label.json""" lowerCamelCase_ ="""huggingface/label-files""" lowerCamelCase_ =json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase_ ={int(_A ) + 1: v for k, v in idalabel.items()} lowerCamelCase_ ="""background""" lowerCamelCase_ =idalabel lowerCamelCase_ ={v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( ) ->int: """simple docstring""" lowerCamelCase_ ="""http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCamelCase_ =Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _A : List[Any] , _A : Any , _A : str , _A : int=False ) ->List[str]: """simple docstring""" lowerCamelCase_ =get_mobilenet_va_config(_A ) # Load 🤗 model lowerCamelCase_ =MobileNetVaForImageClassification(_A ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_A , _A , _A ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor lowerCamelCase_ =MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size} , size={"""shortest_edge""": config.image_size + 32} , ) lowerCamelCase_ =image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCamelCase_ =model(**_A ) lowerCamelCase_ =outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": lowerCamelCase_ =torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": lowerCamelCase_ =torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: lowerCamelCase_ =None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if push_to_hub: print("""Pushing to the hub...""" ) lowerCamelCase_ ="""google/""" + model_name image_processor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __A : List[str] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
154
1
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : List[Any] = abs(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = 0 while n > 0: res += n % 10 n //= 10 return res def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : List[Any] = abs(__SCREAMING_SNAKE_CASE ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" return sum(int(__SCREAMING_SNAKE_CASE ) for c in str(abs(__SCREAMING_SNAKE_CASE ) ) ) def snake_case_ ( ): """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__SCREAMING_SNAKE_CASE : Callable , __SCREAMING_SNAKE_CASE : int ) -> None: lowercase_ : Any = F'''{func.__name__}({value})''' lowercase_ : List[Any] = timeit(F'''__main__.{call}''' , setup='''import __main__''' ) print(F'''{call:56} = {func(__SCREAMING_SNAKE_CASE )} -- {timing:.4f} seconds''' ) for value in (262144, 1125899906842624, 1267650600228229401496703205376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
264
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert column_title.isupper() lowercase_ : Dict = 0 lowercase_ : Tuple = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Optional[int] = 0 while index >= 0: lowercase_ : Optional[Any] = (ord(column_title[index] ) - 64) * pow(26 , __SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
264
1
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __snake_case ( a , unittest.TestCase ): UpperCAmelCase__ : Dict = BarthezTokenizer UpperCAmelCase__ : Optional[Any] = BarthezTokenizerFast UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Optional[Any] = True def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().setUp() UpperCAmelCase_ = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''') tokenizer.save_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname , legacy_format=_snake_case) UpperCAmelCase_ = tokenizer def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ = '''<pad>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case) , _snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case) , _snake_case) def lowerCamelCase ( self : Any): """simple docstring""" UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<s>''') self.assertEqual(vocab_keys[1] , '''<pad>''') self.assertEqual(vocab_keys[-1] , '''<mask>''') self.assertEqual(len(_snake_case) , 101122) def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101122) @require_torch def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ = [0, 57, 3018, 70307, 91, 2] UpperCAmelCase_ = self.tokenizer( _snake_case , max_length=len(_snake_case) , padding=_snake_case , truncation=_snake_case , return_tensors='''pt''') self.assertIsInstance(_snake_case , _snake_case) self.assertEqual((2, 6) , batch.input_ids.shape) self.assertEqual((2, 6) , batch.attention_mask.shape) UpperCAmelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(_snake_case , _snake_case) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_snake_case) UpperCAmelCase_ = rust_tokenizer.tokenize(_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = tokenizer.encode(_snake_case , add_special_tokens=_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case) self.assertListEqual(_snake_case , _snake_case) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_snake_case) UpperCAmelCase_ = rust_tokenizer.encode(_snake_case) self.assertListEqual(_snake_case , _snake_case) @slow def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCAmelCase_ = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=_snake_case , )
51
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __snake_case : @staticmethod def lowerCamelCase ( *_snake_case : Optional[int] , **_snake_case : int): """simple docstring""" pass def A (__A : Image ) -> str: """simple docstring""" UpperCAmelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : Tuple = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase ( self : Tuple , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = DepthEstimationPipeline(model=_snake_case , image_processor=_snake_case) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase ( self : str , _snake_case : Optional[int] , _snake_case : List[str]): """simple docstring""" UpperCAmelCase_ = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''') self.assertEqual({'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)} , _snake_case) import datasets UpperCAmelCase_ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''') UpperCAmelCase_ = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png'''), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ]) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, {'''predicted_depth''': ANY(torch.Tensor), '''depth''': ANY(Image.Image)}, ] , _snake_case , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''') def lowerCamelCase ( self : Union[str, Any]): """simple docstring""" pass @slow @require_torch def lowerCamelCase ( self : List[str]): """simple docstring""" UpperCAmelCase_ = '''Intel/dpt-large''' UpperCAmelCase_ = pipeline('''depth-estimation''' , model=_snake_case) UpperCAmelCase_ = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''') UpperCAmelCase_ = hashimage(outputs['''depth''']) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item()) , 2_9.3_0_4) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item()) , 2.6_6_2) @require_torch def lowerCamelCase ( self : Optional[Any]): """simple docstring""" self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''')
51
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Any = 1 _snake_case : Optional[Any] = 1 _snake_case : List[str] = {1: 1} for inputa in range(2 , snake_case__ ): _snake_case : Optional[Any] = 0 _snake_case : str = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _snake_case : Optional[int] = (3 * number) + 1 counter += 1 if inputa not in counters: _snake_case : List[str] = counter if counter > pre_counter: _snake_case : List[Any] = inputa _snake_case : List[Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
354
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_ = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ['''MaskFormerFeatureExtractor'''] A_ = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] A_ = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
132
0
'''simple docstring''' __snake_case ={str(digit): digit**5 for digit in range(10)} def a_ ( lowerCamelCase : int ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase ) ) def a_ ( ): return sum( number for number in range(1000 , 1000000 ) if number == digits_fifth_powers_sum(lowerCamelCase ) ) if __name__ == "__main__": print(solution())
4
'''simple docstring''' import re def _lowercase ( __A ): '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" ,str_ )] def _lowercase ( __A ): '''simple docstring''' __UpperCamelCase = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _lowercase ( __A ,__A ,__A ): '''simple docstring''' try: __UpperCamelCase = split_input(__A ) if upper: __UpperCamelCase = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCamelCase = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _lowercase ( __A ): '''simple docstring''' return to_simple_case(__A ) def _lowercase ( __A ): '''simple docstring''' try: __UpperCamelCase = to_simple_case(__A ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""_""" ) def _lowercase ( __A ,__A ): '''simple docstring''' return to_complex_case(__A ,__A ,"""-""" ) if __name__ == "__main__": __import__('doctest').testmod()
349
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A__ : Union[str, Any] =logging.get_logger(__name__) A__ : Union[str, Any] =list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A__ : Optional[Any] =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase : _lowercase: str = field( default=snake_case_ , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(snake_case_ )} ) _lowercase: str = field( default=snake_case_ , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase: int = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase: int = field( default=128 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase: int = field( default=64 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase: int = field( default=30 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase: bool = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase: bool = field( default=snake_case_ , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase: float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase: int = field( default=20 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase: int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase: int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase ( snake_case_ ): _lowercase: Dict = '''train''' _lowercase: Tuple = '''dev''' class UpperCAmelCase ( snake_case_ ): _lowercase: SquadDataTrainingArguments _lowercase: List[SquadFeatures] _lowercase: Split _lowercase: bool def __init__( self : Tuple , __snake_case : SquadDataTrainingArguments , __snake_case : PreTrainedTokenizer , __snake_case : Optional[int] = None , __snake_case : Union[str, Split] = Split.train , __snake_case : Optional[bool] = False , __snake_case : Optional[str] = None , __snake_case : Optional[str] = "pt" , ) -> Optional[Any]: _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__snake_case , __snake_case ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(__snake_case ): if os.path.exists(__snake_case ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(__snake_case ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , __snake_case ) _lowerCAmelCase = self.old_features.get("""examples""" , __snake_case ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=__snake_case , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__snake_case , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , __snake_case , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ) -> Optional[int]: return len(self.features ) def __getitem__( self : List[str] , __snake_case : int ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
220
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : List[Any] ) -> List[str]: _lowerCAmelCase = 1 _lowerCAmelCase = 3 _lowerCAmelCase = (32, 32) _lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case ) return image @property def lowercase__ ( self : int ) -> Union[str, Any]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self : Optional[int] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowercase__ ( self : Dict ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__snake_case ) @property def lowercase__ ( self : Union[str, Any] ) -> str: def extract(*__snake_case : List[Any] , **__snake_case : Any ): class UpperCAmelCase : def __init__( self : Any ) -> Any: _lowerCAmelCase = torch.ones([0] ) def lowercase__ ( self : Optional[Any] , __snake_case : Tuple ) -> Dict: self.pixel_values.to(__snake_case ) return self return Out() return extract def lowercase__ ( self : List[str] ) -> Optional[int]: _lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=__snake_case ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase = 77 _lowerCAmelCase = self.dummy_image.to(__snake_case ) _lowerCAmelCase = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowerCAmelCase = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case ) _lowerCAmelCase = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ) _lowerCAmelCase = output.images _lowerCAmelCase = torch.Generator(device=__snake_case ).manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__snake_case , return_dict=__snake_case , )[0] _lowerCAmelCase = image[0, -3:, -3:, -1] _lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self : Tuple ) -> str: _lowerCAmelCase = self.dummy_cond_unet _lowerCAmelCase = PNDMScheduler(skip_prk_steps=__snake_case ) _lowerCAmelCase = self.dummy_vae _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) _lowerCAmelCase = 77 _lowerCAmelCase = self.dummy_image.to(__snake_case ) # put models in fp16 _lowerCAmelCase = unet.half() _lowerCAmelCase = vae.half() _lowerCAmelCase = bert.half() # make sure here that pndm scheduler skips prk _lowerCAmelCase = AltDiffusionImgaImgPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) _lowerCAmelCase = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__snake_case ) _lowerCAmelCase = alt_pipe.to(__snake_case ) alt_pipe.set_progress_bar_config(disable=__snake_case ) _lowerCAmelCase = """A painting of a squirrel eating a burger""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = alt_pipe( [prompt] , generator=__snake_case , num_inference_steps=2 , output_type="""np""" , image=__snake_case , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowercase__ ( self : Optional[Any] ) -> Optional[Any]: _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 _lowerCAmelCase = init_image.resize((7_60, 5_04) ) _lowerCAmelCase = """BAAI/AltDiffusion""" _lowerCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) _lowerCAmelCase = output.images[0] _lowerCAmelCase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowerCAmelCase = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def lowercase__ ( self : int ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ) -> Tuple: _lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) _lowerCAmelCase = init_image.resize((7_68, 5_12) ) _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) _lowerCAmelCase = """BAAI/AltDiffusion""" _lowerCAmelCase = AltDiffusionImgaImgPipeline.from_pretrained( __snake_case , safety_checker=__snake_case , ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) pipe.enable_attention_slicing() _lowerCAmelCase = """A fantasy landscape, trending on artstation""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , generator=__snake_case , output_type="""np""" , ) _lowerCAmelCase = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
220
1
'''simple docstring''' import numpy as np def a__ ( lowercase : np.array ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def a__ ( lowercase : np.array ) -> np.array: """simple docstring""" return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
324
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : List[Any] = 25_00_04 lowercase__ : str = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : List[str] = True _snake_case : Optional[Any] = True def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'facebook/mbart-large-en-ro' _snake_case : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
324
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def UpperCamelCase ( a , a , a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = state_dict.pop(a ) __magic_name__ = val def UpperCamelCase ( a ) -> Optional[Any]: '''simple docstring''' __magic_name__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __magic_name__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __magic_name__ = value else: __magic_name__ = value return new_state_dict def UpperCamelCase ( a ) -> Dict: '''simple docstring''' __magic_name__ = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[:256, :] __magic_name__ = in_proj_bias[:256] __magic_name__ = in_proj_weight[256:512, :] __magic_name__ = in_proj_bias[256:512] __magic_name__ = in_proj_weight[-256:, :] __magic_name__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __magic_name__ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[:256, :] __magic_name__ = in_proj_bias[:256] __magic_name__ = in_proj_weight[256:512, :] __magic_name__ = in_proj_bias[256:512] __magic_name__ = in_proj_weight[-256:, :] __magic_name__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __magic_name__ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __magic_name__ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __magic_name__ = in_proj_weight_cross_attn[:256, :] __magic_name__ = in_proj_bias_cross_attn[:256] __magic_name__ = in_proj_weight_cross_attn[256:512, :] __magic_name__ = in_proj_bias_cross_attn[256:512] __magic_name__ = in_proj_weight_cross_attn[-256:, :] __magic_name__ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( a , a ) -> Optional[Any]: '''simple docstring''' __magic_name__ , __magic_name__ = image.size __magic_name__ = max(a , a ) __magic_name__ = 800 if '''detection''' in checkpoint_url else 1000 __magic_name__ = target_max_size / current_max_size __magic_name__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def UpperCamelCase ( a ) -> List[str]: '''simple docstring''' __magic_name__ = F.to_tensor(a ) __magic_name__ = F.normalize(a , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def UpperCamelCase ( a , a , a ) -> List[str]: '''simple docstring''' logger.info('''Converting model...''' ) # load original state dict __magic_name__ = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(a , a , a ) __magic_name__ = rename_backbone_keys(a ) # query, key and value matrices need special treatment read_in_q_k_v(a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __magic_name__ = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __magic_name__ = state_dict.pop(a ) __magic_name__ = val # create HuggingFace model and load state dict __magic_name__ = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __magic_name__ = 15 __magic_name__ = 2 __magic_name__ = {0: '''table''', 1: '''table rotated'''} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} else: __magic_name__ = 125 __magic_name__ = 6 __magic_name__ = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} __magic_name__ = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1000 ) __magic_name__ = TableTransformerForObjectDetection(a ) model.load_state_dict(a ) model.eval() # verify our conversion __magic_name__ = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' __magic_name__ = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=a ) __magic_name__ = Image.open(a ).convert('''RGB''' ) __magic_name__ = normalize(resize(a , a ) ).unsqueeze(0 ) __magic_name__ = model(a ) if "detection" in checkpoint_url: __magic_name__ = (1, 15, 3) __magic_name__ = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) __magic_name__ = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: __magic_name__ = (1, 125, 7) __magic_name__ = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) __magic_name__ = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , a , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) __magic_name__ = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(a ) image_processor.push_to_hub(a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
98
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , a__ : Union[str, Any] , a__ : Union[str, Any]=7 , a__ : Dict=3 , a__ : Optional[Any]=18 , a__ : Optional[Any]=30 , a__ : Tuple=400 , a__ : Optional[int]=True , a__ : int=None , a__ : Union[str, Any]=True , a__ : Optional[Any]=None , a__ : str=True , a__ : List[Any]=[0.5, 0.5, 0.5] , a__ : Tuple=[0.5, 0.5, 0.5] , a__ : Union[str, Any]=False , ): __magic_name__ = size if size is not None else {'''height''': 20, '''width''': 20} __magic_name__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = num_channels __magic_name__ = image_size __magic_name__ = min_resolution __magic_name__ = max_resolution __magic_name__ = do_resize __magic_name__ = size __magic_name__ = do_center_crop __magic_name__ = crop_size __magic_name__ = do_normalize __magic_name__ = image_mean __magic_name__ = image_std __magic_name__ = do_reduce_labels def snake_case__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCamelCase ( ) -> str: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(dataset[0]['''file'''] ) __magic_name__ = Image.open(dataset[1]['''file'''] ) return image, map def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __magic_name__ = Image.open(ds[0]['''file'''] ) __magic_name__ = Image.open(ds[1]['''file'''] ) __magic_name__ = Image.open(ds[2]['''file'''] ) __magic_name__ = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = BeitImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ): __magic_name__ = BeitImageProcessingTester(self ) @property def snake_case__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) self.assertTrue(hasattr(a__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a__ , '''center_crop''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) def snake_case__ ( self : int ): __magic_name__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) __magic_name__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , a__ ) def snake_case__ ( self : Optional[Any] ): pass def snake_case__ ( self : Dict ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[str] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Union[str, Any] ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) __magic_name__ = [] for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __magic_name__ = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) __magic_name__ , __magic_name__ = prepare_semantic_batch_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def snake_case__ ( self : Any ): # Initialize image_processing __magic_name__ = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __magic_name__ , __magic_name__ = prepare_semantic_single_inputs() __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) __magic_name__ = True __magic_name__ = image_processing(a__ , a__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
98
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowercase : Optional[int] = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def A_ ( A__=True ) -> List[str]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Tuple = None __A : Union[str, Any] = None def __lowercase ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' with TemporaryDirectory() as tmp_dir: a__ : Dict = dataset_module_factory(lowercase , cache_dir=lowercase) a__ : str = import_main_class(dataset_module.module_path , dataset=lowercase) a__ : DatasetBuilder = builder_cls( cache_dir=lowercase , config_name=lowercase , hash=dataset_module.hash , ) a__ : Dict = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowercase).replace(os.sep , '/'), config.DATASET_INFO_FILENAME, ]) a__ : List[Any] = cached_path(lowercase , cache_dir=lowercase) self.assertTrue(os.path.exists(lowercase)) @pytest.mark.integration def A_ ( A__ ) -> Any: a__ : List[str] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' a__ : List[Any] = dataset_module_factory('wikipedia' , cache_dir=A__ ) a__ : Optional[int] = import_main_class(dataset_module.module_path ) a__ : DatasetBuilder = builder_cls( cache_dir=A__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam a__ : List[Any] = None builder_instance.download_and_prepare() a__ : str = builder_instance.as_dataset() assert ds @pytest.mark.integration def A_ ( A__ ) -> int: a__ : Dict = dataset_module_factory('wikipedia' , cache_dir=A__ ) a__ : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=A__ ) a__ : DatasetBuilder = builder_cls( cache_dir=A__ , config_name='20220301.frr' , hash=dataset_module.hash , ) a__ : str = builder_instance.as_streaming_dataset() assert ds assert isinstance(A__ , A__ ) assert "train" in ds assert isinstance(ds['train'] , A__ ) assert next(iter(ds['train'] ) )
99
'''simple docstring''' class A__ : def __init__( self :List[Any] ) -> None: '''simple docstring''' _a : dict[str, TrieNode] ={} # Mapping from char to TrieNode _a : List[str] =False def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :list[str] ) -> None: '''simple docstring''' for word in words: self.insert(SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> None: '''simple docstring''' _a : str =self for char in word: if char not in curr.nodes: _a : Dict =TrieNode() _a : List[Any] =curr.nodes[char] _a : int =True def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str ) -> bool: '''simple docstring''' _a : int =self for char in word: if char not in curr.nodes: return False _a : List[Any] =curr.nodes[char] return curr.is_leaf def __UpperCAmelCase ( self :Dict , SCREAMING_SNAKE_CASE :str ) -> None: '''simple docstring''' def _delete(SCREAMING_SNAKE_CASE :TrieNode , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :int ) -> bool: if index == len(SCREAMING_SNAKE_CASE ): # If word does not exist if not curr.is_leaf: return False _a : Any =False return len(curr.nodes ) == 0 _a : int =word[index] _a : int =curr.nodes.get(SCREAMING_SNAKE_CASE ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted _a : List[Any] =_delete(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , SCREAMING_SNAKE_CASE , 0 ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : TrieNode ,_UpperCAmelCase : str ) -> None: if node.is_leaf: print(_UpperCAmelCase ,end=""" """ ) for key, value in node.nodes.items(): print_words(_UpperCAmelCase ,word + key ) def SCREAMING_SNAKE_CASE_ ( ) -> bool: _a : List[str] ="""banana bananas bandana band apple all beast""".split() _a : List[Any] =TrieNode() root.insert_many(_UpperCAmelCase ) # print_words(root, "") assert all(root.find(_UpperCAmelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ,_UpperCAmelCase : bool ) -> None: print(str(_UpperCAmelCase ) ,"""works!""" if passes else """doesn't work :(""" ) def SCREAMING_SNAKE_CASE_ ( ) -> None: assert test_trie() def SCREAMING_SNAKE_CASE_ ( ) -> None: print_results("""Testing trie functionality""" ,test_trie() ) if __name__ == "__main__": main()
276
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase( _a ): lowercase_ : Tuple = (PNDMScheduler,) lowercase_ : str = (("""num_inference_steps""", 50),) def UpperCamelCase ( self, **lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Optional[int] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', } config.update(**lowerCamelCase) return config def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = dict(self.forward_default_kwargs) _lowercase : int = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : Optional[int] = self.dummy_sample _lowercase : List[str] = 0.1 * sample _lowercase : str = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : Any = self.get_scheduler_config(**lowerCamelCase) _lowercase : List[str] = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase) new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals _lowercase : Optional[int] = dummy_past_residuals[:] _lowercase : List[Any] = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Any = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowercase : Union[str, Any] = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Optional[int] = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase=0, **lowerCamelCase) -> int: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Dict = kwargs.pop('num_inference_steps', lowerCamelCase) _lowercase : List[str] = self.dummy_sample _lowercase : List[Any] = 0.1 * sample _lowercase : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _lowercase : Union[str, Any] = self.get_scheduler_config() _lowercase : Any = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residuals (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase) _lowercase : Any = scheduler_class.from_pretrained(lowerCamelCase) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase) # copy over dummy past residual (must be after setting timesteps) _lowercase : Optional[int] = dummy_past_residuals[:] _lowercase : Any = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Union[str, Any] = new_scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" _lowercase : Tuple = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : List[str] = new_scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self, **lowerCamelCase) -> str: """simple docstring""" _lowercase : List[str] = self.scheduler_classes[0] _lowercase : int = self.get_scheduler_config(**lowerCamelCase) _lowercase : Union[str, Any] = scheduler_class(**lowerCamelCase) _lowercase : Optional[Any] = 10 _lowercase : Tuple = self.dummy_model() _lowercase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase) for i, t in enumerate(scheduler.prk_timesteps): _lowercase : Any = model(lowerCamelCase, lowerCamelCase) _lowercase : Union[str, Any] = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): _lowercase : Union[str, Any] = model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = scheduler.step_plms(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample return sample def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Dict = dict(self.forward_default_kwargs) _lowercase : Optional[Any] = kwargs.pop('num_inference_steps', lowerCamelCase) for scheduler_class in self.scheduler_classes: _lowercase : Dict = self.get_scheduler_config() _lowercase : List[str] = scheduler_class(**lowerCamelCase) _lowercase : Optional[Any] = self.dummy_sample _lowercase : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase, 'set_timesteps'): scheduler.set_timesteps(lowerCamelCase) elif num_inference_steps is not None and not hasattr(lowerCamelCase, 'set_timesteps'): _lowercase : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : List[str] = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _lowercase : List[Any] = dummy_past_residuals[:] _lowercase : Optional[int] = scheduler.step_prk(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Union[str, Any] = scheduler.step_prk(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) _lowercase : Tuple = scheduler.step_plms(lowerCamelCase, 0, lowerCamelCase, **lowerCamelCase).prev_sample _lowercase : Any = scheduler.step_plms(lowerCamelCase, 1, lowerCamelCase, **lowerCamelCase).prev_sample self.assertEqual(output_a.shape, sample.shape) self.assertEqual(output_a.shape, output_a.shape) def UpperCamelCase ( self) -> List[str]: """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase) _lowercase : Any = self.scheduler_classes[0] _lowercase : Union[str, Any] = self.get_scheduler_config(steps_offset=1) _lowercase : Any = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps, torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]), ) def UpperCamelCase ( self) -> List[str]: """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1], [0.0_0_2, 0.0_2]): self.check_over_configs(beta_start=lowerCamelCase, beta_end=lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10], [10, 50, 1_00]): self.check_over_forward(num_inference_steps=lowerCamelCase) def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[int] = 27 for scheduler_class in self.scheduler_classes: _lowercase : Tuple = self.dummy_sample _lowercase : Union[str, Any] = 0.1 * sample _lowercase : int = self.get_scheduler_config() _lowercase : int = scheduler_class(**lowerCamelCase) scheduler.set_timesteps(lowerCamelCase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): _lowercase : List[str] = scheduler.step_prk(lowerCamelCase, lowerCamelCase, lowerCamelCase).prev_sample def UpperCamelCase ( self) -> int: """simple docstring""" with self.assertRaises(lowerCamelCase): _lowercase : str = self.scheduler_classes[0] _lowercase : Optional[Any] = self.get_scheduler_config() _lowercase : List[Any] = scheduler_class(**lowerCamelCase) scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Dict = self.full_loop() _lowercase : Tuple = torch.sum(torch.abs(lowerCamelCase)) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 1_98.13_18) < 1E-2 assert abs(result_mean.item() - 0.2_5_8_0) < 1E-3 def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Dict = self.full_loop(prediction_type='v_prediction') _lowercase : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase)) _lowercase : Optional[Any] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 67.39_86) < 1E-2 assert abs(result_mean.item() - 0.0_8_7_8) < 1E-3 def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Any = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.0_1) _lowercase : Tuple = torch.sum(torch.abs(lowerCamelCase)) _lowercase : str = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 2_30.03_99) < 1E-2 assert abs(result_mean.item() - 0.2_9_9_5) < 1E-3 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Any = self.full_loop(set_alpha_to_one=lowerCamelCase, beta_start=0.0_1) _lowercase : Tuple = torch.sum(torch.abs(lowerCamelCase)) _lowercase : List[str] = torch.mean(torch.abs(lowerCamelCase)) assert abs(result_sum.item() - 1_86.94_82) < 1E-2 assert abs(result_mean.item() - 0.2_4_3_4) < 1E-3
351
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) SCREAMING_SNAKE_CASE : Optional[int] = 299792458 # Symbols SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = symbols("ct x y z") def UpperCamelCase_( lowerCamelCase_ ) -> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def UpperCamelCase_( lowerCamelCase_ ) -> float: return 1 / sqrt(1 - beta(lowerCamelCase_ ) ** 2 ) def UpperCamelCase_( lowerCamelCase_ ) -> np.ndarray: return np.array( [ [gamma(lowerCamelCase_ ), -gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), 0, 0], [-gamma(lowerCamelCase_ ) * beta(lowerCamelCase_ ), gamma(lowerCamelCase_ ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = None ) -> np.ndarray: # Ensure event is not empty if event is None: _lowercase : Union[str, Any] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(lowerCamelCase_ ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: SCREAMING_SNAKE_CASE : Optional[int] = transform(29979245) print("Example of four vector: ") print(F"ct' = {four_vector[0]}") print(F"x' = {four_vector[1]}") print(F"y' = {four_vector[2]}") print(F"z' = {four_vector[3]}") # Substitute symbols with numerical values SCREAMING_SNAKE_CASE : Tuple = {ct: c, x: 1, y: 1, z: 1} SCREAMING_SNAKE_CASE : Tuple = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"\n{numerical_vector}")
84
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase : List[Any] = {'configuration_yolos': ['YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'YolosConfig', 'YolosOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['YolosFeatureExtractor'] lowerCamelCase : Tuple = ['YolosImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST', 'YolosForObjectDetection', 'YolosModel', 'YolosPreTrainedModel', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowerCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
124
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __lowercase (unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=3 , A=3_0 , A=4_0_0 , A=True , A=None , A=0.9 , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> Dict: snake_case : Optional[int] = size if size is not None else {"""shortest_edge""": 3_0} snake_case : Optional[int] = crop_size if crop_size is not None else {"""height""": 3_0, """width""": 3_0} snake_case : int = parent snake_case : List[str] = batch_size snake_case : Any = num_channels snake_case : Optional[Any] = min_resolution snake_case : Any = max_resolution snake_case : Dict = do_resize_and_center_crop snake_case : Any = size snake_case : List[Any] = crop_pct snake_case : int = crop_size snake_case : int = do_normalize snake_case : List[Any] = image_mean snake_case : Tuple = image_std def UpperCAmelCase ( self ) -> int: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = PoolFormerImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ) -> Optional[Any]: snake_case : str = PoolFormerImageProcessingTester(self ) @property def UpperCAmelCase ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ) -> Dict: snake_case : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(A , """size""" ) ) self.assertTrue(hasattr(A , """crop_pct""" ) ) self.assertTrue(hasattr(A , """do_normalize""" ) ) self.assertTrue(hasattr(A , """image_mean""" ) ) self.assertTrue(hasattr(A , """image_std""" ) ) def UpperCAmelCase ( self ) -> int: snake_case : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 3_0} ) self.assertEqual(image_processor.crop_size , {"""height""": 3_0, """width""": 3_0} ) snake_case : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def UpperCAmelCase ( self ) -> Tuple: pass def UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processing snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case : Tuple = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase ( self ) -> Dict: # Initialize image_processing snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input snake_case : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case : Any = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase ( self ) -> List[str]: # Initialize image_processing snake_case : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case : int = image_processing(A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
124
1
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem _lowerCAmelCase = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 _lowerCAmelCase = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCamelCase ( a ) -> str: '''simple docstring''' if "://" in dataset_path: __magic_name__ = dataset_path.split('''://''' )[1] return dataset_path def UpperCamelCase ( a ) -> bool: '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def UpperCamelCase ( a , a , a ) -> Tuple: '''simple docstring''' __magic_name__ = not is_remote_filesystem(a ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(a ) , fs._strip_protocol(a ) ) else: fs.mv(a , a , recursive=a ) def UpperCamelCase ( ) -> None: '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: __magic_name__ = None __magic_name__ = None __magic_name__ = threading.Lock()
98
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["GLPNFeatureExtractor"] _lowerCAmelCase = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
98
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class __snake_case ( unittest.TestCase ): _a = JukeboxTokenizer _a = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def UpperCAmelCase__ ( self : str): import torch lowerCAmelCase_ : List[Any] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''') lowerCAmelCase_ : Any = tokenizer(**self.metas)['''input_ids'''] # fmt: off lowerCAmelCase_ : List[str] = [ torch.tensor([[ 0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7, 7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2, 4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5, 3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6, 4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8, 2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4, 4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1, 3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6, 4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9, 3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4, 4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9, 4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6, 4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3, 7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6, 4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6, 2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8, 2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0, 7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5, 7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4, 7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def UpperCAmelCase__ ( self : Any): import torch lowerCAmelCase_ : str = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''') lowerCAmelCase_ : List[Any] = tokenizer(**self.metas)['''input_ids'''] # fmt: off lowerCAmelCase_ : Optional[int] = [ torch.tensor([[ 0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9, 3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7, 4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1, 7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8, 2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1, 3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7, 7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5, 6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7, 3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1, 3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9, 4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5, 3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4, 3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2, 3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2, 3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7, 1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7, 1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2, 4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7, 4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1, 7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5, 2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
103
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'vocab.json'} _snake_case = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _snake_case = {'mgp-str': 27} class UpperCamelCase ( snake_case_ ): UpperCamelCase : List[str] = VOCAB_FILES_NAMES UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any]="[GO]" , UpperCAmelCase__ : Tuple="[GO]" , UpperCAmelCase__ : Optional[int]="[s]" , UpperCAmelCase__ : int="[GO]" , **UpperCAmelCase__ : Dict ) -> int: super().__init__( unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) with open(UpperCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: _a : int = json.load(UpperCAmelCase__ ) _a : Optional[int] = {v: k for k, v in self.vocab.items()} @property def _lowercase ( self : Dict ) -> Union[str, Any]: return len(self.vocab ) def _lowercase ( self : Union[str, Any] ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def _lowercase ( self : Dict , UpperCAmelCase__ : str ) -> Union[str, Any]: _a : Tuple = [] for s in text: char_tokens.extend(UpperCAmelCase__ ) return char_tokens def _lowercase ( self : List[Any] , UpperCAmelCase__ : str ) -> Dict: return self.vocab.get(UpperCAmelCase__ , self.vocab.get(self.unk_token ) ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : Tuple ) -> List[Any]: return self.decoder.get(UpperCAmelCase__ ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error("""Vocabulary path ({}) should be a directory""".format(UpperCAmelCase__ ) ) return _a : Tuple = os.path.join( UpperCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) with open(UpperCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=UpperCAmelCase__ , ensure_ascii=UpperCAmelCase__ ) + """\n""" ) return (vocab_file,)
294
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase_ ( __A, __A=False ) -> Any: '''simple docstring''' UpperCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( __A, __A, __A=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase__ = "" else: UpperCAmelCase__ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = in_proj_bias[: config.hidden_size] UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = dct.pop(__A ) UpperCAmelCase__ = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ = Image.open(requests.get(__A, stream=__A ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase__ = 1_000 UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = json.load(open(hf_hub_download(__A, __A, repo_type="dataset" ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = int(deit_name[-6:-4] ) UpperCAmelCase__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase__ = 192 UpperCAmelCase__ = 768 UpperCAmelCase__ = 12 UpperCAmelCase__ = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase__ = 384 UpperCAmelCase__ = 1_536 UpperCAmelCase__ = 12 UpperCAmelCase__ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase__ = 1_024 UpperCAmelCase__ = 4_096 UpperCAmelCase__ = 24 UpperCAmelCase__ = 16 # load original model from timm UpperCAmelCase__ = timm.create_model(__A, pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = timm_model.state_dict() UpperCAmelCase__ = create_rename_keys(__A, __A ) for src, dest in rename_keys: rename_key(__A, __A, __A ) read_in_q_k_v(__A, __A, __A ) # load HuggingFace model UpperCAmelCase__ = DeiTForImageClassificationWithTeacher(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase__ = DeiTImageProcessor(size=__A, crop_size=config.image_size ) UpperCAmelCase__ = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase__ = encoding["pixel_values"] UpperCAmelCase__ = model(__A ) UpperCAmelCase__ = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A, outputs.logits, atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class A : def __init__(self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str]=1_3 , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : Dict=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict=9_9 , __UpperCAmelCase : Optional[int]=3_2 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Any=4 , __UpperCAmelCase : Tuple=3_7 , __UpperCAmelCase : List[Any]="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : str=5_1_2 , __UpperCAmelCase : Union[str, Any]=1_6 , __UpperCAmelCase : Tuple=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Any=None , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any ) -> List[str]: """simple docstring""" UpperCAmelCase__ = TFRoFormerModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = TFRoFormerForCausalLM(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def lowercase_ (self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = TFRoFormerForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFRoFormerForSequenceClassification(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFRoFormerForMultipleChoice(config=__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFRoFormerForTokenClassification(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = TFRoFormerForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : str = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __UpperCAmelCase : List[str] = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : List[Any] = False def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ) -> int: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def lowercase_ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFRoFormerModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def lowercase_ (self : Optional[int] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__UpperCAmelCase ) def lowercase_ (self : Optional[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : int ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] # TODO Replace vocab size UpperCAmelCase__ = 5_0_0_0_0 UpperCAmelCase__ = [1, 6, vocab_size] self.assertEqual(output.shape , __UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase__ = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) @require_tf class A ( unittest.TestCase ): __UpperCAmelCase : Tuple = 1E-4 def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = tf.constant([[4, 1_0]] ) UpperCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase__ = emba(input_ids.shape ) UpperCAmelCase__ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , atol=self.tolerance ) def lowercase_ (self : List[Any] ) -> int: """simple docstring""" UpperCAmelCase__ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) UpperCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) UpperCAmelCase__ = emba.weight[:3, :5] tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , atol=self.tolerance ) @require_tf class A ( unittest.TestCase ): __UpperCAmelCase : Any = 1E-4 def lowercase_ (self : Tuple ) -> int: """simple docstring""" UpperCAmelCase__ = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 UpperCAmelCase__ = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 UpperCAmelCase__ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) UpperCAmelCase__ = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] UpperCAmelCase__ , UpperCAmelCase__ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) UpperCAmelCase__ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __UpperCAmelCase , atol=self.tolerance )
143
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging UpperCAmelCase = logging.get_logger(__name__) class lowerCAmelCase : lowerCAmelCase_ = 42 lowerCAmelCase_ = None @staticmethod def snake_case ( ): """simple docstring""" raise NotImplementedError def snake_case ( self : str , __lowercase : Optional[int] , __lowercase : int , __lowercase : str , **__lowercase : Dict ): """simple docstring""" raise NotImplementedError def snake_case ( self : str , __lowercase : Optional[int] ): """simple docstring""" raise NotImplementedError def snake_case ( self : Dict ): """simple docstring""" if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def snake_case ( cls : Any ): """simple docstring""" return f'''`pip install {cls.pip_package or cls.name}`''' class lowerCAmelCase ( A ): lowerCAmelCase_ = "optuna" @staticmethod def snake_case ( ): """simple docstring""" return is_optuna_available() def snake_case ( self : Tuple , __lowercase : List[str] , __lowercase : int , __lowercase : str , **__lowercase : int ): """simple docstring""" return run_hp_search_optuna(__lowercase , __lowercase , __lowercase , **__lowercase ) def snake_case ( self : Dict , __lowercase : List[str] ): """simple docstring""" return default_hp_space_optuna(__lowercase ) class lowerCAmelCase ( A ): lowerCAmelCase_ = "ray" lowerCAmelCase_ = "'ray[tune]'" @staticmethod def snake_case ( ): """simple docstring""" return is_ray_available() def snake_case ( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : int , __lowercase : str , **__lowercase : List[Any] ): """simple docstring""" return run_hp_search_ray(__lowercase , __lowercase , __lowercase , **__lowercase ) def snake_case ( self : Optional[Any] , __lowercase : Optional[Any] ): """simple docstring""" return default_hp_space_ray(__lowercase ) class lowerCAmelCase ( A ): lowerCAmelCase_ = "sigopt" @staticmethod def snake_case ( ): """simple docstring""" return is_sigopt_available() def snake_case ( self : List[str] , __lowercase : Optional[int] , __lowercase : int , __lowercase : str , **__lowercase : Dict ): """simple docstring""" return run_hp_search_sigopt(__lowercase , __lowercase , __lowercase , **__lowercase ) def snake_case ( self : Tuple , __lowercase : int ): """simple docstring""" return default_hp_space_sigopt(__lowercase ) class lowerCAmelCase ( A ): lowerCAmelCase_ = "wandb" @staticmethod def snake_case ( ): """simple docstring""" return is_wandb_available() def snake_case ( self : Optional[Any] , __lowercase : Tuple , __lowercase : int , __lowercase : str , **__lowercase : List[Any] ): """simple docstring""" return run_hp_search_wandb(__lowercase , __lowercase , __lowercase , **__lowercase ) def snake_case ( self : int , __lowercase : int ): """simple docstring""" return default_hp_space_wandb(__lowercase ) UpperCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __UpperCamelCase ( ): '''simple docstring''' __lowercase =[backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(lowercase__ ) > 0: __lowercase =available_backends[0].name if len(lowercase__ ) > 1: logger.info( F'''{len(lowercase__ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
141
'''simple docstring''' def __UpperCamelCase ( lowercase__ : Union[str, Any]=2_81_23 ): '''simple docstring''' __lowercase =[1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i __lowercase =set() __lowercase =0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(lowercase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
141
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # Load checkpoint lowerCamelCase__ : Union[str, Any] = torch.load(_lowerCamelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCamelCase__ : Optional[Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCamelCase__ : Any = v else: lowerCamelCase__ : Optional[int] = v lowerCamelCase__ : Dict = chkpt['params'] lowerCamelCase__ : List[Any] = {n: v for n, v in config.items() if not isinstance(_lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )} lowerCamelCase__ : str = chkpt['dico_word2id'] lowerCamelCase__ : Optional[int] = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCamelCase__ : List[Any] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCamelCase__ : Optional[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCamelCase__ : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + '\n' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , indent=2 ) + '\n' ) if __name__ == "__main__": A_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : int = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
316
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
1
"""simple docstring""" import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : int = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase__, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PegasusTokenizer _SCREAMING_SNAKE_CASE = PegasusTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Optional[int] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def SCREAMING_SNAKE_CASE__ ( self : str , **SCREAMING_SNAKE_CASE_ : str ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Any = '</s>' lowerCAmelCase_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(_a ) , 1_1_0_3 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_1_0_3 ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : Union[str, Any] = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) lowerCAmelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] lowerCAmelCase_ : List[str] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Union[str, Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase_ : List[Any] = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' lowerCAmelCase_ : List[Any] = [2, 4_1_3, 6_1_5, 1_1_4, 3, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCAmelCase_ : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self : Any ): lowerCAmelCase_ : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6_1_0_3 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_0_3 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_0_5 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_0_2_4 lowerCAmelCase_ : Any = 'To ensure a smooth flow of bank resolutions.' lowerCAmelCase_ : int = [4_1_3, 6_1_5, 1_1_4, 2_2_9_1, 1_9_7_1, 1_1_3, 1_6_7_9, 1_0_7_1_0, 1_0_7, 1] lowerCAmelCase_ : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Tuple = ['This is going to be way too long.' * 1_5_0, 'short example'] lowerCAmelCase_ : List[str] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase_ : str = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors='pt' ) lowerCAmelCase_ : int = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1_0_2_4) assert batch.attention_mask.shape == (2, 1_0_2_4) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = {'input_ids': [[3_8_9_7_9, 1_4_3, 1_8_4_8_5, 6_0_6, 1_3_0, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 5_4_1_8_9, 1_1_2_9, 1_1_1, 2_6_6_6_9, 8_7_6_8_6, 1_2_1, 9_1_1_4, 1_4_7_8_7, 1_2_1, 1_3_2_4_9, 1_5_8, 5_9_2, 9_5_6, 1_2_1, 1_4_6_2_1, 3_1_5_7_6, 1_4_3, 6_2_6_1_3, 1_0_8, 9_6_8_8, 9_3_0, 4_3_4_3_0, 1_1_5_6_2, 6_2_6_1_3, 3_0_4, 1_0_8, 1_1_4_4_3, 8_9_7, 1_0_8, 9_3_1_4, 1_7_4_1_5, 6_3_3_9_9, 1_0_8, 1_1_4_4_3, 7_6_1_4, 1_8_3_1_6, 1_1_8, 4_2_8_4, 7_1_4_8, 1_2_4_3_0, 1_4_3, 1_4_0_0, 2_5_7_0_3, 1_5_8, 1_1_1, 4_2_8_4, 7_1_4_8, 1_1_7_7_2, 1_4_3, 2_1_2_9_7, 1_0_6_4, 1_5_8, 1_2_2, 2_0_4, 3_5_0_6, 1_7_5_4, 1_1_3_3, 1_4_7_8_7, 1_5_8_1, 1_1_5, 3_3_2_2_4, 4_4_8_2, 1_1_1, 1_3_5_5, 1_1_0, 2_9_1_7_3, 3_1_7, 5_0_8_3_3, 1_0_8, 2_0_1_4_7, 9_4_6_6_5, 1_1_1, 7_7_1_9_8, 1_0_7, 1], [1_1_0, 6_2_6_1_3, 1_1_7, 6_3_8, 1_1_2, 1_1_3_3, 1_2_1, 2_0_0_9_8, 1_3_5_5, 7_9_0_5_0, 1_3_8_7_2, 1_3_5, 1_5_9_6, 5_3_5_4_1, 1_3_5_2, 1_4_1, 1_3_0_3_9, 5_5_4_2, 1_2_4, 3_0_2, 5_1_8, 1_1_1, 2_6_8, 2_9_5_6, 1_1_5, 1_4_9, 4_4_2_7, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_3_9, 1_2_3_5, 2_7_9_9, 1_8_2_8_9, 1_7_7_8_0, 2_0_4, 1_0_9, 9_4_7_4, 1_2_9_6, 1_0_7, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase__, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PegasusTokenizer _SCREAMING_SNAKE_CASE = PegasusTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Tuple = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): return ("This is a test", "This is a test") def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : Optional[int] = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) lowerCAmelCase_ : int = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] lowerCAmelCase_ : List[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowerCAmelCase_ : Tuple = ['This is going to be way too long.' * 1_0_0_0, 'short example'] lowerCAmelCase_ : Optional[Any] = ['not super long but more than 5 tokens', 'tiny'] lowerCAmelCase_ : int = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors='pt' ) lowerCAmelCase_ : str = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4_0_9_6) assert batch.attention_mask.shape == (2, 4_0_9_6) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) lowerCAmelCase_ : Optional[Any] = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [1_8_2, 1_1_7, 1_4_2, 5_8_7, 4_2_1_1, 1_2_0, 1_1_7, 2_6_3, 1_1_2, 8_0_4, 1_0_9, 8_5_6, 2_5_0_1_6, 3_1_3_7, 4_6_4, 1_0_9, 2_6_9_5_5, 3_1_3_7, 1] , )
224
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __lowerCAmelCase = TypeVar("""T""") class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ,_a : T ): '''simple docstring''' _a : List[str] = data _a : Node[T] | None = None def __str__( self : Dict ): '''simple docstring''' return F"""{self.data}""" class UpperCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' _a : Node[T] | None = None def __iter__( self : str ): '''simple docstring''' _a : Tuple = self.top while node: yield node.data _a : int = node.next def __str__( self : str ): '''simple docstring''' return "->".join([str(_a ) for item in self] ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __lowercase ( self : str ): '''simple docstring''' return self.top is None def __lowercase ( self : List[Any] ,_a : T ): '''simple docstring''' _a : int = Node(_a ) if not self.is_empty(): _a : Optional[Any] = self.top _a : List[str] = node def __lowercase ( self : Tuple ): '''simple docstring''' if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top ,_a ) _a : List[Any] = self.top _a : int = self.top.next return pop_node.data def __lowercase ( self : List[str] ): '''simple docstring''' if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __lowercase ( self : List[str] ): '''simple docstring''' _a : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
271
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase_ = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , ): if attention_mask is None: __lowerCamelCase : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCamelCase : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCamelCase : Optional[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase : Union[str, Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCamelCase : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class A_ : '''simple docstring''' def __init__( self: List[Any] , a: List[Any] , a: str=13 , a: Dict=7 , a: Optional[Any]=True , a: int=False , a: int=99 , a: Dict=16 , a: Union[str, Any]=2 , a: Tuple=4 , a: Union[str, Any]=4 , a: List[str]="gelu" , a: Union[str, Any]=0.1 , a: str=0.1 , a: List[Any]=32 , a: Optional[Any]=2 , a: str=1 , a: List[Any]=0 , a: Optional[int]=0.0_2 , ): __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : List[Any] = seq_length __lowerCamelCase : Optional[Any] = is_training __lowerCamelCase : Optional[Any] = use_labels __lowerCamelCase : Tuple = vocab_size __lowerCamelCase : Union[str, Any] = hidden_size __lowerCamelCase : Dict = num_hidden_layers __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : int = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Tuple = eos_token_id __lowerCamelCase : Tuple = pad_token_id __lowerCamelCase : Any = bos_token_id __lowerCamelCase : Dict = initializer_range def _snake_case ( self: Any ): __lowerCamelCase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowerCamelCase : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowerCamelCase : List[str] = shift_tokens_right(a , 1 , 2 ) __lowerCamelCase : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a , ) __lowerCamelCase : List[str] = prepare_blenderbot_inputs_dict(a , a , a ) return config, inputs_dict def _snake_case ( self: List[Any] ): __lowerCamelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self: Optional[int] , a: Any , a: List[str] , a: Tuple ): __lowerCamelCase : Optional[int] = 20 __lowerCamelCase : int = model_class_name(a ) __lowerCamelCase : Optional[Any] = model.encode(inputs_dict['input_ids'] ) __lowerCamelCase : Any = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCamelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , a , a ) __lowerCamelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCamelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase : List[str] = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) __lowerCamelCase : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase : str = model.decode( decoder_input_ids[:, -1:] , a , decoder_attention_mask=a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a , ) __lowerCamelCase : List[str] = model.decode(a , a ) __lowerCamelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def _snake_case ( self: Optional[int] , a: List[Any] , a: List[Any] , a: List[Any] ): __lowerCamelCase : Optional[Any] = 20 __lowerCamelCase : Any = model_class_name(a ) __lowerCamelCase : Tuple = model.encode(inputs_dict['input_ids'] ) __lowerCamelCase : List[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __lowerCamelCase : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCamelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , a , a ) __lowerCamelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCamelCase : Any = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) __lowerCamelCase : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCamelCase : Dict = model.decode( decoder_input_ids[:, -1:] , a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a , decoder_position_ids=a , ) __lowerCamelCase : List[Any] = model.decode(a , a , decoder_attention_mask=a ) __lowerCamelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' __snake_case = 99 def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCamelCase : Tuple = input_ids.shape[0] __lowerCamelCase : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : List[str] = self._get_config_and_data() __lowerCamelCase : List[Any] = FlaxBlenderbotForConditionalGeneration(a ) __lowerCamelCase : Optional[int] = lm_model(input_ids=a ) __lowerCamelCase : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , a ) def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCamelCase : str = FlaxBlenderbotForConditionalGeneration(a ) __lowerCamelCase : Union[str, Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowerCamelCase : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowerCamelCase : Any = lm_model(input_ids=a , decoder_input_ids=a ) __lowerCamelCase : Tuple = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , a ) def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowerCamelCase : List[Any] = shift_tokens_right(a , 1 , 2 ) __lowerCamelCase : List[str] = np.equal(a , 1 ).astype(np.floataa ).sum() __lowerCamelCase : Dict = np.equal(a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class A_ ( __UpperCamelCase , unittest.TestCase , __UpperCamelCase ): '''simple docstring''' __snake_case = True __snake_case = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __snake_case = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def _snake_case ( self: Optional[Any] ): __lowerCamelCase : int = FlaxBlenderbotModelTester(self ) def _snake_case ( self: Dict ): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a , a , a ) def _snake_case ( self: Optional[Any] ): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a , a , a ) def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[str] = self._prepare_for_class(a , a ) __lowerCamelCase : str = model_class(a ) @jax.jit def encode_jitted(a: Any , a: Dict=None , **a: Union[str, Any] ): return model.encode(input_ids=a , attention_mask=a ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Tuple = encode_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : int = encode_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : Tuple = model_class(a ) __lowerCamelCase : Tuple = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __lowerCamelCase : Tuple = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(a: List[Any] , a: List[str] , a: Optional[Any] ): return model.decode( decoder_input_ids=a , decoder_attention_mask=a , encoder_outputs=a , ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Union[str, Any] = decode_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : List[Any] = decode_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self: int ): for model_class_name in self.all_model_classes: __lowerCamelCase : List[str] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCamelCase : str = np.ones((1, 1) ) * model.config.eos_token_id __lowerCamelCase : Optional[Any] = model(a ) self.assertIsNotNone(a ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def _snake_case ( self: Any ): __lowerCamelCase : Tuple = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __lowerCamelCase : Tuple = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __lowerCamelCase : List[Any] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=a ) __lowerCamelCase : Optional[int] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) __lowerCamelCase : Tuple = ['Sam'] __lowerCamelCase : Union[str, Any] = tokenizer(a , return_tensors='jax' ) __lowerCamelCase : Optional[Any] = model.generate(**a , **a ) __lowerCamelCase : Tuple = 'Sam is a great name. It means "sun" in Gaelic.' __lowerCamelCase : Optional[Any] = tokenizer.batch_decode(a , **a ) assert generated_txt[0].strip() == tgt_text
361
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Load configuration defined in the metadata file with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: __lowerCamelCase : List[str] = json.load(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : int = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path __lowerCamelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) # Load the entity vocab file __lowerCamelCase : List[Any] = load_entity_vocab(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks __lowerCamelCase : str = AddedToken('<ent>' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Dict = AddedToken('<ent2>' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : str = LukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens __lowerCamelCase : Union[str, Any] = state_dict['embeddings.word_embeddings.weight'] __lowerCamelCase : Tuple = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) __lowerCamelCase : Any = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) __lowerCamelCase : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: __lowerCamelCase : Optional[int] = f'encoder.layer.{layer_index}.attention.self.' __lowerCamelCase : Dict = state_dict[prefix + matrix_name] __lowerCamelCase : List[Any] = state_dict[prefix + matrix_name] __lowerCamelCase : Union[str, Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks __lowerCamelCase : Optional[int] = state_dict['entity_embeddings.entity_embeddings.weight'] __lowerCamelCase : Union[str, Any] = entity_emb[entity_vocab['[MASK]']] __lowerCamelCase : Optional[Any] = LukeModel(config=SCREAMING_SNAKE_CASE__ ).eval() __lowerCamelCase , __lowerCamelCase : List[Any] = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if not (len(SCREAMING_SNAKE_CASE__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(SCREAMING_SNAKE_CASE__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs __lowerCamelCase : Optional[Any] = LukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task='entity_classification' ) __lowerCamelCase : Dict = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) __lowerCamelCase : Union[str, Any] = (39, 42) __lowerCamelCase : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , add_prefix_space=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __lowerCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": __lowerCamelCase : Dict = torch.Size((1, 42, 1_024) ) __lowerCamelCase : int = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base __lowerCamelCase : Union[str, Any] = torch.Size((1, 42, 768) ) __lowerCamelCase : Tuple = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": __lowerCamelCase : Union[str, Any] = torch.Size((1, 1, 1_024) ) __lowerCamelCase : Dict = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base __lowerCamelCase : int = torch.Size((1, 1, 768) ) __lowerCamelCase : Dict = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Tuple = {} with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(SCREAMING_SNAKE_CASE__ ): __lowerCamelCase , __lowerCamelCase : List[Any] = line.rstrip().split('\t' ) __lowerCamelCase : Any = index return entity_vocab if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) lowercase_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
194
0
"""simple docstring""" import math import sys def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if number != int(UpperCamelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 _a : str = [-1] * (number + 1) _a : List[Any] = 0 for i in range(1 , number + 1 ): _a : List[str] = sys.maxsize _a : str = int(math.sqrt(UpperCamelCase__ ) ) for j in range(1 , root + 1 ): _a : Union[str, Any] = 1 + answers[i - (j**2)] _a : Optional[int] = min(UpperCamelCase__ , UpperCamelCase__ ) _a : List[str] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
294
"""simple docstring""" from __future__ import annotations import time import numpy as np _snake_case = [8, 5, 9, 7] _snake_case = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _snake_case = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class UpperCamelCase : def __init__( self : List[Any] , UpperCAmelCase__ : list[int] , UpperCAmelCase__ : list[list[int]] , UpperCAmelCase__ : list[list[int]] , ) -> None: _a : List[str] = claim_vector _a : List[Any] = allocated_resources_table _a : Union[str, Any] = maximum_claim_table def _lowercase ( self : Tuple ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowercase ( self : int ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowercase ( self : List[str] ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(UpperCAmelCase__ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowercase ( self : Optional[Any] ) -> dict[int, list[int]]: return {self.__need().index(UpperCAmelCase__ ): i for i in self.__need()} def _lowercase ( self : Dict , **UpperCAmelCase__ : Optional[Any] ) -> None: _a : List[Any] = self.__need() _a : Optional[int] = self.__allocated_resources_table _a : str = self.__available_resources() _a : Optional[Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: _a : int = False for each_need in need_list: _a : Optional[int] = True for index, need in enumerate(UpperCAmelCase__ ): if need > available_resources[index]: _a : List[Any] = False break if execution: _a : str = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _a : Any = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(UpperCAmelCase__ ) # update available/freed resources stack _a : Union[str, Any] = np.array(UpperCAmelCase__ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(UpperCAmelCase__ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def _lowercase ( self : Any ) -> Optional[int]: print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(UpperCAmelCase__ ) + 1}""" + """ """.join(f"""{it:>8}""" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(UpperCAmelCase__ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
294
1
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' if not (isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = len(UpperCamelCase_ ) UpperCamelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] UpperCamelCase = 0 UpperCamelCase = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: UpperCamelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCamelCase = i UpperCamelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
366
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _SCREAMING_SNAKE_CASE = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _SCREAMING_SNAKE_CASE = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print("""\n""".join(upper_files) + """\n""") _SCREAMING_SNAKE_CASE = [file for file in filepaths if """ """ in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print("""\n""".join(space_files) + """\n""") _SCREAMING_SNAKE_CASE = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print("""\n""".join(hyphen_files) + """\n""") _SCREAMING_SNAKE_CASE = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print("""\n""".join(nodir_files) + """\n""") _SCREAMING_SNAKE_CASE = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
165
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _UpperCAmelCase( lowerCamelCase ): def __init__( self , __a , __a , __a , __a , ) -> Optional[int]: '''simple docstring''' super().__init__() _UpperCamelCase = value_function _UpperCamelCase = unet _UpperCamelCase = scheduler _UpperCamelCase = env _UpperCamelCase = env.get_dataset() _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].mean() except: # noqa: E722 pass _UpperCamelCase = {} for key in self.data.keys(): try: _UpperCamelCase = self.data[key].std() except: # noqa: E722 pass _UpperCamelCase = env.observation_space.shape[0] _UpperCamelCase = env.action_space.shape[0] def UpperCAmelCase ( self , __a , __a) -> int: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase ( self , __a , __a) -> List[str]: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def UpperCAmelCase ( self , __a) -> Union[str, Any]: '''simple docstring''' if type(__a) is dict: return {k: self.to_torch(__a) for k, v in x_in.items()} elif torch.is_tensor(__a): return x_in.to(self.unet.device) return torch.tensor(__a , device=self.unet.device) def UpperCAmelCase ( self , __a , __a , __a) -> str: '''simple docstring''' for key, val in cond.items(): _UpperCamelCase = val.clone() return x_in def UpperCAmelCase ( self , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = x.shape[0] _UpperCamelCase = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model _UpperCamelCase = torch.full((batch_size,) , __a , device=self.unet.device , dtype=torch.long) for _ in range(__a): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _UpperCamelCase = self.value_function(x.permute(0 , 2 , 1) , __a).sample _UpperCamelCase = torch.autograd.grad([y.sum()] , [x])[0] _UpperCamelCase = self.scheduler._get_variance(__a) _UpperCamelCase = torch.exp(0.5 * posterior_variance) _UpperCamelCase = model_std * grad _UpperCamelCase = 0 _UpperCamelCase = x.detach() _UpperCamelCase = x + scale * grad _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.unet(x.permute(0 , 2 , 1) , __a).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg _UpperCamelCase = self.scheduler.step(__a , __a , __a , predict_epsilon=__a)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.to_torch(__a) return x, y def __call__( self , __a , __a=64 , __a=32 , __a=2 , __a=0.1) -> Optional[Any]: '''simple docstring''' # normalize the observations and create batch dimension _UpperCamelCase = self.normalize(__a , '''observations''') _UpperCamelCase = obs[None].repeat(__a , axis=0) _UpperCamelCase = {0: self.to_torch(__a)} _UpperCamelCase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _UpperCamelCase = randn_tensor(__a , device=self.unet.device) _UpperCamelCase = self.reset_xa(__a , __a , self.action_dim) _UpperCamelCase = self.to_torch(__a) # run the diffusion process _UpperCamelCase , _UpperCamelCase = self.run_diffusion(__a , __a , __a , __a) # sort output trajectories by value _UpperCamelCase = y.argsort(0 , descending=__a).squeeze() _UpperCamelCase = x[sorted_idx] _UpperCamelCase = sorted_values[:, :, : self.action_dim] _UpperCamelCase = actions.detach().cpu().numpy() _UpperCamelCase = self.de_normalize(__a , key='''actions''') # select the action with the highest value if y is not None: _UpperCamelCase = 0 else: # if we didn't run value guiding, select a random action _UpperCamelCase = np.random.randint(0 , __a) _UpperCamelCase = denorm_actions[selected_index, 0] return denorm_actions
194
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = StableDiffusionPanoramaPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS lowercase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase ( self) -> Dict: '''simple docstring''' torch.manual_seed(0) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCamelCase = DDIMScheduler() torch.manual_seed(0) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _UpperCamelCase = CLIPTextModel(__a) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') _UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCAmelCase ( self , __a , __a=0) -> int: '''simple docstring''' _UpperCamelCase = torch.manual_seed(__a) _UpperCamelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**__a) _UpperCamelCase = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = sd_pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' super().test_inference_batch_consistent(batch_sizes=[1, 2]) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**__a) _UpperCamelCase = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = '''french fries''' _UpperCamelCase = sd_pipe(**__a , negative_prompt=__a) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**__a) _UpperCamelCase = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = sd_pipe(**__a , view_batch_size=2) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''') _UpperCamelCase = StableDiffusionPanoramaPipeline(**__a) _UpperCamelCase = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = sd_pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=__a) _UpperCamelCase = StableDiffusionPanoramaPipeline(**__a) _UpperCamelCase = sd_pipe.to(__a) sd_pipe.set_progress_bar_config(disable=__a) _UpperCamelCase = self.get_dummy_inputs(__a) _UpperCamelCase = sd_pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self , __a=0) -> List[str]: '''simple docstring''' _UpperCamelCase = torch.manual_seed(__a) _UpperCamelCase = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCamelCase = DDIMScheduler.from_pretrained(__a , subfolder='''scheduler''') _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) _UpperCamelCase = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ]) assert np.abs(expected_slice - image_slice).max() < 1e-2 def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=__a) _UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**__a).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) _UpperCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = 0 def callback_fn(__a , __a , __a) -> None: _UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 _UpperCamelCase = False _UpperCamelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCamelCase = DDIMScheduler.from_pretrained(__a , subfolder='''scheduler''') _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a) _UpperCamelCase = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() pipe(**__a , callback=__a , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = '''stabilityai/stable-diffusion-2-base''' _UpperCamelCase = DDIMScheduler.from_pretrained(__a , subfolder='''scheduler''') _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a) _UpperCamelCase = pipe.to(__a) pipe.set_progress_bar_config(disable=__a) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**__a) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
194
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase__ : List[Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase=None) -> Dict: require_version(deps[pkg] , __UpperCamelCase)
180
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(UpperCamelCase__ ) , """Tatoeba directory does not exist.""" ) class a__ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = tempfile.mkdtemp() return TatoebaConverter(save_dir=A ) @slow def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a , a = self.resolver.write_model_card("opus-mt-he-en" , dry_run=A ) assert mmeta["long_pair"] == "heb-eng"
180
1
"""simple docstring""" import logging import os from .state import PartialState class __lowerCAmelCase ( logging.LoggerAdapter ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( _a ): __a = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __UpperCAmelCase ( self , _a , _a , *_a , **_a ): if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) __a = kwargs.pop('''main_process_only''' , _a ) __a = kwargs.pop('''in_order''' , _a ) if self.isEnabledFor(_a ): if self._should_log(_a ): __a , __a = self.process(_a , _a ) self.logger.log(_a , _a , *_a , **_a ) elif in_order: __a = PartialState() for i in range(state.num_processes ): if i == state.process_index: __a , __a = self.process(_a , _a ) self.logger.log(_a , _a , *_a , **_a ) state.wait_for_everyone() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = None ) -> Any: if log_level is None: __a = os.environ.get('''ACCELERATE_LOG_LEVEL''' , lowerCAmelCase__ ) __a = logging.getLogger(lowerCAmelCase__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(lowerCAmelCase__ , {} )
45
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , ): __a = parent __a = 13 __a = 7 __a = True __a = True __a = True __a = 99 __a = 32 __a = 2 __a = 4 __a = 37 __a = '''gelu''' __a = 0.1 __a = 0.1 __a = 512 __a = 16 __a = 2 __a = 0.02 __a = 3 __a = 4 __a = None def __UpperCAmelCase ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_input_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self ): ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = self.prepare_config_and_inputs() __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = TFEsmModel(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __a = model(_a ) __a = [input_ids, input_mask] __a = model(_a ) __a = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a , _a , _a , ): __a = True __a = TFEsmModel(config=_a ) __a = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } __a = model(_a ) __a = [input_ids, input_mask] __a = model(_a , encoder_hidden_states=_a ) # Also check the case where encoder outputs are not passed __a = model(_a , attention_mask=_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = TFEsmForMaskedLM(config=_a ) __a = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , _a ): __a = self.num_labels __a = TFEsmForTokenClassification(config=_a ) __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} __a = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __UpperCAmelCase : Tuple = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Union[str, Any] = False def __UpperCAmelCase ( self ): __a = TFEsmModelTester(self ) __a = ConfigTester(self , config_class=_a , hidden_size=37 ) def __UpperCAmelCase ( self ): self.config_tester.run_common_tests() def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_a ) def __UpperCAmelCase ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_a ) @slow def __UpperCAmelCase ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = TFEsmModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def __UpperCAmelCase ( self ): pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_a ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __a = model.get_bias() assert isinstance(_a , _a ) for k, v in name.items(): assert isinstance(_a , tf.Variable ) else: __a = model.get_output_embeddings() assert x is None __a = model.get_bias() assert name is None @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self ): __a = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __a = tf.constant([[0, 1, 2, 3, 4, 5]] ) __a = model(_a )[0] __a = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _a ) # compare the actual values for a slice. __a = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def __UpperCAmelCase ( self ): __a = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) __a = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __a = model(_a )[0] # compare the actual values for a slice. __a = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
45
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] snake_case_ = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] snake_case_ = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): snake_case_ = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : List[Any] = """speech_to_text_2""" __lowerCamelCase : str = ["""past_key_values"""] __lowerCamelCase : List[Any] = {"""num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , a=1_0000 , a=6 , a=2048 , a=4 , a=0.0 , a=True , a="relu" , a=256 , a=0.1 , a=0.0 , a=0.0 , a=0.02 , a=2 , a=True , a=1 , a=0 , a=2 , a=1024 , **a , ): lowercase__ : Optional[int] = vocab_size lowercase__ : List[str] = d_model lowercase__ : int = decoder_ffn_dim lowercase__ : Optional[Any] = decoder_layers lowercase__ : int = decoder_attention_heads lowercase__ : Dict = dropout lowercase__ : Optional[int] = attention_dropout lowercase__ : Optional[int] = activation_dropout lowercase__ : Optional[int] = activation_function lowercase__ : Dict = init_std lowercase__ : List[Any] = decoder_layerdrop lowercase__ : int = use_cache lowercase__ : Any = decoder_layers lowercase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ : Tuple = max_target_positions super().__init__( pad_token_id=a , bos_token_id=a , eos_token_id=a , decoder_start_token_id=a , **a , )
216
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int] ) -> Tuple: __snake_case : Tuple = tempfile.mkdtemp() __snake_case : int = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __snake_case : Any = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __snake_case : Any = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Optional[int] , **lowerCamelCase : int ) -> Dict: return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __snake_case ( self : str , **lowerCamelCase : Union[str, Any] ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __snake_case ( self : Dict , **lowerCamelCase : Dict ) -> List[str]: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __snake_case ( self : Optional[int] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Union[str, Any] ) -> Optional[int]: __snake_case : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : int = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self : str ) -> Optional[Any]: __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Union[str, Any] = self.get_image_processor() __snake_case : List[str] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) __snake_case : List[str] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case : str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def __snake_case ( self : str ) -> int: __snake_case : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : Tuple = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __snake_case : List[Any] = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) __snake_case : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def __snake_case ( self : Union[str, Any] ) -> Tuple: __snake_case : Optional[int] = self.get_image_processor() __snake_case : Optional[int] = self.get_tokenizer() __snake_case : Any = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __snake_case : Optional[Any] = self.prepare_image_inputs() __snake_case : Tuple = image_processor(lowerCamelCase , return_tensors="np" ) __snake_case : str = processor(images=lowerCamelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __snake_case ( self : Union[str, Any] ) -> Any: __snake_case : str = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Dict = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __snake_case : Optional[int] = "lower newer" __snake_case : str = processor(text=lowerCamelCase ) __snake_case : List[str] = tokenizer(lowerCamelCase , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self : List[str] ) -> List[Any]: __snake_case : int = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : Optional[Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __snake_case : List[Any] = "lower newer" __snake_case : Tuple = self.prepare_image_inputs() __snake_case : Any = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def __snake_case ( self : List[str] ) -> Any: __snake_case : List[Any] = self.get_image_processor() __snake_case : Tuple = self.get_tokenizer() __snake_case : List[str] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __snake_case : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : Optional[Any] = processor.batch_decode(lowerCamelCase ) __snake_case : List[str] = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : List[Any] ) -> List[str]: __snake_case : Any = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Optional[Any] = AlignProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) __snake_case : str = "lower newer" __snake_case : Union[str, Any] = self.prepare_image_inputs() __snake_case : List[str] = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
123
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging _snake_case : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase : int = 101 ) -> Dict: __snake_case : str = length def __len__( self : Optional[Any] ) -> Any: return self.length def __getitem__( self : int , lowerCamelCase : Optional[Any] ) -> int: return i class a : """simple docstring""" def __call__( self : List[Any] , lowerCamelCase : Any ) -> Tuple: return {"input_ids": torch.tensor(lowerCamelCase ), "labels": torch.tensor(lowerCamelCase )} class a (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ) -> str: super().__init__() # Add some (unused) params otherwise DDP will complain. __snake_case : Optional[Any] = nn.Linear(120 , 80 ) def __snake_case ( self : int , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=None ) -> Optional[Any]: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class a (_lowerCAmelCase ): """simple docstring""" @require_torch_neuroncore def __snake_case ( self : Union[str, Any] ) -> Optional[Any]: __snake_case : Dict = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __snake_case : Optional[int] = self.get_auto_remove_tmp_dir() __snake_case : int = F'--output_dir {output_dir}'.split() __snake_case : str = ["torchrun"] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class a (_lowerCAmelCase ): """simple docstring""" @require_torch_multi_gpu def __snake_case ( self : str ) -> int: __snake_case : List[str] = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __snake_case : Optional[int] = self.get_auto_remove_tmp_dir() __snake_case : int = F'--output_dir {output_dir}'.split() __snake_case : Optional[int] = ["torchrun"] + distributed_args + args execute_subprocess_async(lowerCamelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py _snake_case : Optional[int] = HfArgumentParser((TrainingArguments,)) _snake_case : int = parser.parse_args_into_dataclasses()[0] logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' f'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: _snake_case : Optional[int] = DummyDataset(dataset_length) def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[Any] = list(range(len(__lowerCamelCase ) ) ) __snake_case : Union[str, Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} _snake_case : List[str] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) _snake_case : List[str] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case : str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case : List[Any] = 2 _snake_case : Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) _snake_case : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) _snake_case : int = None
123
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase=1e-12 ) ->Dict: """simple docstring""" lowercase : Tuple = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(_UpperCamelCase, axis=1 ), a_min=_UpperCamelCase ) ).T lowercase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(_UpperCamelCase, axis=1 ), a_min=_UpperCamelCase ) ).T return jnp.matmul(_UpperCamelCase, norm_emb_a.T ) class __SCREAMING_SNAKE_CASE ( nn.Module ): A : CLIPConfig A : jnp.dtype = jnp.floataa def __lowerCamelCase ( self ): lowercase : Optional[Any] = FlaxCLIPVisionModule(self.config.vision_config ) lowercase : str = nn.Dense(self.config.projection_dim , use_bias=SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) lowercase : Optional[Any] = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowercase : List[str] = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowercase : int = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) lowercase : Any = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = self.vision_model(SCREAMING_SNAKE_CASE__ )[1] lowercase : List[Any] = self.visual_projection(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = jax_cosine_distance(SCREAMING_SNAKE_CASE__ , self.special_care_embeds ) lowercase : List[str] = jax_cosine_distance(SCREAMING_SNAKE_CASE__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase : Dict = 0.0 lowercase : Union[str, Any] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase : int = jnp.round(SCREAMING_SNAKE_CASE__ , 3 ) lowercase : Dict = jnp.any(special_scores > 0 , axis=1 , keepdims=SCREAMING_SNAKE_CASE__ ) # Use a lower threshold if an image has any special care concept lowercase : Union[str, Any] = is_special_care * 0.01 lowercase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase : str = jnp.round(SCREAMING_SNAKE_CASE__ , 3 ) lowercase : List[Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class __SCREAMING_SNAKE_CASE ( A__ ): A : int = CLIPConfig A : Optional[Any] = 'clip_input' A : Any = FlaxStableDiffusionSafetyCheckerModule def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0 , SCREAMING_SNAKE_CASE__ = jnp.floataa , SCREAMING_SNAKE_CASE__ = True , **SCREAMING_SNAKE_CASE__ , ): if input_shape is None: lowercase : Tuple = (1, 224, 224, 3) lowercase : Any = self.module_class(config=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , input_shape=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , _do_init=_do_init ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): # init input tensor lowercase : str = jax.random.normal(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : str = jax.random.split(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} lowercase : Dict = self.module.init(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['''params'''] return random_params def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , ): lowercase : Tuple = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) , rngs={} , )
173
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( _UpperCamelCase ) ->Tuple: """simple docstring""" lowercase : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_UpperCamelCase, _UpperCamelCase ) def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase , lowercase : str = emb.weight.shape lowercase : Optional[int] = nn.Linear(_UpperCamelCase, _UpperCamelCase, bias=_UpperCamelCase ) lowercase : Any = emb.weight.data return lin_layer def __lowercase ( _UpperCamelCase ) ->List[str]: """simple docstring""" lowercase : Optional[int] = torch.load(_UpperCamelCase, map_location='''cpu''' ) lowercase : List[str] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] lowercase : int = mam_aaa['''model'''] remove_ignore_keys_(_UpperCamelCase ) lowercase : Any = state_dict['''encoder.embed_tokens.weight'''].shape[0] lowercase : Dict = MaMaaaConfig( vocab_size=_UpperCamelCase, max_position_embeddings=1024, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) lowercase : Union[str, Any] = state_dict['''decoder.embed_tokens.weight'''] lowercase : Dict = MaMaaaForConditionalGeneration(_UpperCamelCase ) model.model.load_state_dict(_UpperCamelCase, strict=_UpperCamelCase ) lowercase : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __a = parser.parse_args() __a = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
173
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __UpperCamelCase : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Any = list(s_dict.keys() ) for key in keys: lowerCAmelCase__ : List[str] = r'''.*/layers_(\d+)''' lowerCAmelCase__ : Union[str, Any] = key if re.match(lowercase__ , lowercase__ ): lowerCAmelCase__ : Union[str, Any] = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , lowercase__ ) lowerCAmelCase__ : str = r'''(encoder|decoder)\/''' if re.match(lowercase__ , lowercase__ ): lowerCAmelCase__ : List[str] = re.match(lowercase__ , lowercase__ ).groups() if groups[0] == "encoder": lowerCAmelCase__ : Dict = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , lowercase__ ) lowerCAmelCase__ : List[str] = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , lowercase__ ) elif groups[0] == "decoder": lowerCAmelCase__ : Union[str, Any] = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , lowercase__ ) lowerCAmelCase__ : Optional[Any] = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , lowercase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase__ : Union[str, Any] = new_key.replace(lowercase__ , lowercase__ ) print(f'{key} -> {new_key}' ) lowerCAmelCase__ : int = s_dict.pop(lowercase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase__ : Dict = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase__ : Optional[int] = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase__ : Optional[int] = s_dict[key].shape[0] lowerCAmelCase__ : Tuple = s_dict[key] for idx in range(lowercase__ ): lowerCAmelCase__ : int = expert_weihts[idx] print(f'{key} -> {key.replace("expert/" , "nested fstring" )}' ) s_dict.pop(lowercase__ ) return s_dict __UpperCamelCase : Optional[Any] = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def __SCREAMING_SNAKE_CASE ( A_ , A_ ): import regex as re with open(lowercase__ , '''r''' ) as f: lowerCAmelCase__ : str = f.read() lowerCAmelCase__ : Optional[int] = re.findall(r'''(.*) = ([0-9.]*)''' , lowercase__ ) lowerCAmelCase__ : List[str] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase__ : int = float(lowercase__ ) if '''.''' in value else int(lowercase__ ) lowerCAmelCase__ : List[Any] = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , lowercase__ )[0] lowerCAmelCase__ : Any = str(activation[1] ) lowerCAmelCase__ : Dict = num_experts lowerCAmelCase__ : Optional[Any] = SwitchTransformersConfig(**lowercase__ ) return config def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_=None , A_="./" , A_=8 ): print(f'Loading flax weights from : {flax_checkpoint_path}' ) lowerCAmelCase__ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) if gin_file is not None: lowerCAmelCase__ : Dict = convert_gin_to_config(lowercase__ , lowercase__ ) else: lowerCAmelCase__ : Dict = SwitchTransformersConfig.from_pretrained(lowercase__ ) lowerCAmelCase__ : List[Any] = SwitchTransformersForConditionalGeneration(lowercase__ ) lowerCAmelCase__ : List[Any] = flax_params['''target'''] lowerCAmelCase__ : List[str] = flatten_dict(lowercase__ , sep='''/''' ) lowerCAmelCase__ : Dict = rename_keys(lowercase__ ) lowerCAmelCase__ : Any = unflatten_dict(lowercase__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowercase__ , lowercase__ ) print(f'Save PyTorch model to {pytorch_dump_path}' ) pt_model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __UpperCamelCase : Optional[Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
106
import os import numpy import onnx def _lowerCamelCase( lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' __lowercase= a.name __lowercase= b.name __lowercase= '' __lowercase= '' __lowercase= a == b __lowercase= name_a __lowercase= name_b return res def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Union[str, Any]: '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase__ , lowercase__ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) _graph_replace_input_with(node_proto.attribute[1].g , lowercase__ , lowercase__ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> str: '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(lowercase__ , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> Any: '''simple docstring''' __lowercase= list(model.graph.initializer ) __lowercase= list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i __lowercase= inits[i].name __lowercase= inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowercase__ , lowercase__ ) def _lowerCamelCase( lowercase__ ) -> Dict: '''simple docstring''' __lowercase= os.path.dirname(lowercase__ ) __lowercase= os.path.basename(lowercase__ ) __lowercase= onnx.load(os.path.join(lowercase__ , lowercase__ ) ) __lowercase= list(model.graph.initializer ) __lowercase= set() __lowercase= {} __lowercase= [] __lowercase= 0 for i in range(len(lowercase__ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowercase__ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowercase__ ) dup_set.add(lowercase__ ) __lowercase= inits[j].data_type __lowercase= numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('unexpected data type: ' , lowercase__ ) total_reduced_size += mem_size __lowercase= inits[i].name __lowercase= inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase__ ) else: __lowercase= [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , 'GB' ) __lowercase= sorted(lowercase__ ) _remove_dup_initializers_from_model(lowercase__ , lowercase__ , lowercase__ ) __lowercase= 'optimized_' + model_file_name __lowercase= os.path.join(lowercase__ , lowercase__ ) onnx.save(lowercase__ , lowercase__ ) return new_model
295
0
'''simple docstring''' import re from filelock import FileLock try: import nltk lowerCAmelCase : Dict = True except (ImportError, ModuleNotFoundError): lowerCAmelCase : str = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def lowercase (_A ): """simple docstring""" re.sub('<n>' , '' , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
25
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
1
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self : Union[str, Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple=2 ,_UpperCAmelCase : Optional[int]=32 ,_UpperCAmelCase : Any=16 ,_UpperCAmelCase : Tuple=3 ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Union[str, Any]=32 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : str=[0, 1, 2, 3] ,_UpperCAmelCase : Optional[Any]=4 ,_UpperCAmelCase : int=37 ,_UpperCAmelCase : int="gelu" ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : List[Any]=0.02 ,_UpperCAmelCase : str=3 ,_UpperCAmelCase : Dict=[1, 384, 24, 24] ,_UpperCAmelCase : str=True ,_UpperCAmelCase : Any=None ,): _a : Optional[Any] = parent _a : Any = batch_size _a : str = image_size _a : Any = patch_size _a : Dict = num_channels _a : int = is_training _a : str = use_labels _a : List[Any] = hidden_size _a : Dict = num_hidden_layers _a : int = backbone_out_indices _a : Any = num_attention_heads _a : Dict = intermediate_size _a : Dict = hidden_act _a : Optional[int] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Union[str, Any] = initializer_range _a : Tuple = num_labels _a : Any = backbone_featmap_shape _a : Any = scope _a : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _a : List[str] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Optional[Any] ): _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Dict = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _a : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): _a : Union[str, Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,backbone_out_indices=self.backbone_out_indices ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,is_hybrid=self.is_hybrid ,backbone_config=_UpperCAmelCase ,backbone_featmap_shape=self.backbone_featmap_shape ,) def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int] ): _a : Tuple = DPTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Union[str, Any] ): _a : Dict = self.num_labels _a : List[Any] = DPTForDepthEstimation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape ,(self.batch_size, self.image_size, self.image_size) ) def __lowercase ( self : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ): _a : Union[str, Any] = self.num_labels _a : Union[str, Any] = DPTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Tuple = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowercase ( self : Dict ): _a : Dict = self.prepare_config_and_inputs() _a , _a , _a : Any = config_and_inputs _a : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : List[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCAmelCase : Tuple = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : Any = False lowerCAmelCase : Optional[Any] = False def __lowercase ( self : Optional[int] ): _a : Union[str, Any] = DPTModelTester(self ) _a : List[Any] = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): pass def __lowercase ( self : str ): _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase ,nn.Linear ) ) def __lowercase ( self : Dict ): _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_UpperCAmelCase ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : str = [*signature.parameters.keys()] _a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : Any ): _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : List[str] ): _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase ) def __lowercase ( self : Optional[int] ): _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def __lowercase ( self : str ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = True if model_class in get_values(_UpperCAmelCase ): continue _a : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _a : int = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : str = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] = False _a : Optional[int] = True if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue _a : Any = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _a : Optional[Any] = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : str = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[Any] ): _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _a : Optional[Any] = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone _a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _a : int = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : Tuple ): pass @slow def __lowercase ( self : Tuple ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _a : int = DPTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowercase ( self : str ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : int = 'add' with self.assertRaises(_UpperCAmelCase ): _a : Dict = DPTForDepthEstimation(_UpperCAmelCase ) def __lowerCamelCase ( ) -> Tuple: _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : str ): _a : Optional[int] = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) _a : List[Any] = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_UpperCAmelCase ) _a : Optional[int] = prepare_img() _a : str = image_processor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : int = model(**_UpperCAmelCase ) _a : Union[str, Any] = outputs.predicted_depth # verify the predicted depth _a : List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape ,_UpperCAmelCase ) _a : Optional[Any] = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 ,_UpperCAmelCase ,atol=1E-4 ) )
89
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __A = TypeVar("""KEY""") __A = TypeVar("""VAL""") @dataclass(frozen=a , slots=a ) class _lowerCAmelCase ( Generic[KEY, VAL] ): """simple docstring""" __magic_name__ :KEY __magic_name__ :VAL class _lowerCAmelCase ( _Item ): """simple docstring""" def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False __A = _DeletedItem() class _lowerCAmelCase ( MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.75 ): '''simple docstring''' lowerCAmelCase__ :List[str] = initial_block_size lowerCAmelCase__ :list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 lowerCAmelCase__ :Tuple = capacity_factor lowerCAmelCase__ :str = 0 def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Any = self._buckets[ind] if not stored: lowerCAmelCase__ :Dict = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: lowerCAmelCase__ :Optional[Any] = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False lowerCAmelCase__ :Optional[Any] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = self._buckets lowerCAmelCase__ :Tuple = [None] * new_size lowerCAmelCase__ :List[Any] = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def snake_case ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def snake_case ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind lowerCAmelCase__ :Tuple = self._get_next_ind(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): lowerCAmelCase__ :int = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: lowerCAmelCase__ :List[str] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): lowerCAmelCase__ :str = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ' ,'.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
293
0
import datasets _snake_case = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" _snake_case = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" _snake_case = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n" def lowerCAmelCase_ ( snake_case_,snake_case_ ): return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def a__ ( self , _a , _a ) -> Optional[Any]: return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )}
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0