code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def a__ ( _UpperCamelCase : list[int] ): __lowerCamelCase = [] if len(_UpperCamelCase ) == 1: return [nums.copy()] for _ in range(len(_UpperCamelCase ) ): __lowerCamelCase = nums.pop(0 ) __lowerCamelCase = permute(_UpperCamelCase ) for perm in permutations: perm.append(_UpperCamelCase ) result.extend(_UpperCamelCase ) nums.append(_UpperCamelCase ) return result def a__ ( _UpperCamelCase : Any ): def backtrack(_UpperCamelCase : List[Any] ): if start == len(_UpperCamelCase ) - 1: output.append(nums[:] ) else: for i in range(_UpperCamelCase ,len(_UpperCamelCase ) ): __lowerCamelCase ,__lowerCamelCase = nums[i], nums[start] backtrack(start + 1 ) __lowerCamelCase ,__lowerCamelCase = nums[i], nums[start] # backtrack __lowerCamelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function a_ = permutea([1, 2, 3]) print(res) doctest.testmod()
330
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ = True @register_to_config def __init__( self , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = ("DownEncoderBlock2D",) , __UpperCAmelCase = ("UpDecoderBlock2D",) , __UpperCAmelCase = (64,) , __UpperCAmelCase = 1 , __UpperCAmelCase = "silu" , __UpperCAmelCase = 4 , __UpperCAmelCase = 32 , __UpperCAmelCase = 32 , __UpperCAmelCase = 0.18_215 , ): '''simple docstring''' super().__init__() # pass init params to Encoder __lowerCamelCase = Encoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , down_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , act_fn=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , double_z=__UpperCAmelCase , ) # pass init params to Decoder __lowerCamelCase = Decoder( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , up_block_types=__UpperCAmelCase , block_out_channels=__UpperCAmelCase , layers_per_block=__UpperCAmelCase , norm_num_groups=__UpperCAmelCase , act_fn=__UpperCAmelCase , ) __lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) __lowerCamelCase = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __lowerCamelCase = False __lowerCamelCase = False # only relevant if vae tiling is enabled __lowerCamelCase = self.config.sample_size __lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) __lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) __lowerCamelCase = 0.25 def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if isinstance(__UpperCAmelCase , (Encoder, Decoder) ): __lowerCamelCase = value def lowerCamelCase ( self , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = use_tiling def lowerCamelCase ( self ): '''simple docstring''' self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = True def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return processors def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , '''set_processor''' ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __UpperCAmelCase , __UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCamelCase ( self ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: __lowerCamelCase = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase , return_dict=__UpperCAmelCase ) __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: __lowerCamelCase = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] __lowerCamelCase = torch.cat(__UpperCAmelCase ) else: __lowerCamelCase = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[2] , b.shape[2] , __UpperCAmelCase ) for y in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = min(a.shape[3] , b.shape[3] , __UpperCAmelCase ) for x in range(__UpperCAmelCase ): __lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. __lowerCamelCase = [] for i in range(0 , x.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , x.shape[3] , __UpperCAmelCase ): __lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] __lowerCamelCase = self.encoder(__UpperCAmelCase ) __lowerCamelCase = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) __lowerCamelCase = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = True ): '''simple docstring''' __lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) __lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) __lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. __lowerCamelCase = [] for i in range(0 , z.shape[2] , __UpperCAmelCase ): __lowerCamelCase = [] for j in range(0 , z.shape[3] , __UpperCAmelCase ): __lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] __lowerCamelCase = self.post_quant_conv(__UpperCAmelCase ) __lowerCamelCase = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) __lowerCamelCase = [] for i, row in enumerate(__UpperCAmelCase ): __lowerCamelCase = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: __lowerCamelCase = self.blend_v(rows[i - 1][j] , __UpperCAmelCase , __UpperCAmelCase ) if j > 0: __lowerCamelCase = self.blend_h(row[j - 1] , __UpperCAmelCase , __UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase , dim=3 ) ) __lowerCamelCase = torch.cat(__UpperCAmelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ): '''simple docstring''' __lowerCamelCase = sample __lowerCamelCase = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: __lowerCamelCase = posterior.sample(generator=__UpperCAmelCase ) else: __lowerCamelCase = posterior.mode() __lowerCamelCase = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
330
1
"""simple docstring""" import math def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : str = 0 lowerCamelCase__ : Union[str, Any] = 0 while num > 0: lowerCamelCase__ : Dict = num % 8 lowerCamelCase__ : Optional[Any] = octal + (remainder * math.floor(math.pow(10 , lowerCAmelCase__ ) )) counter += 1 lowerCamelCase__ : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(lowerCAmelCase__ )}''' def lowerCamelCase_ ( ): print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
352
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int A_ : List[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class a_ ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ : Optional[datasets.Features] = None def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , ): import pyspark def generate_fn(): lowerCamelCase__ : Optional[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: lowerCamelCase__ : Dict = df_with_partition_id.select('*' ).where(f'''part_id = {partition_id}''' ).drop('part_id' ) lowerCamelCase__ : Dict = partition_df.collect() lowerCamelCase__ : int = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class a_ ( _BaseExamplesIterable ): '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Tuple = df lowerCamelCase__ : Any = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCamelCase__ : List[Any] = _generate_iterable_examples(self.df, self.partition_order ) def __iter__(self ): '''simple docstring''' yield from self.generate_examples_fn() def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.split_shard_indices_by_worker(lowerCamelCase_, lowerCamelCase_ ) return SparkExamplesIterable(self.df, partition_order=lowerCamelCase_ ) @property def a__ (self ): '''simple docstring''' return len(self.partition_order ) class a_ ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ : Optional[int] = SparkConfig def __init__(self, lowerCamelCase_, lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowerCamelCase__ : Optional[Any] = df lowerCamelCase__ : Dict = working_dir super().__init__( cache_dir=lowerCamelCase_, config_name=str(self.df.semanticHash() ), **lowerCamelCase_, ) def a__ (self ): '''simple docstring''' def create_cache_and_write_probe(lowerCamelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir, exist_ok=lowerCamelCase_ ) lowerCamelCase__ : str = os.path.join(self._cache_dir, 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(lowerCamelCase_, 'a' ) return [probe_file] if self._spark.conf.get('spark.master', '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCamelCase__ : Tuple = ( self._spark.sparkContext.parallelize(range(1 ), 1 ).mapPartitions(lowerCamelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a__ (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a__ (self, lowerCamelCase_ ): '''simple docstring''' import pyspark def get_arrow_batch_size(lowerCamelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) lowerCamelCase__ : List[Any] = self.df.count() lowerCamelCase__ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCamelCase__ : List[Any] = ( self.df.limit(lowerCamelCase_ ) .repartition(1 ) .mapInArrow(lowerCamelCase_, 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCamelCase__ : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCamelCase__ : str = min(lowerCamelCase_, int(approx_total_size / max_shard_size ) ) lowerCamelCase__ : List[Any] = self.df.repartition(lowerCamelCase_ ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): '''simple docstring''' import pyspark lowerCamelCase__ : List[str] = ParquetWriter if file_format == 'parquet' else ArrowWriter lowerCamelCase__ : List[str] = os.path.join(self._working_dir, os.path.basename(lowerCamelCase_ ) ) if self._working_dir else fpath lowerCamelCase__ : Optional[int] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCamelCase__ : int = self.config.features lowerCamelCase__ : Dict = self._writer_batch_size lowerCamelCase__ : Optional[Any] = self._fs.storage_options def write_arrow(lowerCamelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCamelCase__ : Any = pyspark.TaskContext().taskAttemptId() lowerCamelCase__ : str = next(lowerCamelCase_, lowerCamelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]], names=['task_id', 'num_examples', 'num_bytes'], ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Any = writer_class( features=lowerCamelCase_, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : List[str] = pa.Table.from_batches([first_batch] ) writer.write_table(lowerCamelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) shard_id += 1 lowerCamelCase__ : Dict = writer_class( features=writer._features, path=working_fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), writer_batch_size=lowerCamelCase_, storage_options=lowerCamelCase_, embed_local_files=lowerCamelCase_, ) lowerCamelCase__ : Tuple = pa.Table.from_batches([batch] ) writer.write_table(lowerCamelCase_ ) if writer._num_bytes > 0: lowerCamelCase__ , lowerCamelCase__ : Tuple = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]], names=['task_id', 'num_examples', 'num_bytes'], ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(lowerCamelCase_ ) ): lowerCamelCase__ : Optional[int] = os.path.join(os.path.dirname(lowerCamelCase_ ), os.path.basename(lowerCamelCase_ ) ) shutil.move(lowerCamelCase_, lowerCamelCase_ ) lowerCamelCase__ : List[str] = ( self.df.mapInArrow(lowerCamelCase_, 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ), pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ), pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ), pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ), ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a__ (self, lowerCamelCase_, lowerCamelCase_ = "arrow", lowerCamelCase_ = None, lowerCamelCase_ = None, **lowerCamelCase_, ): '''simple docstring''' self._validate_cache_dir() lowerCamelCase__ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(lowerCamelCase_ ) lowerCamelCase__ : str = not is_remote_filesystem(self._fs ) lowerCamelCase__ : Any = os.path.join if is_local else posixpath.join lowerCamelCase__ : Any = '-TTTTT-SSSSS-of-NNNNN' lowerCamelCase__ : Tuple = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' lowerCamelCase__ : Union[str, Any] = path_join(self._output_dir, lowerCamelCase_ ) lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Dict = 0 lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[str] = [] for task_id, content in self._prepare_split_single(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(lowerCamelCase_ ) lowerCamelCase__ : str = total_num_examples lowerCamelCase__ : int = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: lowerCamelCase__ : Union[str, Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCamelCase__ : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( lowerCamelCase_, lowerCamelCase_, lowerCamelCase_, ): rename( lowerCamelCase_, fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace('TTTTT-SSSSS', f'''{global_shard_id:05d}''' ).replace('NNNNN', f'''{total_shards:05d}''' ), ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : List[str] = 0 for i in range(len(lowerCamelCase_ ) ): lowerCamelCase__ , lowerCamelCase__ : Any = task_id_and_num_shards[i] for shard_id in range(lowerCamelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(lowerCamelCase_, len(lowerCamelCase_ ) ).map(lambda lowerCamelCase_ : _rename_shard(*lowerCamelCase_ ) ).collect() else: # don't use any pattern lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Dict = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS', f'''{shard_id:05d}''' ).replace('TTTTT', f'''{task_id:05d}''' ), fpath.replace(lowerCamelCase_, '' ), ) def a__ (self, lowerCamelCase_, ): '''simple docstring''' return SparkExamplesIterable(self.df )
316
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = jnp.floataa lowerCamelCase__ = True def __A ( self : Union[str, Any] ) -> Optional[int]: super().setup() SCREAMING_SNAKE_CASE_ = nn.Dense(5 , dtype=self.dtype ) def __call__( self : int , *__magic_name__ : Optional[int] , **__magic_name__ : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = super().__call__(*__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = FlaxBigBirdForNaturalQuestionsModule def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): def cross_entropy(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): SCREAMING_SNAKE_CASE_ = logits.shape[-1] SCREAMING_SNAKE_CASE_ = (labels[..., None] == jnp.arange(__UpperCamelCase )[None]).astype("f4" ) SCREAMING_SNAKE_CASE_ = jax.nn.log_softmax(__UpperCamelCase , axis=-1 ) SCREAMING_SNAKE_CASE_ = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE_ = reduction(__UpperCamelCase ) return loss SCREAMING_SNAKE_CASE_ = partial(__UpperCamelCase , reduction=jnp.mean ) SCREAMING_SNAKE_CASE_ = cross_entropy(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = cross_entropy(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = cross_entropy(__UpperCamelCase , __UpperCamelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = "google/bigbird-roberta-base" lowerCamelCase__ = 3_0_0_0 lowerCamelCase__ = 1_0_5_0_0 lowerCamelCase__ = 1_2_8 lowerCamelCase__ = 3 lowerCamelCase__ = 1 lowerCamelCase__ = 5 # tx_args lowerCamelCase__ = 3E-5 lowerCamelCase__ = 0.0 lowerCamelCase__ = 2_0_0_0_0 lowerCamelCase__ = 0.0095 lowerCamelCase__ = "bigbird-roberta-natural-questions" lowerCamelCase__ = "training-expt" lowerCamelCase__ = "data/nq-training.jsonl" lowerCamelCase__ = "data/nq-validation.jsonl" def __A ( self : List[Any] ) -> Union[str, Any]: os.makedirs(self.base_dir , exist_ok=__magic_name__ ) SCREAMING_SNAKE_CASE_ = os.path.join(self.base_dir , self.save_dir ) SCREAMING_SNAKE_CASE_ = self.batch_size_per_device * jax.device_count() @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 4_0_9_6 # no dynamic padding on TPUs def __call__( self : Optional[int] , __magic_name__ : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.collate_fn(__magic_name__ ) SCREAMING_SNAKE_CASE_ = jax.tree_util.tree_map(__magic_name__ , __magic_name__ ) return batch def __A ( self : str , __magic_name__ : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.fetch_inputs(features["input_ids"] ) SCREAMING_SNAKE_CASE_ = { "input_ids": jnp.array(__magic_name__ , dtype=jnp.intaa ), "attention_mask": jnp.array(__magic_name__ , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def __A ( self : List[str] , __magic_name__ : list ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = [self._fetch_inputs(__magic_name__ ) for ids in input_ids] return zip(*__magic_name__ ) def __A ( self : str , __magic_name__ : list ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = [1 for _ in range(len(__magic_name__ ) )] while len(__magic_name__ ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): if seed is not None: SCREAMING_SNAKE_CASE_ = dataset.shuffle(seed=__UpperCamelCase ) for i in range(len(__UpperCamelCase ) // batch_size ): SCREAMING_SNAKE_CASE_ = dataset[i * batch_size : (i + 1) * batch_size] yield dict(__UpperCamelCase ) @partial(jax.pmap , axis_name="batch" ) def a__ ( __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): def loss_fn(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = model_inputs.pop("start_labels" ) SCREAMING_SNAKE_CASE_ = model_inputs.pop("end_labels" ) SCREAMING_SNAKE_CASE_ = model_inputs.pop("pooled_labels" ) SCREAMING_SNAKE_CASE_ = state.apply_fn(**__UpperCamelCase , params=__UpperCamelCase , dropout_rng=__UpperCamelCase , train=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = outputs return state.loss_fn( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = jax.random.split(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = jax.value_and_grad(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = grad_fn(state.params ) SCREAMING_SNAKE_CASE_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) SCREAMING_SNAKE_CASE_ = jax.lax.pmean(__UpperCamelCase , "batch" ) SCREAMING_SNAKE_CASE_ = state.apply_gradients(grads=__UpperCamelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def a__ ( __UpperCamelCase , **__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = model_inputs.pop("start_labels" ) SCREAMING_SNAKE_CASE_ = model_inputs.pop("end_labels" ) SCREAMING_SNAKE_CASE_ = model_inputs.pop("pooled_labels" ) SCREAMING_SNAKE_CASE_ = state.apply_fn(**__UpperCamelCase , params=state.params , train=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = outputs SCREAMING_SNAKE_CASE_ = state.loss_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowerCamelCase (train_state.TrainState ): """simple docstring""" lowerCamelCase__ = struct.field(pytree_node=SCREAMING_SNAKE_CASE__ ) @dataclass class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = None def __A ( self : str , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=None ) -> Dict: SCREAMING_SNAKE_CASE_ = model.params SCREAMING_SNAKE_CASE_ = TrainState.create( apply_fn=model.__call__ , params=__magic_name__ , tx=__magic_name__ , loss_fn=__magic_name__ , ) if ckpt_dir is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = restore_checkpoint(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = build_tx(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = train_state.TrainState( step=__magic_name__ , apply_fn=model.__call__ , params=__magic_name__ , tx=__magic_name__ , opt_state=__magic_name__ , ) SCREAMING_SNAKE_CASE_ = args SCREAMING_SNAKE_CASE_ = data_collator SCREAMING_SNAKE_CASE_ = lr SCREAMING_SNAKE_CASE_ = params SCREAMING_SNAKE_CASE_ = jax_utils.replicate(__magic_name__ ) return state def __A ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.args SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) // args.batch_size SCREAMING_SNAKE_CASE_ = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ = jax.random.split(__magic_name__ , jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE_ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = get_batched_dataset(__magic_name__ , args.batch_size , seed=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 0 for batch in tqdm(__magic_name__ , total=__magic_name__ , desc=F'''Running EPOCH-{epoch}''' ): SCREAMING_SNAKE_CASE_ = self.data_collator(__magic_name__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.train_step_fn(__magic_name__ , __magic_name__ , **__magic_name__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE_ = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE_ = running_loss.item() / i SCREAMING_SNAKE_CASE_ = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE_ = self.evaluate(__magic_name__ , __magic_name__ ) SCREAMING_SNAKE_CASE_ = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__magic_name__ ) ) self.logger.log(__magic_name__ , commit=__magic_name__ ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'''-e{epoch}-s{i}''' , state=__magic_name__ ) def __A ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[int] ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = get_batched_dataset(__magic_name__ , self.args.batch_size ) SCREAMING_SNAKE_CASE_ = len(__magic_name__ ) // self.args.batch_size SCREAMING_SNAKE_CASE_ = jnp.array(0 , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = 0 for batch in tqdm(__magic_name__ , total=__magic_name__ , desc="Evaluating ... " ): SCREAMING_SNAKE_CASE_ = self.data_collator(__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.val_step_fn(__magic_name__ , **__magic_name__ ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def __A ( self : str , __magic_name__ : Optional[int] , __magic_name__ : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = jax_utils.unreplicate(__magic_name__ ) print(F'''SAVING CHECKPOINT IN {save_dir}''' , end=" ... " ) self.model_save_fn(__magic_name__ , params=state.params ) with open(os.path.join(__magic_name__ , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__magic_name__ , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(__magic_name__ , "data_collator.joblib" ) ) with open(os.path.join(__magic_name__ , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , __magic_name__ ) print("DONE" ) def a__ ( __UpperCamelCase , __UpperCamelCase ): print(F'''RESTORING CHECKPOINT FROM {save_dir}''' , end=" ... " ) with open(os.path.join(__UpperCamelCase , "flax_model.msgpack" ) , "rb" ) as f: SCREAMING_SNAKE_CASE_ = from_bytes(state.params , f.read() ) with open(os.path.join(__UpperCamelCase , "opt_state.msgpack" ) , "rb" ) as f: SCREAMING_SNAKE_CASE_ = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE_ = joblib.load(os.path.join(__UpperCamelCase , "args.joblib" ) ) SCREAMING_SNAKE_CASE_ = joblib.load(os.path.join(__UpperCamelCase , "data_collator.joblib" ) ) with open(os.path.join(__UpperCamelCase , "training_state.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE_ = json.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE_ = optax.linear_schedule(init_value=__UpperCamelCase , end_value=__UpperCamelCase , transition_steps=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = optax.linear_schedule(init_value=__UpperCamelCase , end_value=1E-7 , transition_steps=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): def weight_decay_mask(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = traverse_util.flatten_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = scheduler_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE_ = optax.adamw(learning_rate=__UpperCamelCase , weight_decay=__UpperCamelCase , mask=__UpperCamelCase ) return tx, lr
118
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A : Tuple = get_tests_dir("fixtures") class lowerCamelCase (unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down SCREAMING_SNAKE_CASE_ = mock.Mock() SCREAMING_SNAKE_CASE_ = 500 SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = HTTPError SCREAMING_SNAKE_CASE_ = {} # Download this model to make sure it's in the cache. SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__magic_name__ ) as mock_head: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self : Optional[int] ) -> Tuple: # This test is for deprecated behavior and can be removed in v5 SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class lowerCamelCase (unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __A ( cls : int ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def __A ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="test-feature-extractor" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __A ( self : Dict ) -> str: SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( __magic_name__ , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__magic_name__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE_ = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __A ( self : List[Any] ) -> Dict: CustomFeatureExtractor.register_for_auto_class() SCREAMING_SNAKE_CASE_ = CustomFeatureExtractor.from_pretrained(__magic_name__ ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) SCREAMING_SNAKE_CASE_ = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
118
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCamelCase = _symbol_database.Default() _UpperCamelCase = _descriptor_pool.Default().AddSerializedFile( B"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) _UpperCamelCase = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCamelCase = None _UpperCamelCase = B"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCamelCase = 45 _UpperCamelCase = 1581 _UpperCamelCase = 1517 _UpperCamelCase = 1570 _UpperCamelCase = 1584 _UpperCamelCase = 1793 _UpperCamelCase = 1795 _UpperCamelCase = 1916 _UpperCamelCase = 1864 _UpperCamelCase = 1905 _UpperCamelCase = 1919 _UpperCamelCase = 2429 _UpperCamelCase = 2208 _UpperCamelCase = 2418 _UpperCamelCase = 2323 _UpperCamelCase = 2407 # @@protoc_insertion_point(module_scope)
367
"""simple docstring""" import numpy as np def _a ( _snake_case ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
234
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
154
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase : Tuple =logging.get_logger(__name__) class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[Any] = ["input_features", "attention_mask"] def __init__( self , __lowercase=8_0 , __lowercase=1_6_0_0_0 , __lowercase=8_0 , __lowercase=0.0 , __lowercase=True , __lowercase=True , __lowercase=True , **__lowercase , ) -> Tuple: """simple docstring""" super().__init__(feature_size=__lowercase , sampling_rate=__lowercase , padding_value=__lowercase , **__lowercase ) a__ : Tuple = num_mel_bins a__ : int = do_ceptral_normalize a__ : List[str] = normalize_means a__ : Union[str, Any] = normalize_vars a__ : Tuple = True def SCREAMING_SNAKE_CASE__( self , __lowercase , ) -> np.ndarray: """simple docstring""" a__ : Optional[Any] = waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers a__ : List[str] = torch.from_numpy(__lowercase ).unsqueeze(0 ) a__ : int = ta_kaldi.fbank(__lowercase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE__( __lowercase , __lowercase , __lowercase = True , __lowercase = True , __lowercase = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: a__ : Dict = x[:input_length].mean(axis=0 ) a__ : int = np.subtract(__lowercase , __lowercase ) if normalize_vars: a__ : str = x[:input_length].std(axis=0 ) a__ : List[str] = np.divide(__lowercase , __lowercase ) if input_length < x.shape[0]: a__ : List[Any] = padding_value # make sure array is in float32 a__ : Dict = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[np.ndarray]: """simple docstring""" a__ : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowercase , __lowercase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__lowercase , __lowercase ) ] def __call__( self , __lowercase , __lowercase = False , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , **__lowercase , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) a__ : Dict = isinstance(__lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a__ : List[str] = is_batched_numpy or ( isinstance(__lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : Union[str, Any] = [np.asarray(__lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowercase , np.ndarray ): a__ : Tuple = np.asarray(__lowercase , dtype=np.floataa ) elif isinstance(__lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ : Tuple = [raw_speech] # extract fbank features a__ : List[Any] = [self._extract_fbank_features(__lowercase ) for waveform in raw_speech] # convert into correct format for padding a__ : List[str] = BatchFeature({"""input_features""": features} ) a__ : List[Any] = self.pad( __lowercase , padding=__lowercase , max_length=__lowercase , truncation=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , **__lowercase , ) # make sure list is in array format a__ : int = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , __lowercase ): a__ : str = [np.asarray(__lowercase , dtype=np.floataa ) for feature in input_features] a__ : Any = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: a__ : Optional[int] = [np.asarray(__lowercase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: a__ : int = ( np.array(__lowercase , dtype=np.intaa ) if self._get_padding_strategies(__lowercase , max_length=__lowercase ) is not PaddingStrategy.DO_NOT_PAD else None ) a__ : Optional[int] = self.normalize( padded_inputs["""input_features"""] , attention_mask=__lowercase ) if return_tensors is not None: a__ : Optional[Any] = padded_inputs.convert_to_tensors(__lowercase ) return padded_inputs
266
from string import ascii_uppercase _lowercase : str ={char: i for i, char in enumerate(ascii_uppercase)} _lowercase : Dict =dict(enumerate(ascii_uppercase)) def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> str: """simple docstring""" a__ : Any = len(_lowercase) a__ : Optional[int] = 0 while True: if x == i: a__ : Optional[Any] = 0 if len(_lowercase) == len(_lowercase): break key += key[i] i += 1 return key def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> str: """simple docstring""" a__ : Tuple = """""" a__ : str = 0 for letter in message: if letter == " ": cipher_text += " " else: a__ : List[str] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def lowerCAmelCase_ ( _lowercase : str , _lowercase : str) -> str: """simple docstring""" a__ : int = """""" a__ : int = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: a__ : Dict = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def lowerCAmelCase_ ( ) -> None: """simple docstring""" a__ : List[Any] = """THE GERMAN ATTACK""" a__ : List[Any] = """SECRET""" a__ : Tuple = generate_key(_lowercase , _lowercase) a__ : str = cipher_text(_lowercase , _lowercase) print(F'''Encrypted Text = {s}''') print(F'''Original Text = {original_text(_lowercase , _lowercase)}''') if __name__ == "__main__": import doctest doctest.testmod() main()
266
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : Optional[Any] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
42
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel A_ : Dict = HfApi() A_ : List[str] = {} # fmt: off A_ : Dict = torch.tensor([ -0.75_15, -1.68_83, 0.24_20, 0.03_00, 0.63_47, 1.34_33, -1.17_43, -3.74_67, 1.23_42, -2.24_85, 0.46_36, 0.80_76, -0.79_91, 0.39_69, 0.84_98, 0.91_89, -1.88_87, -3.35_22, 0.76_39, 0.20_40, 0.62_71, -2.71_48, -1.63_16, 3.08_39, 0.31_86, 0.27_21, -0.97_59, -1.24_61, 2.62_57, 1.35_57 ]) A_ : List[Any] = torch.tensor([ -2.36_39, -2.53_44, 0.00_54, -0.66_74, 1.59_90, 1.01_58, 0.31_24, -2.14_36, 1.87_95, -2.54_29, -0.15_66, -0.39_73, 1.24_90, 2.64_47, 1.22_83, -0.52_08, -2.81_54, -3.51_19, 2.38_38, 1.20_33, 1.72_01, -2.12_56, -1.45_76, 2.79_48, 2.42_04, -0.97_52, -1.25_46, 0.80_27, 3.27_58, 3.13_65 ]) A_ : str = torch.tensor([ -0.65_31, -0.68_91, -0.31_72, -0.53_75, -0.91_40, -0.53_67, -0.11_75, -0.78_69, -0.38_08, -0.45_13, -0.20_98, -0.00_83, 0.31_83, 0.51_40, 0.22_47, -0.13_04, -0.13_02, -0.28_02, -0.20_84, -0.20_25, -0.49_67, -0.48_73, -0.08_61, 0.69_25, 0.02_50, 0.12_90, -0.15_43, 0.63_16, 1.04_60, 1.49_43 ]) A_ : List[Any] = torch.tensor([ 0.09_11, 0.11_07, 0.01_82, 0.04_35, -0.08_05, -0.06_08, 0.03_81, 0.21_72, -0.02_80, 0.13_27, -0.02_99, -0.02_55, -0.00_50, -0.11_70, -0.10_46, 0.03_09, 0.13_67, 0.17_28, -0.05_33, -0.07_48, -0.05_34, 0.16_24, 0.03_84, -0.18_05, -0.07_07, 0.06_42, 0.02_20, -0.01_34, -0.13_33, -0.15_05 ]) A_ : Tuple = torch.tensor([ 0.13_21, 0.13_37, 0.04_40, 0.06_22, -0.05_91, -0.03_70, 0.05_03, 0.21_33, -0.01_77, 0.14_15, -0.01_16, -0.01_12, 0.00_44, -0.09_80, -0.07_89, 0.03_95, 0.15_02, 0.17_85, -0.04_88, -0.05_14, -0.04_04, 0.15_39, 0.04_54, -0.15_59, -0.06_65, 0.06_59, 0.03_83, -0.00_05, -0.12_66, -0.13_86 ]) A_ : List[str] = torch.tensor([ 0.11_54, 0.12_18, 0.03_07, 0.05_26, -0.07_11, -0.05_41, 0.03_66, 0.20_78, -0.02_67, 0.13_17, -0.02_26, -0.01_93, -0.00_14, -0.10_55, -0.09_02, 0.03_30, 0.13_91, 0.17_09, -0.05_62, -0.06_93, -0.05_60, 0.14_82, 0.03_81, -0.16_83, -0.06_81, 0.06_61, 0.03_31, -0.00_46, -0.12_68, -0.14_31 ]) A_ : List[Any] = torch.tensor([ 0.11_92, 0.12_40, 0.04_14, 0.06_06, -0.05_57, -0.04_12, 0.04_30, 0.20_42, -0.02_00, 0.13_85, -0.01_15, -0.01_32, 0.00_17, -0.09_65, -0.08_02, 0.03_98, 0.14_33, 0.17_47, -0.04_58, -0.05_33, -0.04_07, 0.15_45, 0.04_19, -0.15_74, -0.06_45, 0.06_26, 0.03_41, -0.00_10, -0.11_99, -0.13_90 ]) A_ : Dict = torch.tensor([ 0.10_75, 0.10_74, 0.02_05, 0.04_31, -0.07_74, -0.06_07, 0.02_98, 0.20_42, -0.03_20, 0.12_67, -0.02_81, -0.02_50, -0.00_64, -0.10_91, -0.09_46, 0.02_90, 0.13_28, 0.16_50, -0.05_80, -0.07_38, -0.05_86, 0.14_40, 0.03_37, -0.17_46, -0.07_12, 0.06_05, 0.02_50, -0.00_99, -0.13_16, -0.14_73 ]) A_ : Tuple = torch.tensor([ -1.45_72, -2.04_81, -0.04_14, -0.60_05, 1.41_36, 0.58_48, 0.40_28, -2.73_30, 1.22_12, -2.12_28, 0.21_55, 0.40_39, 0.76_62, 2.05_35, 0.74_77, -0.32_43, -2.17_58, -2.76_48, 1.69_47, 0.70_26, 1.23_38, -1.60_78, -0.86_82, 2.28_10, 1.85_74, -0.57_18, -0.55_86, -0.01_86, 2.34_15, 2.12_51]) A_ : str = torch.tensor([ -1.36_90, -1.97_20, -0.40_90, -0.69_66, 1.46_60, 0.99_38, -0.13_85, -2.73_24, 0.77_36, -1.89_17, 0.29_23, 0.42_93, 0.16_93, 1.41_12, 1.18_87, -0.31_81, -2.21_60, -2.63_81, 1.31_70, 0.81_63, 0.92_40, -1.65_44, -0.60_99, 2.52_59, 1.64_30, -0.90_90, -0.93_92, -0.01_26, 2.42_68, 2.32_66 ]) A_ : str = torch.tensor([ -1.35_25, -1.96_28, -0.39_56, -0.68_60, 1.46_64, 1.00_14, -0.12_59, -2.72_12, 0.77_72, -1.88_11, 0.29_96, 0.43_88, 0.17_04, 1.40_29, 1.17_01, -0.30_27, -2.20_53, -2.62_87, 1.33_50, 0.81_31, 0.92_74, -1.62_92, -0.60_98, 2.51_31, 1.65_05, -0.89_58, -0.92_98, -0.01_51, 2.42_57, 2.33_55 ]) A_ : int = torch.tensor([ -2.05_85, -2.78_97, -0.28_50, -0.89_40, 1.90_52, 0.57_02, 0.63_45, -3.89_59, 1.59_32, -3.23_19, 0.19_74, 0.02_87, 1.75_66, 2.65_43, 0.83_87, -0.53_51, -3.27_36, -4.33_75, 2.90_29, 1.63_90, 1.46_40, -2.17_01, -1.90_13, 2.93_41, 3.49_81, -0.62_55, -1.16_44, -0.15_91, 3.70_97, 3.20_66 ]) A_ : int = torch.tensor([ -2.31_39, -2.55_94, -0.01_97, -0.67_85, 1.70_01, 1.16_06, 0.30_75, -2.17_40, 1.80_71, -2.56_30, -0.09_26, -0.38_11, 1.21_16, 2.62_46, 1.27_31, -0.53_98, -2.81_53, -3.61_40, 2.38_93, 1.32_62, 1.62_58, -2.18_56, -1.32_67, 2.83_95, 2.37_79, -1.06_23, -1.24_68, 0.89_59, 3.33_67, 3.22_43 ]) A_ : str = torch.tensor([ -2.06_28, -2.76_67, -0.20_89, -0.82_63, 2.05_39, 0.59_92, 0.64_95, -3.83_36, 1.60_25, -3.28_17, 0.17_21, -0.06_33, 1.75_16, 2.70_39, 0.81_00, -0.59_08, -3.21_13, -4.43_43, 2.92_57, 1.36_32, 1.55_62, -2.14_89, -1.98_94, 3.05_60, 3.33_96, -0.73_28, -1.04_17, 0.03_83, 3.70_93, 3.23_43 ]) A_ : Optional[int] = torch.tensor([ -1.45_74, -2.05_69, -0.04_73, -0.61_17, 1.40_18, 0.57_69, 0.41_29, -2.73_44, 1.22_41, -2.13_97, 0.20_00, 0.39_37, 0.76_16, 2.04_53, 0.73_24, -0.33_91, -2.17_46, -2.77_44, 1.69_63, 0.69_21, 1.21_87, -1.61_72, -0.88_77, 2.24_39, 1.84_71, -0.58_39, -0.56_05, -0.04_64, 2.32_50, 2.12_19 ]) # fmt: on A_ : List[str] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": A_ : Dict = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): A_ : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: A_ : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) A_ : Any = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) A_ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): A_ : Optional[int] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F'{mod.modelId} has passed successfully!!!')
165
0
"""simple docstring""" import math import sys def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase ="""""" try: with open(__UpperCamelCase , """rb""" ) as binary_file: _lowerCAmelCase =binary_file.read() for dat in data: _lowerCAmelCase =F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase ={"""0""": """0""", """1""": """1"""} _lowerCAmelCase , _lowerCAmelCase ="""""", """""" _lowerCAmelCase =len(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase =lexicon[curr_string] result += last_match_id _lowerCAmelCase =last_match_id + """0""" if math.loga(__UpperCamelCase ).is_integer(): _lowerCAmelCase ={} for curr_key in list(__UpperCamelCase ): _lowerCAmelCase =lexicon.pop(__UpperCamelCase ) _lowerCAmelCase =new_lex _lowerCAmelCase =last_match_id + """1""" index += 1 _lowerCAmelCase ="""""" return result def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =8 try: with open(__UpperCamelCase , """wb""" ) as opened_file: _lowerCAmelCase =[ to_write[i : i + byte_length] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__UpperCamelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _lowerCamelCase(__UpperCamelCase ) -> str: _lowerCAmelCase =0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCAmelCase =data_bits[counter:] _lowerCAmelCase =data_bits[counter + 1 :] return data_bits def _lowerCamelCase(__UpperCamelCase , __UpperCamelCase ) -> None: _lowerCAmelCase =read_file_binary(__UpperCamelCase ) _lowerCAmelCase =remove_prefix(__UpperCamelCase ) _lowerCAmelCase =decompress_data(__UpperCamelCase ) write_file_binary(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
341
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase = JukeboxTokenizer lowerCamelCase = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def _lowerCAmelCase ( self ) -> str: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 71_69, 5_07, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), torch.tensor([[0, 0, 0, 10_69, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowerCAmelCase ( self ) -> Any: import torch _lowerCAmelCase =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) _lowerCAmelCase =tokenizer(**self.metas )["""input_ids"""] # fmt: off _lowerCAmelCase =[ torch.tensor([[ 0, 0, 0, 10_69, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 10_69, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
341
1
"""simple docstring""" import numpy as np def A__ ( UpperCamelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
292
"""simple docstring""" class _UpperCAmelCase : def __init__( self :List[str] , __UpperCamelCase :Union[str, Any] , __UpperCamelCase :Tuple ): A = name A = val def __str__( self :str ): return f"{self.__class__.__name__}({self.name}, {self.val})" def __lt__( self :List[Any] , __UpperCamelCase :Union[str, Any] ): return self.val < other.val class _UpperCAmelCase : def __init__( self :List[str] , __UpperCamelCase :Optional[Any] ): A = {} A = {} A = self.build_heap(__UpperCamelCase ) def __getitem__( self :int , __UpperCamelCase :Optional[int] ): return self.get_value(__UpperCamelCase ) def lowerCamelCase ( self :List[Any] , __UpperCamelCase :str ): return (idx - 1) // 2 def lowerCamelCase ( self :int , __UpperCamelCase :Optional[Any] ): return idx * 2 + 1 def lowerCamelCase ( self :Union[str, Any] , __UpperCamelCase :Optional[int] ): return idx * 2 + 2 def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :str ): return self.heap_dict[key] def lowerCamelCase ( self :int , __UpperCamelCase :Optional[Any] ): A = len(__UpperCamelCase ) - 1 A = self.get_parent_idx(__UpperCamelCase ) for idx, i in enumerate(__UpperCamelCase ): A = idx A = i.val for i in range(__UpperCamelCase , -1 , -1 ): self.sift_down(__UpperCamelCase , __UpperCamelCase ) return array def lowerCamelCase ( self :str , __UpperCamelCase :Optional[Any] , __UpperCamelCase :Dict ): while True: A = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741 A = self.get_right_child_idx(__UpperCamelCase ) A = idx if l < len(__UpperCamelCase ) and array[l] < array[idx]: A = l if r < len(__UpperCamelCase ) and array[r] < array[smallest]: A = r if smallest != idx: A, A = array[smallest], array[idx] ( ( A ), ( A ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) A = smallest else: break def lowerCamelCase ( self :Optional[Any] , __UpperCamelCase :Optional[int] ): A = self.get_parent_idx(__UpperCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: A, A = self.heap[idx], self.heap[p] A, A = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) A = p A = self.get_parent_idx(__UpperCamelCase ) def lowerCamelCase ( self :Any ): return self.heap[0] def lowerCamelCase ( self :Tuple ): A, A = self.heap[-1], self.heap[0] A, A = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) A = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Optional[int] ): self.heap.append(__UpperCamelCase ) A = len(self.heap ) - 1 A = node.val self.sift_up(len(self.heap ) - 1 ) def lowerCamelCase ( self :Tuple ): return len(self.heap ) == 0 def lowerCamelCase ( self :Any , __UpperCamelCase :str , __UpperCamelCase :Dict ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" A = new_value A = new_value self.sift_up(self.idx_of_element[node] ) _snake_case : Optional[int] = Node('R', -1) _snake_case : Tuple = Node('B', 6) _snake_case : Tuple = Node('A', 3) _snake_case : Optional[int] = Node('X', 1) _snake_case : List[Any] = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array _snake_case : Tuple = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
292
1
import json import sys def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): with open(__lowerCamelCase , encoding="utf-8" ) as f: __snake_case : Tuple = json.load(__lowerCamelCase ) __snake_case : Optional[int] = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(__lowerCamelCase ): __snake_case : str = results[benchmark_name] __snake_case : Optional[Any] = benchmark_name.split("/" )[-1] output_md.append(F'### Benchmark: {benchmark_file_name}' ) __snake_case : Union[str, Any] = "| metric |" __snake_case : Dict = "|--------|" __snake_case : Tuple = "| new / old (diff) |" for metric_name in sorted(__lowerCamelCase ): __snake_case : Any = benchmark_res[metric_name] __snake_case : int = metric_vals["new"] __snake_case : List[str] = metric_vals.get("old" , __lowerCamelCase ) __snake_case : Any = metric_vals.get("diff" , __lowerCamelCase ) __snake_case : Union[str, Any] = F' {new_val:f}' if isinstance(__lowerCamelCase , (int, float) ) else "None" if old_val is not None: val_str += F' / {old_val:f}' if isinstance(__lowerCamelCase , (int, float) ) else "None" if dif_val is not None: val_str += F' ({dif_val:f})' if isinstance(__lowerCamelCase , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(__lowerCamelCase ) ) if __name__ == "__main__": _snake_case : List[Any] = sys.argv[1] _snake_case : Any = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
134
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _snake_case : Union[str, Any] = datasets.load_iris() _snake_case : Tuple = np.array(data["data"]) _snake_case : int = np.array(data["target"]) _snake_case : int = data["target_names"] _snake_case , _snake_case , _snake_case , _snake_case : Any = train_test_split(X, y) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): return np.linalg.norm(np.array(__lowerCamelCase ) - np.array(__lowerCamelCase ) ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=5 ): __snake_case : Optional[Any] = zip(__lowerCamelCase , __lowerCamelCase ) # List of distances of all points from the point to be classified __snake_case : Optional[int] = [] for data_point in data: __snake_case : Union[str, Any] = euclidean_distance(data_point[0] , __lowerCamelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __snake_case : Dict = [i[1] for i in sorted(__lowerCamelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __snake_case : Any = Counter(__lowerCamelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
134
1
import argparse from collections import defaultdict def lowerCAmelCase_ ( _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : List[str]) -> List[str]: """simple docstring""" a__ : Any = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase , """r""") as f: a__ : Optional[Any] = f.readlines() a__ : Optional[Any] = F'''class {class_name}(''' a__ : Tuple = F'''{4 * ' '}def {test_name}(''' a__ : Union[str, Any] = F'''{8 * ' '}{correct_line.split()[0]}''' a__ : Any = F'''{16 * ' '}{correct_line.split()[0]}''' a__ : Optional[Any] = False a__ : Optional[int] = False a__ : Union[str, Any] = False a__ : List[Any] = False a__ : List[Any] = 0 a__ : str = 0 a__ : Optional[Any] = [] for line in lines: if line.startswith(_lowercase): a__ : List[str] = True elif in_class and line.startswith(_lowercase): a__ : Optional[Any] = True elif in_class and in_func and (line.startswith(_lowercase) or line.startswith(_lowercase)): a__ : Union[str, Any] = len(line.split(correct_line.split()[0])[0]) count += 1 if count == done_test[_id]: a__ : Optional[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: a__ : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * ' '}{correct_line}''') a__ : Optional[Any] = False else: new_lines.append(_lowercase) with open(_lowercase , """w""") as f: for line in new_lines: f.write(_lowercase) def lowerCAmelCase_ ( _lowercase : Tuple , _lowercase : List[str]=None) -> Any: """simple docstring""" if fail is not None: with open(_lowercase , """r""") as f: a__ : Union[str, Any] = {l.strip() for l in f.readlines()} else: a__ : List[str] = None with open(_lowercase , """r""") as f: a__ : List[Any] = f.readlines() a__ : int = defaultdict(_lowercase) for line in correct_lines: a__ , a__ , a__ , a__ : str = line.split(""";""") if test_failures is None or "::".join([file, class_name, test_name]) in test_failures: overwrite_file(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase) if __name__ == "__main__": _lowercase : Optional[int] =argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) _lowercase : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
170
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : bool = False) -> list[float]: """simple docstring""" if radian_mode: return [magnitude * cos(_lowercase), magnitude * sin(_lowercase)] return [magnitude * cos(radians(_lowercase)), magnitude * sin(radians(_lowercase))] def lowerCAmelCase_ ( _lowercase : NDArray[floataa] , _lowercase : NDArray[floataa] , _lowercase : float = 10**-1) -> bool: """simple docstring""" a__ : NDArray[floataa] = cross(_lowercase , _lowercase) a__ : float = sum(_lowercase) return abs(_lowercase) < eps if __name__ == "__main__": # Test to check if it works _lowercase : int =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _lowercase : NDArray[floataa] =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _lowercase : Union[str, Any] =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _lowercase : Dict =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _lowercase : Tuple =array([[0, -2000], [0, -1200], [0, 1_5600], [0, -1_2400]]) _lowercase : Any =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
170
1
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : str): '''simple docstring''' __lowercase =hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset') __lowercase =VideoClassificationPipeline(model=_lowerCAmelCase , image_processor=_lowerCAmelCase , top_k=2) __lowercase =[ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __lowerCamelCase ( self : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : int): '''simple docstring''' for example in examples: __lowercase =video_classifier(_lowerCAmelCase) self.assertEqual( _lowerCAmelCase , [ {'score': ANY(_lowerCAmelCase), 'label': ANY(_lowerCAmelCase)}, {'score': ANY(_lowerCAmelCase), 'label': ANY(_lowerCAmelCase)}, ] , ) @require_torch def __lowerCamelCase ( self : int): '''simple docstring''' __lowercase ='hf-internal-testing/tiny-random-VideoMAEForVideoClassification' __lowercase =VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0}) __lowercase =pipeline( 'video-classification' , model=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , frame_sampling_rate=4) __lowercase =hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset') __lowercase =video_classifier(_lowerCAmelCase , top_k=2) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4) , [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}] , ) __lowercase =video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_lowerCAmelCase , decimals=4) , [ [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], [{'score': 0.5199, 'label': 'LABEL_0'}, {'score': 0.4801, 'label': 'LABEL_1'}], ] , ) @require_tf def __lowerCamelCase ( self : List[Any]): '''simple docstring''' pass
48
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = ["""image_processor""", """tokenizer"""] lowerCAmelCase__ = """BridgeTowerImageProcessor""" lowerCAmelCase__ = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Any , _lowerCAmelCase : List[Any] , _lowerCAmelCase : List[Any]): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase) def __call__( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowerCAmelCase : bool = True , _lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , _lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : int = 0 , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : Optional[bool] = None , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = True , _lowerCAmelCase : Optional[Union[str, TensorType]] = None , **_lowerCAmelCase : Optional[Any] , ): '''simple docstring''' __lowercase =self.tokenizer( text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , stride=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , return_special_tokens_mask=_lowerCAmelCase , return_offsets_mapping=_lowerCAmelCase , return_length=_lowerCAmelCase , verbose=_lowerCAmelCase , return_tensors=_lowerCAmelCase , **_lowerCAmelCase , ) # add pixel_values + pixel_mask __lowercase =self.image_processor( _lowerCAmelCase , return_tensors=_lowerCAmelCase , do_normalize=_lowerCAmelCase , do_center_crop=_lowerCAmelCase , **_lowerCAmelCase) encoding.update(_lowerCAmelCase) return encoding def __lowerCamelCase ( self : List[str] , *_lowerCAmelCase : Dict , **_lowerCAmelCase : str): '''simple docstring''' return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase) def __lowerCamelCase ( self : Optional[Any] , *_lowerCAmelCase : Tuple , **_lowerCAmelCase : Union[str, Any]): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase) @property def __lowerCamelCase ( self : str): '''simple docstring''' __lowercase =self.tokenizer.model_input_names __lowercase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
48
1
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _a ( a :List[str] , a :Tuple , a :List[str] , a :Dict ) -> int: if isinstance(a , a ): a = np.full((len(a ), sequence_length, 2) , a ) else: a = np.full((len(a ), sequence_length) , a ) for i, tensor in enumerate(a ): if padding_side == "right": if isinstance(a , a ): a = tensor[:sequence_length] else: a = tensor[:sequence_length] else: if isinstance(a , a ): a = tensor[:sequence_length] else: a = tensor[:sequence_length] return out_tensor.tolist() def _a ( a :Optional[int] ) -> int: a = ord(a ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True a = unicodedata.category(a ) if cat.startswith('''P''' ): return True return False @dataclass class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = 42 __snake_case = True __snake_case = None __snake_case = None __snake_case = -1_00 __snake_case = "pt" def __lowerCAmelCase ( self : int , __UpperCAmelCase : Any ) ->Tuple: """simple docstring""" import torch a = '''label''' if '''label''' in features[0].keys() else '''labels''' a = [feature[label_name] for feature in features] if label_name in features[0].keys() else None a = self.tokenizer.pad( __UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' if labels is None else None , ) if labels is None: return batch a = torch.tensor(batch['''entity_ids'''] ).shape[1] a = self.tokenizer.padding_side if padding_side == "right": a = [ list(__UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) for label in labels ] else: a = [ [self.label_pad_token_id] * (sequence_length - len(__UpperCAmelCase )) + list(__UpperCAmelCase ) for label in labels ] a = [feature['''ner_tags'''] for feature in features] a = padding_tensor(__UpperCAmelCase , -1 , __UpperCAmelCase , __UpperCAmelCase ) a = [feature['''original_entity_spans'''] for feature in features] a = padding_tensor(__UpperCAmelCase , (-1, -1) , __UpperCAmelCase , __UpperCAmelCase ) a = {k: torch.tensor(__UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()} return batch
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase__ = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } UpperCAmelCase__ = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } UpperCAmelCase__ = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowercase_ ( lowercase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ElectraTokenizer def __init__( self : Dict , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : str="[UNK]" , __UpperCAmelCase : Any="[SEP]" , __UpperCAmelCase : str="[PAD]" , __UpperCAmelCase : Optional[Any]="[CLS]" , __UpperCAmelCase : Union[str, Any]="[MASK]" , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] , ) ->str: """simple docstring""" super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars ): a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__UpperCAmelCase ) a = do_lower_case def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple=None ) ->str: """simple docstring""" a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) ->Tuple[str]: """simple docstring""" a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase )
0
1
"""simple docstring""" def _A (__a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = len(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = sum(__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): SCREAMING_SNAKE_CASE_ : Dict = True for i in range(1 , s + 1 ): SCREAMING_SNAKE_CASE_ : List[str] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): SCREAMING_SNAKE_CASE_ : Any = dp[i][j - 1] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ : List[Any] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: SCREAMING_SNAKE_CASE_ : Union[str, Any] = s - 2 * j break return diff
318
"""simple docstring""" import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.inf def set_batch_size(__a ) -> None: nonlocal batch_size if isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__a , __a ): SCREAMING_SNAKE_CASE_ : int = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__a , __a ) and feature.dtype == "binary": SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(__a , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__a , __a ) return None if batch_size is np.inf else batch_size class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , lowercase_ : NestedDataStructureLike[PathLike] , lowercase_ : Optional[NamedSplit] = None , lowercase_ : Optional[Features] = None , lowercase_ : str = None , lowercase_ : bool = False , lowercase_ : bool = False , lowercase_ : Optional[int] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__( lowercase_ , split=lowercase_ , features=lowercase_ , cache_dir=lowercase_ , keep_in_memory=lowercase_ , streaming=lowercase_ , num_proc=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Any = path_or_paths if isinstance(lowercase_ , lowercase_) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE_ : Any = _PACKAGED_DATASETS_MODULES['''parquet'''][1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = Parquet( cache_dir=lowercase_ , data_files=lowercase_ , features=lowercase_ , hash=lowercase_ , **lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE_ : str = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Dict = None self.builder.download_and_prepare( download_config=lowercase_ , download_mode=lowercase_ , verification_mode=lowercase_ , base_path=lowercase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE_ : Any = self.builder.as_dataset( split=self.split , verification_mode=lowercase_ , in_memory=self.keep_in_memory) return dataset class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , lowercase_ : Dataset , lowercase_ : Union[PathLike, BinaryIO] , lowercase_ : Optional[int] = None , **lowercase_ : Dict , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = dataset SCREAMING_SNAKE_CASE_ : Dict = path_or_buf SCREAMING_SNAKE_CASE_ : List[Any] = batch_size or get_writer_batch_size(dataset.features) SCREAMING_SNAKE_CASE_ : Any = parquet_writer_kwargs def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with open(self.path_or_buf , '''wb+''') as buffer: SCREAMING_SNAKE_CASE_ : Optional[Any] = self._write(file_obj=lowercase_ , batch_size=lowercase_ , **self.parquet_writer_kwargs) else: SCREAMING_SNAKE_CASE_ : str = self._write(file_obj=self.path_or_buf , batch_size=lowercase_ , **self.parquet_writer_kwargs) return written def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : BinaryIO , lowercase_ : int , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dataset.features.arrow_schema SCREAMING_SNAKE_CASE_ : Tuple = pq.ParquetWriter(lowercase_ , schema=lowercase_ , **lowercase_) for offset in logging.tqdm( range(0 , len(self.dataset) , lowercase_) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): SCREAMING_SNAKE_CASE_ : List[Any] = query_table( table=self.dataset._data , key=slice(lowercase_ , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowercase_) written += batch.nbytes writer.close() return written
318
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def UpperCAmelCase ( a_ , a_ , a_=1E-12 ) -> List[str]: """simple docstring""" __A = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(a_ , axis=1 ) , a_min=a_ ) ).T __A = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(a_ , axis=1 ) , a_min=a_ ) ).T return jnp.matmul(a_ , norm_emb_a.T ) class UpperCAmelCase ( nn.Module ): '''simple docstring''' snake_case_ = 42 snake_case_ = jnp.floataa def UpperCamelCase_ ( self : List[str] ): __A = FlaxCLIPVisionModule(self.config.vision_config ) __A = nn.Dense(self.config.projection_dim ,use_bias=A ,dtype=self.dtype ) __A = self.param("concept_embeds" ,jax.nn.initializers.ones ,(17, self.config.projection_dim) ) __A = self.param( "special_care_embeds" ,jax.nn.initializers.ones ,(3, self.config.projection_dim) ) __A = self.param("concept_embeds_weights" ,jax.nn.initializers.ones ,(17,) ) __A = self.param("special_care_embeds_weights" ,jax.nn.initializers.ones ,(3,) ) def __call__( self : Tuple ,A : Any ): __A = self.vision_model(A )[1] __A = self.visual_projection(A ) __A = jax_cosine_distance(A ,self.special_care_embeds ) __A = jax_cosine_distance(A ,self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __A = 0.0 __A = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __A = jnp.round(A ,3 ) __A = jnp.any(special_scores > 0 ,axis=1 ,keepdims=A ) # Use a lower threshold if an image has any special care concept __A = is_special_care * 0.01 __A = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __A = jnp.round(A ,3 ) __A = jnp.any(concept_scores > 0 ,axis=1 ) return has_nsfw_concepts class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = CLIPConfig snake_case_ = "clip_input" snake_case_ = FlaxStableDiffusionSafetyCheckerModule def __init__( self : int ,A : CLIPConfig ,A : Optional[Tuple] = None ,A : int = 0 ,A : jnp.dtype = jnp.floataa ,A : bool = True ,**A : Tuple ,): if input_shape is None: __A = (1, 2_24, 2_24, 3) __A = self.module_class(config=A ,dtype=A ,**A ) super().__init__(A ,A ,input_shape=A ,seed=A ,dtype=A ,_do_init=_do_init ) def UpperCamelCase_ ( self : int ,A : jax.random.KeyArray ,A : Tuple ,A : FrozenDict = None ): # init input tensor __A = jax.random.normal(A ,A ) __A , __A = jax.random.split(A ) __A = {"params": params_rng, "dropout": dropout_rng} __A = self.module.init(A ,A )["params"] return random_params def __call__( self : Tuple ,A : Dict ,A : dict = None ,): __A = jnp.transpose(A ,(0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} ,jnp.array(A ,dtype=jnp.floataa ) ,rngs={} ,)
15
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = 'T5Config' def SCREAMING_SNAKE_CASE_ ( __A : jnp.array , __A : int , __A : int ) -> jnp.ndarray: """simple docstring""" a_ : Dict = jnp.zeros_like(__A ) a_ : Dict = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) a_ : str = shifted_input_ids.at[:, 0].set(__A ) a_ : int = jnp.where(shifted_input_ids == -1_00 , __A , __A ) return shifted_input_ids class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[Any] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = '''mt5''' snake_case__ : List[str] = MTaConfig class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Any = '''mt5''' snake_case__ : Union[str, Any] = MTaConfig
32
0
"""simple docstring""" import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap snake_case_ = """Usage of script: script_name <size_of_canvas:int>""" snake_case_ = [0] * 100 + [1] * 10 random.shuffle(choice) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = [[False for i in range(lowercase_ )] for j in range(lowercase_ )] return canvas def _lowerCAmelCase ( lowercase_ ): for i, row in enumerate(lowercase_ ): for j, _ in enumerate(lowercase_ ): UpperCAmelCase = bool(random.getrandbits(1 ) ) def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = np.array(lowercase_ ) UpperCAmelCase = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(lowercase_ ): for c, pt in enumerate(lowercase_ ): UpperCAmelCase = __judge_point( lowercase_ , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase = current_canvas.tolist() return return_canvas def _lowerCAmelCase ( lowercase_ , lowercase_ ): UpperCAmelCase = 0 UpperCAmelCase = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase = pt if pt: if alive < 2: UpperCAmelCase = False elif alive == 2 or alive == 3: UpperCAmelCase = True elif alive > 3: UpperCAmelCase = False else: if alive == 3: UpperCAmelCase = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) snake_case_ = int(sys.argv[1]) # main working structure of this module. snake_case_ = create_canvas(canvas_size) seed(c) snake_case_ , snake_case_ = plt.subplots() fig.show() snake_case_ = ListedColormap(["""w""", """k"""]) try: while True: snake_case_ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
355
"""simple docstring""" import math def _lowerCAmelCase ( lowercase_ ): assert isinstance(lowercase_ , lowercase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase = range(3 , int(math.sqrt(lowercase_ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def _lowerCAmelCase ( lowercase_ , lowercase_=1 , **lowercase_ ): UpperCAmelCase = factor * value UpperCAmelCase = value while not is_prime(lowercase_ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **lowercase_ ) return value
181
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A_ : List[Any] = logging.get_logger(__name__) A_ : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } A_ : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } A_ : Tuple = {'facebook/blenderbot-3B': 128} class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Any = VOCAB_FILES_NAMES UpperCAmelCase__: Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: List[Any] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: Optional[int] = BlenderbotTokenizer def __init__( self , A__=None , A__=None , A__=None , A__="replace" , A__="<s>" , A__="</s>" , A__="</s>" , A__="<s>" , A__="<unk>" , A__="<pad>" , A__="<mask>" , A__=False , A__=True , **A__ , ): super().__init__( A__ , A__ , tokenizer_file=A__ , errors=A__ , bos_token=A__ , eos_token=A__ , sep_token=A__ , cls_token=A__ , unk_token=A__ , pad_token=A__ , mask_token=A__ , add_prefix_space=A__ , trim_offsets=A__ , **A__ , ) A__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , A__ ) != add_prefix_space: A__ : Optional[int] = getattr(A__ , pre_tok_state.pop("""type""" ) ) A__ : str = add_prefix_space A__ : int = pre_tok_class(**A__ ) A__ : Optional[Any] = add_prefix_space A__ : List[str] = """post_processor""" A__ : Tuple = getattr(self.backend_tokenizer , A__ , A__ ) if tokenizer_component_instance: A__ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: A__ : int = tuple(state["""sep"""] ) if "cls" in state: A__ : List[Any] = tuple(state["""cls"""] ) A__ : List[str] = False if state.get("""add_prefix_space""" , A__ ) != add_prefix_space: A__ : Tuple = add_prefix_space A__ : Optional[int] = True if state.get("""trim_offsets""" , A__ ) != trim_offsets: A__ : str = trim_offsets A__ : Union[str, Any] = True if changes_to_apply: A__ : Tuple = getattr(A__ , state.pop("""type""" ) ) A__ : str = component_class(**A__ ) setattr(self.backend_tokenizer , A__ , A__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __A ( self ): if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def __A ( self , A__ ): A__ : Optional[int] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else value A__ : List[Any] = value def __A ( self , *A__ , **A__ ): A__ : List[Any] = kwargs.get("""is_split_into_words""" , A__ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A__ , **A__ ) def __A ( self , *A__ , **A__ ): A__ : Optional[int] = kwargs.get("""is_split_into_words""" , A__ ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*A__ , **A__ ) def __A ( self , A__ , A__ = None ): A__ : Union[str, Any] = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def __A ( self , A__ , A__ = None ): A__ : Any = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , A__ , A__ = None ): return token_ids_a + [self.eos_token_id] def __A ( self , A__ ): A__ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(A__ ) A__ : Optional[Any] = """ """.join(A__ ) A__ : Union[str, Any] = self.encode(A__ ) if len(A__ ) > self.model_max_length: A__ : Union[str, Any] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
192
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase (lowercase_: str ) -> Dict: A__ : int = int(lowercase_ ) A__ , A__ , A__ : Tuple = t // 3600, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def UpperCamelCase (lowercase_: str , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Tuple , lowercase_: Any=300 ) -> Optional[int]: # docstyle-ignore return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def UpperCamelCase (lowercase_: Tuple ) -> Optional[int]: A__ : Tuple = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: A__ : str = f"""{elt:.6f}""" if isinstance(lowercase_ , lowercase_ ) else str(lowercase_ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _a : '''simple docstring''' UpperCAmelCase__: str = 5 UpperCAmelCase__: int = 0.2 def __init__( self , A__ , A__ = None , A__ = True , A__ = None , A__ = 300 , ): A__ : Optional[int] = total A__ : Tuple = """""" if prefix is None else prefix A__ : str = leave A__ : str = parent A__ : int = width A__ : Dict = None A__ : List[str] = None A__ : Optional[int] = None def __A ( self , A__ , A__ = False , A__ = None ): A__ : Tuple = value if comment is not None: A__ : Any = comment if self.last_value is None: A__ : int = time.time() A__ : Dict = value A__ : int = None A__ : int = self.warmup A__ : str = 1 self.update_bar(A__ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 A__ : Any = time.time() A__ : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: A__ : Dict = self.elapsed_time / (value - self.start_value) else: A__ : List[str] = None if value >= self.total: A__ : Optional[Any] = self.total A__ : List[Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: A__ : List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(A__ ) A__ : Any = value A__ : List[str] = current_time if self.average_time_per_item is None: A__ : str = 1 else: A__ : Optional[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __A ( self , A__ , A__=None ): A__ : Tuple = """ """ * (len(str(self.total ) ) - len(str(A__ ) )) + str(A__ ) if self.elapsed_time is None: A__ : Union[str, Any] = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: A__ : Tuple = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: A__ : Optional[int] = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __A ( self ): A__ : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: A__ : str = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , A__ , A__=None ): super().__init__(A__ ) A__ : Optional[Any] = None if column_names is None else [column_names] A__ : Optional[Any] = None def __A ( self ): A__ : List[str] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: A__ : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=A__ ) else: self.output.update(disp.HTML(self.html_code ) ) def __A ( self , A__ ): if self.inner_table is None: A__ : List[str] = [list(values.keys() ), list(values.values() )] else: A__ : Optional[Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(A__ ) A__ : Any = columns self.inner_table.append([values[c] for c in columns] ) def __A ( self , A__ , A__=None , A__=300 ): A__ : Optional[Any] = NotebookProgressBar(A__ , prefix=A__ , parent=self , width=A__ ) return self.child_bar def __A ( self ): A__ : List[str] = None self.display() class _a (__magic_name__ ): '''simple docstring''' def __init__( self ): A__ : int = None A__ : List[str] = None A__ : Union[str, Any] = False def __A ( self , A__ , A__ , A__ , **A__ ): A__ : List[str] = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" A__ : Dict = 0 A__ : Tuple = 0 A__ : Optional[int] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) A__ : Union[str, Any] = NotebookTrainingTracker(state.max_steps , A__ ) def __A ( self , A__ , A__ , A__ , **A__ ): A__ : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) A__ : str = False def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if not has_length(A__ ): return if self.prediction_bar is None: if self.training_tracker is not None: A__ : Union[str, Any] = self.training_tracker.add_child(len(A__ ) ) else: A__ : Tuple = NotebookProgressBar(len(A__ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __A ( self , A__ , A__ , A__ , **A__ ): if self.prediction_bar is not None: self.prediction_bar.close() A__ : List[str] = None def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: A__ : Dict = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy A__ : List[Any] = state.global_step self.training_tracker.write_line(A__ ) def __A ( self , A__ , A__ , A__ , A__=None , **A__ ): if self.training_tracker is not None: A__ : Tuple = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: A__ : Dict = log["""loss"""] break if self.first_column == "Epoch": A__ : List[Any] = int(state.epoch ) else: A__ : Optional[Any] = state.global_step A__ : Optional[Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): A__ : Optional[int] = re.sub(r"""\_loss$""" , """""" , A__ ) A__ : int = metrics.pop("""total_flos""" , A__ ) A__ : int = metrics.pop("""epoch""" , A__ ) A__ : Optional[int] = metrics.pop(F"""{metric_key_prefix}_runtime""" , A__ ) A__ : Any = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , A__ ) A__ : List[Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , A__ ) A__ : Optional[Any] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , A__ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": A__ : Any = v else: A__ : Optional[Any] = k.split("""_""" ) A__ : Any = """ """.join([part.capitalize() for part in splits[1:]] ) A__ : List[str] = v self.training_tracker.write_line(A__ ) self.training_tracker.remove_child() A__ : Dict = None # Evaluation takes a long time so we should force the next update. A__ : Union[str, Any] = True def __A ( self , A__ , A__ , A__ , **A__ ): self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=A__ ) A__ : Optional[int] = None
192
1
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__=12 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=99 , __magic_name__=32 , __magic_name__=32 , __magic_name__=2 , __magic_name__=4 , __magic_name__=37 , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=512 , __magic_name__=0.02 , __magic_name__=0 , __magic_name__=None , ) -> Tuple: '''simple docstring''' snake_case_ : Dict = parent snake_case_ : Any = batch_size snake_case_ : Tuple = seq_length snake_case_ : Optional[int] = is_training snake_case_ : str = use_input_mask snake_case_ : Union[str, Any] = use_labels snake_case_ : Optional[int] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : List[Any] = projection_dim snake_case_ : Dict = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Optional[int] = intermediate_size snake_case_ : Optional[Any] = dropout snake_case_ : Optional[Any] = attention_dropout snake_case_ : int = max_position_embeddings snake_case_ : Optional[Any] = initializer_range snake_case_ : str = scope snake_case_ : Dict = bos_token_id def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_input_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: snake_case_ : Optional[int] = input_mask.numpy() snake_case_ , snake_case_ : List[Any] = input_mask.shape snake_case_ : Dict = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__magic_name__ ): snake_case_ : List[Any] = 1 snake_case_ : Optional[Any] = 0 snake_case_ : str = self.get_config() return config, input_ids, tf.convert_to_tensor(__magic_name__ ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = TFBlipTextModel(config=__magic_name__ ) snake_case_ : List[str] = model(__magic_name__ , attention_mask=__magic_name__ , training=__magic_name__ ) snake_case_ : Tuple = model(__magic_name__ , training=__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : List[str] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : Tuple = config_and_inputs snake_case_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : str = (TFBlipTextModel,) if is_tf_available() else () lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : Any = False lowerCamelCase_ : List[Any] = False def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : List[Any] = BlipTextModelTester(self ) snake_case_ : Optional[int] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' pass def lowerCamelCase (self ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def lowerCamelCase (self ) -> str: '''simple docstring''' pass @slow def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Dict = TFBlipTextModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowerCamelCase (self , __magic_name__=True ) -> List[Any]: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__magic_name__ )
279
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __lowerCAmelCase ( _a ): lowerCamelCase_ : Any = '''biogpt''' def __init__(self , __magic_name__=4_2384 , __magic_name__=1024 , __magic_name__=24 , __magic_name__=16 , __magic_name__=4096 , __magic_name__="gelu" , __magic_name__=0.1 , __magic_name__=0.1 , __magic_name__=1024 , __magic_name__=0.02 , __magic_name__=1e-12 , __magic_name__=True , __magic_name__=True , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=1 , __magic_name__=0 , __magic_name__=2 , **__magic_name__ , ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = vocab_size snake_case_ : Dict = max_position_embeddings snake_case_ : Optional[int] = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : List[str] = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : List[Any] = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Optional[int] = initializer_range snake_case_ : Optional[int] = layer_norm_eps snake_case_ : str = scale_embedding snake_case_ : Optional[Any] = use_cache snake_case_ : Optional[Any] = layerdrop snake_case_ : Optional[Any] = activation_dropout super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ )
279
1
'''simple docstring''' from __future__ import annotations import bisect def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' if hi < 0: lowerCAmelCase_ : Optional[Any] = len(UpperCamelCase_ ) while lo < hi: lowerCAmelCase_ : int = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCAmelCase_ : Dict = mid + 1 else: lowerCAmelCase_ : Optional[Any] = mid return lo def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' if hi < 0: lowerCAmelCase_ : str = len(UpperCamelCase_ ) while lo < hi: lowerCAmelCase_ : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCAmelCase_ : Union[str, Any] = mid + 1 else: lowerCAmelCase_ : Any = mid return lo def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int = 0 , A__ : int = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) def UpperCamelCase_ ( A__ : list[int] , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : int = len(UpperCamelCase_ ) - 1 while left <= right: lowerCAmelCase_ : Union[str, Any] = left + (right - left) // 2 lowerCAmelCase_ : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCAmelCase_ : List[str] = midpoint - 1 else: lowerCAmelCase_ : Optional[int] = midpoint + 1 return None def UpperCamelCase_ ( A__ : list[int] , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = bisect.bisect_left(UpperCamelCase_ , UpperCamelCase_ ) if index != len(UpperCamelCase_ ) and sorted_collection[index] == item: return index return None def UpperCamelCase_ ( A__ : list[int] , A__ : int , A__ : int , A__ : int ): '''simple docstring''' if right < left: return None lowerCAmelCase_ : Any = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCamelCase_ , UpperCamelCase_ , midpoint + 1 , UpperCamelCase_ ) if __name__ == "__main__": __A : Tuple = input("Enter numbers separated by comma:\n").strip() __A : Dict = sorted(int(item) for item in user_input.split(",")) __A : int = int(input("Enter a single number to be found in the list:\n")) __A : Optional[Any] = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
120
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple ) -> List[str]: """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: lowerCAmelCase__ = TOKENIZER_CLASSES else: lowerCAmelCase__ = {tokenizer_name: getattr(UpperCamelCase_ , tokenizer_name + "Fast" )} logger.info(F"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: lowerCAmelCase__ = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase__ = True if checkpoint_name is None: lowerCAmelCase__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase__ = [checkpoint_name] logger.info(F"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(F"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer lowerCAmelCase__ = tokenizer_class.from_pretrained(UpperCamelCase_ , force_download=UpperCamelCase_ ) # Save fast tokenizer logger.info(F"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase__ , lowerCAmelCase__ = checkpoint.split("/" ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) elif add_prefix: lowerCAmelCase__ = checkpoint lowerCAmelCase__ = dump_path else: lowerCAmelCase__ = None lowerCAmelCase__ = dump_path logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase__ = file_path.split(UpperCamelCase_ )[-1][0] if next_char == "/": lowerCAmelCase__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = None logger.info(F"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) lowerCAmelCase__ = tokenizer.save_pretrained( UpperCamelCase_ , legacy_format=UpperCamelCase_ , filename_prefix=UpperCamelCase_ ) logger.info(F"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(UpperCamelCase_ ) logger.info(F"=> removing {file_name}" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a_ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
340
0
"""simple docstring""" import random def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = num - 1 A__ = 0 while s % 2 == 0: A__ = s // 2 t += 1 for _ in range(5 ): A__ = random.randrange(2 , num - 1 ) A__ = pow(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if v != 1: A__ = 0 while v != (num - 1): if i == t - 1: return False else: A__ = i + 1 A__ = (v**2) % num return True def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if num < 2: return False A__ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ = 1_024 ): """simple docstring""" while True: A__ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(UpperCamelCase__ ): return num if __name__ == "__main__": __lowerCamelCase = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
154
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__( __A , __A , __A , unittest.TestCase ): lowerCAmelCase__ : str = StableUnCLIPPipeline lowerCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCAmelCase__ : Optional[Any] = False def snake_case__ ( self ) -> List[Any]: A__ = 32 A__ = embedder_hidden_size # prior components torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=__UpperCAmelCase ,projection_dim=__UpperCAmelCase ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) ) torch.manual_seed(0 ) A__ = PriorTransformer( num_attention_heads=2 ,attention_head_dim=12 ,embedding_dim=__UpperCAmelCase ,num_layers=1 ,) torch.manual_seed(0 ) A__ = DDPMScheduler( variance_type='fixed_small_log' ,prediction_type='sample' ,num_train_timesteps=10_00 ,clip_sample=__UpperCAmelCase ,clip_sample_range=5.0 ,beta_schedule='squaredcos_cap_v2' ,) # regular denoising components torch.manual_seed(0 ) A__ = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase ) A__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=__UpperCAmelCase ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) ) torch.manual_seed(0 ) A__ = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type='projection' ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=__UpperCAmelCase ,layers_per_block=1 ,upcast_attention=__UpperCAmelCase ,use_linear_projection=__UpperCAmelCase ,) torch.manual_seed(0 ) A__ = DDIMScheduler( beta_schedule='scaled_linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,prediction_type='v_prediction' ,set_alpha_to_one=__UpperCAmelCase ,steps_offset=1 ,) torch.manual_seed(0 ) A__ = AutoencoderKL() A__ = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> str: if str(__UpperCAmelCase ).startswith('mps' ): A__ = torch.manual_seed(__UpperCAmelCase ) else: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> List[Any]: A__ = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase ) def snake_case__ ( self ) -> int: A__ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase ) @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> List[Any]: A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ = pipe('anime turle' ,generator=__UpperCAmelCase ,output_type='np' ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) A__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = pipe( 'anime turtle' ,prior_num_inference_steps=2 ,num_inference_steps=2 ,output_type='np' ,) A__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
154
1
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A = '▁' A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __lowercase ( snake_case__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BertGenerationTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def _lowerCamelCase ( self ): super().setUp() __a : Optional[int] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): __a : List[Any] = "<s>" __a : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def _lowerCamelCase ( self ): __a : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(snake_case__ ) , 1002 ) def _lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): __a : Optional[int] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) __a : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(snake_case__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] , ) __a : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __a : Any = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __a : Any = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowerCamelCase ( self ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def _lowerCamelCase ( self ): __a : Optional[Any] = "Hello World!" __a : str = [18536, 2260, 101] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def _lowerCamelCase ( self ): __a : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) __a : Optional[Any] = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @require_torch @slow def _lowerCamelCase ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __a : int = list(self.big_tokenizer.get_vocab().keys() )[:10] __a : Tuple = " ".join(snake_case__ ) __a : Tuple = self.big_tokenizer.encode_plus(snake_case__ , return_tensors='''pt''' , return_token_type_ids=snake_case__ ) __a : List[str] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=snake_case__ ) __a : int = BertGenerationConfig() __a : Any = BertGenerationEncoder(snake_case__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case__ ) model(**snake_case__ ) @slow def _lowerCamelCase ( self ): # fmt: off __a : int = {"input_ids": [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
160
"""simple docstring""" import os def _snake_case ( ) -> Dict: with open(os.path.dirname(lowerCamelCase__ ) + "/p022_names.txt" ) as file: lowerCamelCase_ : str =str(file.readlines()[0] ) lowerCamelCase_ : Union[str, Any] =names.replace("\"" , "" ).split("," ) names.sort() lowerCamelCase_ : str =0 lowerCamelCase_ : Optional[int] =0 for i, name in enumerate(lowerCamelCase__ ): for letter in name: name_score += ord(lowerCamelCase__ ) - 64 total_score += (i + 1) * name_score lowerCamelCase_ : List[Any] =0 return total_score if __name__ == "__main__": print(solution())
144
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Any=1_3, _UpperCAmelCase : Dict=3_0, _UpperCAmelCase : Dict=2, _UpperCAmelCase : Dict=3, _UpperCAmelCase : Optional[Any]=True, _UpperCAmelCase : Any=True, _UpperCAmelCase : Dict=3_2, _UpperCAmelCase : str=2, _UpperCAmelCase : List[Any]=4, _UpperCAmelCase : Tuple=3_7, _UpperCAmelCase : Dict="gelu", _UpperCAmelCase : Optional[Any]=0.1, _UpperCAmelCase : List[Any]=0.1, _UpperCAmelCase : Tuple=1_0, _UpperCAmelCase : Dict=0.02, _UpperCAmelCase : Union[str, Any]=3, _UpperCAmelCase : List[str]=0.6, _UpperCAmelCase : Tuple=None, ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = parent SCREAMING_SNAKE_CASE__ : Any = batch_size SCREAMING_SNAKE_CASE__ : int = image_size SCREAMING_SNAKE_CASE__ : str = patch_size SCREAMING_SNAKE_CASE__ : Dict = num_channels SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : str = use_labels SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : List[str] = num_attention_heads SCREAMING_SNAKE_CASE__ : int = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE__ : Any = mask_ratio SCREAMING_SNAKE_CASE__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ : Dict = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def A_ ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = self.get_config() return config, pixel_values, labels def A_ ( self : int ) -> str: """simple docstring""" return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__snake_case, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def A_ ( self : Tuple, _UpperCAmelCase : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFViTMAEModel(config=__snake_case ) SCREAMING_SNAKE_CASE__ : str = model(__snake_case, training=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : Tuple, _UpperCAmelCase : Dict, _UpperCAmelCase : Any, _UpperCAmelCase : str ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = TFViTMAEForPreTraining(__snake_case ) SCREAMING_SNAKE_CASE__ : int = model(__snake_case, training=__snake_case ) # expected sequence length = num_patches SCREAMING_SNAKE_CASE__ : Dict = (self.image_size // self.patch_size) ** 2 SCREAMING_SNAKE_CASE__ : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : List[str] = TFViTMAEForPreTraining(__snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(__snake_case, training=__snake_case ) SCREAMING_SNAKE_CASE__ : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels) ) def A_ ( self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__)) : Dict = config_and_inputs SCREAMING_SNAKE_CASE__ : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () UpperCAmelCase_ = {'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFViTMAEModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self, config_class=__snake_case, has_text_modality=__snake_case, hidden_size=3_7 ) def A_ ( self : str ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def A_ ( self : str ) -> int: """simple docstring""" pass def A_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer) ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case, tf.keras.layers.Layer ) ) def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Tuple = model_class(__snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1], __snake_case ) def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__snake_case ) def A_ ( self : List[Any] ) -> Any: """simple docstring""" # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(__snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = self._prepare_for_class(__snake_case, __snake_case ) SCREAMING_SNAKE_CASE__ : str = model(__snake_case, noise=__snake_case ) SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self._prepare_for_class(__snake_case, __snake_case ) ) SCREAMING_SNAKE_CASE__ : int = model(**__snake_case, noise=__snake_case ) SCREAMING_SNAKE_CASE__ : Optional[int] = outputs_dict[0].numpy() SCREAMING_SNAKE_CASE__ : Optional[int] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ), 1E-6 ) def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" # make the mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(_UpperCAmelCase : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(__snake_case ): SCREAMING_SNAKE_CASE__ : List[Any] = v.numpy() else: SCREAMING_SNAKE_CASE__ : str = np.array(__snake_case ) return inputs_np_dict for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(__snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = self._prepare_for_class(__snake_case, __snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = prepare_numpy_arrays(__snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(__snake_case, noise=__snake_case ) SCREAMING_SNAKE_CASE__ : int = model(**__snake_case, noise=__snake_case ) self.assert_outputs_same(__snake_case, __snake_case ) def A_ ( self : Any, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" # make masks reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE__ : List[str] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE__ : Dict = tf.constant(__snake_case ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument SCREAMING_SNAKE_CASE__ : List[Any] = tf_noise super().check_pt_tf_models(__snake_case, __snake_case, __snake_case ) def A_ ( self : Any ) -> Optional[int]: """simple docstring""" # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__snake_case ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(__snake_case, __snake_case ),) if isinstance(__snake_case, __snake_case ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__snake_case, "_keras_serializable", __snake_case ) } SCREAMING_SNAKE_CASE__ : List[Any] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.convert_to_tensor(__snake_case ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: SCREAMING_SNAKE_CASE__ : str = main_layer_class(__snake_case ) SCREAMING_SNAKE_CASE__ : Dict = { name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } SCREAMING_SNAKE_CASE__ : int = tf.keras.Model(__snake_case, outputs=main_layer(__snake_case ) ) SCREAMING_SNAKE_CASE__ : List[Any] = model(__snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : str = os.path.join(__snake_case, "keras_model.h5" ) model.save(__snake_case ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.keras.models.load_model( __snake_case, custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__snake_case, tf.keras.Model ) SCREAMING_SNAKE_CASE__ : List[Any] = model(__snake_case ) self.assert_outputs_same(__snake_case, __snake_case ) @slow def A_ ( self : str ) -> int: """simple docstring""" # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(__snake_case ) SCREAMING_SNAKE_CASE__ : List[str] = self._prepare_for_class(__snake_case, __snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = model(__snake_case, noise=__snake_case ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE__ : int = outputs.last_hidden_state.numpy() SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 else: SCREAMING_SNAKE_CASE__ : Any = outputs.logits.numpy() SCREAMING_SNAKE_CASE__ : Dict = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case, saved_model=__snake_case ) SCREAMING_SNAKE_CASE__ : Any = model_class.from_pretrained(__snake_case ) SCREAMING_SNAKE_CASE__ : int = model(__snake_case, noise=__snake_case ) if model_class.__name__ == "TFViTMAEModel": SCREAMING_SNAKE_CASE__ : Optional[Any] = after_outputs["last_hidden_state"].numpy() SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 else: SCREAMING_SNAKE_CASE__ : Any = after_outputs["logits"].numpy() SCREAMING_SNAKE_CASE__ : List[str] = 0 SCREAMING_SNAKE_CASE__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__snake_case, 1E-5 ) def A_ ( self : List[str] ) -> List[Any]: """simple docstring""" # make mask reproducible np.random.seed(2 ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(__snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(__snake_case, __snake_case ) SCREAMING_SNAKE_CASE__ : str = model(__snake_case, noise=__snake_case ) SCREAMING_SNAKE_CASE__ : int = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__snake_case ) SCREAMING_SNAKE_CASE__ : Dict = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config SCREAMING_SNAKE_CASE__ : Tuple = model_class.from_config(model.config ) SCREAMING_SNAKE_CASE__ : int = new_model(__snake_case ) # Build model new_model.set_weights(model.get_weights() ) SCREAMING_SNAKE_CASE__ : Optional[Any] = new_model(__snake_case, noise=__snake_case ) self.assert_outputs_same(__snake_case, __snake_case ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def A_ ( self : Optional[Any] ) -> Dict: """simple docstring""" pass @slow def A_ ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__snake_case ) def _a ( ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def A_ ( self : List[str] ) -> str: """simple docstring""" # make random mask reproducible across the PT and TF model np.random.seed(2 ) SCREAMING_SNAKE_CASE__ : Dict = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Any = prepare_img() SCREAMING_SNAKE_CASE__ : int = image_processor(images=__snake_case, return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) SCREAMING_SNAKE_CASE__ : str = ViTMAEConfig() SCREAMING_SNAKE_CASE__ : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass SCREAMING_SNAKE_CASE__ : Dict = model(**__snake_case, noise=__snake_case ) # verify the logits SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape, __snake_case ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], __snake_case, atol=1E-4 )
371
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = '''%20'''.join(argv[1:]) if len(argv) > 1 else quote(str(input('''Search: '''))) print('''Googling.....''') _lowerCamelCase : Any = f"https://www.google.com/search?q={query}&num=100" _lowerCamelCase : Optional[Any] = requests.get( url, headers={'''User-Agent''': str(UserAgent().random)}, ) try: _lowerCamelCase : Union[str, Any] = ( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''yuRUbf'''}) .find('''a''') .get('''href''') ) except AttributeError: _lowerCamelCase : Optional[Any] = parse_qs( BeautifulSoup(res.text, '''html.parser''') .find('''div''', attrs={'''class''': '''kCrYT'''}) .find('''a''') .get('''href''') )['''url'''][0] webbrowser.open(link)
191
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch UpperCamelCase = random.Random() def lowercase_ ( _lowerCamelCase : int , _lowerCamelCase : Optional[Any]=1.0 , _lowerCamelCase : int=None , _lowerCamelCase : int=None): if rng is None: lowercase__ : Optional[int] = global_rng lowercase__ : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class snake_case_ ( unittest.TestCase ): def __init__( self : Optional[Any] , lowercase_ : Any , lowercase_ : Any=7 , lowercase_ : List[str]=4_00 , lowercase_ : int=20_00 , lowercase_ : Union[str, Any]=10 , lowercase_ : Tuple=1_60 , lowercase_ : Dict=8 , lowercase_ : Dict=0.0 , lowercase_ : List[Any]=40_00 , lowercase_ : Optional[Any]=False , lowercase_ : Tuple=True , ) -> List[Any]: lowercase__ : Any = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = min_seq_length lowercase__ : Optional[Any] = max_seq_length lowercase__ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : Tuple = padding_value lowercase__ : Optional[Any] = sampling_rate lowercase__ : Optional[int] = return_attention_mask lowercase__ : Union[str, Any] = do_normalize lowercase__ : List[str] = feature_size lowercase__ : List[str] = chunk_length lowercase__ : List[Any] = hop_length def __UpperCamelCase ( self : Dict ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self : Union[str, Any] , lowercase_ : str=False , lowercase_ : Optional[int]=False ) -> Union[str, Any]: def _flatten(lowercase_ : List[str] ): return list(itertools.chain(*lowercase_ ) ) if equal_length: lowercase__ : List[str] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Tuple = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case_ ( __A ,unittest.TestCase ): __A : Any = WhisperFeatureExtractor if is_speech_available() else None def __UpperCamelCase ( self : Dict ) -> Dict: lowercase__ : Tuple = WhisperFeatureExtractionTester(self ) def __UpperCamelCase ( self : str ) -> Optional[int]: lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Union[str, Any] = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) lowercase__ : Optional[int] = self.feature_extraction_class.from_pretrained(lowercase_ ) lowercase__ : Union[str, Any] = feat_extract_first.to_dict() lowercase__ : List[Any] = feat_extract_second.to_dict() lowercase__ : Optional[Any] = feat_extract_first.mel_filters lowercase__ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Tuple ) -> Any: lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ : Optional[Any] = os.path.join(lowercase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowercase_ ) lowercase__ : Optional[Any] = self.feature_extraction_class.from_json_file(lowercase_ ) lowercase__ : List[Any] = feat_extract_first.to_dict() lowercase__ : Tuple = feat_extract_second.to_dict() lowercase__ : int = feat_extract_first.mel_filters lowercase__ : str = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus lowercase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase__ : Tuple = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test feature size lowercase__ : Dict = feature_extractor(lowercase_ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowercase__ : str = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features lowercase__ : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test batched lowercase__ : Union[str, Any] = feature_extractor(lowercase_ , return_tensors="np" ).input_features lowercase__ : Any = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowercase__ : Optional[Any] = np.asarray(lowercase_ ) lowercase__ : Tuple = feature_extractor(lowercase_ , return_tensors="np" ).input_features lowercase__ : Tuple = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) # Test truncation required lowercase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] lowercase__ : int = [np.asarray(lowercase_ ) for speech_input in speech_inputs] lowercase__ : Optional[int] = [x[: feature_extractor.n_samples] for x in speech_inputs] lowercase__ : Optional[int] = [np.asarray(lowercase_ ) for speech_input in speech_inputs_truncated] lowercase__ : List[str] = feature_extractor(lowercase_ , return_tensors="np" ).input_features lowercase__ : Tuple = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) ) def __UpperCamelCase ( self : int ) -> Dict: import torch lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowercase__ : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowercase__ : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : Optional[int] ) -> List[Any]: lowercase__ : int = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : Dict = ds.sort("id" ).select(range(lowercase_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : Tuple ) -> Tuple: # fmt: off lowercase__ : Any = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on lowercase__ : Dict = self._load_datasamples(1 ) lowercase__ : Union[str, Any] = WhisperFeatureExtractor() lowercase__ : List[Any] = feature_extractor(lowercase_ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowercase_ , atol=1E-4 ) ) def __UpperCamelCase ( self : Any ) -> str: lowercase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Tuple = self._load_datasamples(1 )[0] lowercase__ : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue lowercase__ : str = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowercase_ )[0] self.assertTrue(np.all(np.mean(lowercase_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ ) - 1 ) < 1E-3 ) )
87
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) @dataclass class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self , **__snake_case ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case = deprecated_arg[3:] setattr(self , __snake_case , not kwargs.pop(__snake_case ) ) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''' ) snake_case = kwargs.pop('''torchscript''' , self.torchscript ) snake_case = kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) snake_case = kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**__snake_case ) __magic_name__ = field(default=snake_case__ , metadata={'help': 'Trace the models using torchscript'} ) __magic_name__ = field(default=snake_case__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) __magic_name__ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def a_ ( self ): requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: snake_case = torch.device('''cpu''' ) snake_case = 0 elif is_torch_tpu_available(): snake_case = xm.xla_device() snake_case = 0 else: snake_case = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case = torch.cuda.device_count() return device, n_gpu @property def a_ ( self ): return is_torch_tpu_available() and self.tpu @property def a_ ( self ): requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def a_ ( self ): requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def a_ ( self ): requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def a_ ( self ): return self.n_gpu > 0
127
0
__A = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def snake_case_(_UpperCamelCase ) -> str: """simple docstring""" assert type(_UpperCamelCase ) in (int, float) and decimal == int(_UpperCamelCase ) _snake_case = int(_UpperCamelCase ) _snake_case = '''''' _snake_case = False if decimal < 0: _snake_case = True decimal *= -1 while decimal > 0: _snake_case, _snake_case = divmod(_UpperCamelCase , 16 ) _snake_case = values[remainder] + hexadecimal _snake_case = '''0x''' + hexadecimal if negative: _snake_case = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
278
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A = { '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
278
1
"""simple docstring""" from __future__ import annotations def __magic_name__ ( __snake_case : str , __snake_case : list[str] | None = None ) -> list[list[str]]: lowercase : List[str] = word_bank or [] # create a table lowercase : int = len(__snake_case ) + 1 lowercase : list[list[list[str]]] = [] for _ in range(__snake_case ): table.append([] ) # seed value lowercase : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(__snake_case ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__snake_case )] == word: lowercase : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__snake_case )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__snake_case )]: combination.reverse() return table[len(__snake_case )] if __name__ == "__main__": print(all_construct("""jwajalapa""", ["""jwa""", """j""", """w""", """a""", """la""", """lapa"""])) print(all_construct("""rajamati""", ["""s""", """raj""", """amat""", """raja""", """ma""", """i""", """t"""])) print( all_construct( """hexagonosaurus""", ["""h""", """ex""", """hex""", """ag""", """ago""", """ru""", """auru""", """rus""", """go""", """no""", """o""", """s"""], ) )
202
"""simple docstring""" from __future__ import annotations def __magic_name__ ( __snake_case : list[int] ) -> list[int]: if len(__snake_case ) == 0: return array lowercase , lowercase : Tuple = min(__snake_case ), max(__snake_case ) # Compute the variables lowercase : Optional[Any] = _max - _min + 1 lowercase , lowercase : List[str] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase : Tuple = i - _min lowercase : str = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase : Union[str, Any] = 0 for i in range(__snake_case ): while holes_repeat[i] > 0: lowercase : Tuple = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _A : str = input("""Enter numbers separated by comma:\n""") _A : Optional[Any] = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
202
1
"""simple docstring""" def lowercase ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
326
"""simple docstring""" # DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = None def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=0.999 , _SCREAMING_SNAKE_CASE : Any="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : Any ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _UpperCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = i / num_diffusion_timesteps _UpperCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class _a ( lowerCAmelCase , lowerCAmelCase): """simple docstring""" UpperCamelCase__ = 1 @register_to_config def __init__( self : List[Any] , __UpperCamelCase : int = 1_0_0_0 , __UpperCamelCase : float = 0.0_0_0_1 , __UpperCamelCase : float = 0.0_2 , __UpperCamelCase : str = "linear" , __UpperCamelCase : Optional[Union[np.ndarray, List[float]]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : int = 0 , __UpperCamelCase : str = "epsilon" , __UpperCamelCase : float = 1.0 , **__UpperCamelCase : Optional[int] , )->Dict: if kwargs.get('''set_alpha_to_one''' , __UpperCamelCase ) is not None: _UpperCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _UpperCAmelCase = torch.tensor(__UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _UpperCAmelCase = torch.linspace(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __UpperCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase = betas_for_alpha_bar(__UpperCamelCase ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _UpperCAmelCase = 1.0 - self.betas _UpperCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _UpperCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _UpperCAmelCase = 1.0 # setable values _UpperCAmelCase = None _UpperCAmelCase = torch.from_numpy(np.arange(0 , __UpperCamelCase ).copy().astype(np.intaa ) ) def lowercase__ ( self : str , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : Optional[int] = None )->torch.FloatTensor: return sample def lowercase__ ( self : Any , __UpperCamelCase : int , __UpperCamelCase : Union[str, torch.device] = None )->Any: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:' F' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle' F' maximal {self.config.num_train_timesteps} timesteps.' ) _UpperCAmelCase = num_inference_steps _UpperCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _UpperCAmelCase = (np.arange(0 , __UpperCamelCase ) * step_ratio).round().copy().astype(np.intaa ) _UpperCAmelCase = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) self.timesteps += self.config.steps_offset def lowercase__ ( self : Any , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor , __UpperCamelCase : float = 0.0 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[torch.FloatTensor] = None , __UpperCamelCase : bool = True , )->Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) _UpperCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _UpperCAmelCase = self.alphas_cumprod[timestep] _UpperCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _UpperCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _UpperCAmelCase = model_output elif self.config.prediction_type == "sample": _UpperCAmelCase = model_output _UpperCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _UpperCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _UpperCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _UpperCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase ) def __len__( self : Any )->str: return self.config.num_train_timesteps
326
1
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
81
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCamelCase_ : Any = logging.get_logger(__name__) lowerCamelCase_ : Optional[Any] = """▁""" lowerCamelCase_ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase_ : Any = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } lowerCamelCase_ : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , __A , __A="<s>" , __A="</s>" , __A="</s>" , __A="<s>" , __A="<unk>" , __A="<pad>" , __A="<mask>" , __A = None , **__A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token a ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__A ) ) a =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a =1 a =len(self.sp_model ) + self.fairseq_offset a ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: a =self.__dict__.copy() a =None a =self.sp_model.serialized_model_proto() return state def __setstate__( self , __A ) -> List[Any]: a =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a ={} a =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a =[self.cls_token_id] a =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is None: return [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ) -> List[str]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a ={self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]: return self.sp_model.encode(__A , out_type=__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a =self.sp_model.PieceToId(__A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , __A ) -> List[str]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE ( self , __A ) -> Optional[Any]: a =''''''.join(__A ).replace(__A , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , '''wb''' ) as fi: a =self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
81
1
from collections import defaultdict from math import gcd def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 150_0000 ) -> int: lowerCamelCase__ : defaultdict = defaultdict(_UpperCAmelCase ) lowerCamelCase__ : Tuple = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _UpperCAmelCase , 2 ): if gcd(_UpperCAmelCase , _UpperCAmelCase ) > 1: continue lowerCamelCase__ : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_UpperCAmelCase , limit + 1 , _UpperCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F"""{solution() = }""")
357
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if number > 0: raise ValueError('input must be a negative integer' ) lowerCamelCase__ : str = len(bin(_UpperCAmelCase )[3:] ) lowerCamelCase__ : Dict = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] lowerCamelCase__ : Optional[int] = ( ( '1' + '0' * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
45
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
101
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__( unittest.TestCase ): @slow def lowercase_ ( self : List[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : Optional[int] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = TFAutoModel.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Tuple = AutoModel.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : str ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : List[str] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[Any] = AutoModelForPreTraining.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : int ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[Any] = TFAutoModelForCausalLM.from_pretrained(__snake_case , from_pt=__snake_case ) a , a : Any = TFAutoModelForCausalLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelForCausalLM.from_pretrained(__snake_case , from_tf=__snake_case ) a , a : Tuple = AutoModelForCausalLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : Any ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Tuple = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[str] = TFAutoModelWithLMHead.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelWithLMHead.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : Optional[int] ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : List[str] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Optional[Any] = TFAutoModelForMaskedLM.from_pretrained(__snake_case , from_pt=__snake_case ) a , a : Optional[int] = TFAutoModelForMaskedLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : str = AutoModelForMaskedLM.from_pretrained(__snake_case , from_tf=__snake_case ) a , a : Tuple = AutoModelForMaskedLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : int ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a : Optional[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : str = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case , from_pt=__snake_case ) a , a : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelForSeqaSeqLM.from_pretrained(__snake_case , from_tf=__snake_case ) a , a : str = AutoModelForSeqaSeqLM.from_pretrained( __snake_case , output_loading_info=__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : Optional[Any] ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : Tuple = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : List[Any] = TFAutoModelForSequenceClassification.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Dict = AutoModelForSequenceClassification.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def lowercase_ ( self : str ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a : Optional[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : int = TFAutoModelForQuestionAnswering.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) a : Tuple = AutoModelForQuestionAnswering.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def lowercase_ ( self : Tuple ): a : List[Any] = TFAutoModelWithLMHead.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) a : Optional[int] = AutoModelWithLMHead.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) def lowercase_ ( self : Any ): a : int = TFAutoModelWithLMHead.from_pretrained(__snake_case , from_pt=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 ) a : Optional[Any] = AutoModelWithLMHead.from_pretrained(__snake_case , from_tf=__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_44_10 )
297
0
def lowercase_ ( _lowerCamelCase : List[str]): lowercase__ : Dict = len(_lowerCamelCase) lowercase__ : Union[str, Any] = sum(_lowerCamelCase) lowercase__ : Any = [[False for x in range(s + 1)] for y in range(n + 1)] for i in range(1 , n + 1): lowercase__ : Union[str, Any] = True for i in range(1 , s + 1): lowercase__ : Optional[int] = False for i in range(1 , n + 1): for j in range(1 , s + 1): lowercase__ : List[Any] = dp[i][j - 1] if arr[i - 1] <= j: lowercase__ : List[str] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2) , -1 , -1): if dp[n][j] is True: lowercase__ : str = s - 2 * j break return diff
333
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def lowercase_ ( _lowerCamelCase : str): lowercase__ : Optional[Any] = DPTConfig() if "large" in checkpoint_url: lowercase__ : str = 1024 lowercase__ : List[str] = 4096 lowercase__ : List[Any] = 24 lowercase__ : Dict = 16 lowercase__ : Union[str, Any] = [5, 11, 17, 23] lowercase__ : Any = [256, 512, 1024, 1024] lowercase__ : Optional[int] = (1, 384, 384) if "ade" in checkpoint_url: lowercase__ : Union[str, Any] = True lowercase__ : Tuple = 150 lowercase__ : Optional[int] = "huggingface/label-files" lowercase__ : str = "ade20k-id2label.json" lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="dataset")) , "r")) lowercase__ : Union[str, Any] = {int(_lowerCamelCase): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__ : Tuple = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _lowerCamelCase : List[Any]): lowercase__ : int = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Tuple): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowercase__ : Dict = name.replace("pretrained.model" , "dpt.encoder") if "pretrained.model" in name: lowercase__ : List[str] = name.replace("pretrained.model" , "dpt.embeddings") if "patch_embed" in name: lowercase__ : Any = name.replace("patch_embed" , "patch_embeddings") if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("pos_embed" , "position_embeddings") if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("attn.proj" , "attention.output.dense") if "proj" in name and "project" not in name: lowercase__ : int = name.replace("proj" , "projection") if "blocks" in name: lowercase__ : List[str] = name.replace("blocks" , "layer") if "mlp.fc1" in name: lowercase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense") if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense") if "norm1" in name: lowercase__ : List[str] = name.replace("norm1" , "layernorm_before") if "norm2" in name: lowercase__ : Dict = name.replace("norm2" , "layernorm_after") if "scratch.output_conv" in name: lowercase__ : Union[str, Any] = name.replace("scratch.output_conv" , "head") if "scratch" in name: lowercase__ : str = name.replace("scratch" , "neck") if "layer1_rn" in name: lowercase__ : int = name.replace("layer1_rn" , "convs.0") if "layer2_rn" in name: lowercase__ : int = name.replace("layer2_rn" , "convs.1") if "layer3_rn" in name: lowercase__ : Tuple = name.replace("layer3_rn" , "convs.2") if "layer4_rn" in name: lowercase__ : Union[str, Any] = name.replace("layer4_rn" , "convs.3") if "refinenet" in name: lowercase__ : Dict = int(name[len("neck.refinenet") : len("neck.refinenet") + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowercase__ : str = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4)}''') if "out_conv" in name: lowercase__ : str = name.replace("out_conv" , "projection") if "resConfUnit1" in name: lowercase__ : int = name.replace("resConfUnit1" , "residual_layer1") if "resConfUnit2" in name: lowercase__ : Optional[Any] = name.replace("resConfUnit2" , "residual_layer2") if "conv1" in name: lowercase__ : List[Any] = name.replace("conv1" , "convolution1") if "conv2" in name: lowercase__ : Tuple = name.replace("conv2" , "convolution2") # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowercase__ : int = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0") if "pretrained.act_postprocess2.0.project.0" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0") if "pretrained.act_postprocess3.0.project.0" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0") if "pretrained.act_postprocess4.0.project.0" in name: lowercase__ : List[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0") # resize blocks if "pretrained.act_postprocess1.3" in name: lowercase__ : Union[str, Any] = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection") if "pretrained.act_postprocess1.4" in name: lowercase__ : Optional[Any] = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize") if "pretrained.act_postprocess2.3" in name: lowercase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection") if "pretrained.act_postprocess2.4" in name: lowercase__ : str = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize") if "pretrained.act_postprocess3.3" in name: lowercase__ : Dict = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection") if "pretrained.act_postprocess4.3" in name: lowercase__ : Any = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection") if "pretrained.act_postprocess4.4" in name: lowercase__ : int = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize") if "pretrained" in name: lowercase__ : Any = name.replace("pretrained" , "dpt") if "bn" in name: lowercase__ : str = name.replace("bn" , "batch_norm") if "head" in name: lowercase__ : Optional[Any] = name.replace("head" , "head.head") if "encoder.norm" in name: lowercase__ : Tuple = name.replace("encoder.norm" , "layernorm") if "auxlayer" in name: lowercase__ : int = name.replace("auxlayer" , "auxiliary_head.head") return name def lowercase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str): for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''') lowercase__ : Union[str, Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowercase__ : Optional[int] = in_proj_weight[: config.hidden_size, :] lowercase__ : Optional[int] = in_proj_bias[: config.hidden_size] lowercase__ : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : Optional[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : int = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): lowercase__ : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase).raw) return im @torch.no_grad() def lowercase_ ( _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict): lowercase__ , lowercase__ : Optional[int] = get_dpt_config(_lowerCamelCase) # load original state_dict from URL lowercase__ : Tuple = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu") # remove certain keys remove_ignore_keys_(_lowerCamelCase) # rename keys for key in state_dict.copy().keys(): lowercase__ : List[str] = state_dict.pop(_lowerCamelCase) lowercase__ : List[Any] = val # read in qkv matrices read_in_q_k_v(_lowerCamelCase , _lowerCamelCase) # load HuggingFace model lowercase__ : Any = DPTForSemanticSegmentation(_lowerCamelCase) if "ade" in checkpoint_url else DPTForDepthEstimation(_lowerCamelCase) model.load_state_dict(_lowerCamelCase) model.eval() # Check outputs on an image lowercase__ : Optional[Any] = 480 if "ade" in checkpoint_url else 384 lowercase__ : Union[str, Any] = DPTImageProcessor(size=_lowerCamelCase) lowercase__ : List[str] = prepare_img() lowercase__ : Dict = image_processor(_lowerCamelCase , return_tensors="pt") # forward pass lowercase__ : Tuple = model(**_lowerCamelCase).logits if "ade" in checkpoint_url else model(**_lowerCamelCase).predicted_depth # Assert logits lowercase__ : Union[str, Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]) if "ade" in checkpoint_url: lowercase__ : List[str] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]) assert outputs.shape == torch.Size(_lowerCamelCase) assert ( torch.allclose(outputs[0, 0, :3, :3] , _lowerCamelCase , atol=1E-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _lowerCamelCase) ) Path(_lowerCamelCase).mkdir(exist_ok=_lowerCamelCase) print(f'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_lowerCamelCase) print(f'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_lowerCamelCase) if push_to_hub: print("Pushing model to hub...") model.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(_lowerCamelCase , _lowerCamelCase) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
333
1
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase__( __SCREAMING_SNAKE_CASE : int ): lowercase_ : Union[str, Any] = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Union[str, Any] = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def lowercase__( __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : Optional[int] = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', 'stage2.cls_token') ) return token def lowercase__( ): lowercase_ : Tuple = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ): lowercase_ : Union[str, Any] = 'imagenet-1k-id2label.json' lowercase_ : int = 10_00 lowercase_ : List[str] = 'huggingface/label-files' lowercase_ : Dict = num_labels lowercase_ : Tuple = json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) ) lowercase_ : Dict = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase_ : Optional[int] = idalabel lowercase_ : List[Any] = {v: k for k, v in idalabel.items()} lowercase_ : Any = CvtConfig(num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": lowercase_ : Optional[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": lowercase_ : Dict = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase_ : Optional[int] = [2, 2, 20] lowercase_ : List[str] = [3, 12, 16] lowercase_ : Optional[int] = [1_92, 7_68, 10_24] lowercase_ : Any = CvtForImageClassification(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) lowercase_ : Any = image_size lowercase_ : Dict = torch.load(__SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) lowercase_ : Optional[Any] = OrderedDict() lowercase_ : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase_ : List[Any] = list_of_state_dict + cls_token(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = list_of_state_dict + embeddings(__SCREAMING_SNAKE_CASE ) for cnt in range(config.depth[idx] ): lowercase_ : int = list_of_state_dict + attention(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = list_of_state_dict + final() for gg in list_of_state_dict: print(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Any = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(__SCREAMING_SNAKE_CASE ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __SCREAMING_SNAKE_CASE =argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __SCREAMING_SNAKE_CASE =parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
213
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) class UpperCamelCase ( enum.Enum ): lowercase = 0 lowercase = 1 @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'generated' def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' super().__init__(*__UpperCamelCase ,**__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' lowercase_ : List[Any] = {} if truncation is not None: lowercase_ : int = truncation lowercase_ : Dict = generate_kwargs lowercase_ : List[Any] = {} if return_tensors is not None and return_type is None: lowercase_ : Union[str, Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowercase_ : str = return_type if clean_up_tokenization_spaces is not None: lowercase_ : Dict = clean_up_tokenization_spaces if stop_sequence is not None: lowercase_ : Union[str, Any] = self.tokenizer.encode(__UpperCamelCase ,add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowercase_ : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: '''simple docstring''' return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Dict = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] ,__UpperCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) lowercase_ : str = ([prefix + arg for arg in args[0]],) lowercase_ : Union[str, Any] = True elif isinstance(args[0] ,__UpperCamelCase ): lowercase_ : Union[str, Any] = (prefix + args[0],) lowercase_ : Union[str, Any] = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowercase_ : List[Any] = self.tokenizer(*__UpperCamelCase ,padding=__UpperCamelCase ,truncation=__UpperCamelCase ,return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' lowercase_ : Optional[int] = super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) if ( isinstance(args[0] ,__UpperCamelCase ) and all(isinstance(__UpperCamelCase ,__UpperCamelCase ) for el in args[0] ) and all(len(__UpperCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,**__UpperCamelCase ) -> List[str]: '''simple docstring''' lowercase_ : Any = self._parse_and_tokenize(__UpperCamelCase ,truncation=__UpperCamelCase ,**__UpperCamelCase ) return inputs def _UpperCAmelCase ( self ,__UpperCamelCase ,**__UpperCamelCase ) -> Optional[int]: '''simple docstring''' if self.framework == "pt": lowercase_ , lowercase_ : Optional[int] = model_inputs['input_ids'].shape elif self.framework == "tf": lowercase_ , lowercase_ : Union[str, Any] = tf.shape(model_inputs['input_ids'] ).numpy() lowercase_ : str = generate_kwargs.get('min_length' ,self.model.config.min_length ) lowercase_ : List[Any] = generate_kwargs.get('max_length' ,self.model.config.max_length ) self.check_inputs(__UpperCamelCase ,generate_kwargs['min_length'] ,generate_kwargs['max_length'] ) lowercase_ : Tuple = self.model.generate(**__UpperCamelCase ,**__UpperCamelCase ) lowercase_ : str = output_ids.shape[0] if self.framework == "pt": lowercase_ : List[Any] = output_ids.reshape(__UpperCamelCase ,out_b // in_b ,*output_ids.shape[1:] ) elif self.framework == "tf": lowercase_ : List[Any] = tf.reshape(__UpperCamelCase ,(in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase=ReturnType.TEXT ,__UpperCamelCase=False ) -> Dict: '''simple docstring''' lowercase_ : Dict = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowercase_ : List[Any] = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowercase_ : str = { f'''{self.return_name}_text''': self.tokenizer.decode( __UpperCamelCase ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ,) } records.append(__UpperCamelCase ) return records @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'summary' def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> bool: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(lowercase_ ) class UpperCamelCase ( lowercase_ ): lowercase = 'translation' def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _UpperCAmelCase ( self ,*__UpperCamelCase ,__UpperCamelCase=TruncationStrategy.DO_NOT_TRUNCATE ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> int: '''simple docstring''' if getattr(self.tokenizer ,'_build_translation_inputs' ,__UpperCamelCase ): return self.tokenizer._build_translation_inputs( *__UpperCamelCase ,return_tensors=self.framework ,truncation=__UpperCamelCase ,src_lang=__UpperCamelCase ,tgt_lang=__UpperCamelCase ) else: return super()._parse_and_tokenize(*__UpperCamelCase ,truncation=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ : int = super()._sanitize_parameters(**__UpperCamelCase ) if src_lang is not None: lowercase_ : str = src_lang if tgt_lang is not None: lowercase_ : Optional[Any] = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowercase_ : Tuple = kwargs.get('task' ,self.task ) lowercase_ : List[str] = task.split('_' ) if task and len(__UpperCamelCase ) == 4: # translation, XX, to YY lowercase_ : Union[str, Any] = items[1] lowercase_ : Tuple = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> Dict: '''simple docstring''' return super().__call__(*__UpperCamelCase ,**__UpperCamelCase )
213
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _lowerCamelCase ( self ): UpperCamelCase__ = """ZinengTang/tvlt-base""" UpperCamelCase__ = tempfile.mkdtemp() def _lowerCamelCase ( self , **__lowerCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _lowerCamelCase ( self , **__lowerCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def _lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([12000] ) UpperCamelCase__ = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase__ = processor(audio=__lowerCAmelCase , return_tensors="""np""" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) UpperCamelCase__ = np.ones([12000] ) UpperCamelCase__ = np.ones([3, 224, 224] ) UpperCamelCase__ = processor(audio=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def _lowerCamelCase ( self ): UpperCamelCase__ = self.get_image_processor() UpperCamelCase__ = self.get_feature_extractor() UpperCamelCase__ = TvltProcessor(image_processor=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , )
87
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Any = """xlnet""" snake_case : Optional[Any] = ["""mems"""] snake_case : Any = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowerCAmelCase=32000 , __lowerCAmelCase=1024 , __lowerCAmelCase=24 , __lowerCAmelCase=16 , __lowerCAmelCase=4096 , __lowerCAmelCase="gelu" , __lowerCAmelCase=True , __lowerCAmelCase="bi" , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=-1 , __lowerCAmelCase=False , __lowerCAmelCase="last" , __lowerCAmelCase=True , __lowerCAmelCase="tanh" , __lowerCAmelCase=0.1 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=5 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): UpperCamelCase__ = vocab_size UpperCamelCase__ = d_model UpperCamelCase__ = n_layer UpperCamelCase__ = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) UpperCamelCase__ = d_model // n_head UpperCamelCase__ = ff_activation UpperCamelCase__ = d_inner UpperCamelCase__ = untie_r UpperCamelCase__ = attn_type UpperCamelCase__ = initializer_range UpperCamelCase__ = layer_norm_eps UpperCamelCase__ = dropout UpperCamelCase__ = mem_len UpperCamelCase__ = reuse_len UpperCamelCase__ = bi_data UpperCamelCase__ = clamp_len UpperCamelCase__ = same_length UpperCamelCase__ = summary_type UpperCamelCase__ = summary_use_proj UpperCamelCase__ = summary_activation UpperCamelCase__ = summary_last_dropout UpperCamelCase__ = start_n_top UpperCamelCase__ = end_n_top UpperCamelCase__ = bos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __lowerCAmelCase , ) UpperCamelCase__ = kwargs["""use_cache"""] UpperCamelCase__ = use_mems_eval UpperCamelCase__ = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCamelCase ( self ): logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowerCamelCase ( self , __lowerCAmelCase ): # Message copied from Transformer-XL documentation raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
87
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def _A ( _lowercase , _lowercase=1 ) -> str: """simple docstring""" if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def _A ( _lowercase , _lowercase=0 ) -> Tuple: """simple docstring""" __UpperCamelCase = [] for old_item in old_list: __UpperCamelCase = old_item.replace('in_layers.0' , 'norm1' ) __UpperCamelCase = new_item.replace('in_layers.2' , 'conv1' ) __UpperCamelCase = new_item.replace('out_layers.0' , 'norm2' ) __UpperCamelCase = new_item.replace('out_layers.3' , 'conv2' ) __UpperCamelCase = new_item.replace('emb_layers.1' , 'time_emb_proj' ) __UpperCamelCase = new_item.replace('skip_connection' , 'conv_shortcut' ) __UpperCamelCase = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _A ( _lowercase , _lowercase=0 ) -> Tuple: """simple docstring""" __UpperCamelCase = [] for old_item in old_list: __UpperCamelCase = old_item __UpperCamelCase = new_item.replace('norm.weight' , 'group_norm.weight' ) __UpperCamelCase = new_item.replace('norm.bias' , 'group_norm.bias' ) __UpperCamelCase = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) __UpperCamelCase = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) __UpperCamelCase = shave_segments(_lowercase , n_shave_prefix_segments=_lowercase ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def _A ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ) -> Any: """simple docstring""" assert isinstance(_lowercase , _lowercase ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): __UpperCamelCase = old_checkpoint[path] __UpperCamelCase = old_tensor.shape[0] // 3 __UpperCamelCase = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) __UpperCamelCase = old_tensor.shape[0] // config['num_head_channels'] // 3 __UpperCamelCase = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = old_tensor.split(channels // num_heads , dim=1 ) __UpperCamelCase = query.reshape(_lowercase ) __UpperCamelCase = key.reshape(_lowercase ) __UpperCamelCase = value.reshape(_lowercase ) for path in paths: __UpperCamelCase = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here __UpperCamelCase = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) __UpperCamelCase = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) __UpperCamelCase = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: __UpperCamelCase = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: __UpperCamelCase = old_checkpoint[path['old']][:, :, 0] else: __UpperCamelCase = old_checkpoint[path['old']] def _A ( _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = {} __UpperCamelCase = checkpoint['time_embed.0.weight'] __UpperCamelCase = checkpoint['time_embed.0.bias'] __UpperCamelCase = checkpoint['time_embed.2.weight'] __UpperCamelCase = checkpoint['time_embed.2.bias'] __UpperCamelCase = checkpoint['input_blocks.0.0.weight'] __UpperCamelCase = checkpoint['input_blocks.0.0.bias'] __UpperCamelCase = checkpoint['out.0.weight'] __UpperCamelCase = checkpoint['out.0.bias'] __UpperCamelCase = checkpoint['out.2.weight'] __UpperCamelCase = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only __UpperCamelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) __UpperCamelCase = { layer_id: [key for key in checkpoint if f'''input_blocks.{layer_id}''' in key] for layer_id in range(_lowercase ) } # Retrieves the keys for the middle blocks only __UpperCamelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) __UpperCamelCase = { layer_id: [key for key in checkpoint if f'''middle_block.{layer_id}''' in key] for layer_id in range(_lowercase ) } # Retrieves the keys for the output blocks only __UpperCamelCase = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) __UpperCamelCase = { layer_id: [key for key in checkpoint if f'''output_blocks.{layer_id}''' in key] for layer_id in range(_lowercase ) } for i in range(1 , _lowercase ): __UpperCamelCase = (i - 1) // (config['num_res_blocks'] + 1) __UpperCamelCase = (i - 1) % (config['num_res_blocks'] + 1) __UpperCamelCase = [key for key in input_blocks[i] if f'''input_blocks.{i}.0''' in key] __UpperCamelCase = [key for key in input_blocks[i] if f'''input_blocks.{i}.1''' in key] if f'''input_blocks.{i}.0.op.weight''' in checkpoint: __UpperCamelCase = checkpoint[ f'''input_blocks.{i}.0.op.weight''' ] __UpperCamelCase = checkpoint[ f'''input_blocks.{i}.0.op.bias''' ] continue __UpperCamelCase = renew_resnet_paths(_lowercase ) __UpperCamelCase = {'old': f'''input_blocks.{i}.0''', 'new': f'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} __UpperCamelCase = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path, resnet_op] , config=_lowercase ) if len(_lowercase ): __UpperCamelCase = renew_attention_paths(_lowercase ) __UpperCamelCase = { 'old': f'''input_blocks.{i}.1''', 'new': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } __UpperCamelCase = { f'''input_blocks.{i}.1.qkv.bias''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''input_blocks.{i}.1.qkv.weight''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=_lowercase , config=_lowercase , ) __UpperCamelCase = middle_blocks[0] __UpperCamelCase = middle_blocks[1] __UpperCamelCase = middle_blocks[2] __UpperCamelCase = renew_resnet_paths(_lowercase ) assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase ) __UpperCamelCase = renew_resnet_paths(_lowercase ) assign_to_checkpoint(_lowercase , _lowercase , _lowercase , config=_lowercase ) __UpperCamelCase = renew_attention_paths(_lowercase ) __UpperCamelCase = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , attention_paths_to_split=_lowercase , config=_lowercase ) for i in range(_lowercase ): __UpperCamelCase = i // (config['num_res_blocks'] + 1) __UpperCamelCase = i % (config['num_res_blocks'] + 1) __UpperCamelCase = [shave_segments(_lowercase , 2 ) for name in output_blocks[i]] __UpperCamelCase = {} for layer in output_block_layers: __UpperCamelCase, __UpperCamelCase = layer.split('.' )[0], shave_segments(_lowercase , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(_lowercase ) else: __UpperCamelCase = [layer_name] if len(_lowercase ) > 1: __UpperCamelCase = [key for key in output_blocks[i] if f'''output_blocks.{i}.0''' in key] __UpperCamelCase = [key for key in output_blocks[i] if f'''output_blocks.{i}.1''' in key] __UpperCamelCase = renew_resnet_paths(_lowercase ) __UpperCamelCase = renew_resnet_paths(_lowercase ) __UpperCamelCase = {'old': f'''output_blocks.{i}.0''', 'new': f'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(_lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , config=_lowercase ) if ["conv.weight", "conv.bias"] in output_block_list.values(): __UpperCamelCase = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) __UpperCamelCase = checkpoint[ f'''output_blocks.{i}.{index}.conv.weight''' ] __UpperCamelCase = checkpoint[ f'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(_lowercase ) == 2: __UpperCamelCase = [] if len(_lowercase ): __UpperCamelCase = renew_attention_paths(_lowercase ) __UpperCamelCase = { 'old': f'''output_blocks.{i}.1''', 'new': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } __UpperCamelCase = { f'''output_blocks.{i}.1.qkv.bias''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''output_blocks.{i}.1.qkv.weight''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( _lowercase , _lowercase , _lowercase , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=_lowercase , ) else: __UpperCamelCase = renew_resnet_paths(_lowercase , n_shave_prefix_segments=1 ) for path in resnet_0_paths: __UpperCamelCase = '.'.join(['output_blocks', str(_lowercase ), path['old']] ) __UpperCamelCase = '.'.join(['up_blocks', str(_lowercase ), 'resnets', str(_lowercase ), path['new']] ) __UpperCamelCase = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __snake_case = parser.parse_args() __snake_case = torch.load(args.checkpoint_path) with open(args.config_file) as f: __snake_case = json.loads(f.read()) __snake_case = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __snake_case = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __snake_case = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __snake_case = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __snake_case = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
310
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( _lowercase ) -> Dict: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(_lowercase , '_dynamo' ): return False return isinstance(_lowercase , torch._dynamo.eval_frame.OptimizedModule ) def _A ( _lowercase , _lowercase = True ) -> Optional[int]: """simple docstring""" __UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase = is_compiled_module(_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_lowercase , _lowercase ): __UpperCamelCase = model.module if not keep_fpaa_wrapper: __UpperCamelCase = getattr(_lowercase , 'forward' ) __UpperCamelCase = model.__dict__.pop('_original_forward' , _lowercase ) if original_forward is not None: while hasattr(_lowercase , '__wrapped__' ): __UpperCamelCase = forward.__wrapped__ if forward == original_forward: break __UpperCamelCase = forward if getattr(_lowercase , '_converted_to_transformer_engine' , _lowercase ): convert_model(_lowercase , to_transformer_engine=_lowercase ) if is_compiled: __UpperCamelCase = model __UpperCamelCase = compiled_model return model def _A ( ) -> Any: """simple docstring""" PartialState().wait_for_everyone() def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(_lowercase , _lowercase ) elif PartialState().local_process_index == 0: torch.save(_lowercase , _lowercase ) @contextmanager def _A ( **_lowercase ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): __UpperCamelCase = str(_lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( _lowercase ) -> Tuple: """simple docstring""" if not hasattr(_lowercase , '__qualname__' ) and not hasattr(_lowercase , '__name__' ): __UpperCamelCase = getattr(_lowercase , '__class__' , _lowercase ) if hasattr(_lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(_lowercase , '__name__' ): return obj.__name__ return str(_lowercase ) def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" for key, value in source.items(): if isinstance(_lowercase , _lowercase ): __UpperCamelCase = destination.setdefault(_lowercase , {} ) merge_dicts(_lowercase , _lowercase ) else: __UpperCamelCase = value return destination def _A ( _lowercase = None ) -> bool: """simple docstring""" if port is None: __UpperCamelCase = 2_95_00 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
310
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase_ = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
357
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'bart' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple,lowercase_ : Optional[int]=5_0_2_6_5,lowercase_ : List[str]=1_0_2_4,lowercase_ : Any=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : str=1_6,lowercase_ : int=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : Any=1_6,lowercase_ : Any=0.0,lowercase_ : str=0.0,lowercase_ : Optional[Any]="gelu",lowercase_ : List[str]=1_0_2_4,lowercase_ : List[Any]=0.1,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[int]=0.0,lowercase_ : List[Any]=0.02,lowercase_ : int=0.0,lowercase_ : Optional[Any]=False,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=3,lowercase_ : int=1,lowercase_ : int=0,lowercase_ : List[str]=2,lowercase_ : Optional[int]=True,lowercase_ : Tuple=2,lowercase_ : List[str]=2,**lowercase_ : Dict,)-> List[Any]: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = classifier_dropout A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase_,pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,decoder_start_token_id=lowercase_,forced_eos_token_id=lowercase_,**lowercase_,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated',lowercase_ ): A__ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' ) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Dict )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} else: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def snake_case__ ( self : Optional[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super().outputs else: A__ = super(lowercase_,self ).outputs if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def snake_case__ ( self : Tuple,lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) # Generate decoder inputs A__ = seq_length if not self.use_past else 1 A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A__ = dict(**lowercase_,**lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape A__ = common_inputs['decoder_input_ids'].shape[1] A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = decoder_seq_length + 3 A__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A__ = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase_,lowercase_ )],dim=1 ) A__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A__ , A__ = self.num_layers A__ = min(lowercase_,lowercase_ ) A__ = max(lowercase_,lowercase_ ) - min_num_layers A__ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. A__ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase_,lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def snake_case__ ( self : List[str],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ , A__ = self.num_layers A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = common_inputs['attention_mask'].dtype A__ = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase_,lowercase_,dtype=lowercase_ )],dim=1 ) A__ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = tokenizer.num_special_tokens_to_add(lowercase_ ) A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence A__ = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A__ = dict(tokenizer(lowercase_,return_tensors=lowercase_ ) ) return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) elif self.task == "causal-lm": A__ = self._generate_dummy_inputs_for_causal_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) else: A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) return common_inputs def snake_case__ ( self : int,lowercase_ : Tuple,lowercase_ : int,lowercase_ : int,lowercase_ : str )-> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super()._flatten_past_key_values_(lowercase_,lowercase_,lowercase_,lowercase_ ) else: A__ = super(lowercase_,self )._flatten_past_key_values_( lowercase_,lowercase_,lowercase_,lowercase_ )
282
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCamelCase ( snake_case__ : int ) -> Dict: # A local function to see if a dot lands in the circle. def is_in_circle(snake_case__ : float , snake_case__ : float ) -> bool: UpperCamelCase : Union[str, Any] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCamelCase : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(snake_case__ ) ) # The ratio of the area for circle to square is pi/4. UpperCamelCase : Optional[int] = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def UpperCamelCase ( snake_case__ : int , snake_case__ : Callable[[float], float] , snake_case__ : float = 0.0 , snake_case__ : float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(snake_case__ , snake_case__ ) ) for _ in range(snake_case__ ) ) * (max_value - min_value) def UpperCamelCase ( snake_case__ : int , snake_case__ : float = 0.0 , snake_case__ : float = 1.0 ) -> None: def identity_function(snake_case__ : float ) -> float: return x UpperCamelCase : Optional[int] = area_under_curve_estimator( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : List[Any] = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print('******************' ) def UpperCamelCase ( snake_case__ : int ) -> None: def function_to_integrate(snake_case__ : float ) -> float: return sqrt(4.0 - x * x ) UpperCamelCase : str = area_under_curve_estimator( snake_case__ , snake_case__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
119
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def UpperCamelCase ( ) -> tuple[list[int], int]: UpperCamelCase : int = [randint(-1000 , 1000 ) for i in range(10 )] UpperCamelCase : Dict = randint(-5000 , 5000 ) return (arr, r) __UpperCAmelCase = make_dataset() def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, ...]: for triplet in permutations(snake_case__ , 3 ): if sum(snake_case__ ) == target: return tuple(sorted(snake_case__ ) ) return (0, 0, 0) def UpperCamelCase ( snake_case__ : list[int] , snake_case__ : int ) -> tuple[int, int, int]: arr.sort() UpperCamelCase : List[str] = len(snake_case__ ) for i in range(n - 1 ): UpperCamelCase , UpperCamelCase : Optional[Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def UpperCamelCase ( ) -> tuple[float, float]: UpperCamelCase : Any = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n' UpperCamelCase : Optional[Any] = '\ntriplet_sum1(*dataset)\n' UpperCamelCase : Dict = '\ntriplet_sum2(*dataset)\n' UpperCamelCase : Optional[int] = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) UpperCamelCase : Any = repeat(setup=snake_case__ , stmt=snake_case__ , repeat=5 , number=10000 ) return (min(snake_case__ ), min(snake_case__ )) if __name__ == "__main__": from doctest import testmod testmod() __UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
119
1
from math import ceil def _lowerCAmelCase ( A__: Optional[Any] , A__: Union[str, Any] ): '''simple docstring''' UpperCAmelCase = list(range(0 , A__ ) ) UpperCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(A__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(A__ ) # Missing blocks UpperCAmelCase = [i for i in blocks if i not in device_map_blocks] UpperCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(A__ ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(A__ ) ) if len(A__ ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(A__ ) ) if len(A__ ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(A__ ) ) def _lowerCAmelCase ( A__: List[Any] , A__: Optional[Any] ): '''simple docstring''' UpperCAmelCase = list(range(A__ ) ) UpperCAmelCase = int(ceil(n_layers / len(A__ ) ) ) UpperCAmelCase = [layers[i : i + n_blocks] for i in range(0 , A__ , A__ )] return dict(zip(A__ , A__ ) )
152
def _lowerCAmelCase ( A__: list[int] , A__: list[int] ): '''simple docstring''' UpperCAmelCase = len(A__ ) print('''The following activities are selected:''' ) # The first activity is always selected UpperCAmelCase = 0 print(A__ , end=''',''' ) # Consider rest of the activities for j in range(A__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(A__ , end=''',''' ) UpperCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = [1, 3, 0, 5, 8, 5] __magic_name__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
152
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A__ ( _A ): @slow @require_torch def a__ ( self : Tuple ) -> List[str]: """simple docstring""" __lowercase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __lowercase = BertTokenizer.from_pretrained('bert-base-uncased' ) __lowercase = bertabert.config.encoder.vocab_size __lowercase = tokenizer.sep_token_id __lowercase = tokenizer.cls_token_id __lowercase = 1_28 __lowercase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __lowercase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __lowercase = train_dataset.select(range(32 ) ) __lowercase = val_dataset.select(range(16 ) ) __lowercase = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowercase = tokenizer(batch['article'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=5_12 ) __lowercase = tokenizer(batch['highlights'] , padding='max_length' , truncation=_UpperCAmelCase , max_length=1_28 ) __lowercase = inputs.input_ids __lowercase = inputs.attention_mask __lowercase = outputs.input_ids __lowercase = outputs.input_ids.copy() __lowercase = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] __lowercase = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 5_12 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : Union[str, Any] ): __lowercase = pred.label_ids __lowercase = pred.predictions # all unnecessary tokens are removed __lowercase = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset __lowercase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __lowercase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __lowercase = self.get_auto_remove_tmp_dir() __lowercase = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy='steps' , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowercase = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
325
"""simple docstring""" def lowercase ( __snake_case : int ): if not isinstance(__snake_case , __snake_case ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
33
0
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( a__ ): def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase="None" , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , ): UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Tuple = batch_size UpperCAmelCase__ : Any = seq_length UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : Tuple = use_input_mask UpperCAmelCase__ : Optional[int] = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : int = vocab_size UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : List[Any] = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : int = hidden_dropout_prob UpperCAmelCase__ : str = attention_probs_dropout_prob UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Optional[int] = type_sequence_label_size UpperCAmelCase__ : int = initializer_range UpperCAmelCase__ : Union[str, Any] = num_labels UpperCAmelCase__ : Dict = num_choices UpperCAmelCase__ : Union[str, Any] = relative_attention UpperCAmelCase__ : List[str] = position_biased_input UpperCAmelCase__ : List[str] = pos_att_type UpperCAmelCase__ : Dict = scope def snake_case__ ( self): UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : str = None UpperCAmelCase__ : Dict = None UpperCAmelCase__ : Dict = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase__ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self): return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.get_config() UpperCAmelCase__ : Tuple = 300 return config def snake_case__ ( self , _lowerCamelCase): self.parent.assertListEqual(list(result.loss.size()) , []) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = DebertaModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase)[0] UpperCAmelCase__ : int = model(_lowerCamelCase , token_type_ids=_lowerCamelCase)[0] UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase)[0] self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size]) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : str = DebertaForMaskedLM(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : str = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Optional[Any] = self.num_labels UpperCAmelCase__ : Union[str, Any] = DebertaForSequenceClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels]) self.check_loss_output(_lowerCamelCase) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : str = self.num_labels UpperCAmelCase__ : Optional[int] = DebertaForTokenClassification(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : List[Any] = DebertaForQuestionAnswering(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[int] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case__ ( self): UpperCAmelCase__ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Optional[Any] = config_and_inputs UpperCAmelCase__ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): lowerCAmelCase :List[Any] = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase :Any = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase :List[Any] = True lowerCAmelCase :List[str] = False lowerCAmelCase :int = False lowerCAmelCase :Dict = False lowerCAmelCase :List[Any] = False def snake_case__ ( self): UpperCAmelCase__ : str = DebertaModelTester(self) UpperCAmelCase__ : Dict = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37) def snake_case__ ( self): self.config_tester.run_common_tests() def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowerCamelCase) @slow def snake_case__ ( self): for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Dict = DebertaModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""") def snake_case__ ( self): pass @slow def snake_case__ ( self): UpperCAmelCase__ : List[str] = DebertaModel.from_pretrained("""microsoft/deberta-base""") UpperCAmelCase__ : Union[str, Any] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]]) UpperCAmelCase__ : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase)[0] # compare the actual values for a slice. UpperCAmelCase__ : int = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4) , f'''{output[:, 1:4, 1:4]}''')
283
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''''' lowerCAmelCase :str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase :str = None # compression type in fsspec. ex: "gzip" lowerCAmelCase :str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase): super().__init__(self , **_lowerCamelCase) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ : Optional[Any] = fsspec.open( _lowerCamelCase , mode="""rb""" , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase__ : List[Any] = os.path.basename(self.file.path.split("""::""")[0]) UpperCAmelCase__ : Dict = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) UpperCAmelCase__ : Tuple = None @classmethod def snake_case__ ( cls , _lowerCamelCase): # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase).lstrip("""/""") def snake_case__ ( self): if self.dir_cache is None: UpperCAmelCase__ : Optional[Any] = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} UpperCAmelCase__ : Union[str, Any] = {f["""name"""]: f} def snake_case__ ( self , _lowerCamelCase): return self.file.open().read() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = self._strip_protocol(_lowerCamelCase) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _snake_case ( a__ ): lowerCAmelCase :Dict = '''bz2''' lowerCAmelCase :List[str] = '''bz2''' lowerCAmelCase :Dict = '''.bz2''' class _snake_case ( a__ ): lowerCAmelCase :int = '''gzip''' lowerCAmelCase :Tuple = '''gzip''' lowerCAmelCase :str = '''.gz''' class _snake_case ( a__ ): lowerCAmelCase :List[str] = '''lz4''' lowerCAmelCase :Any = '''lz4''' lowerCAmelCase :int = '''.lz4''' class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = '''xz''' lowerCAmelCase :int = '''xz''' lowerCAmelCase :List[Any] = '''.xz''' class _snake_case ( a__ ): lowerCAmelCase :Tuple = '''zstd''' lowerCAmelCase :List[str] = '''zstd''' lowerCAmelCase :Union[str, Any] = '''.zst''' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , ): super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ : Dict = self.file.__enter__ class _snake_case : def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = file_ def __enter__( self): self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase): self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase) def __iter__( self): return iter(self._file) def snake_case__ ( self): return next(self._file) def __getattr__( self , _lowerCamelCase): return getattr(self._file , _lowerCamelCase) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase)) UpperCAmelCase__ : List[Any] = fixed_enter
283
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase :Dict = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[int] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
206
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True ): """simple docstring""" print(F"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowercase__ : Union[str, Any] = timm.create_model("levit_128s" , pretrained=lowerCamelCase__ ) else: lowercase__ : Union[str, Any] = timm.create_model("levit_128" , pretrained=lowerCamelCase__ ) if hidden_sizes == 192: lowercase__ : Dict = timm.create_model("levit_192" , pretrained=lowerCamelCase__ ) if hidden_sizes == 256: lowercase__ : Optional[Any] = timm.create_model("levit_256" , pretrained=lowerCamelCase__ ) if hidden_sizes == 384: lowercase__ : List[str] = timm.create_model("levit_384" , pretrained=lowerCamelCase__ ) from_model.eval() lowercase__ : Union[str, Any] = LevitForImageClassificationWithTeacher(lowerCamelCase__ ).eval() lowercase__ : Tuple = OrderedDict() lowercase__ : Dict = from_model.state_dict() lowercase__ : Union[str, Any] = list(from_model.state_dict().keys() ) lowercase__ : Any = list(our_model.state_dict().keys() ) print(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : Union[str, Any] = weights[og_keys[i]] our_model.load_state_dict(lowerCamelCase__ ) lowercase__ : List[str] = torch.randn((2, 3, 224, 224) ) lowercase__ : Optional[Any] = from_model(lowerCamelCase__ ) lowercase__ : Optional[Any] = our_model(lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ ), "The model logits don't match the original one." lowercase__ : Optional[Any] = name print(lowerCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowercase__ : Union[str, Any] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F"""Pushed {checkpoint_name}""" ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = True ): """simple docstring""" lowercase__ : Optional[Any] = "imagenet-1k-id2label.json" lowercase__ : str = 1_000 lowercase__ : Any = (1, num_labels) lowercase__ : Optional[Any] = "huggingface/label-files" lowercase__ : Optional[Any] = num_labels lowercase__ : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Dict = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Optional[Any] = partial(lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ ) lowercase__ : List[str] = { "levit-128S": 128, "levit-128": 128, "levit-192": 192, "levit-256": 256, "levit-384": 384, } lowercase__ : int = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , lowerCamelCase__ , names_to_config[model_name] , lowerCamelCase__ , lowerCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
130
0
'''simple docstring''' from numpy import exp, pi, sqrt def _UpperCAmelCase ( _UpperCamelCase : Dict, _UpperCamelCase : float = 0.0, _UpperCamelCase : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
0
def _snake_case( SCREAMING_SNAKE_CASE__ : dict ) -> set: '''simple docstring''' A__ = set() # edges = list of graph's edges A__ = get_edges(SCREAMING_SNAKE_CASE__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: A__ , A__ = edges.pop() chosen_vertices.add(SCREAMING_SNAKE_CASE__ ) chosen_vertices.add(SCREAMING_SNAKE_CASE__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(SCREAMING_SNAKE_CASE__ ) return chosen_vertices def _snake_case( SCREAMING_SNAKE_CASE__ : dict ) -> set: '''simple docstring''' A__ = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
7
def _snake_case( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float: '''simple docstring''' A__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: A__ = 1 - (matter_density + radiation_density + dark_energy) A__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) A__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation lowercase_ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
7
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowercase =logging.get_logger(__name__) lowercase ={ 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="dpt" def __init__( self , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=3_8_4 , snake_case=1_6 , snake_case=3 , snake_case=False , snake_case=True , snake_case=[2, 5, 8, 1_1] , snake_case="project" , snake_case=[4, 2, 1, 0.5] , snake_case=[9_6, 1_9_2, 3_8_4, 7_6_8] , snake_case=2_5_6 , snake_case=-1 , snake_case=False , snake_case=True , snake_case=0.4 , snake_case=2_5_5 , snake_case=0.1 , snake_case=[1, 1_0_2_4, 2_4, 2_4] , snake_case=[0, 1] , snake_case=None , **snake_case , ) -> List[Any]: '''simple docstring''' super().__init__(**snake_case) _UpperCAmelCase : Any =hidden_size _UpperCAmelCase : Union[str, Any] =is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.') _UpperCAmelCase : List[Any] ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } _UpperCAmelCase : Optional[Any] =BitConfig(**snake_case) elif isinstance(snake_case , snake_case): logger.info('Initializing the config with a `BiT` backbone.') _UpperCAmelCase : Any =BitConfig(**snake_case) elif isinstance(snake_case , snake_case): _UpperCAmelCase : Any =backbone_config else: raise ValueError( f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.") _UpperCAmelCase : Optional[Any] =backbone_featmap_shape _UpperCAmelCase : str =neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.') else: _UpperCAmelCase : Optional[Any] =None _UpperCAmelCase : Any =None _UpperCAmelCase : Optional[int] =[] _UpperCAmelCase : str =num_hidden_layers _UpperCAmelCase : Optional[Any] =num_attention_heads _UpperCAmelCase : List[Any] =intermediate_size _UpperCAmelCase : Union[str, Any] =hidden_act _UpperCAmelCase : Optional[Any] =hidden_dropout_prob _UpperCAmelCase : List[Any] =attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] =initializer_range _UpperCAmelCase : Union[str, Any] =layer_norm_eps _UpperCAmelCase : List[str] =image_size _UpperCAmelCase : Optional[int] =patch_size _UpperCAmelCase : Optional[int] =num_channels _UpperCAmelCase : Any =qkv_bias _UpperCAmelCase : List[Any] =backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']') _UpperCAmelCase : int =readout_type _UpperCAmelCase : int =reassemble_factors _UpperCAmelCase : Optional[int] =neck_hidden_sizes _UpperCAmelCase : str =fusion_hidden_size _UpperCAmelCase : str =head_in_index _UpperCAmelCase : Union[str, Any] =use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : Union[str, Any] =use_auxiliary_head _UpperCAmelCase : Dict =auxiliary_loss_weight _UpperCAmelCase : List[str] =semantic_loss_ignore_index _UpperCAmelCase : Any =semantic_classifier_dropout def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCAmelCase : List[Any] =self.backbone_config.to_dict() _UpperCAmelCase : str =self.__class__.model_type return output
366
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCamelCase__ ( __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ): '''simple docstring''' if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): _UpperCAmelCase : List[Any] =[image] if isinstance(image[0] , PIL.Image.Image ): _UpperCAmelCase : List[Any] =[np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _UpperCAmelCase : List[str] =np.concatenate(__lowerCamelCase , axis=0 ) _UpperCAmelCase : Optional[Any] =np.array(__lowerCamelCase ).astype(np.floataa ) / 2_55.0 _UpperCAmelCase : List[Any] =image.transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase : str =2.0 * image - 1.0 _UpperCAmelCase : Optional[Any] =torch.from_numpy(__lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): _UpperCAmelCase : List[Any] =torch.cat(__lowerCamelCase , dim=0 ) return image def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=0.99_95 ): '''simple docstring''' if not isinstance(__lowerCamelCase , np.ndarray ): _UpperCAmelCase : Optional[Any] =True _UpperCAmelCase : int =va.device _UpperCAmelCase : List[Any] =va.cpu().numpy() _UpperCAmelCase : Tuple =va.cpu().numpy() _UpperCAmelCase : Any =np.sum(va * va / (np.linalg.norm(__lowerCamelCase ) * np.linalg.norm(__lowerCamelCase )) ) if np.abs(__lowerCamelCase ) > DOT_THRESHOLD: _UpperCAmelCase : Union[str, Any] =(1 - t) * va + t * va else: _UpperCAmelCase : Optional[int] =np.arccos(__lowerCamelCase ) _UpperCAmelCase : Tuple =np.sin(__lowerCamelCase ) _UpperCAmelCase : str =theta_a * t _UpperCAmelCase : List[Any] =np.sin(__lowerCamelCase ) _UpperCAmelCase : List[str] =np.sin(theta_a - theta_t ) / sin_theta_a _UpperCAmelCase : str =sin_theta_t / sin_theta_a _UpperCAmelCase : int =sa * va + sa * va if inputs_are_torch: _UpperCAmelCase : Union[str, Any] =torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) return va def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] =F.normalize(__lowerCamelCase , dim=-1 ) _UpperCAmelCase : List[Any] =F.normalize(__lowerCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCamelCase__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' for param in model.parameters(): _UpperCAmelCase : Dict =value class __magic_name__ ( lowerCAmelCase ): def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , ) -> List[Any]: '''simple docstring''' super().__init__() self.register_modules( vae=snake_case , text_encoder=snake_case , clip_model=snake_case , tokenizer=snake_case , unet=snake_case , scheduler=snake_case , feature_extractor=snake_case , coca_model=snake_case , coca_tokenizer=snake_case , coca_transform=snake_case , ) _UpperCAmelCase : List[Any] =( feature_extractor.size if isinstance(feature_extractor.size , snake_case) else feature_extractor.size['shortest_edge'] ) _UpperCAmelCase : str =transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std) set_requires_grad(self.text_encoder , snake_case) set_requires_grad(self.clip_model , snake_case) def lowerCAmelCase ( self , snake_case = "auto") -> List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _UpperCAmelCase : Union[str, Any] =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case) def lowerCAmelCase ( self) -> int: '''simple docstring''' self.enable_attention_slicing(snake_case) def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' set_requires_grad(self.vae , snake_case) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' set_requires_grad(self.vae , snake_case) def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' set_requires_grad(self.unet , snake_case) def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' set_requires_grad(self.unet , snake_case) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> Tuple: '''simple docstring''' # get the original timestep using init_timestep _UpperCAmelCase : Union[str, Any] =min(int(num_inference_steps * strength) , snake_case) _UpperCAmelCase : Any =max(num_inference_steps - init_timestep , 0) _UpperCAmelCase : int =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=None) -> Optional[int]: '''simple docstring''' if not isinstance(snake_case , torch.Tensor): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(snake_case)}") _UpperCAmelCase : str =image.to(device=snake_case , dtype=snake_case) if isinstance(snake_case , snake_case): _UpperCAmelCase : Optional[Any] =[ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(snake_case) ] _UpperCAmelCase : Tuple =torch.cat(snake_case , dim=0) else: _UpperCAmelCase : List[Any] =self.vae.encode(snake_case).latent_dist.sample(snake_case) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Optional[int] =0.1_82_15 * init_latents _UpperCAmelCase : List[str] =init_latents.repeat_interleave(snake_case , dim=0) _UpperCAmelCase : Union[str, Any] =randn_tensor(init_latents.shape , generator=snake_case , device=snake_case , dtype=snake_case) # get latents _UpperCAmelCase : Optional[int] =self.scheduler.add_noise(snake_case , snake_case , snake_case) _UpperCAmelCase : List[Any] =init_latents return latents def lowerCAmelCase ( self , snake_case) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =self.coca_transform(snake_case).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): _UpperCAmelCase : str =self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype)) _UpperCAmelCase : Tuple =self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split('<end_of_text>')[0].replace('<start_of_text>' , '').rstrip(' .,') def lowerCAmelCase ( self , snake_case , snake_case) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any =self.feature_extractor.preprocess(snake_case) _UpperCAmelCase : Optional[Any] =torch.from_numpy(clip_image_input['pixel_values'][0]).unsqueeze(0).to(self.device).half() _UpperCAmelCase : Dict =self.clip_model.get_image_features(snake_case) _UpperCAmelCase : int =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case) _UpperCAmelCase : List[str] =image_embeddings_clip.repeat_interleave(snake_case , dim=0) return image_embeddings_clip @torch.enable_grad() def lowerCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Dict =latents.detach().requires_grad_() _UpperCAmelCase : str =self.scheduler.scale_model_input(snake_case , snake_case) # predict the noise residual _UpperCAmelCase : int =self.unet(snake_case , snake_case , encoder_hidden_states=snake_case).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): _UpperCAmelCase : Optional[int] =self.scheduler.alphas_cumprod[timestep] _UpperCAmelCase : Any =1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : str =(latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 _UpperCAmelCase : Union[str, Any] =torch.sqrt(snake_case) _UpperCAmelCase : List[str] =pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , snake_case): _UpperCAmelCase : Optional[int] =self.scheduler.sigmas[index] _UpperCAmelCase : Tuple =latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Tuple =1 / 0.1_82_15 * sample _UpperCAmelCase : Optional[Any] =self.vae.decode(snake_case).sample _UpperCAmelCase : Tuple =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : int =transforms.Resize(self.feature_extractor_size)(snake_case) _UpperCAmelCase : Optional[int] =self.normalize(snake_case).to(latents.dtype) _UpperCAmelCase : str =self.clip_model.get_image_features(snake_case) _UpperCAmelCase : str =image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=snake_case) _UpperCAmelCase : Optional[int] =spherical_dist_loss(snake_case , snake_case).mean() * clip_guidance_scale _UpperCAmelCase : List[str] =-torch.autograd.grad(snake_case , snake_case)[0] if isinstance(self.scheduler , snake_case): _UpperCAmelCase : Optional[Any] =latents.detach() + grads * (sigma**2) _UpperCAmelCase : str =noise_pred_original else: _UpperCAmelCase : str =noise_pred_original - torch.sqrt(snake_case) * grads return noise_pred, latents @torch.no_grad() def __call__( self , snake_case , snake_case , snake_case = None , snake_case = None , snake_case = 5_1_2 , snake_case = 5_1_2 , snake_case = 0.6 , snake_case = 5_0 , snake_case = 7.5 , snake_case = 1 , snake_case = 0.0 , snake_case = 1_0_0 , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = 0.8 , snake_case = 0.1 , snake_case = 0.1 , ) -> List[str]: '''simple docstring''' if isinstance(snake_case , snake_case) and len(snake_case) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(snake_case)} generators.") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if isinstance(snake_case , torch.Generator) and batch_size > 1: _UpperCAmelCase : List[str] =[generator] + [None] * (batch_size - 1) _UpperCAmelCase : Tuple =[ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] _UpperCAmelCase : Tuple =[x[0] for x in coca_is_none if x[1]] _UpperCAmelCase : Union[str, Any] =', '.join(snake_case) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _UpperCAmelCase : Optional[int] =self.get_image_description(snake_case) if style_prompt is None: if len(snake_case): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.") _UpperCAmelCase : List[str] =self.get_image_description(snake_case) # get prompt text embeddings for content and style _UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : Dict =self.text_encoder(content_text_input.input_ids.to(self.device))[0] _UpperCAmelCase : Optional[int] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : Tuple =self.text_encoder(style_text_input.input_ids.to(self.device))[0] _UpperCAmelCase : List[Any] =slerp(snake_case , snake_case , snake_case) # duplicate text embeddings for each generation per prompt _UpperCAmelCase : Optional[Any] =text_embeddings.repeat_interleave(snake_case , dim=0) # set timesteps _UpperCAmelCase : Any ='offset' in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) _UpperCAmelCase : int ={} if accepts_offset: _UpperCAmelCase : Union[str, Any] =1 self.scheduler.set_timesteps(snake_case , **snake_case) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) _UpperCAmelCase , _UpperCAmelCase : int =self.get_timesteps(snake_case , snake_case , self.device) _UpperCAmelCase : Dict =timesteps[:1].repeat(snake_case) # Preprocess image _UpperCAmelCase : int =preprocess(snake_case , snake_case , snake_case) _UpperCAmelCase : Tuple =self.prepare_latents( snake_case , snake_case , snake_case , text_embeddings.dtype , self.device , snake_case) _UpperCAmelCase : Optional[Any] =preprocess(snake_case , snake_case , snake_case) _UpperCAmelCase : List[Any] =self.prepare_latents( snake_case , snake_case , snake_case , text_embeddings.dtype , self.device , snake_case) _UpperCAmelCase : List[Any] =slerp(snake_case , snake_case , snake_case) if clip_guidance_scale > 0: _UpperCAmelCase : Optional[int] =self.get_clip_image_embeddings(snake_case , snake_case) _UpperCAmelCase : int =self.get_clip_image_embeddings(snake_case , snake_case) _UpperCAmelCase : Dict =slerp( snake_case , snake_case , snake_case) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _UpperCAmelCase : int =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase : Union[str, Any] =content_text_input.input_ids.shape[-1] _UpperCAmelCase : List[str] =self.tokenizer([''] , padding='max_length' , max_length=snake_case , return_tensors='pt') _UpperCAmelCase : Union[str, Any] =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt _UpperCAmelCase : List[Any] =uncond_embeddings.repeat_interleave(snake_case , dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : Any =torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _UpperCAmelCase : str =(batch_size, self.unet.config.in_channels, height // 8, width // 8) _UpperCAmelCase : Union[str, Any] =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps _UpperCAmelCase : int =torch.randn(snake_case , generator=snake_case , device='cpu' , dtype=snake_case).to( self.device) else: _UpperCAmelCase : Optional[int] =torch.randn(snake_case , generator=snake_case , device=self.device , dtype=snake_case) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") _UpperCAmelCase : List[str] =latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase : str =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase : List[str] ='eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) _UpperCAmelCase : Union[str, Any] ={} if accepts_eta: _UpperCAmelCase : Optional[int] =eta # check if the scheduler accepts generator _UpperCAmelCase : Union[str, Any] ='generator' in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: _UpperCAmelCase : Dict =generator with self.progress_bar(total=snake_case): for i, t in enumerate(snake_case): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : Dict =torch.cat([latents] * 2) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[int] =self.scheduler.scale_model_input(snake_case , snake_case) # predict the noise residual _UpperCAmelCase : Optional[int] =self.unet(snake_case , snake_case , encoder_hidden_states=snake_case).sample # perform classifier free guidance if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : int =noise_pred.chunk(2) _UpperCAmelCase : Dict =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: _UpperCAmelCase : Tuple =( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] =self.cond_fn( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[str] =self.scheduler.step(snake_case , snake_case , snake_case , **snake_case).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor _UpperCAmelCase : Optional[Any] =1 / 0.1_82_15 * latents _UpperCAmelCase : Optional[int] =self.vae.decode(snake_case).sample _UpperCAmelCase : str =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase : List[str] =self.numpy_to_pil(snake_case) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case , nsfw_content_detected=snake_case)
242
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a__( lowerCamelCase__ ): lowercase__ = (DPMSolverSinglestepScheduler,) lowercase__ = (("""num_inference_steps""", 25),) def lowercase_ ( self : int , **__snake_case : List[Any] ): a : List[Any] = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'prediction_type': 'epsilon', 'thresholding': False, 'sample_max_value': 1.0, 'algorithm_type': 'dpmsolver++', 'solver_type': 'midpoint', 'lambda_min_clipped': -float('inf' ), 'variance_type': None, } config.update(**__snake_case ) return config def lowercase_ ( self : Any , __snake_case : Dict=0 , **__snake_case : str ): a : Optional[int] = dict(self.forward_default_kwargs ) a : str = kwargs.pop('num_inference_steps' , __snake_case ) a : Tuple = self.dummy_sample a : str = 0.1 * sample a : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a : Optional[Any] = self.get_scheduler_config(**__snake_case ) a : Tuple = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals a : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) a : Optional[Any] = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals a : str = dummy_past_residuals[: new_scheduler.config.solver_order] a , a : List[Any] = sample, sample for t in range(__snake_case , time_step + scheduler.config.solver_order + 1 ): a : str = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample a : int = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self : Optional[int] ): pass def lowercase_ ( self : Any , __snake_case : Union[str, Any]=0 , **__snake_case : Optional[Any] ): a : Tuple = dict(self.forward_default_kwargs ) a : Any = kwargs.pop('num_inference_steps' , __snake_case ) a : Tuple = self.dummy_sample a : List[str] = 0.1 * sample a : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a : Any = self.get_scheduler_config() a : str = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) a : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) a : Dict = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) a : int = dummy_past_residuals[: new_scheduler.config.solver_order] a : Any = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample a : List[str] = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase_ ( self : Union[str, Any] , __snake_case : str=None , **__snake_case : Union[str, Any] ): if scheduler is None: a : List[str] = self.scheduler_classes[0] a : Dict = self.get_scheduler_config(**__snake_case ) a : List[str] = scheduler_class(**__snake_case ) a : Tuple = self.scheduler_classes[0] a : Optional[int] = self.get_scheduler_config(**__snake_case ) a : Tuple = scheduler_class(**__snake_case ) a : int = 10 a : Tuple = self.dummy_model() a : str = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): a : Optional[Any] = model(__snake_case , __snake_case ) a : str = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def lowercase_ ( self : Optional[Any] ): a : List[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) a : Dict = 50 a : str = self.dummy_model() a : Dict = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): a : int = model(__snake_case , __snake_case ) a : Dict = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample a : List[Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def lowercase_ ( self : Optional[int] ): for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__snake_case ) def lowercase_ ( self : Any ): # make sure that iterating over schedulers with same config names gives same results # for defaults a : Tuple = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) a : Dict = self.full_loop(scheduler=__snake_case ) a : List[Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 a : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) a : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) a : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) a : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) a : Dict = self.full_loop(scheduler=__snake_case ) a : str = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowercase_ ( self : Optional[int] ): self.check_over_configs(thresholding=__snake_case ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , algorithm_type='dpmsolver++' , solver_order=__snake_case , solver_type=__snake_case , ) def lowercase_ ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def lowercase_ ( self : List[str] ): for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , algorithm_type=__snake_case , ) a : List[str] = self.full_loop( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , algorithm_type=__snake_case , ) assert not torch.isnan(__snake_case ).any(), "Samples have nan numbers" def lowercase_ ( self : int ): self.check_over_configs(lower_order_final=__snake_case ) self.check_over_configs(lower_order_final=__snake_case ) def lowercase_ ( self : str ): self.check_over_configs(lambda_min_clipped=-float('inf' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def lowercase_ ( self : str ): self.check_over_configs(variance_type=__snake_case ) self.check_over_configs(variance_type='learned_range' ) def lowercase_ ( self : int ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__snake_case , time_step=0 ) def lowercase_ ( self : Tuple ): a : Union[str, Any] = self.full_loop() a : Tuple = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def lowercase_ ( self : int ): a : Tuple = self.full_loop(use_karras_sigmas=__snake_case ) a : List[str] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def lowercase_ ( self : Optional[Any] ): a : Optional[int] = self.full_loop(prediction_type='v_prediction' ) a : List[str] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def lowercase_ ( self : Optional[int] ): a : str = self.full_loop(prediction_type='v_prediction' , use_karras_sigmas=__snake_case ) a : Tuple = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def lowercase_ ( self : List[str] ): a : str = self.scheduler_classes[0] a : List[Any] = self.get_scheduler_config(thresholding=__snake_case , dynamic_thresholding_ratio=0 ) a : Tuple = scheduler_class(**__snake_case ) a : List[Any] = 10 a : Optional[Any] = self.dummy_model() a : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): a : Optional[int] = model(__snake_case , __snake_case ) a : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample assert sample.dtype == torch.floataa
297
'''simple docstring''' from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ ( _A , _A ): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative' ) elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
297
1
"""simple docstring""" import functools def UpperCamelCase ( __lowercase : str ,__lowercase : str ): '''simple docstring''' A_ : List[str] = len(_A ) A_ : List[Any] = len(_A ) @functools.cache def min_distance(__lowercase : int ,__lowercase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A_ : List[str] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 ,_A ) ,1 + min_distance(_A ,indexa + 1 ) ,diff + min_distance(indexa + 1 ,indexa + 1 ) ,) return min_distance(0 ,0 ) if __name__ == "__main__": import doctest doctest.testmod()
355
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": 512, """squeezebert/squeezebert-mnli""": 512, """squeezebert/squeezebert-mnli-headless""": 512, } _UpperCAmelCase = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ): """simple docstring""" super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) A_ : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowercase ) != tokenize_chinese_chars ): A_ : Dict = getattr(lowercase , normalizer_state.pop('type' ) ) A_ : Optional[int] = do_lower_case A_ : Optional[Any] = strip_accents A_ : str = tokenize_chinese_chars A_ : Any = normalizer_class(**lowercase ) A_ : Tuple = do_lower_case def lowerCAmelCase_ ( self , lowercase , lowercase=None ): """simple docstring""" A_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = [self.sep_token_id] A_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowercase , lowercase = None ): """simple docstring""" A_ : Dict = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
192
0
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split snake_case_ = datasets.load_iris() snake_case_ = np.array(data['''data''']) snake_case_ = np.array(data['''target''']) snake_case_ = data['''target_names'''] snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split(X, y) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE__ ) - np.array(SCREAMING_SNAKE_CASE__ ) ) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any=5 ): '''simple docstring''' lowercase__ : Optional[Any] = zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # List of distances of all points from the point to be classified lowercase__ : Dict = [] for data_point in data: lowercase__ : Dict = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE__ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowercase__ : Dict = [i[1] for i in sorted(SCREAMING_SNAKE_CASE__ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowercase__ : Any = Counter(SCREAMING_SNAKE_CASE__ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
214
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' UpperCAmelCase__ = {} with open(SCREAMING_SNAKE_CASE__ , """r""" ) as file: for line_number, line in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = line.strip() if line: UpperCAmelCase__ = line.split() UpperCAmelCase__ = line_number UpperCAmelCase__ = words[0] UpperCAmelCase__ = value return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' for attribute in key.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = hf_pointer for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = shape_pointer.shape # let's reduce dimension UpperCAmelCase__ = value[0] else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): UpperCAmelCase__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = PARAM_MAPPING[full_name.split(""".""" )[-1]] UpperCAmelCase__ = """param""" if weight_type is not None and weight_type != "param": UpperCAmelCase__ = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase__ = """.""".join([key, hf_param_name] ) else: UpperCAmelCase__ = key UpperCAmelCase__ = value if """lm_head""" in full_key else value[0] UpperCAmelCase_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): '''simple docstring''' UpperCAmelCase__ = False for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split(""".""" )[-2] UpperCAmelCase__ = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase__ = """weight_g""" elif "weight_v" in name: UpperCAmelCase__ = """weight_v""" elif "bias" in name: UpperCAmelCase__ = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = """weight""" else: UpperCAmelCase__ = None if hf_dict is not None: rename_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return is_used return is_used def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ = True else: UpperCAmelCase__ = load_wavaveca_layer(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' UpperCAmelCase__ = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ = name.split(""".""" ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaConfig() if is_seq_class: UpperCAmelCase__ = read_txt_into_dict(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = idalabel UpperCAmelCase__ = WavaVecaForSequenceClassification(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) elif is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = True if config.feat_extract_norm == """layer""" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = WavaVecaForCTC(SCREAMING_SNAKE_CASE__ ) else: UpperCAmelCase__ = WavaVecaForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned or is_seq_class: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="""audio_pretraining""" ) UpperCAmelCase__ = fairseq.tasks.setup_task(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , not is_finetuned ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
346
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = GPTSanJapaneseTokenizer lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 UpperCAmelCase__ = {"""unk_token""": """<unk>"""} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。 こんばんは、㔺界。""" UpperCAmelCase__ = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" UpperCAmelCase__ = """こんにちは、、、、世界。こんばんは、、、、世界。""" UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。こんばんは、世界。😀""" UpperCAmelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = tokenizer.encode("""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off UpperCAmelCase__ = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] UpperCAmelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass
61
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : str = """dpt""" def __init__( self : Optional[Any] , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : List[Any]=30_72 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : List[Any]=0.0 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : List[Any]=1E-12 , _UpperCAmelCase : int=3_84 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Any=True , _UpperCAmelCase : List[str]=[2, 5, 8, 11] , _UpperCAmelCase : Any="project" , _UpperCAmelCase : Optional[Any]=[4, 2, 1, 0.5] , _UpperCAmelCase : Tuple=[96, 1_92, 3_84, 7_68] , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Any=False , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=0.4 , _UpperCAmelCase : Union[str, Any]=2_55 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Tuple=[1, 10_24, 24, 24] , _UpperCAmelCase : Union[str, Any]=[0, 1] , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCAmelCase__ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } UpperCAmelCase__ = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): logger.info("""Initializing the config with a `BiT` backbone.""" ) UpperCAmelCase__ = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) UpperCAmelCase__ = backbone_featmap_shape UpperCAmelCase__ = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = [] UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) UpperCAmelCase__ = readout_type UpperCAmelCase__ = reassemble_factors UpperCAmelCase__ = neck_hidden_sizes UpperCAmelCase__ = fusion_hidden_size UpperCAmelCase__ = head_in_index UpperCAmelCase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) UpperCAmelCase__ = use_auxiliary_head UpperCAmelCase__ = auxiliary_loss_weight UpperCAmelCase__ = semantic_loss_ignore_index UpperCAmelCase__ = semantic_classifier_dropout def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: UpperCAmelCase__ = self.backbone_config.to_dict() UpperCAmelCase__ = self.__class__.model_type return output
61
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : List[Any] = { '''configuration_conditional_detr''': [ '''CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConditionalDetrConfig''', '''ConditionalDetrOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = ['''ConditionalDetrFeatureExtractor'''] UpperCAmelCase : List[str] = ['''ConditionalDetrImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ '''CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConditionalDetrForObjectDetection''', '''ConditionalDetrForSegmentation''', '''ConditionalDetrModel''', '''ConditionalDetrPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case : int = '''Create a default config file for Accelerate with only a few flags set.''' def __lowerCamelCase ( UpperCAmelCase_ : Optional[Any]="no" , UpperCAmelCase_ : str = default_json_config_file , UpperCAmelCase_ : bool = False ): """simple docstring""" a :List[str] = Path(UpperCAmelCase_ ) path.parent.mkdir(parents=UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False a :Optional[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) a :List[Any] = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): a :Dict = torch.cuda.device_count() a :Tuple = num_gpus a :int = False if num_gpus > 1: a :str = '''MULTI_GPU''' else: a :List[Any] = '''NO''' elif is_xpu_available() and use_xpu: a :List[Any] = torch.xpu.device_count() a :Optional[int] = num_xpus a :List[Any] = False if num_xpus > 1: a :int = '''MULTI_XPU''' else: a :str = '''NO''' elif is_npu_available(): a :List[str] = torch.npu.device_count() a :Any = num_npus a :Optional[int] = False if num_npus > 1: a :List[str] = '''MULTI_NPU''' else: a :Dict = '''NO''' else: a :str = 0 a :Optional[Any] = True a :Optional[Any] = 1 a :str = '''NO''' a :List[str] = ClusterConfig(**UpperCAmelCase_ ) config.to_json_file(UpperCAmelCase_ ) return path def __lowerCamelCase ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" a :List[Any] = parser.add_parser('''default''' , parents=UpperCAmelCase_ , help=UpperCAmelCase_ , formatter_class=UpperCAmelCase_ ) parser.add_argument( '''--config_file''' , default=UpperCAmelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=UpperCAmelCase_ , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=UpperCAmelCase_ ) return parser def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" a :Optional[Any] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
94
0
import math import unittest def a_ ( lowerCAmelCase_ : int ): assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(lowerCAmelCase_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Dict ) -> Optional[Any]: self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def lowercase ( self : str ) -> int: with self.assertRaises(lowerCAmelCase_ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
353
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = DanceDiffusionPipeline a_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS a_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } a_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS a_ = False a_ = False def lowercase ( self : List[Any] ) -> Dict: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCAmelCase_ , use_timestep_embedding=lowerCAmelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __lowerCAmelCase = IPNDMScheduler() __lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str]=0 ) -> Any: if str(lowerCAmelCase_ ).startswith('mps' ): __lowerCAmelCase = torch.manual_seed(lowerCAmelCase_ ) else: __lowerCAmelCase = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) __lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = DanceDiffusionPipeline(**lowerCAmelCase_ ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = self.get_dummy_inputs(lowerCAmelCase_ ) __lowerCAmelCase = pipe(**lowerCAmelCase_ ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __lowerCAmelCase = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowercase ( self : Union[str, Any] ) -> Tuple: return super().test_save_load_local() @skip_mps def lowercase ( self : List[str] ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def lowercase ( self : str ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def lowercase ( self : List[Any] ) -> List[str]: return super().test_attention_slicing_forward_pass() def lowercase ( self : str ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Any ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Tuple ) -> Dict: __lowerCAmelCase = torch_device __lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __lowerCAmelCase = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = pipe(generator=lowerCAmelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.0_96 ) __lowerCAmelCase = output.audios __lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __lowerCAmelCase = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
207
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: if not isinstance(A__ , A__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
67
'''simple docstring''' from sklearn.metrics import recall_score import datasets __A : Dict = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" __A : List[Any] = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" __A : str = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION) class __snake_case ( datasets.Metric): """simple docstring""" def __lowercase ( self : str ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def __lowercase ( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : Optional[Any]=None , lowerCamelCase : Optional[int]=1 , lowerCamelCase : Union[str, Any]="binary" , lowerCamelCase : Any=None , lowerCamelCase : str="warn" , ) -> List[Any]: lowerCAmelCase_ : Optional[int] = recall_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase , zero_division=lowerCamelCase , ) return {"recall": float(lowerCamelCase ) if score.size == 1 else score}
120
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->bool: a__: Optional[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
203
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = Dict[str, Any] lowercase__ = List[Prediction] @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): def __init__( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' super().__init__(*lowercase , **lowercase) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , 'vision') self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def lowerCamelCase_ ( self , **lowercase) -> int: '''simple docstring''' a__: Optional[Any] = {} if "threshold" in kwargs: a__: Dict = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *lowercase , **lowercase) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase) -> List[Any]: '''simple docstring''' a__: Optional[Any] = load_image(lowercase) a__: List[Any] = torch.IntTensor([[image.height, image.width]]) a__: Any = self.image_processor(images=[image] , return_tensors='pt') if self.tokenizer is not None: a__: Any = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt') a__: List[str] = target_size return inputs def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' a__: Any = model_inputs.pop('target_size') a__: Union[str, Any] = self.model(**lowercase) a__: List[str] = outputs.__class__({'target_size': target_size, **outputs}) if self.tokenizer is not None: a__: Union[str, Any] = model_inputs['bbox'] return model_outputs def lowerCamelCase_ ( self , lowercase , lowercase=0.9) -> Optional[Any]: '''simple docstring''' a__: int = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. a__ , a__: str = target_size[0].tolist() def unnormalize(lowercase): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ])) a__ , a__: Optional[Any] = model_outputs['logits'].squeeze(0).softmax(dim=-1).max(dim=-1) a__: str = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] a__: Union[str, Any] = [unnormalize(lowercase) for bbox in model_outputs['bbox'].squeeze(0)] a__: Dict = ['score', 'label', 'box'] a__: Any = [dict(zip(lowercase , lowercase)) for vals in zip(scores.tolist() , lowercase , lowercase) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel a__: List[str] = self.image_processor.post_process_object_detection(lowercase , lowercase , lowercase) a__: Tuple = raw_annotations[0] a__: List[str] = raw_annotation['scores'] a__: int = raw_annotation['labels'] a__: int = raw_annotation['boxes'] a__: List[Any] = scores.tolist() a__: Any = [self.model.config.idalabel[label.item()] for label in labels] a__: Dict = [self._get_bounding_box(lowercase) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] a__: Optional[Any] = ['score', 'label', 'box'] a__: List[Any] = [ dict(zip(lowercase , lowercase)) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes']) ] return annotation def lowerCamelCase_ ( self , lowercase) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.') a__ , a__ , a__ , a__: List[Any] = box.int().tolist() a__: Optional[int] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
203
1
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a__ ( ) -> Union[str, Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case__ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def a__ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def a__ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case__ ): http_head("""https://huggingface.co""" )
291
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : List[str] = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "sew-d" def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a=2 , _a=512 , _a=256 , _a=True , _a=True , _a=("p2c", "c2p") , _a="layer_norm" , _a="gelu_python" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=0.02 , _a=1e-7 , _a=1e-5 , _a="group" , _a="gelu" , _a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _a=False , _a=128 , _a=16 , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a="mean" , _a=False , _a=False , _a=256 , _a=0 , _a=1 , _a=2 , **_a , ): """simple docstring""" super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) lowerCamelCase = hidden_size lowerCamelCase = feat_extract_norm lowerCamelCase = feat_extract_activation lowerCamelCase = list(_a ) lowerCamelCase = list(_a ) lowerCamelCase = list(_a ) lowerCamelCase = conv_bias lowerCamelCase = num_conv_pos_embeddings lowerCamelCase = num_conv_pos_embedding_groups lowerCamelCase = len(self.conv_dim ) lowerCamelCase = num_hidden_layers lowerCamelCase = intermediate_size lowerCamelCase = squeeze_factor lowerCamelCase = max_position_embeddings lowerCamelCase = position_buckets lowerCamelCase = share_att_key lowerCamelCase = relative_attention lowerCamelCase = norm_rel_ebd lowerCamelCase = list(_a ) lowerCamelCase = hidden_act lowerCamelCase = num_attention_heads lowerCamelCase = hidden_dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = feat_proj_dropout lowerCamelCase = final_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = feature_layer_norm_eps lowerCamelCase = initializer_range lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase = apply_spec_augment lowerCamelCase = mask_time_prob lowerCamelCase = mask_time_length lowerCamelCase = mask_time_min_masks lowerCamelCase = mask_feature_prob lowerCamelCase = mask_feature_length lowerCamelCase = mask_feature_min_masks # ctc loss lowerCamelCase = ctc_loss_reduction lowerCamelCase = ctc_zero_infinity # sequence classification lowerCamelCase = use_weighted_layer_sum lowerCamelCase = classifier_proj_size @property def _lowerCAmelCase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
291
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = args.log_outputs _A = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric _A = load_metric('''wer''' ) _A = load_metric('''cer''' ) # compute metrics _A = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) _A = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results _A = f"""WER: {wer_result}\nCER: {cer_result}""" print(_lowercase ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(_lowercase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _A = f"""log_{dataset_id}_predictions.txt""" _A = f"""log_{dataset_id}_targets.txt""" with open(_lowercase , '''w''' ) as p, open(_lowercase , '''w''' ) as t: # mapping function to write output def write_to_file(_lowercase , _lowercase ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_lowercase , with_indices=_lowercase ) def __A ( _lowercase ): '''simple docstring''' _A = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _A = re.sub(_lowercase , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _A = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: _A = ''' '''.join(text.split(_lowercase ) ) return text def __A ( _lowercase ): '''simple docstring''' _A = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_lowercase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _A = AutoFeatureExtractor.from_pretrained(args.model_id ) _A = feature_extractor.sampling_rate # resample audio _A = dataset.cast_column('''audio''' , Audio(sampling_rate=_lowercase ) ) # load eval pipeline if args.device is None: _A = 0 if torch.cuda.is_available() else -1 _A = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_lowercase ): _A = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _A = prediction['''text'''] _A = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples _A = dataset.map(_lowercase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_lowercase , _lowercase ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) __A = parser.parse_args() main(args)
75
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __A = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" def __init__( self: List[Any] , *__A: Union[str, Any] , **__A: Optional[Any] ) -> None: warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , __A , ) super().__init__(*__A , **__A )
75
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class A : __magic_name__ = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) __magic_name__ = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) __magic_name__ = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) __magic_name__ = field( default=__snake_case , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) __magic_name__ = field( default=__snake_case , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def lowerCAmelCase_ ( ): '''simple docstring''' A : str = HfArgumentParser((ModelArguments,) ) ((A ), ) : Optional[Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: A : List[Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: A : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: A : Union[str, Any] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: A : Optional[int] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed A : Dict = True A : int = True A : Optional[int] = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=a__ , decoder_config=a__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens A : Union[str, Any] = decoder_config.decoder_start_token_id A : str = decoder_config.pad_token_id if decoder_start_token_id is None: A : Any = decoder_config.bos_token_id if pad_token_id is None: A : Dict = decoder_config.eos_token_id # This is necessary to make Flax's generate() work A : List[str] = decoder_config.eos_token_id A : List[str] = decoder_start_token_id A : List[Any] = pad_token_id A : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) A : List[str] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) A : Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
3
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCAmelCase : Any = [ 'EAGER', 'AOT_EAGER', 'INDUCTOR', 'NVFUSER', 'AOT_NVFUSER', 'AOT_CUDAGRAPHS', 'OFI', 'FX2TRT', 'ONNXRT', 'IPEX', ] def a__ ( a__ , a__=None , a__=None , a__=None ): """simple docstring""" __SCREAMING_SNAKE_CASE = True while ask_again: __SCREAMING_SNAKE_CASE = input(a__ ) try: if default is not None and len(a__ ) == 0: return default return convert_value(a__ ) if convert_value is not None else result except Exception: if error_message is not None: print(a__ ) def a__ ( a__ , a__=[] , a__=None , a__=0 ): """simple docstring""" __SCREAMING_SNAKE_CASE = BulletMenu(a__ , a__ ) __SCREAMING_SNAKE_CASE = menu.run(default_choice=a__ ) return convert_value(a__ ) if convert_value is not None else result def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = int(a__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def a__ ( a__ ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class lowerCAmelCase__ ( argparse.RawDescriptionHelpFormatter ): """simple docstring""" def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = usage.replace("""<command> [<args>] """ , """""" ) return usage
267
0
'''simple docstring''' import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : """simple docstring""" def __init__( self : Any ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 256 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : str ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = cva.imread(__A , 0 ) __SCREAMING_SNAKE_CASE = copy.deepcopy(self.img ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) __SCREAMING_SNAKE_CASE = np.sum(__A ) for i in range(len(__A ) ): __SCREAMING_SNAKE_CASE = x[i] / self.k self.sk += prk __SCREAMING_SNAKE_CASE = (self.L - 1) * self.sk if self.rem != 0: __SCREAMING_SNAKE_CASE = int(last % last ) __SCREAMING_SNAKE_CASE = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__A ) __SCREAMING_SNAKE_CASE = int(np.ma.count(self.img ) / self.img[1].size ) __SCREAMING_SNAKE_CASE = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __SCREAMING_SNAKE_CASE = self.img[j][i] if num != self.last_list[num]: __SCREAMING_SNAKE_CASE = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase__ ( self : str ) -> Any: """simple docstring""" cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') UpperCAmelCase : int = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
359
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar UpperCAmelCase : Dict = TypeVar('T') def a__ ( a__ ): """simple docstring""" return (position - 1) // 2 def a__ ( a__ ): """simple docstring""" return (2 * position) + 1 def a__ ( a__ ): """simple docstring""" return (2 * position) + 2 class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : List[str] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __len__( self : Optional[Any] ) -> int: """simple docstring""" return self.elements def __repr__( self : List[str] ) -> str: """simple docstring""" return str(self.heap ) def UpperCAmelCase__ ( self : Tuple ) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.heap.append((elem, weight) ) __SCREAMING_SNAKE_CASE = self.elements self.elements += 1 self._bubble_up(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[0] self._bubble_down(__SCREAMING_SNAKE_CASE ) return elem def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE = (elem, weight) if position > 0: __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._bubble_up(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) else: self._bubble_down(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] if curr_pos == 0: return None __SCREAMING_SNAKE_CASE = get_parent_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_up(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.position_map[elem] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[curr_pos] __SCREAMING_SNAKE_CASE = get_child_left_position(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = get_child_right_position(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements and child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) if child_left_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) else: return None if child_right_position < self.elements: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return self._bubble_down(__SCREAMING_SNAKE_CASE ) return None def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE = self.heap[nodea_pos][0] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = ( self.heap[nodea_pos], self.heap[nodea_pos], ) __SCREAMING_SNAKE_CASE = nodea_pos __SCREAMING_SNAKE_CASE = nodea_pos class lowerCAmelCase__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = 0 def __repr__( self : Dict ) -> str: """simple docstring""" return str(self.connections ) def __len__( self : Dict ) -> int: """simple docstring""" return self.nodes def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : T ) -> None: """simple docstring""" if node not in self.connections: __SCREAMING_SNAKE_CASE = {} self.nodes += 1 def UpperCAmelCase__ ( self : int , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : T , __SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" self.add_node(__SCREAMING_SNAKE_CASE ) self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = weight __SCREAMING_SNAKE_CASE = weight def a__ ( a__ , ): """simple docstring""" __SCREAMING_SNAKE_CASE = {node: maxsize for node in graph.connections} __SCREAMING_SNAKE_CASE = {node: None for node in graph.connections} __SCREAMING_SNAKE_CASE = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(a__ , a__ ) if priority_queue.is_empty(): return dist, parent # initialization __SCREAMING_SNAKE_CASE = priority_queue.extract_min() __SCREAMING_SNAKE_CASE = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node # running prim's algorithm while not priority_queue.is_empty(): __SCREAMING_SNAKE_CASE = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: __SCREAMING_SNAKE_CASE = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(a__ , dist[neighbour] ) __SCREAMING_SNAKE_CASE = node return dist, parent
331
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A__ = TypeVar("""T""") A__ = TypeVar("""U""") class __lowerCAmelCase ( Generic[T, U] ): def __init__( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = key _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def __repr__( self ): """simple docstring""" return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): def __init__( self ): """simple docstring""" _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) _lowerCAmelCase , _lowerCAmelCase = self.rear, self.head def __repr__( self ): """simple docstring""" _lowerCAmelCase = ["""DoubleLinkedList"""] _lowerCAmelCase = self.head while node.next is not None: rep.append(str(_snake_case ) ) _lowerCAmelCase = node.next rep.append(str(self.rear ) ) return ",\n ".join(_snake_case ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None _lowerCAmelCase = node _lowerCAmelCase = previous _lowerCAmelCase = node _lowerCAmelCase = self.rear def snake_case ( self , _snake_case ): """simple docstring""" if node.prev is None or node.next is None: return None _lowerCAmelCase = node.next _lowerCAmelCase = node.prev _lowerCAmelCase = None _lowerCAmelCase = None return node class __lowerCAmelCase ( Generic[T, U] ): __lowerCamelCase = {} def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = DoubleLinkedList() _lowerCAmelCase = capacity _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = {} def __repr__( self ): """simple docstring""" return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self , _snake_case ): """simple docstring""" return key in self.cache def snake_case ( self , _snake_case ): """simple docstring""" if key in self.cache: self.hits += 1 _lowerCAmelCase = self.cache[key] _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_snake_case ) return node.val self.miss += 1 return None def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity _lowerCAmelCase = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_snake_case ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 _lowerCAmelCase = DoubleLinkedListNode(_snake_case , _snake_case ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value _lowerCAmelCase = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list _lowerCAmelCase = value self.list.add(_snake_case ) @classmethod def snake_case ( cls , _snake_case = 128 ): """simple docstring""" def cache_decorator_inner(_snake_case ) -> Callable[..., U]: def cache_decorator_wrapper(*_snake_case ) -> U: if func not in cls.decorator_function_to_instance_map: _lowerCAmelCase = LRUCache(_snake_case ) _lowerCAmelCase = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: _lowerCAmelCase = func(*_snake_case ) cls.decorator_function_to_instance_map[func].put(args[0] , _snake_case ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_snake_case , """cache_info""" , _snake_case ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
82
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :List[str] = XGLMTokenizer __magic_name__ :Any = XGLMTokenizerFast __magic_name__ :Dict = True __magic_name__ :Union[str, Any] = True def snake_case ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ :int = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = '<pad>' lowerCAmelCase__ :int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(__UpperCAmelCase ) , 1_0_0_8 ) def snake_case ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowerCAmelCase__ :int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCAmelCase__ :Tuple = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowerCAmelCase__ :Optional[int] = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def snake_case ( self ): '''simple docstring''' return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def snake_case ( self ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCAmelCase , f.name ) lowerCAmelCase__ :Dict = XGLMTokenizer(f.name , keep_accents=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = pickle.dumps(__UpperCAmelCase ) pickle.loads(__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ :Optional[Any] = self.get_tokenizer() lowerCAmelCase__ :List[str] = self.get_rust_tokenizer() lowerCAmelCase__ :Optional[Any] = 'I was born in 92000, and this is falsé.' lowerCAmelCase__ :Dict = tokenizer.tokenize(__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :int = self.get_rust_tokenizer() lowerCAmelCase__ :Dict = tokenizer.encode(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 'Hello World!' lowerCAmelCase__ :Tuple = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowerCAmelCase__ :List[str] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = { 'input_ids': [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='facebook/xglm-564M' , padding=__UpperCAmelCase , )
293
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase : int = logging.get_logger(__name__) lowercase : Union[str, Any] = torch.device("cpu") def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(__A , stream=__A ).raw ) return im def SCREAMING_SNAKE_CASE__ ( __A ) -> int: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> int: _snake_case = dct.pop(__A ) _snake_case = val def SCREAMING_SNAKE_CASE__ ( __A ) -> Union[str, Any]: _snake_case = [] for k in state_dict.keys(): _snake_case = k if ".pwconv" in k: _snake_case = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: _snake_case = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: _snake_case = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: _snake_case = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: _snake_case = k_new.split('.' ) if ls[2].isdigit(): _snake_case = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: _snake_case = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Optional[Any]: _snake_case = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _snake_case = 1_000 _snake_case = 'huggingface/label-files' _snake_case = 'imagenet-1k-id2label.json' _snake_case = json.load(open(hf_hub_download(__A , __A , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(__A ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _snake_case = [3, 3, 6, 4] _snake_case = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _snake_case = [3, 3, 9, 6] _snake_case = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _snake_case = [4, 3, 10, 5] _snake_case = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _snake_case = [4, 4, 12, 6] _snake_case = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): _snake_case = torch.hub.load_state_dict_from_url(__A , map_location='cpu' , check_hash=__A ) else: _snake_case = torch.load(__A , map_location='cpu' ) _snake_case = checkpoint _snake_case = create_rename_keys(__A ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__A , __A , __A ) # load HuggingFace model _snake_case = SwiftFormerForImageClassification(__A ).eval() hf_model.load_state_dict(__A ) # prepare test inputs _snake_case = prepare_img() _snake_case = ViTImageProcessor.from_pretrained('preprocessor_config' ) _snake_case = processor(images=__A , return_tensors='pt' ) # compare outputs from both models _snake_case = get_expected_output(__A ) _snake_case = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1_000] ) assert torch.allclose(hf_logits[0, 0:5] , __A , atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__A ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") lowercase : Optional[Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
360
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def SCREAMING_SNAKE_CASE__ ( __A , __A=1_000 ) -> str: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd _snake_case = n - 1 _snake_case = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) _snake_case = 0 while count < prec: _snake_case = random.randint(2 , n - 1 ) _snake_case = bin_exp_mod(__A , __A , __A ) if b != 1: _snake_case = True for _ in range(__A ): if b == n - 1: _snake_case = False break _snake_case = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowercase : Optional[int] = abs(int(input("Enter bound : ").strip())) print("Here's the list of primes:") print(", ".join(str(i) for i in range(n + 1) if is_prime_big(i)))
160
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor snake_case__ : Optional[Any] = logging.get_logger(__name__) class snake_case_( a__ ): def __init__( self : int , *UpperCamelCase_ : Any , **UpperCamelCase_ : Tuple ): warnings.warn( '''The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use OwlViTImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
60
'''simple docstring''' import math import qiskit def _lowerCAmelCase ( __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) or isinstance(__snake_case , __snake_case ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != input_a) or (math.floor(__snake_case ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers __A : int = qiskit.QuantumRegister(4 , 'qr' ) __A : Optional[int] = qiskit.ClassicalRegister(2 , 'cr' ) # list the entries __A : Union[str, Any] = [input_a, input_a, carry_in] __A : Dict = qiskit.QuantumCircuit(__snake_case , __snake_case ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__snake_case ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__snake_case ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__snake_case ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __snake_case ) # measure the last two qbits __A : str = qiskit.Aer.get_backend('aer_simulator' ) __A : Any = qiskit.execute(__snake_case , __snake_case , shots=10_00 ) return job.result().get_counts(__snake_case ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
190
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : Any = { 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCAmelCase__ ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = "biogpt" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int]=42_384 , __SCREAMING_SNAKE_CASE : Optional[Any]=1_024 , __SCREAMING_SNAKE_CASE : Tuple=24 , __SCREAMING_SNAKE_CASE : List[str]=16 , __SCREAMING_SNAKE_CASE : Union[str, Any]=4_096 , __SCREAMING_SNAKE_CASE : Dict="gelu" , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Tuple=1_024 , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.02 , __SCREAMING_SNAKE_CASE : Dict=1E-12 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : Optional[int]=1 , __SCREAMING_SNAKE_CASE : Any=0 , __SCREAMING_SNAKE_CASE : str=2 , **__SCREAMING_SNAKE_CASE : Tuple , ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = scale_embedding __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = activation_dropout super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
356
'''simple docstring''' import os def a__ ( a__ = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(a__ ) , a__ ) ) as input_file: __SCREAMING_SNAKE_CASE = [ [int(a__ ) for element in line.split(""",""" )] for line in input_file.readlines() ] __SCREAMING_SNAKE_CASE = len(a__ ) __SCREAMING_SNAKE_CASE = len(matrix[0] ) __SCREAMING_SNAKE_CASE = [[-1 for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): __SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1 , a__ ): for i in range(a__ ): __SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , a__ ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): __SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
331
0
"""simple docstring""" from __future__ import annotations from math import gcd def lowercase__ ( snake_case_ :int , snake_case_ :int = 2 , snake_case_ :int = 1 , snake_case_ :int = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(snake_case_ :int , snake_case_ :int , snake_case_ :int ) -> int: return (pow(snake_case_ , 2 ) + step) % modulus for _ in range(snake_case_ ): # These track the position within the cycle detection logic. __UpperCAmelCase = seed __UpperCAmelCase = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. __UpperCAmelCase = rand_fn(snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = rand_fn(snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = rand_fn(snake_case_ , snake_case_ , snake_case_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. __UpperCAmelCase = gcd(hare - tortoise , snake_case_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. __UpperCAmelCase = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse _lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) _lowercase : Optional[int] = parser.parse_args() _lowercase : Optional[int] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f"""{args.num} is probably prime""") else: _lowercase : List[str] = args.num // divisor print(f"""{args.num} = {divisor} * {quotient}""")
332
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _lowercase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _lowercase : List[str] = 25_00_04 _lowercase : int = 25_00_20 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Union[str, Any] = MBartaaTokenizer a__ : List[str] = MBartaaTokenizerFast a__ : Any = True a__ : List[str] = True def a ( self : str ): super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self : Dict ): __UpperCAmelCase = '''<s>''' __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_lowercase ) , 10_54 ) def a ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def a ( self : str ): __UpperCAmelCase = MBartaaTokenizer(_lowercase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_lowercase ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def a ( self : str ): # fmt: off __UpperCAmelCase = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def a ( self : str ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it save with the same files self.assertSequenceEqual(_lowercase , _lowercase ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(_lowercase , legacy_format=_lowercase ) __UpperCAmelCase = tokenizer_p.save_pretrained(_lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(_lowercase ) __UpperCAmelCase = tokenizer_p.from_pretrained(_lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowercase , _lowercase ) ) shutil.rmtree(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): a__ : str = "facebook/mbart-large-50-one-to-many-mmt" a__ : Union[str, Any] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] a__ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] a__ : Any = [EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def a ( cls : Tuple ): __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def a ( self : Union[str, Any] ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) def a ( self : Optional[Any] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _lowercase ) __UpperCAmelCase = 10 __UpperCAmelCase = self.tokenizer(_lowercase , max_length=_lowercase , truncation=_lowercase ).input_ids[0] self.assertEqual(ids[0] , _lowercase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowercase ) , _lowercase ) def a ( self : Optional[int] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowercase ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(_lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowercase ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowercase , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowercase , _lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self : Union[str, Any] ): __UpperCAmelCase = self.tokenizer(self.src_text , padding=_lowercase , truncation=_lowercase , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=_lowercase , truncation=_lowercase , max_length=10 , return_tensors='''pt''' ) __UpperCAmelCase = targets['''input_ids'''] __UpperCAmelCase = shift_tokens_right(_lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self : Dict ): __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_lowercase ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
332
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class snake_case_ (unittest.TestCase ): @property def lowerCamelCase__( self :List[Any] ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase__( self :List[Any] ) -> int: a__ = ort.SessionOptions() a__ = False return options def lowerCamelCase__( self :List[str] ) -> Dict: a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) a__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) a__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' ) # using the PNDM scheduler by default a__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( 'CompVis/stable-diffusion-v1-4' ,revision='onnx' ,safety_checker=UpperCamelCase_ ,feature_extractor=UpperCamelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) a__ = 'A red cat sitting on a park bench' a__ = np.random.RandomState(0 ) a__ = pipe( prompt=UpperCamelCase_ ,image=UpperCamelCase_ ,mask_image=UpperCamelCase_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=15 ,generator=UpperCamelCase_ ,output_type='np' ,) a__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-2
355
from collections import defaultdict from math import ceil, sqrt def __lowercase ( __lowerCAmelCase : int = 1_0_0_0_0_0_0 , __lowerCAmelCase : int = 1_0 ): a__ = defaultdict(__lowerCAmelCase ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__lowerCAmelCase , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 1_0 ) if __name__ == "__main__": print(f"""{solution() = }""")
109
0
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: _a : Any = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern _a , _a : Any = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _a : str = failure[j - 1] continue i += 1 return False def __lowerCamelCase ( lowerCAmelCase_ ) -> Optional[int]: _a : Optional[Any] = [0] _a : int = 0 _a : Optional[int] = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _a : List[Any] = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) __lowerCAmelCase = '''abc1abc12''' __lowerCAmelCase = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __lowerCAmelCase = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCAmelCase = '''ABABX''' __lowerCAmelCase = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __lowerCAmelCase = '''AAAB''' __lowerCAmelCase = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __lowerCAmelCase = '''abcdabcy''' __lowerCAmelCase = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __lowerCAmelCase = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
89
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
0
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : float ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] ) -> List[Any]: # Initialise PyTorch model lowercase_ : List[str] = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase_ : Dict = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _lowercase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
21
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase = 3_84 __lowerCamelCase = 7 if "tiny" in model_name: __lowerCamelCase = 96 __lowerCamelCase = (2, 2, 6, 2) __lowerCamelCase = (3, 6, 12, 24) elif "small" in model_name: __lowerCamelCase = 96 __lowerCamelCase = (2, 2, 18, 2) __lowerCamelCase = (3, 6, 12, 24) elif "base" in model_name: __lowerCamelCase = 1_28 __lowerCamelCase = (2, 2, 18, 2) __lowerCamelCase = (4, 8, 16, 32) __lowerCamelCase = 12 __lowerCamelCase = 5_12 elif "large" in model_name: __lowerCamelCase = 1_92 __lowerCamelCase = (2, 2, 18, 2) __lowerCamelCase = (6, 12, 24, 48) __lowerCamelCase = 12 __lowerCamelCase = 7_68 # set label information __lowerCamelCase = 1_50 __lowerCamelCase = '''huggingface/label-files''' __lowerCamelCase = '''ade20k-id2label.json''' __lowerCamelCase = json.load(open(hf_hub_download(_UpperCamelCase ,_UpperCamelCase ,repo_type='''dataset''' ) ,'''r''' ) ) __lowerCamelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCamelCase = {v: k for k, v in idalabel.items()} __lowerCamelCase = SwinConfig( embed_dim=_UpperCamelCase ,depths=_UpperCamelCase ,num_heads=_UpperCamelCase ,window_size=_UpperCamelCase ,out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ,) __lowerCamelCase = UperNetConfig( backbone_config=_UpperCamelCase ,auxiliary_in_channels=_UpperCamelCase ,num_labels=_UpperCamelCase ,idalabel=_UpperCamelCase ,labelaid=_UpperCamelCase ,) return config def a__ ( _UpperCamelCase : List[Any] ): __lowerCamelCase = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def a__ ( _UpperCamelCase : int ,_UpperCamelCase : List[str] ,_UpperCamelCase : Optional[Any] ): __lowerCamelCase = dct.pop(_UpperCamelCase ) __lowerCamelCase = val def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : Dict ): __lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) __lowerCamelCase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:dim, :] __lowerCamelCase = in_proj_bias[: dim] __lowerCamelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCamelCase = in_proj_bias[ dim : dim * 2 ] __lowerCamelCase = in_proj_weight[ -dim :, : ] __lowerCamelCase = in_proj_bias[-dim :] # fmt: on def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase ,__lowerCamelCase = x.shape __lowerCamelCase = x.reshape(_UpperCamelCase ,4 ,in_channel // 4 ) __lowerCamelCase = x[:, [0, 2, 1, 3], :].transpose(1 ,2 ).reshape(_UpperCamelCase ,_UpperCamelCase ) return x def a__ ( _UpperCamelCase : Optional[Any] ): __lowerCamelCase ,__lowerCamelCase = x.shape __lowerCamelCase = x.reshape(_UpperCamelCase ,in_channel // 4 ,4 ) __lowerCamelCase = x[:, :, [0, 2, 1, 3]].transpose(1 ,2 ).reshape(_UpperCamelCase ,_UpperCamelCase ) return x def a__ ( _UpperCamelCase : Any ): __lowerCamelCase = x.shape[0] __lowerCamelCase = x.reshape(4 ,in_channel // 4 ) __lowerCamelCase = x[[0, 2, 1, 3], :].transpose(0 ,1 ).reshape(_UpperCamelCase ) return x def a__ ( _UpperCamelCase : Tuple ): __lowerCamelCase = x.shape[0] __lowerCamelCase = x.reshape(in_channel // 4 ,4 ) __lowerCamelCase = x[:, [0, 2, 1, 3]].transpose(0 ,1 ).reshape(_UpperCamelCase ) return x def a__ ( _UpperCamelCase : List[Any] ,_UpperCamelCase : Dict ,_UpperCamelCase : str ): __lowerCamelCase = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } __lowerCamelCase = model_name_to_url[model_name] __lowerCamelCase = torch.hub.load_state_dict_from_url(_UpperCamelCase ,map_location='''cpu''' ,file_name=_UpperCamelCase )[ '''state_dict''' ] for name, param in state_dict.items(): print(_UpperCamelCase ,param.shape ) __lowerCamelCase = get_upernet_config(_UpperCamelCase ) __lowerCamelCase = UperNetForSemanticSegmentation(_UpperCamelCase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __lowerCamelCase = state_dict.pop(_UpperCamelCase ) if "bn" in key: __lowerCamelCase = key.replace('''bn''' ,'''batch_norm''' ) __lowerCamelCase = val # rename keys __lowerCamelCase = create_rename_keys(_UpperCamelCase ) for src, dest in rename_keys: rename_key(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) read_in_q_k_v(_UpperCamelCase ,config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __lowerCamelCase = reverse_correct_unfold_reduction_order(_UpperCamelCase ) if "norm" in key: __lowerCamelCase = reverse_correct_unfold_norm_order(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # verify on image __lowerCamelCase = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' __lowerCamelCase = Image.open(requests.get(_UpperCamelCase ,stream=_UpperCamelCase ).raw ).convert('''RGB''' ) __lowerCamelCase = SegformerImageProcessor() __lowerCamelCase = processor(_UpperCamelCase ,return_tensors='''pt''' ).pixel_values with torch.no_grad(): __lowerCamelCase = model(_UpperCamelCase ) __lowerCamelCase = outputs.logits print(logits.shape ) print('''First values of logits:''' ,logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __lowerCamelCase = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": __lowerCamelCase = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": __lowerCamelCase = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": __lowerCamelCase = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('''Logits:''' ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,_UpperCamelCase ,atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_UpperCamelCase ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f"upernet-swin-{size}" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) a_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
330
def a__ ( _UpperCamelCase : int ): if not isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(_UpperCamelCase ) if number < 0: return False __lowerCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
330
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=7, lowerCamelCase__=6, lowerCamelCase__=17, lowerCamelCase__=23, lowerCamelCase__=11, lowerCamelCase__=True, ): A : List[Any] = parent A : List[str] = batch_size A : Union[str, Any] = seq_length A : List[Any] = act_dim A : List[str] = state_dim A : str = hidden_size A : Tuple = max_length A : int = is_training def _lowerCAmelCase ( self ): A : Any = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) A : List[str] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) A : str = floats_tensor((self.batch_size, self.seq_length, 1) ) A : List[Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) A : Optional[int] = ids_tensor((self.batch_size, self.seq_length), vocab_size=1000 ) A : List[Any] = random_attention_mask((self.batch_size, self.seq_length) ) A : List[str] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowerCAmelCase ( self ): return DecisionTransformerConfig( batch_size=self.batch_size, seq_length=self.seq_length, act_dim=self.act_dim, state_dim=self.state_dim, hidden_size=self.hidden_size, max_length=self.max_length, ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, ): A : int = DecisionTransformerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A : Optional[Any] = model(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) self.parent.assertEqual(result.state_preds.shape, states.shape ) self.parent.assertEqual(result.action_preds.shape, actions.shape ) self.parent.assertEqual(result.return_preds.shape, returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowerCAmelCase ( self ): A : Optional[Any] = self.prepare_config_and_inputs() ( A ) : Optional[Any] = config_and_inputs A : Dict = { """states""": states, """actions""": actions, """rewards""": rewards, """returns_to_go""": returns_to_go, """timesteps""": timesteps, """attention_mask""": attention_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = (DecisionTransformerModel,) if is_torch_available() else () __lowerCamelCase : Optional[Any] = () __lowerCamelCase : Tuple = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __lowerCamelCase : int = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __lowerCamelCase : List[str] = False __lowerCamelCase : int = False __lowerCamelCase : int = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : int = False __lowerCamelCase : Dict = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Tuple = False __lowerCamelCase : Union[str, Any] = False def _lowerCAmelCase ( self ): A : Tuple = DecisionTransformerModelTester(self ) A : Tuple = ConfigTester(self, config_class=lowerCamelCase__, hidden_size=37 ) def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _lowerCAmelCase ( self ): for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : str = DecisionTransformerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[str] = model_class(lowerCamelCase__ ) A : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : str = [*signature.parameters.keys()] A : Dict = [ """states""", """actions""", """rewards""", """returns_to_go""", """timesteps""", """attention_mask""", ] self.assertListEqual(arg_names[: len(lowerCamelCase__ )], lowerCamelCase__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : int = 2 # number of steps of autoregressive prediction we will perform A : str = 10 # defined by the RL environment, may be normalized A : Dict = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" ) A : Union[str, Any] = model.to(lowerCamelCase__ ) A : Dict = model.config torch.manual_seed(0 ) A : Optional[int] = torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase__, dtype=torch.floataa ) # env.reset() A : int = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]], device=lowerCamelCase__ ) A : Dict = torch.tensor(lowerCamelCase__, device=lowerCamelCase__, dtype=torch.floataa ).reshape(1, 1, 1 ) A : Tuple = state A : List[str] = torch.zeros(1, 0, config.act_dim, device=lowerCamelCase__, dtype=torch.floataa ) A : List[str] = torch.zeros(1, 0, device=lowerCamelCase__, dtype=torch.floataa ) A : Tuple = torch.tensor(0, device=lowerCamelCase__, dtype=torch.long ).reshape(1, 1 ) for step in range(lowerCamelCase__ ): A : List[Any] = torch.cat([actions, torch.zeros(1, 1, config.act_dim, device=lowerCamelCase__ )], dim=1 ) A : Optional[int] = torch.cat([rewards, torch.zeros(1, 1, device=lowerCamelCase__ )], dim=1 ) A : Optional[int] = torch.ones(1, states.shape[1] ).to(dtype=torch.long, device=states.device ) with torch.no_grad(): A : Optional[Any] = model( states=lowerCamelCase__, actions=lowerCamelCase__, rewards=lowerCamelCase__, returns_to_go=lowerCamelCase__, timesteps=lowerCamelCase__, attention_mask=lowerCamelCase__, return_dict=lowerCamelCase__, ) self.assertEqual(action_pred.shape, actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1], expected_outputs[step], atol=1e-4 ) ) A : Optional[int] = ( # env.step(action) torch.randn(1, 1, config.state_dim ).to(device=lowerCamelCase__, dtype=torch.floataa ), 1.0, False, {}, ) A : Union[str, Any] = action_pred[0, -1] A : str = torch.cat([states, state], dim=1 ) A : Tuple = returns_to_go[0, -1] - reward A : Optional[Any] = torch.cat([returns_to_go, pred_return.reshape(1, 1, 1 )], dim=1 ) A : List[Any] = torch.cat( [timesteps, torch.ones((1, 1), device=lowerCamelCase__, dtype=torch.long ) * (step + 1)], dim=1 )
362
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_:Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_:Union[str, Any] = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Dict = "conditional_detr" __lowerCamelCase : str = ["past_key_values"] __lowerCamelCase : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, lowerCamelCase__=True, lowerCamelCase__=None, lowerCamelCase__=3, lowerCamelCase__=300, lowerCamelCase__=6, lowerCamelCase__=2048, lowerCamelCase__=8, lowerCamelCase__=6, lowerCamelCase__=2048, lowerCamelCase__=8, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=True, lowerCamelCase__="relu", lowerCamelCase__=256, lowerCamelCase__=0.1, lowerCamelCase__=0.0, lowerCamelCase__=0.0, lowerCamelCase__=0.02, lowerCamelCase__=1.0, lowerCamelCase__=False, lowerCamelCase__="sine", lowerCamelCase__="resnet50", lowerCamelCase__=True, lowerCamelCase__=False, lowerCamelCase__=2, lowerCamelCase__=5, lowerCamelCase__=2, lowerCamelCase__=1, lowerCamelCase__=1, lowerCamelCase__=2, lowerCamelCase__=5, lowerCamelCase__=2, lowerCamelCase__=0.25, **lowerCamelCase__, ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A : List[Any] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__, lowerCamelCase__ ): A : Any = backbone_config.get("""model_type""" ) A : Optional[Any] = CONFIG_MAPPING[backbone_model_type] A : Tuple = config_class.from_dict(lowerCamelCase__ ) A : Dict = use_timm_backbone A : int = backbone_config A : Union[str, Any] = num_channels A : Optional[Any] = num_queries A : Union[str, Any] = d_model A : str = encoder_ffn_dim A : List[Any] = encoder_layers A : Tuple = encoder_attention_heads A : Union[str, Any] = decoder_ffn_dim A : Tuple = decoder_layers A : int = decoder_attention_heads A : Union[str, Any] = dropout A : List[str] = attention_dropout A : Optional[int] = activation_dropout A : Optional[Any] = activation_function A : Any = init_std A : List[Any] = init_xavier_std A : Any = encoder_layerdrop A : List[str] = decoder_layerdrop A : int = encoder_layers A : Union[str, Any] = auxiliary_loss A : Union[str, Any] = position_embedding_type A : Tuple = backbone A : Dict = use_pretrained_backbone A : int = dilation # Hungarian matcher A : List[Any] = class_cost A : List[Any] = bbox_cost A : int = giou_cost # Loss coefficients A : List[Any] = mask_loss_coefficient A : Any = dice_loss_coefficient A : int = cls_loss_coefficient A : Tuple = bbox_loss_coefficient A : List[Any] = giou_loss_coefficient A : int = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase__, **lowerCamelCase__ ) @property def _lowerCAmelCase ( self ): return self.encoder_attention_heads @property def _lowerCAmelCase ( self ): return self.d_model def _lowerCAmelCase ( self ): A : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: A : List[Any] = self.backbone_config.to_dict() A : List[str] = self.__class__.model_type return output class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Tuple = version.parse("1.11" ) @property def _lowerCAmelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _lowerCAmelCase ( self ): return 1e-5 @property def _lowerCAmelCase ( self ): return 12
115
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowerCAmelCase ( unittest.TestCase ): def A_ ( self : Tuple ) -> str: lowerCamelCase__ : int = tempfile.mkdtemp() lowerCamelCase__ : Tuple = BlipImageProcessor() lowerCamelCase__ : str = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCamelCase__ : List[Any] = BlipaProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def A_ ( self : List[str] , **UpperCAmelCase : str ) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def A_ ( self : Optional[int] , **UpperCAmelCase : List[str] ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def A_ ( self : Optional[Any] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def A_ ( self : Tuple ) -> Any: lowerCamelCase__ : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase__ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A_ ( self : Dict ) -> List[str]: lowerCamelCase__ : Optional[Any] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase__ : Union[str, Any] = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase__ : str = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def A_ ( self : Tuple ) -> str: lowerCamelCase__ : Dict = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : Any = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase__ : List[Any] = image_processor(UpperCAmelCase , return_tensors='np' ) lowerCamelCase__ : List[Any] = processor(images=UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self : int ) -> Any: lowerCamelCase__ : Optional[Any] = self.get_image_processor() lowerCamelCase__ : List[str] = self.get_tokenizer() lowerCamelCase__ : int = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = 'lower newer' lowerCamelCase__ : Optional[int] = processor(text=UpperCAmelCase ) lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A_ ( self : Tuple ) -> List[Any]: lowerCamelCase__ : Any = self.get_image_processor() lowerCamelCase__ : Dict = self.get_tokenizer() lowerCamelCase__ : Optional[Any] = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = 'lower newer' lowerCamelCase__ : Optional[Any] = self.prepare_image_inputs() lowerCamelCase__ : Optional[Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def A_ ( self : Dict ) -> Union[str, Any]: lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : Optional[int] = self.get_tokenizer() lowerCamelCase__ : str = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ : str = processor.batch_decode(UpperCAmelCase ) lowerCamelCase__ : str = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def A_ ( self : Tuple ) -> str: lowerCamelCase__ : Optional[int] = self.get_image_processor() lowerCamelCase__ : List[Any] = self.get_tokenizer() lowerCamelCase__ : List[str] = BlipaProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase__ : Any = 'lower newer' lowerCamelCase__ : Optional[Any] = self.prepare_image_inputs() lowerCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
50
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _UpperCAmelCase : str = pytest.mark.integration @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : List[Any] ) -> Union[str, Any]: lowerCamelCase__ : List[Any] = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCAmelCase ) for x in np.arange(30 ).tolist()]} ) return dset def A_ ( self : Optional[Any] ) -> Optional[int]: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() lowerCamelCase__ : List[Any] = dset.map( lambda UpperCAmelCase , UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCAmelCase , keep_in_memory=UpperCAmelCase ) lowerCamelCase__ : Tuple = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A_ ( self : Union[str, Any] ) -> int: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : List[str] ) -> Tuple: import faiss lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ , lowerCamelCase__ : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A_ ( self : Any ) -> Optional[Any]: lowerCamelCase__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCAmelCase , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A_ ( self : Dict ) -> Dict: from elasticsearch import Elasticsearch lowerCamelCase__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : List[Any] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase__ : int = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCamelCase__ : List[str] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Any ) -> Dict: import faiss lowerCamelCase__ : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase__ : int = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Any = 1 lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = index.search(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase__ : str = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase__ , lowerCamelCase__ : Dict = index.search_batch(UpperCAmelCase ) self.assertRaises(UpperCAmelCase , index.search_batch , queries[0] ) lowerCamelCase__ : str = [scores[0] for scores in total_scores] lowerCamelCase__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[Any]: import faiss lowerCamelCase__ : Any = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase__ : Tuple = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCAmelCase ): lowerCamelCase__ : List[str] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A_ ( self : List[str] ) -> Optional[int]: import faiss lowerCamelCase__ : Optional[Any] = faiss.IndexFlat(5 ) lowerCamelCase__ : int = FaissIndex(custom_index=UpperCAmelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A_ ( self : Any ) -> Optional[int]: import faiss lowerCamelCase__ : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCAmelCase ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase__ : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase__ : List[str] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Tuple = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(UpperCAmelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Any: import faiss lowerCamelCase__ : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase__ : Optional[int] = 'index.faiss' lowerCamelCase__ : Optional[Any] = F"""mock://{index_name}""" index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Tuple = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCamelCase__ : Optional[int] = np.zeros(5 , dtype=np.floataa ) lowerCamelCase__ : Dict = 1 lowerCamelCase__ , lowerCamelCase__ : str = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase ( __UpperCamelCase ): def A_ ( self : Dict ) -> List[Any]: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCamelCase__ : Any = Elasticsearch() lowerCamelCase__ : Tuple = {'acknowledged': True} lowerCamelCase__ : Tuple = ElasticSearchIndex(es_client=UpperCAmelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCamelCase__ : Optional[int] = 'foo' lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search(UpperCAmelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase__ : Any = 'foo' lowerCamelCase__ : List[str] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCamelCase__ , lowerCamelCase__ : Tuple = index.search(UpperCAmelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase__ : List[str] = ['foo', 'bar', 'foobar'] lowerCamelCase__ : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : str = index.search_batch(UpperCAmelCase ) lowerCamelCase__ : List[str] = [scores[0] for scores in total_scores] lowerCamelCase__ : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase ) # batched queries with timeout lowerCamelCase__ : str = ['foo', 'bar', 'foobar'] lowerCamelCase__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = index.search_batch(UpperCAmelCase , request_timeout=30 ) lowerCamelCase__ : Optional[Any] = [scores[0] for scores in total_scores] lowerCamelCase__ : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCAmelCase ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCAmelCase )
50
1
'''simple docstring''' from collections.abc import Callable import numpy as np def UpperCAmelCase ( lowerCamelCase_ :Callable , lowerCamelCase_ :float , lowerCamelCase_ :float , lowerCamelCase_ :float , lowerCamelCase_ :float ): '''simple docstring''' snake_case_ : str = int(np.ceil((x_end - xa) / step_size ) ) snake_case_ : List[str] = np.zeros((n + 1,) ) snake_case_ : List[str] = ya snake_case_ : Union[str, Any] = xa for k in range(lowerCamelCase__ ): snake_case_ : Union[str, Any] = y[k] + step_size * ode_func(lowerCamelCase__ , y[k] ) snake_case_ : Optional[Any] = y[k] + ( (step_size / 2) * (ode_func(lowerCamelCase__ , y[k] ) + ode_func(x + step_size , lowerCamelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __A : Dict = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Optional[int] = 'ernie_m' lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self :Optional[Any] ,_UpperCamelCase :int = 2_5_0_0_0_2 ,_UpperCamelCase :int = 7_6_8 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 1_2 ,_UpperCamelCase :int = 3_0_7_2 ,_UpperCamelCase :str = "gelu" ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :float = 0.1 ,_UpperCamelCase :int = 5_1_4 ,_UpperCamelCase :float = 0.02 ,_UpperCamelCase :int = 1 ,_UpperCamelCase :float = 1E-0_5 ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0.0 ,**_UpperCamelCase :List[Any] ,): super().__init__(pad_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Optional[int] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Union[str, Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Any = intermediate_size snake_case_ : Any = hidden_act snake_case_ : Tuple = hidden_dropout_prob snake_case_ : Union[str, Any] = attention_probs_dropout_prob snake_case_ : str = max_position_embeddings snake_case_ : int = initializer_range snake_case_ : Optional[Any] = layer_norm_eps snake_case_ : Union[str, Any] = classifier_dropout snake_case_ : Tuple = is_decoder snake_case_ : int = act_dropout
8
0
import argparse from collections import defaultdict import yaml __lowerCamelCase = """docs/source/en/_toctree.yml""" def UpperCamelCase ( __lowerCamelCase : Optional[Any] ): snake_case : Any = defaultdict(__lowerCamelCase ) snake_case : List[Any] = [] snake_case : List[str] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(__lowerCamelCase ) snake_case : List[str] = new_doc_list snake_case : Optional[int] = [key for key, value in counts.items() if value > 1] snake_case : Any = [] for duplicate_key in duplicates: snake_case : List[str] = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(__lowerCamelCase ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) snake_case : Union[str, Any] = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__lowerCamelCase ) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed." ) overview_doc.extend(__lowerCamelCase ) # Sort return overview_doc def UpperCamelCase ( __lowerCamelCase : Any=False ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc snake_case : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case : str = content[api_idx]["sections"] # Then to the model doc snake_case : Optional[int] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 snake_case : Dict = api_doc[scheduler_idx]["sections"] snake_case : Any = clean_doc_toc(__lowerCamelCase ) snake_case : str = False if new_scheduler_doc != scheduler_doc: snake_case : Dict = True if overwrite: snake_case : int = new_scheduler_doc if diff: if overwrite: snake_case : Dict = api_doc with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def UpperCamelCase ( __lowerCamelCase : int=False ): with open(__lowerCamelCase , encoding="utf-8" ) as f: snake_case : str = yaml.safe_load(f.read() ) # Get to the API doc snake_case : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case : List[Any] = content[api_idx]["sections"] # Then to the model doc snake_case : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 snake_case : int = False snake_case : Optional[int] = api_doc[pipeline_idx]["sections"] snake_case : Any = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: snake_case : str = pipeline_doc["section"] snake_case : Optional[int] = clean_doc_toc(__lowerCamelCase ) if overwrite: snake_case : Any = new_sub_pipeline_doc new_pipeline_docs.append(__lowerCamelCase ) # sort overall pipeline doc snake_case : Tuple = clean_doc_toc(__lowerCamelCase ) if new_pipeline_docs != pipeline_docs: snake_case : Optional[int] = True if overwrite: snake_case : Optional[int] = new_pipeline_docs if diff: if overwrite: snake_case : int = api_doc with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(__lowerCamelCase , allow_unicode=__lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __lowerCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
59
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase_ = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase_ = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase_ = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase_ = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase_ = ( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ , snake_case_ : Any = randrange(len(_UpperCamelCase ) ), randrange(len(_UpperCamelCase ) ) snake_case_ : Any = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] snake_case_ , snake_case_ : Tuple = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase_ ( _UpperCamelCase = 100 ) -> str: """simple docstring""" return (generate_random_hand() for _ in range(_UpperCamelCase )) @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" snake_case_ : str = PokerHand(_UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" assert PokerHand(_UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" assert PokerHand(_UpperCamelCase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , _UpperCamelCase ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" assert PokerHand(_UpperCamelCase ).compare_with(PokerHand(_UpperCamelCase ) ) == expected def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Dict = [PokerHand(_UpperCamelCase ) for hand in SORTED_HANDS] snake_case_ : str = poker_hands.copy() shuffle(_UpperCamelCase ) snake_case_ : List[str] = chain(sorted(_UpperCamelCase ) ) for index, hand in enumerate(_UpperCamelCase ): assert hand == poker_hands[index] def lowerCamelCase_ ( ) -> Dict: """simple docstring""" snake_case_ : Union[str, Any] = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=_UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase_ ( ) -> str: """simple docstring""" snake_case_ : Dict = PokerHand('''2C 4S AS 3D 5C''' ) snake_case_ : str = True snake_case_ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase_ ( ) -> List[str]: """simple docstring""" snake_case_ : List[str] = 0 snake_case_ : Union[str, Any] = os.path.abspath(os.path.dirname(_UpperCamelCase ) ) snake_case_ : Dict = os.path.join(_UpperCamelCase , '''poker_hands.txt''' ) with open(_UpperCamelCase ) as file_hand: for line in file_hand: snake_case_ : Dict = line[:14].strip() snake_case_ : List[str] = line[15:].strip() snake_case_ , snake_case_ : str = PokerHand(_UpperCamelCase ), PokerHand(_UpperCamelCase ) snake_case_ : int = player.compare_with(_UpperCamelCase ) if output == "Win": answer += 1 assert answer == 376
279
0
'''simple docstring''' from random import randint, random def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 5 , ): _snake_case = [[-1] * number_of_cells] # Create a highway without any car _snake_case = 0 _snake_case = max(_SCREAMING_SNAKE_CASE , 0 ) while i < number_of_cells: _snake_case = ( randint(0 , _SCREAMING_SNAKE_CASE ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = 0 _snake_case = highway_now[car_index + 1 :] for cell in range(len(_SCREAMING_SNAKE_CASE ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(_SCREAMING_SNAKE_CASE , -1 ) def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = len(_SCREAMING_SNAKE_CASE ) # Beforce calculations, the highway is empty _snake_case = [-1] * number_of_cells for car_index in range(_SCREAMING_SNAKE_CASE ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed _snake_case = min(highway_now[car_index] + 1 , _SCREAMING_SNAKE_CASE ) # Number of empty cell before the next car _snake_case = get_distance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - 1 # We can't have the car causing an accident _snake_case = min(next_highway[car_index] , _SCREAMING_SNAKE_CASE ) if random() < probability: # Randomly, a driver will slow down _snake_case = max(next_highway[car_index] - 1 , 0 ) return next_highway def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _snake_case = len(highway[0] ) for i in range(_SCREAMING_SNAKE_CASE ): _snake_case = update(highway[i] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _snake_case = [-1] * number_of_cells for car_index in range(_SCREAMING_SNAKE_CASE ): _snake_case = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) _snake_case = (car_index + speed) % number_of_cells # Commit the change of position _snake_case = speed highway.append(_SCREAMING_SNAKE_CASE ) return highway if __name__ == "__main__": import doctest doctest.testmod()
270
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
270
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a :Dict = logging.get_logger(__name__) a :int = "▁" a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} a :str = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } a :Any = { "facebook/xglm-564M": 2_048, } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE :Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a = None , **_a , ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE__ : Union[str, Any] = 7 SCREAMING_SNAKE_CASE__ : List[Any] = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) SCREAMING_SNAKE_CASE__ : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ : List[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE__ : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} SCREAMING_SNAKE_CASE__ : str = len(self.sp_model ) SCREAMING_SNAKE_CASE__ : List[Any] = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_a ) SCREAMING_SNAKE_CASE__ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.__dict__.copy() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self , _a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _a ( self , _a , _a = None , _a = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) def _a ( self , _a , _a = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _a ( self ) -> List[str]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _a ( self , _a ) -> List[str]: """simple docstring""" return self.sp_model.encode(_a , out_type=_a ) def _a ( self , _a ) -> Any: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _a ( self , _a ) -> Optional[Any]: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _a ( self , _a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = """""".join(_a ).replace(_a , """ """ ).strip() return out_string def _a ( self , _a , _a = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_a ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ : Any = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
132
"""simple docstring""" a :dict[tuple[int, int, int], int] = {} def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE__ : str = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE__ : Tuple = _calculate(days - 1 , __lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE__ : List[str] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE__ : Optional[Any] = _calculate(days - 1 , __lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE__ : Optional[int] = prizestrings return prizestrings def _lowercase ( __lowerCAmelCase = 30 ) -> int: return _calculate(__lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
132
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : Dict = '▁' _a : Dict = {'vocab_file': 'sentencepiece.bpe.model'} _a : Any = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } _a : Union[str, Any] = { 'facebook/mbart-large-50-one-to-many-mmt': 1_024, } # fmt: off _a : Optional[int] = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class __A ( __snake_case ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : int = ["input_ids", "attention_mask"] _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , a__ , a__=None , a__=None , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__ = None , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token _lowerCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs _lowerCAmelCase : List[str] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) _lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) _lowerCAmelCase : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : Tuple = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Dict = len(self.sp_model ) _lowerCAmelCase : Any = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase_ ) } _lowerCAmelCase : str = {v: k for k, v in self.lang_code_to_id.items()} _lowerCAmelCase : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowerCAmelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowerCAmelCase : str = src_lang if src_lang is not None else """en_XX""" _lowerCAmelCase : Tuple = self.lang_code_to_id[self._src_lang] _lowerCAmelCase : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): _lowerCAmelCase : int = self.__dict__.copy() _lowerCAmelCase : Optional[int] = None return state def __setstate__( self , a__ ): _lowerCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self ): _lowerCAmelCase : Optional[int] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , a__ ): return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __A ( self , a__ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Optional[int] = self.sp_model.PieceToId(lowerCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __A ( self , a__ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Dict = """""" _lowerCAmelCase : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token _lowerCAmelCase : Tuple = True _lowerCAmelCase : Tuple = [] else: current_sub_tokens.append(lowerCamelCase_ ) _lowerCAmelCase : int = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def __A ( self , a__ , a__ = None ): if not os.path.isdir(lowerCamelCase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase : Union[str, Any] = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , """wb""" ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) _lowerCAmelCase : List[Any] = [1] * len(self.prefix_tokens ) _lowerCAmelCase : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase_ )) + ([0] * len(lowerCamelCase_ )) + suffix_ones def __A ( self , a__ , a__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , a__ , a__ , a__ , a__ , **a__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : List[str] = self(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = self.convert_tokens_to_ids(lowerCamelCase_ ) _lowerCAmelCase : List[str] = tgt_lang_id return inputs def __A ( self , a__ , a__ = "en_XX" , a__ = None , a__ = "ro_RO" , **a__ , ): _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self.lang_code_to_id[src_lang] _lowerCAmelCase : Optional[Any] = [self.cur_lang_code_id] _lowerCAmelCase : Any = [self.eos_token_id] def __A ( self , a__ ): _lowerCAmelCase : int = self.lang_code_to_id[tgt_lang] _lowerCAmelCase : List[Any] = [self.cur_lang_code_id] _lowerCAmelCase : Optional[Any] = [self.eos_token_id]
365
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : List[Any] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "maskformer-swin" _UpperCamelCase : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=None , a__=None , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Dict = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : int = embed_dim _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : List[str] = len(a__ ) _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : List[Any] = mlp_ratio _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : int = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(a__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : int = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
126
0
import os import sys import unittest UpperCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) UpperCAmelCase__ = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') UpperCAmelCase__ = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Any: _lowercase =get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) _lowercase =get_test_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) _lowercase ={"""BertModelTest""": """BertModelTester"""} _lowercase ={ """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __A (self ) -> Optional[Any]: _lowercase =get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ ) _lowercase =get_model_to_test_mapping(SCREAMING_SNAKE_CASE__ ) _lowercase ={ """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } _lowercase ={ """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __A (self ) -> List[str]: _lowercase =get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) _lowercase =get_model_to_tester_mapping(SCREAMING_SNAKE_CASE__ ) _lowercase ={ """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } _lowercase ={ """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
5
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ (a__ , a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = IFPipeline __UpperCamelCase : Dict = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} __UpperCamelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" return self._get_dummy_components() def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0 ) -> List[Any]: """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith("""mps""" ): SCREAMING_SNAKE_CASE__ : Dict = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def __magic_name__ (self ) -> List[str]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __magic_name__ (self ) -> Tuple: """simple docstring""" self._test_save_load_local() def __magic_name__ (self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Dict = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE__ : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : Optional[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE__ : Optional[Any] = IFInpaintingPipeline(**pipe_a.components ) SCREAMING_SNAKE_CASE__ : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE__ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE__ , negative_prompt_embeds=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , original_image=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=2 , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) SCREAMING_SNAKE_CASE__ : List[str] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE__ : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase_ ( ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
25
0
"""simple docstring""" def _lowerCAmelCase ( lowercase_ , lowercase_ ): while a != 0: UpperCAmelCase , UpperCAmelCase = b % a, a return b def _lowerCAmelCase ( lowercase_ , lowercase_ ): if gcd(lowercase_ , lowercase_ ) != 1: UpperCAmelCase = F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowercase_ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1, 0, a UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 1, m while va != 0: UpperCAmelCase = ua // va UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
181
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """maskformer""" __UpperCamelCase = {"""hidden_size""": """mask_feature_size"""} __UpperCamelCase = ["""resnet""", """swin"""] __UpperCamelCase = ["""detr"""] def __init__( self :Dict , lowercase_ :int = 2_56 , lowercase_ :int = 2_56 , lowercase_ :float = 0.1 , lowercase_ :bool = False , lowercase_ :Optional[Dict] = None , lowercase_ :Optional[Dict] = None , lowercase_ :float = 0.02 , lowercase_ :float = 1.0 , lowercase_ :float = 1.0 , lowercase_ :float = 1.0 , lowercase_ :float = 20.0 , lowercase_ :Optional[bool] = None , **lowercase_ :List[str] , ) -> Optional[int]: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = backbone_config.pop('model_type' ) UpperCAmelCase = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase = config_class.from_dict(lowercase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase = ( decoder_config.pop('model_type' ) if isinstance(lowercase_ , lowercase_ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = CONFIG_MAPPING[decoder_type] UpperCAmelCase = config_class.from_dict(lowercase_ ) UpperCAmelCase = backbone_config UpperCAmelCase = decoder_config # main feature dimension for the model UpperCAmelCase = fpn_feature_size UpperCAmelCase = mask_feature_size # initializer UpperCAmelCase = init_std UpperCAmelCase = init_xavier_std # Hungarian matcher && loss UpperCAmelCase = cross_entropy_weight UpperCAmelCase = dice_weight UpperCAmelCase = mask_weight UpperCAmelCase = use_auxiliary_loss UpperCAmelCase = no_object_weight UpperCAmelCase = output_auxiliary_logits UpperCAmelCase = self.decoder_config.encoder_attention_heads UpperCAmelCase = self.decoder_config.num_hidden_layers super().__init__(**lowercase_ ) @classmethod def UpperCAmelCase__ ( cls :int , lowercase_ :PretrainedConfig , lowercase_ :PretrainedConfig , **lowercase_ :int ) -> List[Any]: return cls( backbone_config=lowercase_ , decoder_config=lowercase_ , **lowercase_ , ) def UpperCAmelCase__ ( self :Tuple ) -> Dict[str, any]: UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.backbone_config.to_dict() UpperCAmelCase = self.decoder_config.to_dict() UpperCAmelCase = self.__class__.model_type return output
181
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase__ = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=None , _lowerCamelCase=1000 , ): a :str = parent a :str = batch_size a :List[Any] = seq_length a :Union[str, Any] = is_training a :str = use_input_mask a :Tuple = use_token_type_ids a :Optional[int] = use_labels a :Union[str, Any] = vocab_size a :Optional[Any] = hidden_size a :Any = num_hidden_layers a :Optional[int] = num_attention_heads a :Tuple = intermediate_size a :Dict = hidden_act a :str = hidden_dropout_prob a :List[Any] = attention_probs_dropout_prob a :List[Any] = max_position_embeddings a :List[str] = type_vocab_size a :List[Any] = type_sequence_label_size a :Union[str, Any] = initializer_range a :Optional[Any] = num_labels a :Optional[int] = num_choices a :Union[str, Any] = scope a :List[str] = range_bbox def SCREAMING_SNAKE_CASE__ ( self ): a :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment a :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a :List[Any] = bbox[i, j, 3] a :List[str] = bbox[i, j, 1] a :List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: a :Dict = bbox[i, j, 2] a :Dict = bbox[i, j, 0] a :Any = t a :Optional[Any] = tf.convert_to_tensor(_lowerCamelCase ) a :int = None if self.use_input_mask: a :List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a :Optional[int] = None if self.use_token_type_ids: a :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a :List[Any] = None a :List[Any] = None a :List[Any] = None if self.use_labels: a :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a :List[str] = ids_tensor([self.batch_size] , self.num_choices ) a :List[Any] = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = TFLayoutLMModel(config=_lowerCamelCase ) a :Dict = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) a :Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase , token_type_ids=_lowerCamelCase ) a :Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :List[str] = TFLayoutLMForMaskedLM(config=_lowerCamelCase ) a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[int] = self.num_labels a :List[Any] = TFLayoutLMForSequenceClassification(config=_lowerCamelCase ) a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :int = self.num_labels a :Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCamelCase ) a :int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): a :Optional[Any] = TFLayoutLMForQuestionAnswering(config=_lowerCamelCase ) a :Optional[int] = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) :List[Any] = config_and_inputs a :Union[str, Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class _snake_case ( _snake_case , _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = 10 def SCREAMING_SNAKE_CASE__ ( self ): a :Dict = TFLayoutLMModelTester(self ) a :Dict = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): a :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a :str = TFLayoutLMModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def SCREAMING_SNAKE_CASE__ ( self ): pass def __lowerCamelCase ( ): """simple docstring""" a :Tuple = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 a :Any = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 a :List[str] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 a :List[str] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) a :Any = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) a , a , a , a , a :Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass a :Tuple = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) # test the sequence output on [0, :3, :3] a :List[str] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1e-3 ) ) # test the pooled output on [1, :3] a :List[str] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCamelCase , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # initialize model with randomly initialized sequence classification head a :str = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) a , a , a , a , a :List[str] = prepare_layoutlm_batch_inputs() # forward pass a :List[Any] = model( input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar a :Union[str, Any] = outputs.loss a :Optional[Any] = (2,) self.assertEqual(loss.shape , _lowerCamelCase ) # test the shape of the logits a :Any = outputs.logits a :Tuple = (2, 2) self.assertEqual(logits.shape , _lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # initialize model with randomly initialized token classification head a :Dict = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13 ) a , a , a , a , a :Dict = prepare_layoutlm_batch_inputs() # forward pass a :List[Any] = model( input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) # test the shape of the logits a :Optional[Any] = outputs.logits a :List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self ): # initialize model with randomly initialized token classification head a :List[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) a , a , a , a , a :Any = prepare_layoutlm_batch_inputs() # forward pass a :str = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) # test the shape of the logits a :Optional[int] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _lowerCamelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCamelCase )
94
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class __magic_name__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): __A : Tuple = GPTSwaTokenizer __A : Optional[Any] = False __A : str = True __A : Any = False def __snake_case ( self : Union[str, Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase :List[Any] = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Dict , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :Optional[Any] = "This is a test" lowercase :Optional[int] = "This is a test" return input_text, output_text def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Tuple = "<s>" lowercase :int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __snake_case ( self : str ): '''simple docstring''' lowercase :Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2_0_0_0 ) def __snake_case ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def __snake_case ( self : Any ): '''simple docstring''' lowercase :List[str] = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowercase :Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) lowercase :List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on lowercase :int = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) lowercase :List[Any] = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Dict = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) lowercase :str = ["This is a test", "I was born in 92000, and this is falsé."] lowercase :Tuple = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertListEqual(tokenizer.encode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Test that decode_fast returns the input text for text, token_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.decode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Union[str, Any] = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off lowercase :Union[str, Any] = {"input_ids": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_SCREAMING_SNAKE_CASE , )
364
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' UpperCAmelCase = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' UpperCAmelCase = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' UpperCAmelCase = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' UpperCAmelCase = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): def __snake_case ( self : Any ): '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def __snake_case ( self : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple=[1, 1_0, 1_0_0] , snake_case__ : List[str]=4 , snake_case__ : Tuple=3.0 ): '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=snake_case__ ) as executor: lowercase :Optional[Any] = [] lowercase :Optional[Any] = Counter() lowercase :Optional[int] = 0 lowercase :int = defaultdict(snake_case__ ) for task_id, (candidates, test_case) in enumerate(zip(snake_case__ , snake_case__ ) ): for candidate in candidates: lowercase :int = candidate + '''\n''' + test_case lowercase :int = (test_program, timeout, task_id, completion_id[task_id]) lowercase :Optional[int] = executor.submit(snake_case__ , *snake_case__ ) futures.append(snake_case__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(snake_case__ ): lowercase :Dict = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) lowercase , lowercase :List[str] = [], [] for result in results.values(): result.sort() lowercase :int = [r[1]['''passed'''] for r in result] total.append(len(snake_case__ ) ) correct.append(sum(snake_case__ ) ) lowercase :List[str] = np.array(snake_case__ ) lowercase :Optional[Any] = np.array(snake_case__ ) lowercase :str = k lowercase :int = {f"""pass@{k}""": estimate_pass_at_k(snake_case__ , snake_case__ , snake_case__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCamelCase (a_ :Optional[Any] , a_ :Any , a_ :Any) -> List[Any]: def estimator(a_ :int , a_ :int , a_ :int) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1)) if isinstance(a_ , a_): lowercase :Optional[int] = itertools.repeat(a_ , len(a_)) else: assert len(a_) == len(a_) lowercase :List[Any] = iter(a_) return np.array([estimator(int(a_) , int(a_) , a_) for n, c in zip(a_ , a_)])
172
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =0 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : str =Path(lowerCamelCase__ ) / 'preprocessor_config.json' __UpperCamelCase : Optional[int] =Path(lowerCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(lowerCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(lowerCamelCase__ , 'w' ) ) __UpperCamelCase : List[Any] =AutoImageProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Dict =Path(lowerCamelCase__ ) / 'preprocessor_config.json' __UpperCamelCase : Optional[int] =Path(lowerCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(lowerCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(lowerCamelCase__ , 'w' ) ) __UpperCamelCase : Any =AutoImageProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : List[str] =CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCamelCase : Dict =Path(lowerCamelCase__ ) / 'preprocessor_config.json' __UpperCamelCase : Optional[Any] =Path(lowerCamelCase__ ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(lowerCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(lowerCamelCase__ , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCamelCase : Optional[Any] =AutoImageProcessor.from_pretrained(lowerCamelCase__ ).to_dict() config_dict.pop('image_processor_type' ) __UpperCamelCase : Any =CLIPImageProcessor(**lowerCamelCase__ ) # save in new folder model_config.save_pretrained(lowerCamelCase__ ) config.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =AutoImageProcessor.from_pretrained(lowerCamelCase__ ) # make sure private variable is not incorrectly saved __UpperCamelCase : List[Any] =json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : Any =Path(lowerCamelCase__ ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(lowerCamelCase__ , 'w' ) , ) __UpperCamelCase : str =AutoImageProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'clip-base is not a local folder and is not a valid model identifier' ): __UpperCamelCase : Tuple =AutoImageProcessor.from_pretrained('clip-base' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __UpperCamelCase : Optional[int] =AutoImageProcessor.from_pretrained(lowerCamelCase__ , revision='aaaaaa' ) def __lowercase ( self ): """simple docstring""" with self.assertRaisesRegex( lowerCamelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): __UpperCamelCase : Tuple =AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def __lowercase ( self ): """simple docstring""" with self.assertRaises(lowerCamelCase__ ): __UpperCamelCase : Tuple =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase__ ): __UpperCamelCase : Any =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=lowerCamelCase__ ) __UpperCamelCase : int =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=lowerCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Any =AutoImageProcessor.from_pretrained(lowerCamelCase__ , trust_remote_code=lowerCamelCase__ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def __lowercase ( self ): """simple docstring""" try: AutoConfig.register('custom' , lowerCamelCase__ ) AutoImageProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase__ ): AutoImageProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase : List[str] =Path(lowerCamelCase__ ) / 'preprocessor_config.json' __UpperCamelCase : List[str] =Path(lowerCamelCase__ ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(lowerCamelCase__ , 'w' ) , ) json.dump({'model_type': 'clip'} , open(lowerCamelCase__ , 'w' ) ) __UpperCamelCase : Optional[Any] =CustomImageProcessor.from_pretrained(lowerCamelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =AutoImageProcessor.from_pretrained(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __lowercase ( self ): """simple docstring""" class __A ( a ): """simple docstring""" UpperCamelCase__ : List[Any] =True try: AutoConfig.register('custom' , lowerCamelCase__ ) AutoImageProcessor.register(lowerCamelCase__ , lowerCamelCase__ ) # If remote code is not set, the default is to use local __UpperCamelCase : Optional[Any] =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __UpperCamelCase : Dict =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=lowerCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __UpperCamelCase : Dict =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=lowerCamelCase__ ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(lowerCamelCase__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
71
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
1
'''simple docstring''' import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = MgpstrTokenizer lowerCamelCase = False lowerCamelCase = {} lowerCamelCase = False def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" super().setUp() # fmt: off snake_case : str = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on snake_case : List[str] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) def lowerCAmelCase ( self : List[Any] , **UpperCamelCase__ : List[str] ) -> Any: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" snake_case : Optional[int] = '''tester''' snake_case : List[str] = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" pass def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case : Dict = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) snake_case : int = tokenizer.encode([special_token] , add_special_tokens=UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , 1 ) snake_case : Any = tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): snake_case ,snake_case : List[str] = self.get_input_output_texts(UpperCamelCase__ ) snake_case : Optional[int] = tokenizer.tokenize(UpperCamelCase__ ) snake_case : List[str] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) snake_case : Optional[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : int = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertNotEqual(len(UpperCamelCase__ ) , 0 ) snake_case : List[str] = tokenizer.decode(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , UpperCamelCase__ ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" pass
83
'''simple docstring''' import requests lowercase__ = "" # <-- Put your OpenWeatherMap appid here! lowercase__ = "https://api.openweathermap.org/data/2.5/" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "Chicago" , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "Kolkata, India" , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 55.68 , SCREAMING_SNAKE_CASE__ = 12.57 , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowercase__ = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
83
1
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig __UpperCamelCase = logging.getLogger(__name__) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = """masked_bert""" def __init__( self , lowerCAmelCase__=30_522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=0 , lowerCAmelCase__="topK" , lowerCAmelCase__="constant" , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ) -> int: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = pruning_method SCREAMING_SNAKE_CASE = mask_init SCREAMING_SNAKE_CASE = mask_scale
113
"""simple docstring""" def lowercase (SCREAMING_SNAKE_CASE_ : int ) -> str: SCREAMING_SNAKE_CASE = int(SCREAMING_SNAKE_CASE_ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = divmod(SCREAMING_SNAKE_CASE_ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE_ ) + str(SCREAMING_SNAKE_CASE_ ) def lowercase (SCREAMING_SNAKE_CASE_ : str ) -> str: SCREAMING_SNAKE_CASE = str(SCREAMING_SNAKE_CASE_ ).strip() if not number: raise ValueError('No input value was provided' ) SCREAMING_SNAKE_CASE = '-' if number.startswith('-' ) else '' SCREAMING_SNAKE_CASE = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return F'{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE_ ) )}' if __name__ == "__main__": from doctest import testmod testmod()
113
1
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]: if rouge_types is None: SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a) if use_aggregator: SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE = [] for ref, pred in zip(a , a): SCREAMING_SNAKE_CASE = scorer.score(a , a) if use_aggregator: aggregator.add_scores(a) else: scores.append(a) if use_aggregator: SCREAMING_SNAKE_CASE = aggregator.aggregate() else: SCREAMING_SNAKE_CASE = {} for key in scores[0]: SCREAMING_SNAKE_CASE = [score[key] for score in scores] return result
356
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCamelCase__ (_UpperCAmelCase): monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set()) @pytest.fixture def lowerCamelCase__ (_UpperCAmelCase): class _snake_case : def __init__( self , a) -> List[Any]: SCREAMING_SNAKE_CASE = metric_id class _snake_case : _lowercase : Optional[Any] = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock()) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))]) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): if "tmp_path" in args: SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args) with pytest.warns(_UpperCAmelCase , match='https://huggingface.co/docs/evaluate'): func(*_UpperCAmelCase)
327
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __SCREAMING_SNAKE_CASE : Tuple = random.Random() def UpperCamelCase_ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any=1.0 , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]=None ) -> str: """simple docstring""" if rng is None: _UpperCAmelCase : List[Any] = global_rng _UpperCAmelCase : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def __init__( self : int , A : str , A : Dict=7 , A : List[Any]=400 , A : Union[str, Any]=2000 , A : str=24 , A : Optional[Any]=24 , A : Optional[Any]=0.0 , A : Optional[int]=16000 , A : str=True , A : Optional[Any]=True , ): _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : int = batch_size _UpperCAmelCase : Tuple = min_seq_length _UpperCAmelCase : List[str] = max_seq_length _UpperCAmelCase : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase : Dict = feature_size _UpperCAmelCase : List[Any] = num_mel_bins _UpperCAmelCase : Union[str, Any] = padding_value _UpperCAmelCase : Optional[Any] = sampling_rate _UpperCAmelCase : Optional[int] = return_attention_mask _UpperCAmelCase : Tuple = do_normalize def _A ( self : Union[str, Any] ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _A ( self : str , A : Tuple=False , A : Any=False ): def _flatten(A : Optional[Any] ): return list(itertools.chain(*A ) ) if equal_length: _UpperCAmelCase : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase : Dict = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase : Optional[int] = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: int = SpeechaTextFeatureExtractor if is_speech_available() else None def _A ( self : Any ): _UpperCAmelCase : Optional[Any] = SpeechaTextFeatureExtractionTester(self ) def _A ( self : Optional[Any] , A : Any ): self.assertTrue(np.all(np.mean(A , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1E-3 ) ) def _A ( self : Any ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase : Optional[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : int = [np.asarray(A ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase : Tuple = feature_extractor(A , padding=A , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase : Optional[Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase : str = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test batched _UpperCAmelCase : List[str] = feature_extractor(A , return_tensors="np" ).input_features _UpperCAmelCase : List[str] = feature_extractor(A , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase : Tuple = np.asarray(A ) _UpperCAmelCase : Union[str, Any] = feature_extractor(A , return_tensors="np" ).input_features _UpperCAmelCase : Any = feature_extractor(A , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1E-3 ) ) def _A ( self : List[Any] ): _UpperCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : Tuple = ["longest", "max_length", "do_not_pad"] _UpperCAmelCase : int = [None, 16, None] for max_length, padding in zip(A , A ): _UpperCAmelCase : str = feature_extractor( A , padding=A , max_length=A , return_attention_mask=A ) _UpperCAmelCase : int = inputs.input_features _UpperCAmelCase : Any = inputs.attention_mask _UpperCAmelCase : Dict = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _A ( self : Union[str, Any] ): _UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : Optional[int] = ["longest", "max_length", "do_not_pad"] _UpperCAmelCase : Optional[int] = [None, 16, None] for max_length, padding in zip(A , A ): _UpperCAmelCase : List[Any] = feature_extractor( A , max_length=A , padding=A , return_tensors="np" , return_attention_mask=A ) _UpperCAmelCase : Dict = inputs.input_features _UpperCAmelCase : Dict = inputs.attention_mask _UpperCAmelCase : str = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def _A ( self : Dict ): _UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : Optional[int] = feature_extractor( A , padding="max_length" , max_length=4 , truncation=A , return_tensors="np" , return_attention_mask=A , ) _UpperCAmelCase : List[Any] = inputs.input_features _UpperCAmelCase : List[Any] = inputs.attention_mask _UpperCAmelCase : List[str] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def _A ( self : Optional[int] ): _UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : Optional[int] = feature_extractor( A , padding="longest" , max_length=4 , truncation=A , return_tensors="np" , return_attention_mask=A , ) _UpperCAmelCase : Dict = inputs.input_features _UpperCAmelCase : Tuple = inputs.attention_mask _UpperCAmelCase : List[Any] = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) _UpperCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _UpperCAmelCase : Dict = feature_extractor( A , padding="longest" , max_length=16 , truncation=A , return_tensors="np" , return_attention_mask=A , ) _UpperCAmelCase : int = inputs.input_features _UpperCAmelCase : Tuple = inputs.attention_mask _UpperCAmelCase : Any = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def _A ( self : Optional[int] ): import torch _UpperCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : str = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase : Dict = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase : Tuple = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase : List[str] = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _A ( self : Dict , A : List[str] ): from datasets import load_dataset _UpperCAmelCase : List[str] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase : Dict = ds.sort("id" ).select(range(A ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _A ( self : str ): # fmt: off _UpperCAmelCase : str = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on _UpperCAmelCase : int = self._load_datasamples(1 ) _UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase : Optional[int] = feature_extractor(A , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , A , atol=1E-4 ) )
31
from __future__ import annotations from cmath import sqrt def _a ( UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase__ = b * b - 4 * a * c lowerCAmelCase__ = (-b + sqrt(UpperCamelCase_ )) / (2 * a) lowerCAmelCase__ = (-b - sqrt(UpperCamelCase_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"The solutions are: {solutiona} and {solutiona}" ) if __name__ == "__main__": main()
340
0
from queue import PriorityQueue from typing import Any import numpy as np def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue UpperCamelCase : List[str] = cst_fwd.get(_lowerCAmelCase , np.inf ) UpperCamelCase : int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) UpperCamelCase : Tuple = new_cost_f UpperCamelCase : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: UpperCamelCase : Optional[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: UpperCamelCase : int = -1 UpperCamelCase : Optional[Any] = set() UpperCamelCase : str = set() UpperCamelCase : str = {source: 0} UpperCamelCase : str = {destination: 0} UpperCamelCase : List[str] = {source: None} UpperCamelCase : Union[str, Any] = {destination: None} UpperCamelCase : PriorityQueue[Any] = PriorityQueue() UpperCamelCase : PriorityQueue[Any] = PriorityQueue() UpperCamelCase : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): UpperCamelCase : Tuple = queue_forward.get() visited_forward.add(_lowerCAmelCase ) UpperCamelCase : List[Any] = queue_backward.get() visited_backward.add(_lowerCAmelCase ) UpperCamelCase : Optional[int] = pass_and_relaxation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) UpperCamelCase : int = pass_and_relaxation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: UpperCamelCase : Optional[Any] = shortest_distance return shortest_path_distance __lowerCamelCase : Tuple = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } __lowerCamelCase : int = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
356
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A__ ( __snake_case ): def __init__( self , A_ , A_=None , A_=None , A_=0 ): '''simple docstring''' UpperCamelCase : Union[str, Any] = 1.0 if scale is None else scale UpperCamelCase : Optional[int] = 0.0 if loc is None else loc super().__init__(A_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=A_ )] ) @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def __UpperCamelCase( self ): '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def __UpperCamelCase( self ): '''simple docstring''' return self.variance.sqrt() class A__ ( nn.Module ): def __init__( self , A_ , A_ , A_ , **A_ ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Union[str, Any] = args_dim UpperCamelCase : str = nn.ModuleList([nn.Linear(A_ , A_ ) for dim in args_dim.values()] ) UpperCamelCase : Union[str, Any] = domain_map def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = [proj(A_ ) for proj in self.proj] return self.domain_map(*A_ ) class A__ ( nn.Module ): def __init__( self , A_ ): '''simple docstring''' super().__init__() UpperCamelCase : str = function def __UpperCamelCase( self , A_ , *A_ ): '''simple docstring''' return self.function(A_ , *A_ ) class A__ : _UpperCAmelCase :type _UpperCAmelCase :int _UpperCAmelCase :Dict[str, int] def __init__( self , A_ = 1 ): '''simple docstring''' UpperCamelCase : Tuple = dim UpperCamelCase : Union[str, Any] = {k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCamelCase( self , A_ ): '''simple docstring''' if self.dim == 1: return self.distribution_class(*A_ ) else: return Independent(self.distribution_class(*A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None , ): '''simple docstring''' UpperCamelCase : str = self._base_distribution(A_ ) if loc is None and scale is None: return distr else: return AffineTransformed(A_ , loc=A_ , scale=A_ , event_dim=self.event_dim ) @property def __UpperCamelCase( self ): '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def __UpperCamelCase( self ): '''simple docstring''' return len(self.event_shape ) @property def __UpperCamelCase( self ): '''simple docstring''' return 0.0 def __UpperCamelCase( self , A_ ): '''simple docstring''' return ParameterProjection( in_features=A_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCamelCase( self , *A_ ): '''simple docstring''' raise NotImplementedError() @staticmethod def __UpperCamelCase( A_ ): '''simple docstring''' return (x + torch.sqrt(torch.square(A_ ) + 4.0 )) / 2.0 class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _UpperCAmelCase :type = StudentT @classmethod def __UpperCamelCase( cls , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase : int = 2.0 + cls.squareplus(A_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"loc": 1, "scale": 1} _UpperCAmelCase :type = Normal @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = cls.squareplus(A_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A__ ( __snake_case ): _UpperCAmelCase :Dict[str, int] = {"total_count": 1, "logits": 1} _UpperCAmelCase :type = NegativeBinomial @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = cls.squareplus(A_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Optional[int] = distr_args if self.dim == 1: return self.distribution_class(total_count=A_ , logits=A_ ) else: return Independent(self.distribution_class(total_count=A_ , logits=A_ ) , 1 ) def __UpperCamelCase( self , A_ , A_ = None , A_ = None ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Any = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
140
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : str = logging.get_logger(__name__) A_ : Optional[int] = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCamelCase (A__ ): lowerCamelCase__ : int = 'levit' def __init__( self : Any , __UpperCAmelCase : Union[str, Any]=2_2_4 , __UpperCAmelCase : List[str]=3 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : Tuple=1_6 , __UpperCAmelCase : Dict=[1_2_8, 2_5_6, 3_8_4] , __UpperCAmelCase : Any=[4, 8, 1_2] , __UpperCAmelCase : int=[4, 4, 4] , __UpperCAmelCase : str=[1_6, 1_6, 1_6] , __UpperCAmelCase : Tuple=0 , __UpperCAmelCase : Any=[2, 2, 2] , __UpperCAmelCase : List[str]=[2, 2, 2] , __UpperCAmelCase : str=0.02 , **__UpperCAmelCase : str , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = kernel_size SCREAMING_SNAKE_CASE__ = stride SCREAMING_SNAKE_CASE__ = padding SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = key_dim SCREAMING_SNAKE_CASE__ = drop_path_rate SCREAMING_SNAKE_CASE__ = patch_size SCREAMING_SNAKE_CASE__ = attention_ratio SCREAMING_SNAKE_CASE__ = mlp_ratio SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCamelCase (A__ ): lowerCamelCase__ : List[str] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ) -> float: return 1e-4
165
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging A_ : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCamelCase (A__ ): def __init__( self : List[Any] , __UpperCAmelCase : int = 1_0_1 ) -> Dict: SCREAMING_SNAKE_CASE__ = length def __len__( self : List[str] ) -> Optional[Any]: return self.length def __getitem__( self : List[Any] , __UpperCAmelCase : List[Any] ) -> int: return i class lowerCamelCase : def __call__( self : str , __UpperCAmelCase : List[Any] ) -> Optional[int]: return {"input_ids": torch.tensor(__UpperCAmelCase ), "labels": torch.tensor(__UpperCAmelCase )} class lowerCamelCase (nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: super().__init__() # Add some (unused) params otherwise DDP will complain. SCREAMING_SNAKE_CASE__ = nn.Linear(1_2_0 , 8_0 ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str]=None ) -> int: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCamelCase (A__ ): @require_torch_neuroncore def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() SCREAMING_SNAKE_CASE__ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ = F"""--output_dir {output_dir}""".split() SCREAMING_SNAKE_CASE__ = ["""torchrun"""] + distributed_args + args execute_subprocess_async(__UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCamelCase (A__ ): @require_torch_multi_gpu def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() SCREAMING_SNAKE_CASE__ = self.get_auto_remove_tmp_dir() SCREAMING_SNAKE_CASE__ = F"""--output_dir {output_dir}""".split() SCREAMING_SNAKE_CASE__ = ["""torchrun"""] + distributed_args + args execute_subprocess_async(__UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py A_ : Tuple = HfArgumentParser((TrainingArguments,)) A_ : Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: A_ : Optional[int] = DummyDataset(dataset_length) def A ( snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(range(len(snake_case__ ) ) ) SCREAMING_SNAKE_CASE__ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} A_ : str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) A_ : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : List[str] = 2 A_ : Dict = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : str = None
165
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _lowercase : List[Any] = logging.get_logger(__name__) _lowercase : Union[str, Any] = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" lowerCamelCase__ : List[Any] ={ '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } lowerCamelCase__ : Tuple =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCamelCase__ : List[str] =BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__lowerCamelCase , output_all_encodings=__lowerCamelCase , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __lowerCamelCase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCamelCase__ : Any ='''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab lowerCamelCase__ : Any =os.path.join(get_home_dir() , '''models''' ) lowerCamelCase__ : Any =_load_vocab(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , cls=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =nlp.model.BERTModel( __lowerCamelCase , len(__lowerCamelCase ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__lowerCamelCase , use_token_type_embed=__lowerCamelCase , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__lowerCamelCase , use_decoder=__lowerCamelCase , ) original_bort.load_parameters(__lowerCamelCase , cast_dtype=__lowerCamelCase , ignore_extra=__lowerCamelCase ) lowerCamelCase__ : List[Any] =original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCamelCase__ : str ={ '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__lowerCamelCase ), } lowerCamelCase__ : Optional[int] =BertConfig.from_dict(__lowerCamelCase ) lowerCamelCase__ : Optional[int] =BertForMaskedLM(__lowerCamelCase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__lowerCamelCase : Union[str, Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): lowerCamelCase__ : str =hf_param.shape lowerCamelCase__ : Optional[Any] =to_torch(params[gluon_param] ) lowerCamelCase__ : List[Any] =gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param lowerCamelCase__ : List[str] =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) lowerCamelCase__ : int =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) lowerCamelCase__ : Optional[Any] =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) lowerCamelCase__ : int =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCamelCase__ : List[Any] =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCamelCase__ : BertLayer =hf_bort_model.bert.encoder.layer[i] # self attention lowerCamelCase__ : BertSelfAttention =layer.attention.self lowerCamelCase__ : Union[str, Any] =check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) lowerCamelCase__ : Tuple =check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) lowerCamelCase__ : Tuple =check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) lowerCamelCase__ : List[Any] =check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) lowerCamelCase__ : Any =check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) lowerCamelCase__ : int =check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output lowerCamelCase__ : BertSelfOutput =layer.attention.output lowerCamelCase__ : Dict =check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) lowerCamelCase__ : Optional[int] =check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) lowerCamelCase__ : int =check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) lowerCamelCase__ : Optional[int] =check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate lowerCamelCase__ : BertIntermediate =layer.intermediate lowerCamelCase__ : List[Any] =check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) lowerCamelCase__ : int =check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output lowerCamelCase__ : BertOutput =layer.output lowerCamelCase__ : List[str] =check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) lowerCamelCase__ : Optional[Any] =check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) lowerCamelCase__ : Optional[Any] =check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) lowerCamelCase__ : List[str] =check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCamelCase__ : Any =RobertaTokenizer.from_pretrained('''roberta-base''' ) lowerCamelCase__ : Dict =tokenizer.encode_plus(__lowerCamelCase )['''input_ids'''] # Get gluon output lowerCamelCase__ : Dict =mx.nd.array([input_ids] ) lowerCamelCase__ : Tuple =original_bort(inputs=__lowerCamelCase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__lowerCamelCase ) lowerCamelCase__ : Optional[int] =BertModel.from_pretrained(__lowerCamelCase ) hf_bort_model.eval() lowerCamelCase__ : Tuple =tokenizer.encode_plus(__lowerCamelCase , return_tensors='''pt''' ) lowerCamelCase__ : int =hf_bort_model(**__lowerCamelCase )[0] lowerCamelCase__ : Tuple =output_gluon[0].asnumpy() lowerCamelCase__ : Optional[int] =output_hf[0].detach().numpy() lowerCamelCase__ : int =np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCamelCase__ : Dict =np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __lowerCamelCase ) if __name__ == "__main__": _lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _lowercase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
368
"""simple docstring""" import math import flax.linen as nn import jax.numpy as jnp def snake_case__ ( __lowerCamelCase : jnp.ndarray , __lowerCamelCase : int , __lowerCamelCase : float = 1 , __lowerCamelCase : float = 1 , __lowerCamelCase : float = 1.0e4 , __lowerCamelCase : bool = False , __lowerCamelCase : float = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' lowerCamelCase__ : Any =float(embedding_dim // 2 ) lowerCamelCase__ : List[str] =math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) lowerCamelCase__ : int =min_timescale * jnp.exp(jnp.arange(__lowerCamelCase , dtype=jnp.floataa ) * -log_timescale_increment ) lowerCamelCase__ : Tuple =jnp.expand_dims(__lowerCamelCase , 1 ) * jnp.expand_dims(__lowerCamelCase , 0 ) # scale embeddings lowerCamelCase__ : List[str] =scale * emb if flip_sin_to_cos: lowerCamelCase__ : int =jnp.concatenate([jnp.cos(__lowerCamelCase ), jnp.sin(__lowerCamelCase )] , axis=1 ) else: lowerCamelCase__ : List[str] =jnp.concatenate([jnp.sin(__lowerCamelCase ), jnp.cos(__lowerCamelCase )] , axis=1 ) lowerCamelCase__ : str =jnp.reshape(__lowerCamelCase , [jnp.shape(__lowerCamelCase )[0], embedding_dim] ) return signal class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' _a = 3_2 _a = jnp.floataa @nn.compact def __call__( self : Optional[Any], lowerCamelCase : int )-> Any: lowerCamelCase__ : Optional[Any] =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_1''' )(lowerCamelCase ) lowerCamelCase__ : List[str] =nn.silu(lowerCamelCase ) lowerCamelCase__ : Any =nn.Dense(self.time_embed_dim, dtype=self.dtype, name='''linear_2''' )(lowerCamelCase ) return temb class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' _a = 3_2 _a = False _a = 1 @nn.compact def __call__( self : Any, lowerCamelCase : int )-> int: return get_sinusoidal_embeddings( lowerCamelCase, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift )
272
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint A ={ '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } A ={ '169M': 7_68, '430M': 10_24, '1B5': 20_48, '3B': 25_60, '7B': 40_96, '14B': 51_20, } def snake_case_ (_a : Optional[Any] ): UpperCAmelCase = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase = state_dict.pop(_a ) # emb -> embedding if name.startswith('''emb.''' ): UpperCAmelCase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): UpperCAmelCase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention UpperCAmelCase = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , _a ) # ffn -> feed_forward UpperCAmelCase = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , _a ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): UpperCAmelCase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): UpperCAmelCase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): UpperCAmelCase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": UpperCAmelCase = '''rwkv.''' + name UpperCAmelCase = weight return state_dict def snake_case_ (_a : List[str] , _a : int , _a : Optional[Any] , _a : Dict=None , _a : List[str]=None , _a : Union[str, Any]=False , _a : Tuple=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) UpperCAmelCase = 5_0_2_7_7 UpperCAmelCase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: UpperCAmelCase = PreTrainedTokenizerFast(tokenizer_file=_a ) UpperCAmelCase = len(_a ) tokenizer.save_pretrained(_a ) # 2. Build the config UpperCAmelCase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) UpperCAmelCase = RwkvConfig( vocab_size=_a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_a ) # 3. Download model file then convert state_dict UpperCAmelCase = hf_hub_download(_a , _a ) UpperCAmelCase = torch.load(_a , map_location='''cpu''' ) UpperCAmelCase = convert_state_dict(_a ) # 4. Split in shards and save UpperCAmelCase , UpperCAmelCase = shard_checkpoint(_a ) for shard_file, shard in shards.items(): torch.save(_a , os.path.join(_a , _a ) ) if index is not None: UpperCAmelCase = os.path.join(_a , _a ) # Save the index as well with open(_a , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) UpperCAmelCase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase = torch.load(os.path.join(_a , _a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_a , _a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained(_a ) model.push_to_hub(_a , max_shard_size='''2GB''' ) tokenizer.push_to_hub(_a ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) A =parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
34
'''simple docstring''' def snake_case_ (_a : str , _a : str ): UpperCAmelCase = len(_a ) + 1 UpperCAmelCase = len(_a ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCAmelCase = [[0 for i in range(_a )] for j in range(_a )] # since string of zero length match pattern of zero length UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _a ): UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _a ): UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _a ): for j in range(1 , _a ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCAmelCase = dp[i - 1][j] else: UpperCAmelCase = 0 else: UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") A ='aab' A ='c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
34
1
"""simple docstring""" def __a ( __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Dict = int(__lowerCamelCase ) # Initialize Result UpperCAmelCase_ : Any = [] # Traverse through all denomination for denomination in reversed(__lowerCamelCase ): # Find denominations while int(__lowerCamelCase ) >= int(__lowerCamelCase ): total_value -= int(__lowerCamelCase ) answer.append(__lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _a = [] _a = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): _a = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) _a = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter _a = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] _a = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) _a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
23
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _a = logging.get_logger(__name__) # pylint: disable=invalid-name _a = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")\n >>> pipe_prior.to("cuda")\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")\n >>> pipe.to("cuda")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save("cat.png")\n ```\n' def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=8 ): UpperCAmelCase_ : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ : Tuple = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A_ (lowercase__ ): '''simple docstring''' def __init__( self , lowercase_ , lowercase_ , lowercase_ , ): """simple docstring""" super().__init__() self.register_modules( unet=lowercase_ , scheduler=lowercase_ , movq=lowercase_ , ) UpperCAmelCase_ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCamelCase__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" if latents is None: UpperCAmelCase_ : Dict = randn_tensor(lowercase_ , generator=lowercase_ , device=lowercase_ , dtype=lowercase_ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCAmelCase_ : str = latents.to(lowercase_ ) UpperCAmelCase_ : Dict = latents * scheduler.init_noise_sigma return latents def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) UpperCAmelCase_ : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase_ , lowercase_ ) def UpperCamelCase__ ( self , lowercase_=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase_ : Any = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ : List[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ : str = cpu_offload_with_hook(lowercase_ , lowercase_ , prev_module_hook=lowercase_ ) # We'll offload the last model manually. UpperCAmelCase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCamelCase__ ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase_ ) def __call__( self , lowercase_ , lowercase_ , lowercase_ = 512 , lowercase_ = 512 , lowercase_ = 100 , lowercase_ = 4.0 , lowercase_ = 1 , lowercase_ = None , lowercase_ = None , lowercase_ = "pil" , lowercase_ = True , ): """simple docstring""" UpperCAmelCase_ : str = self._execution_device UpperCAmelCase_ : List[Any] = guidance_scale > 1.0 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : int = torch.cat(lowercase_ , dim=0 ) UpperCAmelCase_ : Any = image_embeds.shape[0] * num_images_per_prompt if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase_ : List[Any] = torch.cat(lowercase_ , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase_ : Tuple = image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : List[str] = negative_image_embeds.repeat_interleave(lowercase_ , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase_ ) self.scheduler.set_timesteps(lowercase_ , device=lowercase_ ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps UpperCAmelCase_ : List[str] = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ : Dict = downscale_height_and_width(lowercase_ , lowercase_ , self.movq_scale_factor ) # create initial latent UpperCAmelCase_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase_ , lowercase_ , lowercase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase_ ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Union[str, Any] = {"image_embeds": image_embeds} UpperCAmelCase_ : Optional[Any] = self.unet( sample=lowercase_ , timestep=lowercase_ , encoder_hidden_states=lowercase_ , added_cond_kwargs=lowercase_ , return_dict=lowercase_ , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = variance_pred.chunk(2 ) UpperCAmelCase_ : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step( lowercase_ , lowercase_ , lowercase_ , generator=lowercase_ , )[0] # post-processing UpperCAmelCase_ : Tuple = self.movq.decode(lowercase_ , force_not_quantize=lowercase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCAmelCase_ : List[Any] = image * 0.5 + 0.5 UpperCAmelCase_ : int = image.clamp(0 , 1 ) UpperCAmelCase_ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(lowercase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase_ )
23
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A_ ( lowerCamelCase__ ): def __init__(self :Optional[Any] , _UpperCamelCase :NestedDataStructureLike[PathLike] , _UpperCamelCase :Optional[NamedSplit] = None , _UpperCamelCase :Optional[Features] = None , _UpperCamelCase :str = None , _UpperCamelCase :bool = False , _UpperCamelCase :bool = False , _UpperCamelCase :Optional[int] = None , **_UpperCamelCase :Optional[int] , )-> List[str]: super().__init__( lowercase__ , split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , num_proc=lowercase__ , **lowercase__ , ) __A = path_or_paths if isinstance(lowercase__ , lowercase__ ) else {self.split: path_or_paths} __A = Text( cache_dir=lowercase__ , data_files=lowercase__ , features=lowercase__ , **lowercase__ , ) def _lowerCAmelCase (self :Tuple )-> Optional[int]: # Build iterable dataset if self.streaming: __A = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __A = None __A = None __A = None __A = None self.builder.download_and_prepare( download_config=lowercase__ , download_mode=lowercase__ , verification_mode=lowercase__ , base_path=lowercase__ , num_proc=self.num_proc , ) __A = self.builder.as_dataset( split=self.split , verification_mode=lowercase__ , in_memory=self.keep_in_memory ) return dataset
117
'''simple docstring''' import os lowerCAmelCase__ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def _A ( A__ ): """simple docstring""" __lowercase = 0 __lowercase = 0 while index < len(A__ ) - 1: __lowercase = SYMBOLS[numerals[index]] __lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _A ( A__ ): """simple docstring""" __lowercase = '''''' __lowercase = num // 1000 numerals += m_count * "M" num %= 1000 __lowercase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __lowercase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _A ( A__ = "/p089_roman.txt" ): """simple docstring""" __lowercase = 0 with open(os.path.dirname(A__ ) + roman_numerals_filename ) as filea: __lowercase = filea.readlines() for line in lines: __lowercase = line.strip() __lowercase = parse_roman_numerals(A__ ) __lowercase = generate_roman_numerals(A__ ) savings += len(A__ ) - len(A__ ) return savings if __name__ == "__main__": print(f'{solution() = }')
104
0
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase ( a_ , a_ , a_ = False ) -> list[float]: if radian_mode: return [magnitude * cos(a_ ), magnitude * sin(a_ )] return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )] def lowerCamelCase ( a_ , a_ , a_ = 10**-1 ) -> bool: lowerCAmelCase_ = cross(a_ , a_ ) lowerCAmelCase_ = sum(a_ ) return abs(a_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase_ = array( [ polar_force(718.4, 1_8_0 - 3_0), polar_force(879.54, 4_5), polar_force(1_0_0, -9_0), ] ) lowerCamelCase_ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase_ = array( [ polar_force(3_0 * 9.81, 1_5), polar_force(2_1_5, 1_8_0 - 4_5), polar_force(2_6_4, 9_0 - 3_0), ] ) lowerCamelCase_ = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase_ = array([[0, -2_0_0_0], [0, -1_2_0_0], [0, 1_5_6_0_0], [0, -1_2_4_0_0]]) lowerCamelCase_ = array([[0, 0], [6, 0], [1_0, 0], [1_2, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
14
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowerCamelCase ( a_ , a_ , a_=None , a_=None ) -> int: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a_ : '''simple docstring''' __a: Tuple = OPTConfig __a: Optional[Any] = {} __a: Tuple = '''gelu''' def __init__( self , lowercase_ , lowercase_=1_3 , lowercase_=7 , lowercase_=True , lowercase_=False , lowercase_=9_9 , lowercase_=1_6 , lowercase_=2 , lowercase_=4 , lowercase_=4 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=2_0 , lowercase_=2 , lowercase_=1 , lowercase_=0 , lowercase_=1_6 , lowercase_=1_6 , ) -> Any: '''simple docstring''' lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id lowerCAmelCase_ = embed_dim lowerCAmelCase_ = word_embed_proj_dim lowerCAmelCase_ = False def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowercase_ , **self.config_updates , ) lowerCAmelCase_ = prepare_opt_inputs_dict(lowercase_ , lowercase_ ) return config, inputs_dict def _lowercase ( self , lowercase_ , lowercase_ ) -> str: '''simple docstring''' lowerCAmelCase_ = TFOPTModel(config=lowercase_ ) lowerCAmelCase_ = inputs_dict['input_ids'] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['attention_mask'][:1, :] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , use_cache=lowercase_ ) lowerCAmelCase_ , lowerCAmelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase_ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ )[0] lowerCAmelCase_ = model(lowercase_ , attention_mask=lowercase_ , past_key_values=lowercase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase_ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowercase_ , lowercase_ , rtol=1e-3 ) @require_tf class a_ ( a_ , a_ , unittest.TestCase ): '''simple docstring''' __a: Optional[int] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a: Optional[Any] = (TFOPTForCausalLM,) if is_tf_available() else () __a: Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __a: int = False __a: List[Any] = False __a: Dict = False __a: List[Any] = 1_0 def _lowercase ( self ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = TFOPTModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=lowercase_ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowercase_ ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowercase_ , lowercase_ ): if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowercase_ , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowerCAmelCase_ = model_class(config=lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowercase_ ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_input_embeddings() ) lowerCAmelCase_ = _get_word_embedding_weight(lowercase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCAmelCase_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowercase_ ) # check that weights remain the same after resizing lowerCAmelCase_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowercase_ ) lowerCAmelCase_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCAmelCase_ = False self.assertTrue(lowercase_ ) def lowerCamelCase ( a_ ) -> Any: return tf.constant(a_ , dtype=tf.intaa ) @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' __a: Optional[int] = 9_9 def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCAmelCase_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCAmelCase_ = input_ids.shape[0] lowerCAmelCase_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ = TFOPTModel.from_pretrained('facebook/opt-350m' ) lowerCAmelCase_ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowerCAmelCase_ = tf.not_equal(lowercase_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCAmelCase_ = model(input_ids=lowercase_ , attention_mask=lowercase_ ).last_hidden_state lowerCAmelCase_ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , lowercase_ ) lowerCAmelCase_ = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-3 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = xla_generate(lowercase_ , lowercase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowercase_ , atol=4e-2 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() lowerCAmelCase_ = 'facebook/opt-350m' def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCAmelCase_ = GPTaTokenizer.from_pretrained(self.path_model ) lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ , add_special_tokens=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCAmelCase_ = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) lowerCAmelCase_ = tf.function(lowercase_ , jit_compile=lowercase_ ) lowerCAmelCase_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-4 ) ) @require_tf @slow class a_ ( unittest.TestCase ): '''simple docstring''' @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ) -> str: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-125m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) lowerCAmelCase_ = 'left' # use different length sentences to test batching lowerCAmelCase_ = [ 'Hello, my dog is a little', 'Today, I', ] lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' , padding=lowercase_ ) lowerCAmelCase_ = inputs['input_ids'] lowerCAmelCase_ = model.generate(input_ids=lowercase_ , attention_mask=inputs['attention_mask'] ) lowerCAmelCase_ = tokenizer(sentences[0] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ ) lowerCAmelCase_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) lowerCAmelCase_ = tokenizer(sentences[1] , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(input_ids=lowercase_ , max_length=model.config.max_length - num_paddings ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase_ ) lowerCAmelCase_ = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(lowercase_ , lowercase_ ) self.assertListEqual(lowercase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ) -> Dict: '''simple docstring''' lowerCAmelCase_ = 'facebook/opt-350m' lowerCAmelCase_ = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] lowerCAmelCase_ = [] lowerCAmelCase_ = GPTaTokenizer.from_pretrained(lowercase_ ) lowerCAmelCase_ = TFOPTForCausalLM.from_pretrained(lowercase_ ) for prompt in self.prompts: lowerCAmelCase_ = tokenizer(lowercase_ , return_tensors='tf' ).input_ids lowerCAmelCase_ = model.generate(lowercase_ , max_length=1_0 ) lowerCAmelCase_ = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) predicted_outputs += generated_string self.assertListEqual(lowercase_ , lowercase_ )
14
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = MobileBertTokenizer lowerCamelCase__ = MobileBertTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = True lowerCamelCase__ = filter_non_english lowerCamelCase__ = """google/mobilebert-uncased""" def A ( self : Any ) -> int: super().setUp() UpperCAmelCase : str = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase : List[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def A ( self : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = '''UNwant\u00E9d,running''' UpperCAmelCase : int = '''unwanted, running''' return input_text, output_text def A ( self : Optional[Any] ) -> Dict: UpperCAmelCase : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Dict = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [9, 6, 7, 12, 10, 11] ) def A ( self : Any ) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase : Optional[int] = self.get_tokenizer() UpperCAmelCase : Any = self.get_rust_tokenizer() UpperCAmelCase : int = '''UNwant\u00E9d,running''' UpperCAmelCase : Dict = tokenizer.tokenize(__snake_case ) UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : int = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : int = self.get_rust_tokenizer() UpperCAmelCase : int = tokenizer.encode(__snake_case ) UpperCAmelCase : str = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # With lower casing UpperCAmelCase : Dict = self.get_tokenizer(do_lower_case=__snake_case ) UpperCAmelCase : int = self.get_rust_tokenizer(do_lower_case=__snake_case ) UpperCAmelCase : Dict = '''UNwant\u00E9d,running''' UpperCAmelCase : int = tokenizer.tokenize(__snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : int = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : List[Any] = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(__snake_case ) UpperCAmelCase : Union[str, Any] = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def A ( self : List[str] ) -> List[str]: UpperCAmelCase : str = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def A ( self : Optional[int] ) -> Any: UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : Optional[int] ) -> int: UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def A ( self : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : str ) -> Optional[int]: UpperCAmelCase : Any = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Tuple ) -> Any: UpperCAmelCase : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : List[str] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=__snake_case , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def A ( self : List[Any] ) -> Dict: UpperCAmelCase : List[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase : Tuple = {} for i, token in enumerate(__snake_case ): UpperCAmelCase : List[str] = i UpperCAmelCase : str = WordpieceTokenizer(vocab=__snake_case , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def A ( self : Union[str, Any] ) -> Tuple: self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def A ( self : Union[str, Any] ) -> Any: self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def A ( self : Optional[int] ) -> Tuple: self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : int = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(__snake_case ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def A ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) UpperCAmelCase : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) UpperCAmelCase : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__snake_case ) UpperCAmelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def A ( self : Optional[Any] ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : str = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase : Optional[int] = tokenizer_r.encode_plus( __snake_case , return_attention_mask=__snake_case , return_token_type_ids=__snake_case , return_offsets_mapping=__snake_case , add_special_tokens=__snake_case , ) UpperCAmelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__snake_case , '''do_lower_case''' ) else False UpperCAmelCase : str = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def A ( self : Optional[int] ) -> str: UpperCAmelCase : str = ['''的''', '''人''', '''有'''] UpperCAmelCase : List[Any] = ''''''.join(__snake_case ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Tuple = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Any = tokenizer_r.convert_ids_to_tokens(__snake_case ) UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : int = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case ) UpperCAmelCase : List[Any] = tokenizer_r.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : Tuple = tokenizer_p.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(__snake_case ) UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(__snake_case ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase : Optional[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(__snake_case ) ] self.assertListEqual(__snake_case , __snake_case ) self.assertListEqual(__snake_case , __snake_case )
23
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : Dict = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class UpperCamelCase_ : lowercase = MBartConfig lowercase = {} lowercase = 'gelu' def __init__( self , A , A=13 , A=7 , A=True , A=False , A=99 , A=32 , A=2 , A=4 , A=37 , A=0.1 , A=0.1 , A=20 , A=2 , A=1 , A=0 , ) -> Optional[int]: UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Dict = batch_size UpperCAmelCase : Tuple = seq_length UpperCAmelCase : str = is_training UpperCAmelCase : Optional[int] = use_labels UpperCAmelCase : Optional[Any] = vocab_size UpperCAmelCase : Union[str, Any] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Dict = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Optional[int] = max_position_embeddings UpperCAmelCase : Optional[Any] = eos_token_id UpperCAmelCase : List[str] = pad_token_id UpperCAmelCase : List[Any] = bos_token_id def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase : List[Any] = prepare_mbart_inputs_dict(A , A , A ) return config, inputs_dict def _lowercase( self , A , A ) -> List[str]: UpperCAmelCase : List[str] = TFMBartModel(config=A ).get_decoder() UpperCAmelCase : int = inputs_dict["""input_ids"""] UpperCAmelCase : str = input_ids[:1, :] UpperCAmelCase : Optional[Any] = inputs_dict["""attention_mask"""][:1, :] UpperCAmelCase : List[str] = inputs_dict["""head_mask"""] UpperCAmelCase : List[Any] = 1 # first forward pass UpperCAmelCase : List[str] = model(A , attention_mask=A , head_mask=A , use_cache=A ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = outputs.to_tuple() UpperCAmelCase : int = past_key_values[1] def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> List[str]: if attention_mask is None: UpperCAmelCase : Tuple = tf.cast(tf.math.not_equal(_lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowercase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowercase = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowercase = True lowercase = False lowercase = False def _lowercase( self , A , A , A , A , A ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : int = TFMBartModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _lowercase( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase( self ) -> Dict: UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) @require_sentencepiece @require_tokenizers @require_tf class UpperCamelCase_ ( unittest.TestCase ): lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] lowercase = 'facebook/mbart-large-en-ro' @cached_property def _lowercase( self ) -> Any: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _lowercase( self ) -> List[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _lowercase( self , **A ) -> Any: UpperCAmelCase : Optional[int] = self.translate_src_text(**A ) self.assertListEqual(self.expected_text , A ) def _lowercase( self , **A ) -> Optional[Any]: UpperCAmelCase : List[str] = self.tokenizer(self.src_text , **A , return_tensors="""tf""" ) UpperCAmelCase : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCAmelCase : Any = self.tokenizer.batch_decode(A , skip_special_tokens=A ) return generated_words @slow def _lowercase( self ) -> List[Any]: self._assert_generated_batch_equal_expected()
338
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : str = { """facebook/levit-128S""": """https://huggingface.co/facebook/levit-128S/resolve/main/config.json""", # See all LeViT models at https://huggingface.co/models?filter=levit } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'levit' def __init__( self , A=224 , A=3 , A=3 , A=2 , A=1 , A=16 , A=[128, 256, 384] , A=[4, 8, 12] , A=[4, 4, 4] , A=[16, 16, 16] , A=0 , A=[2, 2, 2] , A=[2, 2, 2] , A=0.0_2 , **A , ) -> int: super().__init__(**A ) UpperCAmelCase : Any = image_size UpperCAmelCase : Optional[int] = num_channels UpperCAmelCase : Tuple = kernel_size UpperCAmelCase : Optional[int] = stride UpperCAmelCase : Dict = padding UpperCAmelCase : List[Any] = hidden_sizes UpperCAmelCase : List[Any] = num_attention_heads UpperCAmelCase : Optional[int] = depths UpperCAmelCase : Any = key_dim UpperCAmelCase : str = drop_path_rate UpperCAmelCase : List[Any] = patch_size UpperCAmelCase : str = attention_ratio UpperCAmelCase : Optional[Any] = mlp_ratio UpperCAmelCase : Dict = initializer_range UpperCAmelCase : int = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class UpperCamelCase_ ( __magic_name__ ): lowercase = version.parse('1.11' ) @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _lowercase( self ) -> float: return 1e-4
338
1
'''simple docstring''' class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : int = None _lowercase : int = None _lowercase : Optional[Any] = graph self._normalize_graph(_UpperCamelCase , _UpperCamelCase ) _lowercase : Optional[int] = len(_UpperCamelCase ) _lowercase : Optional[int] = None def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if sources is int: _lowercase : Optional[int] = [sources] if sinks is int: _lowercase : int = [sinks] if len(_UpperCamelCase ) == 0 or len(_UpperCamelCase ) == 0: return _lowercase : List[str] = sources[0] _lowercase : Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCamelCase ) > 1 or len(_UpperCamelCase ) > 1: _lowercase : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _lowercase : Optional[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _lowercase : List[str] = max_input_flow _lowercase : str = 0 _lowercase : str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _lowercase : List[Any] = max_input_flow _lowercase : Tuple = size - 1 def _lowerCamelCase ( self ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("You need to set maximum flow algorithm before." ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = algorithm(self ) class a__ : def __init__( self , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = flow_network _lowercase : Optional[Any] = flow_network.verticesCount _lowercase : Dict = flow_network.sourceIndex _lowercase : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _lowercase : List[str] = flow_network.graph _lowercase : List[Any] = False def _lowerCamelCase ( self ): """simple docstring""" if not self.executed: self._algorithm() _lowercase : str = True def _lowerCamelCase ( self ): """simple docstring""" pass class a__ ( a_ ): def __init__( self , _UpperCamelCase ): """simple docstring""" super().__init__(_UpperCamelCase ) # use this to save your result _lowercase : str = -1 def _lowerCamelCase ( self ): """simple docstring""" if not self.executed: raise Exception("You should execute algorithm before using its result!" ) return self.maximum_flow class a__ ( a_ ): def __init__( self , _UpperCamelCase ): """simple docstring""" super().__init__(_UpperCamelCase ) _lowercase : int = [[0] * self.verticies_count for i in range(self.verticies_count )] _lowercase : Optional[Any] = [0] * self.verticies_count _lowercase : Tuple = [0] * self.verticies_count def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _lowercase : int = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _lowercase : int = 0 while i < len(_UpperCamelCase ): _lowercase : Optional[Any] = vertices_list[i] _lowercase : Any = self.heights[vertex_index] self.process_vertex(_UpperCamelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCamelCase ) ) _lowercase : List[Any] = 0 else: i += 1 _lowercase : Optional[int] = sum(self.preflow[self.source_index] ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCamelCase , _UpperCamelCase ) self.relabel(_UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : str = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _lowercase : Tuple = self.heights[to_index] if min_height is not None: _lowercase : str = min_height + 1 if __name__ == "__main__": _snake_case = [0] _snake_case = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _snake_case = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _snake_case = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _snake_case = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
250
"""simple docstring""" from itertools import product def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: lowerCAmelCase__ : Union[str, Any] = sides_number lowerCAmelCase__ : Optional[int] = max_face_number * dice_number lowerCAmelCase__ : List[str] = [0] * (max_total + 1) lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : Optional[int] = range(__UpperCAmelCase , max_face_number + 1 ) for dice_numbers in product(__UpperCAmelCase , repeat=__UpperCAmelCase ): lowerCAmelCase__ : str = sum(__UpperCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowercase_ ( ) -> float: lowerCAmelCase__ : Union[str, Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCAmelCase__ : Tuple = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCAmelCase__ : str = 0 lowerCAmelCase__ : int = 9 lowerCAmelCase__ : Tuple = 4 * 9 lowerCAmelCase__ : Optional[int] = 6 for peter_total in range(__UpperCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCAmelCase__ : Tuple = (4**9) * (6**6) lowerCAmelCase__ : Union[str, Any] = peter_wins_count / total_games_number lowerCAmelCase__ : Optional[int] = round(__UpperCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
242
0
def __lowerCamelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): """simple docstring""" a :Optional[int] = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): a :List[str] = n - k # Calculate C(n,k) for i in range(UpperCAmelCase_ ): result *= n - i result //= i + 1 return result def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" return binomial_coefficient(2 * node_count , UpperCAmelCase_ ) // (node_count + 1) def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" if n < 0: raise ValueError('''factorial() not defined for negative values''' ) a :Tuple = 1 for i in range(1 , n + 1 ): result *= i return result def __lowerCamelCase ( UpperCAmelCase_ : int ): """simple docstring""" return catalan_number(UpperCAmelCase_ ) * factorial(UpperCAmelCase_ ) if __name__ == "__main__": snake_case : Tuple = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ F"""binary trees and {catalan_number(node_count)} binary search trees.""" )
281
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case : str = logging.get_logger(__name__) @add_end_docstrings(_snake_case ) class _snake_case ( _snake_case ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase=None ): a :Tuple = {} if top_k is not None: a :int = top_k return {}, {}, postprocess_params def __call__( self , _lowerCamelCase , **_lowerCamelCase ): return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :str = load_image(_lowerCamelCase ) a :Any = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :List[str] = self.model(**_lowerCamelCase ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=5 ): if top_k > self.model.config.num_labels: a :List[Any] = self.model.config.num_labels if self.framework == "pt": a :int = model_outputs.logits.softmax(-1 )[0] a , a :Union[str, Any] = probs.topk(_lowerCamelCase ) elif self.framework == "tf": a :Optional[Any] = stable_softmax(model_outputs.logits , axis=-1 )[0] a :Union[str, Any] = tf.math.top_k(_lowerCamelCase , k=_lowerCamelCase ) a , a :Optional[int] = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) a :Optional[int] = scores.tolist() a :str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
281
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =tempfile.mkdtemp() a__ : List[Any] =BlipImageProcessor() a__ : int =BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) a__ : Optional[Any] =BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def _lowercase ( self , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def _lowercase ( self ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] =[np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] a__ : Union[str, Any] =[Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : List[str] =BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : List[str] =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : Union[str, Any] =self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) a__ : Optional[Any] =BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : str =self.get_image_processor() a__ : int =self.get_tokenizer() a__ : Optional[Any] =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict =self.prepare_image_inputs() a__ : List[str] =image_processor(lowerCAmelCase__ , return_tensors="np" ) a__ : Union[str, Any] =processor(images=lowerCAmelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : int =self.get_image_processor() a__ : int =self.get_tokenizer() a__ : Dict =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Dict ="lower newer" a__ : Any =processor(text=lowerCAmelCase__ ) a__ : Optional[int] =tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[Any] =self.get_image_processor() a__ : Any =self.get_tokenizer() a__ : Dict =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : List[str] ="lower newer" a__ : List[str] =self.prepare_image_inputs() a__ : Union[str, Any] =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def _lowercase ( self ) -> int: '''simple docstring''' a__ : Optional[int] =self.get_image_processor() a__ : Tuple =self.get_tokenizer() a__ : Optional[Any] =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Optional[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : List[str] =processor.batch_decode(lowerCAmelCase__ ) a__ : Dict =tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : int =self.get_image_processor() a__ : str =self.get_tokenizer() a__ : Union[str, Any] =BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) a__ : Optional[Any] ="lower newer" a__ : int =self.prepare_image_inputs() a__ : Optional[int] =processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
95
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__: Tuple = logging.get_logger(__name__) UpperCamelCase__: Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__: Optional[int] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } UpperCamelCase__: Dict = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } UpperCamelCase__: Tuple = "▁" class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , __snake_case : List[Any] , __snake_case : Tuple="<s>" , __snake_case : List[Any]="</s>" , __snake_case : int="</s>" , __snake_case : Any="<s>" , __snake_case : Optional[int]="<unk>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : Union[str, Any]="<mask>" , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Dict , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Optional[int] = vocab_file UpperCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__snake_case ) ) UpperCAmelCase : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCAmelCase : Optional[Any] = len(self.sp_model ) - 1 UpperCAmelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def A ( self : Tuple , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Union[str, Any] = [self.cls_token_id] UpperCAmelCase : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def A ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase : Tuple = [self.sep_token_id] UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Dict ) -> Optional[int]: return len(self.sp_model ) def A ( self : List[str] ) -> Dict: UpperCAmelCase : Optional[Any] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Optional[Any] , __snake_case : str ) -> List[str]: return self.sp_model.encode(__snake_case , out_type=__snake_case ) def A ( self : int , __snake_case : int ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase : Optional[Any] = self.sp_model.PieceToId(__snake_case ) return spm_id if spm_id else self.unk_token_id def A ( self : int , __snake_case : Any ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__snake_case ) def A ( self : List[Any] , __snake_case : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : int = '''''' UpperCAmelCase : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase : str = True UpperCAmelCase : List[str] = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase : Optional[int] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def __getstate__( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.__dict__.copy() UpperCAmelCase : Any = None return state def __setstate__( self : Optional[int] , __snake_case : Union[str, Any] ) -> List[Any]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
23
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = TypeVar('DatasetType', Dataset, IterableDataset) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[DatasetType] , __UpperCamelCase : Optional[List[float]] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__UpperCamelCase ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}.' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase , __UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , stopping_strategy=__UpperCamelCase ) else: return _interleave_iterable_datasets( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , stopping_strategy=__UpperCamelCase ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[DatasetType] , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : int = 0 , ) -> DatasetType: if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(__UpperCamelCase ): if not isinstance(__UpperCamelCase , (Dataset, IterableDataset) ): if isinstance(__UpperCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' '''is an empty dataset dictionary.''' ) raise ValueError( f'Dataset at position {i} has at least one split: {list(__UpperCamelCase )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(__UpperCamelCase ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__UpperCamelCase ).__name__}.' ) if i == 0: UpperCAmelCase_ , UpperCAmelCase_ = ( (Dataset, IterableDataset) if isinstance(__UpperCamelCase , __UpperCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , axis=__UpperCamelCase ) else: return _concatenate_iterable_datasets(__UpperCamelCase , info=__UpperCamelCase , split=__UpperCamelCase , axis=__UpperCamelCase )
177
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple ) -> Dict: # initialize config if "resnet-50" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: UpperCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) UpperCAmelCase_ = DetrConfig(use_timm_backbone=__UpperCamelCase , backbone_config=__UpperCamelCase ) # set label attributes UpperCAmelCase_ = '''panoptic''' in model_name if is_panoptic: UpperCAmelCase_ = 250 else: UpperCAmelCase_ = 91 UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''coco-detection-id2label.json''' UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Union[str, Any]: # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : List[Any]=False ) -> Dict: UpperCAmelCase_ = '''''' if is_panoptic: UpperCAmelCase_ = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:256, :] UpperCAmelCase_ = in_proj_bias[:256] UpperCAmelCase_ = in_proj_weight[256:512, :] UpperCAmelCase_ = in_proj_bias[256:512] UpperCAmelCase_ = in_proj_weight[-256:, :] UpperCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) UpperCAmelCase_ = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ = in_proj_bias_cross_attn[:256] UpperCAmelCase_ = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( ) -> int: UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[Any]=False ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_ = get_detr_config(__UpperCamelCase ) # load original model from torch hub UpperCAmelCase_ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(f'Converting model {model_name}...' ) UpperCAmelCase_ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCamelCase ).eval() UpperCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCamelCase ): if is_panoptic: UpperCAmelCase_ = '''detr.''' + src rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCamelCase , is_panoptic=__UpperCamelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): UpperCAmelCase_ = state_dict.pop(__UpperCamelCase ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetrForSegmentation(__UpperCamelCase ) if is_panoptic else DetrForObjectDetection(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # verify our conversion on an image UpperCAmelCase_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' UpperCAmelCase_ = DetrImageProcessor(format=__UpperCamelCase ) UpperCAmelCase_ = processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ = encoding['''pixel_values'''] UpperCAmelCase_ = detr(__UpperCamelCase ) UpperCAmelCase_ = model(__UpperCamelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') _lowerCamelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
177
1
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class A__: """simple docstring""" _A : List[Any] = None def UpperCamelCase__ ( self ) -> Any: a_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) a_ : int = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _lowercase ) def UpperCamelCase__ ( self ) -> int: a_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : Tuple = os.path.join(_lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(_lowercase ) a_ : Any = self.feature_extraction_class.from_json_file(_lowercase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase__ ( self ) -> int: a_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a_ : Any = feat_extract_first.save_pretrained(_lowercase )[0] check_json_file_has_correct_format(_lowercase ) a_ : Any = self.feature_extraction_class.from_pretrained(_lowercase ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCamelCase__ ( self ) -> int: a_ : List[Any] = self.feature_extraction_class() self.assertIsNotNone(_lowercase )
248
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A__(unittest.TestCase ): """simple docstring""" _A : List[str] = StableDiffusionLDMaDPipeline _A : int = TEXT_TO_IMAGE_PARAMS _A : Dict = TEXT_TO_IMAGE_BATCH_PARAMS _A : str = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self ) -> Union[str, Any]: torch.manual_seed(0 ) a_ : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a_ : List[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) a_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ : Tuple = CLIPTextModel(_lowercase ) a_ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase__ ( self , _lowercase , _lowercase=0 ) -> Any: if str(_lowercase ).startswith("""mps""" ): a_ : Optional[Any] = torch.manual_seed(_lowercase ) else: a_ : Optional[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> List[Any]: a_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Any = self.get_dummy_components() a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Union[str, Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : int = self.get_dummy_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : Tuple = output.rgb, output.depth a_ : Union[str, Any] = rgb[0, -3:, -3:, -1] a_ : Any = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[Any] = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) a_ : int = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = self.get_dummy_components() a_ : Optional[int] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : Optional[Any] = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs["""prompt"""]] # forward a_ : Optional[int] = ldmad_pipe(**_lowercase ) a_ , a_ : Any = output.rgb, output.depth a_ : Union[str, Any] = rgb_slice_a[0, -3:, -3:, -1] a_ : Union[str, Any] = depth_slice_a[0, -3:, -1] a_ : Dict = self.get_dummy_inputs(_lowercase ) a_ : List[str] = 3 * [inputs.pop("""prompt""" )] a_ : List[Any] = ldmad_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) a_ : int = text_inputs["""input_ids"""].to(_lowercase ) a_ : Any = ldmad_pipe.text_encoder(_lowercase )[0] a_ : Dict = prompt_embeds # forward a_ : int = ldmad_pipe(**_lowercase ) a_ , a_ : Optional[int] = output.rgb, output.depth a_ : List[str] = rgb_slice_a[0, -3:, -3:, -1] a_ : Tuple = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def UpperCamelCase__ ( self ) -> Dict: a_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator a_ : Dict = self.get_dummy_components() a_ : Any = PNDMScheduler(skip_prk_steps=_lowercase ) a_ : List[str] = StableDiffusionLDMaDPipeline(**_lowercase ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[Any] = self.get_dummy_inputs(_lowercase ) a_ : int = """french fries""" a_ : Any = ldmad_pipe(**_lowercase , negative_prompt=_lowercase ) a_ , a_ : Optional[Any] = output.rgb, output.depth a_ : Tuple = rgb[0, -3:, -3:, -1] a_ : Union[str, Any] = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a_ : Optional[int] = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) a_ : Union[str, Any] = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> List[str]: a_ : Union[str, Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Dict = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Tuple = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Any: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) a_ : str = ldmad_pipe.to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : Dict = self.get_inputs(_lowercase ) a_ : Optional[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : int = output.rgb, output.depth a_ : str = rgb[0, -3:, -3:, -1].flatten() a_ : Tuple = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a_ : Optional[int] = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) a_ : Optional[int] = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class A__(unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self , _lowercase , _lowercase="cpu" , _lowercase=torch.floataa , _lowercase=0 ) -> str: a_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) a_ : Tuple = np.random.RandomState(_lowercase ).standard_normal((1, 4, 64, 64) ) a_ : Any = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) a_ : Dict = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Tuple = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : Union[str, Any] = ldmad_pipe(**_lowercase ) a_ , a_ : str = output.rgb, output.depth a_ : List[str] = 0.4_9_5_5_8_6 a_ : int = 0.3_3_7_9_5_5_1_5 a_ : int = 1_1_2.4_8_5_1_8 a_ : Optional[int] = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def UpperCamelCase__ ( self ) -> Optional[int]: a_ : Optional[Any] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(_lowercase ) ldmad_pipe.set_progress_bar_config(disable=_lowercase ) a_ : List[str] = self.get_inputs(_lowercase ) a_ : List[Any] = ldmad_pipe(**_lowercase ) a_ , a_ : List[Any] = output.rgb, output.depth a_ : int = 0.4_1_9_4_1_2_7 a_ : List[str] = 0.3_5_3_7_5_5_8_6 a_ : Optional[int] = 0.5_6_3_8_5_0_2 a_ : str = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
248
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex lowercase_ = logging.getLogger(__name__) class _snake_case : def __init__( self : Optional[Any] ): lowercase__ = False def A__ ( self : Union[str, Any], __lowercase : Union[str, Any], __lowercase : Union[str, Any], __lowercase : Optional[Any], __lowercase : str ): if not self.initialized: lowercase__ = RagRetriever( __lowercase, question_encoder_tokenizer=__lowercase, generator_tokenizer=__lowercase, index=__lowercase, init_retrieval=__lowercase, ) lowercase__ = True def A__ ( self : Optional[Any] ): self.retriever.index.init_index() def A__ ( self : Union[str, Any], __lowercase : Dict, __lowercase : Optional[Any] ): lowercase__ , lowercase__ = self.retriever._main_retrieve(__lowercase, __lowercase ) return doc_ids, retrieved_doc_embeds class _snake_case ( lowercase__): def __init__( self : Dict, __lowercase : Any, __lowercase : str, __lowercase : str, __lowercase : Tuple, __lowercase : List[str]=None ): if index is not None and index.is_initialized() and len(__lowercase ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( __lowercase, question_encoder_tokenizer=__lowercase, generator_tokenizer=__lowercase, index=__lowercase, init_retrieval=__lowercase, ) lowercase__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__lowercase, __lowercase, __lowercase, __lowercase ) for worker in self.retrieval_workers ] ) def A__ ( self : Dict ): logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def A__ ( self : Optional[int], __lowercase : List[str], __lowercase : List[Any] ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowercase__ = self.retrieval_workers[random.randint(0, len(self.retrieval_workers ) - 1 )] lowercase__ , lowercase__ = ray.get(random_worker.retrieve.remote(__lowercase, __lowercase ) ) else: lowercase__ , lowercase__ = self._main_retrieve(__lowercase, __lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowercase ) @classmethod def A__ ( cls : str, __lowercase : Any, __lowercase : List[str]=None, **__lowercase : Union[str, Any] ): return super(__lowercase, cls ).get_tokenizers(__lowercase, __lowercase, **__lowercase ) @classmethod def A__ ( cls : int, __lowercase : List[Any], __lowercase : str, __lowercase : int=None, **__lowercase : Optional[int] ): lowercase__ = kwargs.pop("config", __lowercase ) or RagConfig.from_pretrained(__lowercase, **__lowercase ) lowercase__ = RagTokenizer.from_pretrained(__lowercase, config=__lowercase ) lowercase__ = rag_tokenizer.question_encoder lowercase__ = rag_tokenizer.generator if indexed_dataset is not None: lowercase__ = "custom" lowercase__ = CustomHFIndex(config.retrieval_vector_size, __lowercase ) else: lowercase__ = cls._build_index(__lowercase ) return cls( __lowercase, question_encoder_tokenizer=__lowercase, generator_tokenizer=__lowercase, retrieval_workers=__lowercase, index=__lowercase, )
224
from pathlib import Path import fire def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) lowercase__ = Path(SCREAMING_SNAKE_CASE_ ) dest_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) for path in src_dir.iterdir(): lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ = dest_dir.joinpath(path.name ) print(SCREAMING_SNAKE_CASE_ ) dest_path.open("w" ).write("\n".join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": fire.Fire(minify)
224
1
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def lowercase_ (A : Dict[str, torch.Tensor] ): snake_case__ : List[str] = [] snake_case__ : str = [] snake_case__ : Optional[Any] = [] for rt in rc.restypes: snake_case__ : Any = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) snake_case__ : int = {name: i for i, name in enumerate(A )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) snake_case__ : Any = torch.tensor( A , dtype=torch.intaa , device=protein['aatype'].device , ) snake_case__ : List[Any] = torch.tensor( A , dtype=torch.intaa , device=protein['aatype'].device , ) snake_case__ : Any = torch.tensor( A , dtype=torch.floataa , device=protein['aatype'].device , ) snake_case__ : Any = protein['aatype'].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein snake_case__ : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : int = restype_atomaa_mask[protein_aatype] snake_case__ : Any = residx_atomaa_mask snake_case__ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back snake_case__ : List[str] = restype_atomaa_to_atomaa[protein_aatype] snake_case__ : str = residx_atomaa_to_atomaa.long() # create the corresponding mask snake_case__ : List[str] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein['aatype'].device ) for restype, restype_letter in enumerate(rc.restypes ): snake_case__ : Union[str, Any] = rc.restype_atoa[restype_letter] snake_case__ : Dict = rc.residue_atoms[restype_name] for atom_name in atom_names: snake_case__ : int = rc.atom_order[atom_name] snake_case__ : int = 1 snake_case__ : int = restype_atomaa_mask[protein_aatype] snake_case__ : int = residx_atomaa_mask return protein def lowercase_ (A : Dict[str, torch.Tensor] ): snake_case__ : List[Any] = tree_map(lambda A : torch.tensor(A , device=batch['aatype'].device ) , A , np.ndarray ) snake_case__ : Dict = tensor_tree_map(lambda A : np.array(A ) , make_atomaa_masks(A ) ) return out
277
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch a_ :Any = random.Random() def lowercase_ (A : int , A : Union[str, Any]=1.0 , A : List[str]=None , A : Any=None ): if rng is None: snake_case__ : List[str] = global_rng snake_case__ : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any], _snake_case : List[str], _snake_case : Tuple=7, _snake_case : Union[str, Any]=4_0_0, _snake_case : Any=2_0_0_0, _snake_case : Dict=1, _snake_case : Optional[Any]=0.0, _snake_case : List[Any]=1_6_0_0_0, _snake_case : List[Any]=True, _snake_case : List[Any]=8_0, _snake_case : Dict=1_6, _snake_case : str=6_4, _snake_case : Tuple="hann_window", _snake_case : Union[str, Any]=8_0, _snake_case : Optional[Any]=7_6_0_0, _snake_case : str=1e-10, _snake_case : Any=True, ) ->Union[str, Any]: snake_case__ : Optional[int] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[Any] = min_seq_length snake_case__ : List[Any] = max_seq_length snake_case__ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : Tuple = feature_size snake_case__ : List[Any] = padding_value snake_case__ : Any = sampling_rate snake_case__ : Dict = do_normalize snake_case__ : Union[str, Any] = num_mel_bins snake_case__ : Any = hop_length snake_case__ : Any = win_length snake_case__ : Any = win_function snake_case__ : Optional[int] = fmin snake_case__ : int = fmax snake_case__ : Union[str, Any] = mel_floor snake_case__ : Union[str, Any] = return_attention_mask def lowercase_ ( self : Optional[int] ) ->List[str]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowercase_ ( self : Any, _snake_case : Optional[Any]=False, _snake_case : List[str]=False ) ->Union[str, Any]: def _flatten(_snake_case : List[str] ): return list(itertools.chain(*_snake_case ) ) if equal_length: snake_case__ : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case__ : int = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: snake_case__ : Any = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs def lowercase_ ( self : Union[str, Any], _snake_case : str=False, _snake_case : Dict=False ) ->List[str]: if equal_length: snake_case__ : Optional[Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case__ : List[str] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: snake_case__ : int = [np.asarray(_snake_case ) for x in speech_inputs] return speech_inputs @require_torch class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SpeechTaFeatureExtractor def lowercase_ ( self : int ) ->Union[str, Any]: snake_case__ : List[str] = SpeechTaFeatureExtractionTester(self ) def lowercase_ ( self : Any, _snake_case : Dict ) ->Any: self.assertTrue(np.all(np.mean(_snake_case, axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_snake_case, axis=0 ) - 1 ) < 1e-3 ) ) def lowercase_ ( self : List[Any] ) ->Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : int = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : Tuple = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test not batched input snake_case__ : str = feat_extract(speech_inputs[0], return_tensors='np' ).input_values snake_case__ : List[str] = feat_extract(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) # Test batched snake_case__ : Any = feat_extract(_snake_case, return_tensors='np' ).input_values snake_case__ : Union[str, Any] = feat_extract(_snake_case, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case, _snake_case ): self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) def lowercase_ ( self : int ) ->Optional[int]: snake_case__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : int = ['longest', 'max_length', 'do_not_pad'] snake_case__ : List[str] = [None, 1_6_0_0, None] for max_length, padding in zip(_snake_case, _snake_case ): snake_case__ : Optional[int] = feat_extract(_snake_case, padding=_snake_case, max_length=_snake_case, return_tensors='np' ) snake_case__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowercase_ ( self : Union[str, Any] ) ->Optional[Any]: snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Tuple = range(8_0_0, 1_4_0_0, 2_0_0 ) snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in lengths] snake_case__ : Union[str, Any] = ['longest', 'max_length', 'do_not_pad'] snake_case__ : str = [None, 1_6_0_0, None] for max_length, padding in zip(_snake_case, _snake_case ): snake_case__ : List[str] = feat_extract(_snake_case, max_length=_snake_case, padding=_snake_case ) snake_case__ : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def lowercase_ ( self : List[Any] ) ->Optional[Any]: snake_case__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : str = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : Optional[Any] = feat_extract( _snake_case, truncation=_snake_case, max_length=1_0_0_0, padding='max_length', return_tensors='np' ) snake_case__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowercase_ ( self : int ) ->Union[str, Any]: snake_case__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : Dict = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : str = feat_extract( _snake_case, truncation=_snake_case, max_length=1_0_0_0, padding='longest', return_tensors='np' ) snake_case__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) snake_case__ : Tuple = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : List[str] = feat_extract( _snake_case, truncation=_snake_case, max_length=2_0_0_0, padding='longest', return_tensors='np' ) snake_case__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def lowercase_ ( self : List[str] ) ->Dict: snake_case__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case__ : List[Any] = np.random.rand(1_0_0 ).astype(np.floataa ) snake_case__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ : int = feature_extractor.pad([{'input_values': inputs}], return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case__ : Optional[int] = feature_extractor.pad([{'input_values': inputs}], return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase_ ( self : Optional[int] ) ->Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0, 1_4_0_0, 2_0_0 )] snake_case__ : Dict = [np.asarray(_snake_case ) for speech_input in speech_inputs] # Test feature size snake_case__ : Optional[int] = feature_extractor(audio_target=_snake_case, padding=_snake_case, return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input snake_case__ : Dict = feature_extractor(speech_inputs[0], return_tensors='np' ).input_values snake_case__ : Any = feature_extractor(np_speech_inputs[0], return_tensors='np' ).input_values self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) # Test batched snake_case__ : Dict = feature_extractor(_snake_case, return_tensors='np' ).input_values snake_case__ : Dict = feature_extractor(_snake_case, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case, _snake_case ): self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case__ : Optional[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case__ : int = np.asarray(_snake_case ) snake_case__ : Union[str, Any] = feature_extractor(_snake_case, return_tensors='np' ).input_values snake_case__ : Union[str, Any] = feature_extractor(_snake_case, return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_snake_case, _snake_case ): self.assertTrue(np.allclose(_snake_case, _snake_case, atol=1e-3 ) ) def lowercase_ ( self : Union[str, Any] ) ->str: snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : Optional[Any] = feat_extract.model_input_names[0] snake_case__ : Tuple = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_snake_case ) == len(_snake_case ) for x, y in zip(_snake_case, processed_features[input_name] ) ) ) snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) snake_case__ : Union[str, Any] = BatchFeature({input_name: speech_inputs}, tensor_type='np' ) snake_case__ : Dict = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase_ ( self : List[str] ) ->Any: snake_case__ : int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=_snake_case ) snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : Tuple = feat_extract.model_input_names[0] snake_case__ : List[Any] = BatchFeature({input_name: speech_inputs}, tensor_type='pt' ) snake_case__ : Tuple = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case__ : Any = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase_ ( self : Optional[int] ) ->Tuple: snake_case__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) snake_case__ : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : Optional[Any] = feat_extract.model_input_names[0] snake_case__ : List[str] = BatchFeature({input_name: speech_inputs} ) snake_case__ : int = feat_extract.num_mel_bins # hack! snake_case__ : Tuple = feat_extract.pad(_snake_case, padding='longest', return_tensors='np' )[input_name] snake_case__ : Union[str, Any] = feat_extract.pad(_snake_case, padding='longest', return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowercase_ ( self : int ) ->Any: snake_case__ : Any = self.feat_extract_dict snake_case__ : List[Any] = True snake_case__ : Union[str, Any] = self.feature_extraction_class(**_snake_case ) snake_case__ : Any = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : List[Any] = [len(_snake_case ) for x in speech_inputs] snake_case__ : Union[str, Any] = feat_extract.model_input_names[0] snake_case__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) snake_case__ : List[str] = feat_extract.num_mel_bins # hack! snake_case__ : str = feat_extract.pad(_snake_case, padding='longest', return_tensors='np' ) self.assertIn('attention_mask', _snake_case ) self.assertListEqual(list(processed.attention_mask.shape ), list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist(), _snake_case ) def lowercase_ ( self : Optional[int] ) ->str: snake_case__ : int = self.feat_extract_dict snake_case__ : List[str] = True snake_case__ : Tuple = self.feature_extraction_class(**_snake_case ) snake_case__ : List[str] = self.feat_extract_tester.prepare_inputs_for_target() snake_case__ : str = [len(_snake_case ) for x in speech_inputs] snake_case__ : Optional[Any] = feat_extract.model_input_names[0] snake_case__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) snake_case__ : Optional[Any] = min(_snake_case ) snake_case__ : Union[str, Any] = feat_extract.num_mel_bins # hack! snake_case__ : Tuple = feat_extract.pad( _snake_case, padding='max_length', max_length=_snake_case, truncation=_snake_case, return_tensors='np' ) self.assertIn('attention_mask', _snake_case ) self.assertListEqual( list(processed_pad.attention_mask.shape ), [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist(), [max_length for x in speech_inputs] ) def lowercase_ ( self : List[Any], _snake_case : Optional[int] ) ->Optional[Any]: from datasets import load_dataset snake_case__ : str = load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation' ) # automatic decoding with librispeech snake_case__ : Dict = ds.sort('id' ).select(range(_snake_case ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowercase_ ( self : str ) ->str: # fmt: off snake_case__ : List[Any] = torch.tensor( [2.3804e-03, 2.0752e-03, 1.9836e-03, 2.1057e-03, 1.6174e-03, 3.0518e-04, 9.1553e-05, 3.3569e-04, 9.7656e-04, 1.8311e-03, 2.0142e-03, 2.1057e-03, 1.7395e-03, 4.5776e-04, -3.9673e-04, 4.5776e-04, 1.0071e-03, 9.1553e-05, 4.8828e-04, 1.1597e-03, 7.3242e-04, 9.4604e-04, 1.8005e-03, 1.8311e-03, 8.8501e-04, 4.2725e-04, 4.8828e-04, 7.3242e-04, 1.0986e-03, 2.1057e-03] ) # fmt: on snake_case__ : Union[str, Any] = self._load_datasamples(1 ) snake_case__ : Optional[int] = SpeechTaFeatureExtractor() snake_case__ : List[Any] = feature_extractor(_snake_case, return_tensors='pt' ).input_values self.assertEquals(input_values.shape, (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0], _snake_case, atol=1e-6 ) ) def lowercase_ ( self : Any ) ->str: # fmt: off snake_case__ : Optional[Any] = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on snake_case__ : List[str] = self._load_datasamples(1 ) snake_case__ : str = SpeechTaFeatureExtractor() snake_case__ : Optional[Any] = feature_extractor(audio_target=_snake_case, return_tensors='pt' ).input_values self.assertEquals(input_values.shape, (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0], _snake_case, atol=1e-4 ) )
277
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class __lowerCAmelCase : def __init__( self : List[Any] , A : Any , A : List[Any]=13 , A : Optional[int]=7 , A : Optional[int]=True , A : Tuple=True , A : Optional[Any]=True , A : str=True , A : Optional[int]=99 , A : List[str]=[1, 1, 2] , A : List[Any]=1 , A : int=32 , A : Optional[Any]=4 , A : Optional[Any]=8 , A : List[Any]=37 , A : Optional[int]="gelu_new" , A : Optional[int]=0.1 , A : Tuple=0.1 , A : Tuple=0.0 , A : Tuple=5_12 , A : List[Any]=3 , A : int=0.0_2 , A : Dict=3 , A : Dict=4 , A : str=None , A : Optional[int]=False , ) -> Tuple: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = block_sizes _UpperCAmelCase = num_decoder_layers _UpperCAmelCase = d_model _UpperCAmelCase = n_head _UpperCAmelCase = d_head _UpperCAmelCase = d_inner _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation_dropout _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = 2 _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope _UpperCAmelCase = initializer_std # Used in the tests to check the size of the first attention layer _UpperCAmelCase = n_head # Used in the tests to check the size of the first hidden state _UpperCAmelCase = self.d_model # Used in the tests to check the number of output hidden states/attentions _UpperCAmelCase = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: _UpperCAmelCase = self.num_hidden_layers + 2 def _lowerCamelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCAmelCase = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def _lowerCamelCase ( self : Union[str, Any] , A : List[Any] , A : Any , A : List[Any] , A : Tuple , A : int , A : Dict , A : Any , ) -> Dict: """simple docstring""" _UpperCAmelCase = TFFunnelModel(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(A) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) _UpperCAmelCase = False _UpperCAmelCase = TFFunnelModel(config=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) _UpperCAmelCase = False _UpperCAmelCase = TFFunnelModel(config=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def _lowerCamelCase ( self : List[str] , A : str , A : int , A : int , A : Union[str, Any] , A : Optional[Any] , A : Dict , A : Dict , ) -> Dict: """simple docstring""" _UpperCAmelCase = TFFunnelBaseModel(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(A) _UpperCAmelCase = [input_ids, input_mask] _UpperCAmelCase = model(A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) _UpperCAmelCase = False _UpperCAmelCase = TFFunnelBaseModel(config=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) _UpperCAmelCase = False _UpperCAmelCase = TFFunnelBaseModel(config=A) _UpperCAmelCase = model(A) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def _lowerCamelCase ( self : List[str] , A : List[str] , A : Optional[int] , A : Optional[Any] , A : Any , A : Dict , A : List[Any] , A : Any , ) -> str: """simple docstring""" _UpperCAmelCase = TFFunnelForPreTraining(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : Union[str, Any] , A : Any , A : Any , A : str , A : Optional[Any] , A : Dict , A : Tuple , A : Dict , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = TFFunnelForMaskedLM(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCamelCase ( self : Optional[Any] , A : Optional[Any] , A : List[Any] , A : Union[str, Any] , A : List[Any] , A : List[str] , A : Tuple , A : int , ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFFunnelForSequenceClassification(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCamelCase ( self : int , A : Optional[int] , A : Any , A : str , A : str , A : Any , A : Union[str, Any] , A : Dict , ) -> Dict: """simple docstring""" _UpperCAmelCase = self.num_choices _UpperCAmelCase = TFFunnelForMultipleChoice(config=A) _UpperCAmelCase = tf.tile(tf.expand_dims(A , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = tf.tile(tf.expand_dims(A , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = tf.tile(tf.expand_dims(A , 1) , (1, self.num_choices, 1)) _UpperCAmelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCamelCase ( self : List[str] , A : Any , A : List[str] , A : Any , A : Any , A : List[str] , A : Optional[int] , A : Optional[int] , ) -> Dict: """simple docstring""" _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFFunnelForTokenClassification(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCamelCase ( self : Tuple , A : List[str] , A : Union[str, Any] , A : Union[str, Any] , A : List[Any] , A : Optional[Any] , A : int , A : Union[str, Any] , ) -> Dict: """simple docstring""" _UpperCAmelCase = TFFunnelForQuestionAnswering(config=A) _UpperCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _UpperCAmelCase = model(A) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCamelCase ( self : int) -> List[str]: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( A , A , unittest.TestCase ): UpperCamelCase = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : Optional[int]) -> str: """simple docstring""" _UpperCAmelCase = TFFunnelModelTester(self) _UpperCAmelCase = ConfigTester(self , config_class=A) def _lowerCamelCase ( self : Tuple) -> str: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A) def _lowerCamelCase ( self : int) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A) def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A) def _lowerCamelCase ( self : List[str]) -> Optional[int]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A) def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A) @require_tf class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) UpperCamelCase = False UpperCamelCase = False def _lowerCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _UpperCAmelCase = TFFunnelModelTester(self , base=A) _UpperCAmelCase = ConfigTester(self , config_class=A) def _lowerCamelCase ( self : str) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*A) def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A) def _lowerCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A)
290
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
290
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return 1 def __SCREAMING_SNAKE_CASE ( A_ ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __SCREAMING_SNAKE_CASE ( A_ ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(A_ ) def __SCREAMING_SNAKE_CASE ( A_ ): return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(A_ ) def __SCREAMING_SNAKE_CASE ( A_ = 2_00 ): return two_pound(A_ ) if __name__ == "__main__": print(solution(int(input().strip())))
106
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { '''configuration_rag''': ['''RagConfig'''], '''retrieval_rag''': ['''RagRetriever'''], '''tokenization_rag''': ['''RagTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ '''RagModel''', '''RagPreTrainedModel''', '''RagSequenceForGeneration''', '''RagTokenForGeneration''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''TFRagModel''', '''TFRagPreTrainedModel''', '''TFRagSequenceForGeneration''', '''TFRagTokenForGeneration''', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
1
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): _lowerCamelCase : Optional[Any] = parent _lowerCamelCase : Union[str, Any] = batch_size _lowerCamelCase : Any = seq_length _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : str = use_input_mask _lowerCamelCase : Tuple = use_token_type_ids _lowerCamelCase : Union[str, Any] = use_labels _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Tuple = attention_probs_dropout_prob _lowerCamelCase : Dict = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Tuple = type_sequence_label_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[int] = num_labels _lowerCamelCase : Optional[int] = num_choices _lowerCamelCase : Dict = scope def A_ ( self ): _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : Dict = None if self.use_input_mask: _lowerCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : str = None if self.use_token_type_ids: _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : Dict = None _lowerCamelCase : Union[str, Any] = None _lowerCamelCase : str = None if self.use_labels: _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCamelCase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): _lowerCamelCase : List[str] = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): _lowerCamelCase : List[Any] = BioGptForCausalLM(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): _lowerCamelCase : Optional[Any] = BioGptModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # create attention mask _lowerCamelCase : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = self.seq_length // 2 _lowerCamelCase : Optional[Any] = 0 # first forward pass _lowerCamelCase, _lowerCamelCase : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids _lowerCamelCase : Optional[int] = ids_tensor((1,) , __SCREAMING_SNAKE_CASE ).item() + 1 _lowerCamelCase : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) _lowerCamelCase : Optional[Any] = random_other_next_tokens # append to next input_ids and attn_mask _lowerCamelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )] , dim=1 , ) # get two different outputs _lowerCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['last_hidden_state'] _lowerCamelCase : Any = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['last_hidden_state'] # select random slice _lowerCamelCase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() _lowerCamelCase : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): _lowerCamelCase : str = BioGptModel(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval() _lowerCamelCase : Dict = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) # first forward pass _lowerCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) _lowerCamelCase, _lowerCamelCase : Optional[int] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCamelCase : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCamelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and _lowerCamelCase : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowerCamelCase : int = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) _lowerCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['last_hidden_state'] _lowerCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[ 'last_hidden_state' ] # select random slice _lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowerCamelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ): _lowerCamelCase : Any = BioGptForCausalLM(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) if gradient_checkpointing: model.gradient_checkpointing_enable() _lowerCamelCase : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def A_ ( self , lowercase , *lowercase ): _lowerCamelCase : List[str] = BioGptModel(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_01 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ): _lowerCamelCase : Union[str, Any] = self.num_labels _lowerCamelCase : int = BioGptForTokenClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self ): _lowerCamelCase : str = self.prepare_config_and_inputs() ( ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ( _lowerCamelCase ), ) : Tuple = config_and_inputs _lowerCamelCase : int = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) lowerCamelCase__ = (BioGptForCausalLM,) if is_torch_available() else () lowerCamelCase__ = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False def A_ ( self ): _lowerCamelCase : Optional[int] = BioGptModelTester(self ) _lowerCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def A_ ( self ): self.config_tester.run_common_tests() def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase : List[str] = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__SCREAMING_SNAKE_CASE , gradient_checkpointing=__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def A_ ( self ): _lowerCamelCase : List[str] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowerCamelCase : Dict = 'left' # Define PAD Token = EOS Token = 50256 _lowerCamelCase : Any = tokenizer.eos_token _lowerCamelCase : List[str] = model.config.eos_token_id # use different length sentences to test batching _lowerCamelCase : Optional[Any] = [ 'Hello, my dog is a little', 'Today, I', ] _lowerCamelCase : str = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='pt' , padding=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = inputs['input_ids'].to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['attention_mask'].to(__SCREAMING_SNAKE_CASE ) , ) _lowerCamelCase : Dict = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : str = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() _lowerCamelCase : Dict = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings ) _lowerCamelCase : Optional[Any] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] ) @slow def A_ ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase : Tuple = BioGptModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : Dict = input_dict['input_ids'] _lowerCamelCase : Tuple = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowerCamelCase : List[Any] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase : Any = 3 _lowerCamelCase : List[str] = 'multi_label_classification' _lowerCamelCase : Optional[Any] = input_dict['input_ids'] _lowerCamelCase : List[Any] = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowerCamelCase : Union[str, Any] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() _lowerCamelCase : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def A_ ( self ): _lowerCamelCase : Union[str, Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) _lowerCamelCase : Any = torch.tensor([[2, 4805, 9, 656, 21]] ) _lowerCamelCase : str = model(__SCREAMING_SNAKE_CASE )[0] _lowerCamelCase : Any = 42384 _lowerCamelCase : str = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) _lowerCamelCase : Dict = torch.tensor( [[[-9.52_36, -9.89_18, 10.45_57], [-11.04_69, -9.64_23, 8.10_22], [-8.86_64, -7.88_26, 5.53_25]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def A_ ( self ): _lowerCamelCase : int = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) _lowerCamelCase : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) _lowerCamelCase : Dict = tokenizer('COVID-19 is' , return_tensors='pt' ).to(__SCREAMING_SNAKE_CASE ) _lowerCamelCase : List[str] = model.generate( **__SCREAMING_SNAKE_CASE , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=__SCREAMING_SNAKE_CASE , ) _lowerCamelCase : List[str] = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) _lowerCamelCase : Optional[Any] = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
351
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = ["""pixel_values"""] def __init__( self , lowercase = True , lowercase = 1 / 255 , lowercase = True , lowercase = 8 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Optional[Any] = do_rescale _lowerCamelCase : Union[str, Any] = rescale_factor _lowerCamelCase : Any = do_pad _lowerCamelCase : Optional[int] = pad_size def A_ ( self , lowercase , lowercase , lowercase = None , **lowercase ): return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A_ ( self , lowercase , lowercase , lowercase = None ): _lowerCamelCase, _lowerCamelCase : Tuple = get_image_size(lowercase ) _lowerCamelCase : Union[str, Any] = (old_height // size + 1) * size - old_height _lowerCamelCase : Tuple = (old_width // size + 1) * size - old_width return pad(lowercase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=lowercase ) def A_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ): _lowerCamelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : Any = do_pad if do_pad is not None else self.do_pad _lowerCamelCase : int = pad_size if pad_size is not None else self.pad_size _lowerCamelCase : Dict = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. _lowerCamelCase : Dict = [to_numpy_array(lowercase ) for image in images] if do_rescale: _lowerCamelCase : str = [self.rescale(image=lowercase , scale=lowercase ) for image in images] if do_pad: _lowerCamelCase : str = [self.pad(lowercase , size=lowercase ) for image in images] _lowerCamelCase : Any = [to_channel_dimension_format(lowercase , lowercase ) for image in images] _lowerCamelCase : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=lowercase , tensor_type=lowercase )
12
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A ( _lowerCamelCase ): '''simple docstring''' if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def A ( _lowerCamelCase ): '''simple docstring''' for char in word: _lowerCAmelCase : int = ord(_lowerCamelCase ) if not _is_chinese_char(_lowerCamelCase ): return 0 return 1 def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = set() for token in tokens: _lowerCAmelCase : Optional[Any] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase ) if chinese_word: word_set.add(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase ) return word_list def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if not chinese_word_set: return bert_tokens _lowerCAmelCase : Any = max([len(_lowerCamelCase ) for w in chinese_word_set] ) _lowerCAmelCase : Tuple = bert_tokens _lowerCAmelCase , _lowerCAmelCase : List[str] = 0, len(_lowerCamelCase ) while start < end: _lowerCAmelCase : List[str] = True if is_chinese(bert_word[start] ): _lowerCAmelCase : Optional[Any] = min(end - start , _lowerCamelCase ) for i in range(_lowerCamelCase , 1 , -1 ): _lowerCAmelCase : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowerCAmelCase : Optional[int] = "##" + bert_word[j] _lowerCAmelCase : Dict = start + i _lowerCAmelCase : Optional[Any] = False break if single_word: start += 1 return bert_word def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Dict = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : List[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowerCAmelCase : Tuple = [get_chinese_word(_lowerCamelCase ) for r in res] ltp_res.extend(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : str = [] for i in range(0 , len(_lowerCamelCase ) , 100 ): _lowerCAmelCase : List[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) _lowerCAmelCase : Any = [] for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ): _lowerCAmelCase : Union[str, Any] = [] for id in input_ids: _lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase ) input_tokens.append(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = add_sub_symbol(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCamelCase ): if token[:2] == "##": _lowerCAmelCase : Optional[Any] = token[2:] # save chinese tokens' pos if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ): ref_id.append(_lowerCamelCase ) ref_ids.append(_lowerCamelCase ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) return ref_ids def A ( _lowerCamelCase ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: _lowerCAmelCase : List[str] = f.readlines() _lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device _lowerCAmelCase : int = BertTokenizer.from_pretrained(args.bert ) _lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _lowerCAmelCase : Union[str, Any] = [json.dumps(_lowerCamelCase ) + "\n" for ref in ref_ids] f.writelines(_lowerCamelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") _snake_case = parser.parse_args() main(args)
36
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
36
1
def A_ ( _lowerCAmelCase ) -> List[str]: UpperCamelCase : Dict = len(_UpperCAmelCase ) UpperCamelCase : int = sum(_UpperCAmelCase ) UpperCamelCase : Any = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): UpperCamelCase : Optional[int] = True for i in range(1 , s + 1 ): UpperCamelCase : Optional[int] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): UpperCamelCase : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: UpperCamelCase : str = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: UpperCamelCase : Union[str, Any] = s - 2 * j break return diff
351
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCamelCase : Dict = logging.get_logger("""transformers.models.speecht5""") def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: hf_model.apply_weight_norm() UpperCamelCase : int = checkpoint["input_conv.weight_g"] UpperCamelCase : Dict = checkpoint["input_conv.weight_v"] UpperCamelCase : List[Any] = checkpoint["input_conv.bias"] for i in range(len(config.upsample_rates ) ): UpperCamelCase : Any = checkpoint[F"""upsamples.{i}.1.weight_g"""] UpperCamelCase : List[Any] = checkpoint[F"""upsamples.{i}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""upsamples.{i}.1.bias"""] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs1.{j}.1.weight_v"""] UpperCamelCase : str = checkpoint[F"""blocks.{i}.convs1.{j}.1.bias"""] UpperCamelCase : Union[str, Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_g"""] UpperCamelCase : int = checkpoint[F"""blocks.{i}.convs2.{j}.1.weight_v"""] UpperCamelCase : Optional[Any] = checkpoint[F"""blocks.{i}.convs2.{j}.1.bias"""] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_g"] UpperCamelCase : Tuple = checkpoint["output_conv.1.weight_v"] UpperCamelCase : int = checkpoint["output_conv.1.bias"] hf_model.remove_weight_norm() @torch.no_grad() def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , ) -> Tuple: if config_path is not None: UpperCamelCase : List[Any] = SpeechTaHifiGanConfig.from_pretrained(_lowerCAmelCase ) else: UpperCamelCase : Optional[int] = SpeechTaHifiGanConfig() UpperCamelCase : List[str] = SpeechTaHifiGan(_lowerCAmelCase ) UpperCamelCase : str = torch.load(_lowerCAmelCase ) load_weights(orig_checkpoint["model"]["generator"] , _lowerCAmelCase , _lowerCAmelCase ) UpperCamelCase : List[Any] = np.load(_lowerCAmelCase ) UpperCamelCase : List[str] = stats[0].reshape(-1 ) UpperCamelCase : Tuple = stats[1].reshape(-1 ) UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() UpperCamelCase : Any = torch.from_numpy(_lowerCAmelCase ).float() model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) __lowerCamelCase : Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
140
0