code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def UpperCamelCase( __UpperCamelCase : str ): return " ".join( ''''''.join(word[::-1] ) if len(__UpperCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
103
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __snake_case = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' for attribute in key.split('.' ): SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.feature_extractor SCREAMING_SNAKE_CASE__ = hf_model.adapter for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE__ = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(UpperCamelCase_ )[0].split('.' )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace('*' , UpperCamelCase_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE__ = 'bias' elif "weight" in name: SCREAMING_SNAKE_CASE__ = 'weight' else: SCREAMING_SNAKE_CASE__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F'Unused weights: {unused_weights}' ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE__ = name.split('.' ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = full_name.split('adaptor.' )[-1] SCREAMING_SNAKE_CASE__ = name.split('.' ) if items[1].isdigit(): SCREAMING_SNAKE_CASE__ = int(items[1] ) else: SCREAMING_SNAKE_CASE__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' SCREAMING_SNAKE_CASE__ = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = emb.weight.shape SCREAMING_SNAKE_CASE__ = nn.Linear(UpperCamelCase_ , UpperCamelCase_ , bias=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = emb.weight.data return lin_layer @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = WavaVecaConfig.from_pretrained( UpperCamelCase_ , add_adapter=UpperCamelCase_ , adapter_stride=UpperCamelCase_ , adapter_kernel_size=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , output_hidden_size=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = MBartConfig.from_pretrained(UpperCamelCase_ ) # load model SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) SCREAMING_SNAKE_CASE__ = model[0].eval() # load feature extractor SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase_ , use_auth_token=UpperCamelCase_ ) # set weights for wav2vec2 encoder SCREAMING_SNAKE_CASE__ = WavaVecaModel(UpperCamelCase_ ) recursively_load_weights_wavaveca(model.encoder , UpperCamelCase_ ) # load decoder weights SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase_ ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) SCREAMING_SNAKE_CASE__ = SpeechEncoderDecoderModel(encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = MBartaaTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = hf_wavavec.config.to_dict() SCREAMING_SNAKE_CASE__ = tokenizer.pad_token_id SCREAMING_SNAKE_CASE__ = tokenizer.bos_token_id SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = 'mbart50' SCREAMING_SNAKE_CASE__ = 'wav2vec2' SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = 250004 SCREAMING_SNAKE_CASE__ = tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase_ ) hf_wavavec.save_pretrained(UpperCamelCase_ ) feature_extractor.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_yaml_path""", default=None, type=str, help="""Path to yaml file of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-xls-r-1b""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/mbart-large-50-one-to-many-mmt""", type=str, help="""Path to hf decoder checkpoint config""", ) parser.add_argument("""--add_adapter""", default=True, type=bool, help="""whethere to add model adapter layers""") parser.add_argument("""--adapter_stride""", default=2, type=int, help="""stride of adapter layers""") parser.add_argument("""--adapter_kernel_size""", default=3, type=int, help="""kernel size of adapter layers""") parser.add_argument("""--encoder_output_dim""", default=10_24, type=int, help="""encoder output dim""") parser.add_argument("""--start_token_id""", default=25_00_04, type=int, help="""`decoder_start_token_id` of model config""") __snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
176
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def a_ ( lowerCamelCase : int , lowerCamelCase : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def a_ ( lowerCamelCase : int ): lowerCAmelCase = [] lowerCAmelCase = 11 lowerCAmelCase = int('1' + '0' * digit_len ) for num in range(lowerCamelCase , lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase , lowerCamelCase ): solutions.append(f'''{num}/{den}''' ) den += 1 num += 1 lowerCAmelCase = 10 return solutions def a_ ( lowerCamelCase : int = 2 ): lowerCAmelCase = 1.0 for fraction in fraction_list(lowerCamelCase ): lowerCAmelCase = Fraction(lowerCamelCase ) result *= frac.denominator / frac.numerator return int(lowerCamelCase ) if __name__ == "__main__": print(solution())
366
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : def __init__( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Dict=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : Optional[int]=2 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Any=9_9 , UpperCAmelCase__ : Any=3_6 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Optional[Any]=4 , UpperCAmelCase__ : int=3_7 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Optional[Any]=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : str=6 , UpperCAmelCase__ : List[str]=6 , UpperCAmelCase__ : List[str]=3 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : List[Any]=1_0_0_0 , ) -> int: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = num_channels lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = text_seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = coordinate_size lowerCAmelCase = shape_size lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowerCAmelCase = text_seq_length lowerCAmelCase = (image_size // patch_size) ** 2 + 1 lowerCAmelCase = self.text_seq_length + self.image_seq_length def __UpperCAmelCase ( self : str ) -> Dict: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) lowerCAmelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str: lowerCAmelCase = LayoutLMvaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # text + image lowerCAmelCase = model(UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only lowerCAmelCase = model(pixel_values=UpperCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = LayoutLMvaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , bbox=UpperCAmelCase__ , pixel_values=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[str] = False lowerCamelCase : Tuple = False lowerCamelCase : int = False lowerCamelCase : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : int = ( {'''document-question-answering''': LayoutLMvaForQuestionAnswering, '''feature-extraction''': LayoutLMvaModel} if is_torch_available() else {} ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase = LayoutLMvaModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int]=False ) -> Optional[int]: lowerCAmelCase = copy.deepcopy(UpperCAmelCase__ ) if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCAmelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in get_values(UpperCAmelCase__ ): lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) elif model_class in [ *get_values(UpperCAmelCase__ ), ]: lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCAmelCase__ , ) return inputs_dict def __UpperCAmelCase ( self : Tuple ) -> Any: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Any ) -> Any: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = LayoutLMvaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def a_ ( ): lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : int ) -> str: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase__ ) if is_vision_available() else None @slow def __UpperCAmelCase ( self : int ) -> Any: lowerCAmelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(UpperCAmelCase__ ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase__ ) lowerCAmelCase = torch.tensor([[1, 2]] ) lowerCAmelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass lowerCAmelCase = model( input_ids=input_ids.to(UpperCAmelCase__ ) , bbox=bbox.to(UpperCAmelCase__ ) , pixel_values=pixel_values.to(UpperCAmelCase__ ) , ) # verify the logits lowerCAmelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase__ ) lowerCAmelCase = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase__ , atol=1E-4 ) )
55
0
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home UpperCamelCase__ = HUGGINGFACE_HUB_CACHE UpperCamelCase__ = '''config.json''' UpperCamelCase__ = '''diffusion_pytorch_model.bin''' UpperCamelCase__ = '''diffusion_flax_model.msgpack''' UpperCamelCase__ = '''model.onnx''' UpperCamelCase__ = '''diffusion_pytorch_model.safetensors''' UpperCamelCase__ = '''weights.pb''' UpperCamelCase__ = '''https://huggingface.co''' UpperCamelCase__ = default_cache_path UpperCamelCase__ = '''diffusers_modules''' UpperCamelCase__ = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) UpperCamelCase__ = ['''fp16''', '''non-ema'''] UpperCamelCase__ = '''.self_attn'''
181
'''simple docstring''' import re from filelock import FileLock try: import nltk UpperCamelCase__ = True except (ImportError, ModuleNotFoundError): UpperCamelCase__ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a__ ( lowerCAmelCase__ ) -> str: re.sub('''<n>''' , '''''' , lowerCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase__ ) )
181
1
def _UpperCamelCase ( UpperCamelCase_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" lowerCAmelCase__ = set() # Replace all the whitespace in our sentence lowerCAmelCase__ = input_str.replace(' ' , '' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_snake_case ) == 26 def _UpperCamelCase ( UpperCamelCase_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" lowerCAmelCase__ = [False] * 26 for char in input_str: if char.islower(): lowerCAmelCase__ = True elif char.isupper(): lowerCAmelCase__ = True return all(_snake_case ) def _UpperCamelCase ( UpperCamelCase_ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _UpperCamelCase ( ) -> None: """simple docstring""" from timeit import timeit lowerCAmelCase__ = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('is_pangram()' , setup=_snake_case ) ) print(timeit('is_pangram_faster()' , setup=_snake_case ) ) print(timeit('is_pangram_fastest()' , setup=_snake_case ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
352
import qiskit def _UpperCamelCase ( UpperCamelCase_ : int , UpperCamelCase_ : int ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCAmelCase__ = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowerCAmelCase__ = qiskit.QuantumCircuit(UpperCamelCase_ , UpperCamelCase_ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowerCAmelCase__ = qiskit.execute(UpperCamelCase_ , UpperCamelCase_ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCamelCase_ ) if __name__ == "__main__": print(f'Total count for various states are: {single_qubit_measure(1, 1)}')
122
0
def a__ ( __UpperCamelCase = 1_0_0_0_0_0_0 ): SCREAMING_SNAKE_CASE_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
118
from ....configuration_utils import PretrainedConfig from ....utils import logging A : str = logging.get_logger(__name__) # TODO: upload to AWS A : Dict = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''retribert''' def __init__( self : Optional[int] , __magic_name__ : Optional[Any]=30_522 , __magic_name__ : int=768 , __magic_name__ : Dict=8 , __magic_name__ : List[Any]=12 , __magic_name__ : Tuple=3_072 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Tuple=512 , __magic_name__ : Dict=2 , __magic_name__ : int=0.02 , __magic_name__ : List[Any]=1e-12 , __magic_name__ : List[str]=True , __magic_name__ : Dict=128 , __magic_name__ : Union[str, Any]=0 , **__magic_name__ : List[Any] , ) -> Dict: super().__init__(pad_token_id=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = share_encoders SCREAMING_SNAKE_CASE_ = projection_dim
118
1
"""simple docstring""" import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase_ ( a__ ): lowercase__ = None lowercase__ = None @property def __magic_name__ ( self : int ) -> Tuple: '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def __magic_name__ ( self : Any ) -> Any: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCamelCase , "feature_size" ) ) self.assertTrue(hasattr(_lowerCamelCase , "sampling_rate" ) ) self.assertTrue(hasattr(_lowerCamelCase , "padding_value" ) ) def __magic_name__ ( self : Dict ) -> List[str]: '''simple docstring''' A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_lowerCamelCase ) == len(_lowerCamelCase ) for x, y in zip(_lowerCamelCase , processed_features[input_name] ) ) ) A__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCamelCase ) A__ = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def __magic_name__ ( self : Any ) -> Tuple: '''simple docstring''' A__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCamelCase ) A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def __magic_name__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_lowerCamelCase ) A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) A__ = processed_features[input_name] if len(batch_features_input.shape ) < 3: A__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Dict=False ) -> Optional[Any]: '''simple docstring''' def _inputs_have_equal_length(snake_case_ : str ): A__ = len(input[0] ) for input_slice in input[1:]: if len(_lowerCamelCase ) != length: return False return True def _inputs_are_equal(snake_case_ : str , snake_case_ : Tuple ): if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCamelCase , _lowerCamelCase ): if not np.allclose(np.asarray(_lowerCamelCase ) , np.asarray(_lowerCamelCase ) , atol=1e-3 ): return False return True A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCamelCase ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = self.feat_extract_tester.seq_length_diff A__ = self.feat_extract_tester.max_seq_length + pad_diff A__ = self.feat_extract_tester.min_seq_length A__ = self.feat_extract_tester.batch_size A__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy A__ = feat_extract.pad(_lowerCamelCase , padding=_lowerCamelCase ) A__ = input_a[input_name] A__ = feat_extract.pad(_lowerCamelCase , padding="longest" ) A__ = input_a[input_name] A__ = feat_extract.pad(_lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[-1] ) ) A__ = input_a[input_name] A__ = feat_extract.pad(_lowerCamelCase , padding="longest" , return_tensors="np" ) A__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase , padding="max_length" )[input_name] A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=_lowerCamelCase , return_tensors="np" ) A__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCamelCase , _lowerCamelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy A__ = feat_extract.pad(_lowerCamelCase , pad_to_multiple_of=10 ) A__ = input_a[input_name] A__ = feat_extract.pad(_lowerCamelCase , padding="longest" , pad_to_multiple_of=10 ) A__ = input_a[input_name] A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=_lowerCamelCase ) A__ = input_a[input_name] A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , pad_to_multiple_of=10 , max_length=_lowerCamelCase , return_tensors="np" , ) A__ = input_a[input_name] self.assertTrue(all(len(_lowerCamelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_lowerCamelCase , _lowerCamelCase ) ) A__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_lowerCamelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct A__ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def __magic_name__ ( self : Any , snake_case_ : str=False ) -> Tuple: '''simple docstring''' def _inputs_have_equal_length(snake_case_ : str ): A__ = len(input[0] ) for input_slice in input[1:]: if len(_lowerCamelCase ) != length: return False return True def _inputs_are_equal(snake_case_ : Tuple , snake_case_ : int ): if len(_lowerCamelCase ) != len(_lowerCamelCase ): return False for input_slice_a, input_slice_a in zip(_lowerCamelCase , _lowerCamelCase ): if not np.allclose(np.asarray(_lowerCamelCase ) , np.asarray(_lowerCamelCase ) , atol=1e-3 ): return False return True A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_lowerCamelCase ) A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=_lowerCamelCase ) A__ = input_a[input_name] A__ = feat_extract.pad(_lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) ) A__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) # truncate to smallest with np A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=_lowerCamelCase , ) A__ = input_a[input_name] A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) A__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) # truncate to middle A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=_lowerCamelCase , return_tensors="np" , ) A__ = input_a[input_name] A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=_lowerCamelCase ) A__ = input_a[input_name] A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) A__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(_inputs_are_equal(_lowerCamelCase , _lowerCamelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase , truncation=_lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase , padding="longest" , truncation=_lowerCamelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase , padding="longest" , truncation=_lowerCamelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_lowerCamelCase ): feat_extract.pad(_lowerCamelCase , padding="max_length" , truncation=_lowerCamelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy A__ = 12 A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCamelCase , truncation=_lowerCamelCase , ) A__ = input_a[input_name] A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_lowerCamelCase , ) A__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of A__ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: A__ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_lowerCamelCase ) ) self.assertFalse(_inputs_have_equal_length(_lowerCamelCase ) ) def __magic_name__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' self._check_padding(numpify=_lowerCamelCase ) def __magic_name__ ( self : str ) -> Dict: '''simple docstring''' self._check_padding(numpify=_lowerCamelCase ) def __magic_name__ ( self : str ) -> Union[str, Any]: '''simple docstring''' self._check_truncation(numpify=_lowerCamelCase ) def __magic_name__ ( self : Tuple ) -> str: '''simple docstring''' self._check_truncation(numpify=_lowerCamelCase ) @require_torch def __magic_name__ ( self : List[Any] ) -> Tuple: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.pad(_lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] A__ = feat_extract.pad(_lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def __magic_name__ ( self : Optional[int] ) -> str: '''simple docstring''' A__ = self.feature_extraction_class(**self.feat_extract_dict ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.pad(_lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] A__ = feat_extract.pad(_lowerCamelCase , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __magic_name__ ( self : int ) -> Any: '''simple docstring''' A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**_lowerCamelCase ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = [len(_lowerCamelCase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = feat_extract.pad(_lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , _lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _lowerCamelCase ) def __magic_name__ ( self : Dict ) -> Tuple: '''simple docstring''' A__ = self.feat_extract_dict A__ = True A__ = self.feature_extraction_class(**_lowerCamelCase ) A__ = self.feat_extract_tester.prepare_inputs_for_common() A__ = [len(_lowerCamelCase ) for x in speech_inputs] A__ = feat_extract.model_input_names[0] A__ = BatchFeature({input_name: speech_inputs} ) A__ = min(_lowerCamelCase ) A__ = feat_extract.pad( _lowerCamelCase , padding="max_length" , max_length=_lowerCamelCase , truncation=_lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , _lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
354
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE ( lowercase_=None ) -> Any: if subparsers is not None: A__ = subparsers.add_parser("env" ) else: A__ = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=lowercase_ , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: A__ = torch.__version__ A__ = torch.cuda.is_available() A__ = is_xpu_available() A__ = is_npu_available() A__ = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowercase_ ): A__ = load_config_from_file(args.config_file ).to_dict() A__ = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(lowercase_ ), "PyTorch NPU available": str(lowercase_ ), "System RAM": f"""{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB""", } if pt_cuda_available: A__ = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([f"""- {prop}: {val}""" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) A__ = ( "\n".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(lowercase_ , lowercase_ ) else f"""\t{accelerate_config}""" ) print(lowercase_ ) A__ = accelerate_config return info def _SCREAMING_SNAKE_CASE ( ) -> int: A__ = env_command_parser() A__ = parser.parse_args() env_command(lowercase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
230
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) __lowerCAmelCase : Optional[int] = parser.parse_args() __lowerCAmelCase : Union[str, Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __lowerCAmelCase : List[Any] = CLIPImageProcessor() __lowerCAmelCase : Tuple = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') __lowerCAmelCase : Union[str, Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
107
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __UpperCamelCase ( lowerCAmelCase__ : int ): __a : int = int(number**0.5 ) return number == sq * sq def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): __a : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den __a : int = x_den * y_den * z_den __a : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) top //= hcf bottom //= hcf return top, bottom def __UpperCamelCase ( lowerCAmelCase__ : int = 3_5 ): __a : set = set() __a : int __a : Fraction = Fraction(0 ) __a : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 __a : Any = x_num * y_den + x_den * y_num __a : Dict = x_den * y_den __a : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : str = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 __a : Union[str, Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) __a : Optional[Any] = x_den * x_den * y_den * y_den if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): __a : Any = int(sqrt(lowerCAmelCase__ ) ) __a : Optional[Any] = int(sqrt(lowerCAmelCase__ ) ) __a : int = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : str = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=-1 __a : List[str] = x_num * y_num __a : List[str] = x_den * y_num + x_num * y_den __a : str = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : Optional[int] = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) # n=2 __a : List[str] = x_num * x_num * y_num * y_num __a : Optional[int] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(lowerCAmelCase__ ) and is_sq(lowerCAmelCase__ ): __a : Union[str, Any] = int(sqrt(lowerCAmelCase__ ) ) __a : List[str] = int(sqrt(lowerCAmelCase__ ) ) __a : Optional[int] = gcd(lowerCAmelCase__ , lowerCAmelCase__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: __a : int = add_three( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) unique_s.add(lowerCAmelCase__ ) for num, den in unique_s: total += Fraction(lowerCAmelCase__ , lowerCAmelCase__ ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
216
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( lowercase : list[int] , lowercase : int ) -> list[int]: """simple docstring""" snake_case : str = 0 snake_case : List[str] = len(lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: snake_case : str = i + 1 else: snake_case : Tuple = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F'''{two_pointer([2, 7, 11, 15], 9) = }''')
112
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_text_model''' def __init__( self , UpperCamelCase__=25_0002 , UpperCamelCase__=1024 , UpperCamelCase__=24 , UpperCamelCase__=16 , UpperCamelCase__=4096 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=514 , UpperCamelCase__=1 , UpperCamelCase__=0.02 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-05 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=768 , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) snake_case : Any = vocab_size snake_case : List[Any] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Optional[Any] = num_attention_heads snake_case : Dict = hidden_act snake_case : Dict = intermediate_size snake_case : int = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Union[str, Any] = max_position_embeddings snake_case : Optional[int] = type_vocab_size snake_case : Dict = initializer_range snake_case : int = initializer_factor snake_case : Union[str, Any] = layer_norm_eps snake_case : List[Any] = position_embedding_type snake_case : Any = use_cache snake_case : str = project_dim class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Tuple = '''altclip_vision_model''' def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=3072 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3 , UpperCamelCase__=224 , UpperCamelCase__=32 , UpperCamelCase__="quick_gelu" , UpperCamelCase__=1e-5 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1.0 , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : Optional[int] = hidden_size snake_case : str = intermediate_size snake_case : List[str] = projection_dim snake_case : Optional[Any] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : str = num_channels snake_case : List[str] = patch_size snake_case : List[Any] = image_size snake_case : Union[str, Any] = initializer_range snake_case : Optional[Any] = initializer_factor snake_case : Any = attention_dropout snake_case : Dict = layer_norm_eps snake_case : List[str] = hidden_act @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , **UpperCamelCase__ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) snake_case ,snake_case : str = cls.get_config_dict(UpperCamelCase__ , **UpperCamelCase__ ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": snake_case : Optional[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : str = '''altclip''' __UpperCAmelCase : Optional[Any] = True def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=2.6592 , **UpperCamelCase__ ) -> Any: '''simple docstring''' snake_case : List[str] = kwargs.pop("text_config_dict" , UpperCamelCase__ ) snake_case : Union[str, Any] = kwargs.pop("vision_config_dict" , UpperCamelCase__ ) super().__init__(**UpperCamelCase__ ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case : List[str] = {} # This is the complete result when using `text_config_dict`. snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case : Optional[Any] = ( F'`{key}` is found in both `text_config_dict` and `text_config` but with different values. ' F'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Any = ( F'`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The ' F'value `text_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: snake_case : Union[str, Any] = {} # This is the complete result when using `vision_config_dict`. snake_case : int = AltCLIPVisionConfig(**UpperCamelCase__ ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case : Optional[int] = { str(UpperCamelCase__ ): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case : int = ( F'`{key}` is found in both `vision_config_dict` and `vision_config` but with different ' F'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: snake_case : Optional[Any] = ( F'`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. ' F'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(UpperCamelCase__ ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: snake_case : Optional[int] = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: snake_case : Dict = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) snake_case : Dict = AltCLIPTextConfig(**UpperCamelCase__ ) snake_case : Tuple = AltCLIPVisionConfig(**UpperCamelCase__ ) snake_case : int = projection_dim snake_case : List[str] = logit_scale_init_value snake_case : int = 1.0 @classmethod def lowerCamelCase ( cls , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Tuple = copy.deepcopy(self.__dict__ ) snake_case : Optional[int] = self.text_config.to_dict() snake_case : str = self.vision_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
112
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase ={"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = ["input_features"] def __init__( self , A=80 , A=1_60_00 , A=1_60 , A=30 , A=4_00 , A=0.0 , A=False , **A , ) -> Dict: '''simple docstring''' super().__init__( feature_size=A , sampling_rate=A , padding_value=A , return_attention_mask=A , **A , ) lowerCamelCase = n_fft lowerCamelCase = hop_length lowerCamelCase = chunk_length lowerCamelCase = chunk_length * sampling_rate lowerCamelCase = self.n_samples // hop_length lowerCamelCase = sampling_rate lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=A , norm="""slaney""" , mel_scale="""slaney""" , ) def __A ( self , A ) -> np.ndarray: '''simple docstring''' lowerCamelCase = spectrogram( A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = np.maximum(A , log_spec.max() - 8.0 ) lowerCamelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( A , A , A = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: lowerCamelCase = np.array(A , np.intaa ) lowerCamelCase = [] for vector, length in zip(A , attention_mask.sum(-1 ) ): lowerCamelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase = padding_value normed_input_values.append(A ) else: lowerCamelCase = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , A , A = True , A = None , A = None , A = None , A = "max_length" , A = None , A = None , A = None , **A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] lowerCamelCase = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCamelCase = self.pad( A , padding=A , max_length=max_length if max_length else self.n_samples , truncation=A , pad_to_multiple_of=A , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCamelCase = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCamelCase = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCamelCase = [self._np_extract_fbank_features(A ) for waveform in input_features[0]] if isinstance(input_features[0] , A ): lowerCamelCase = [np.asarray(A , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase = padded_inputs.convert_to_tensors(A ) return padded_inputs def __A ( self ) -> Dict[str, Any]: '''simple docstring''' lowerCamelCase = copy.deepcopy(self.__dict__ ) lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
252
0
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments __UpperCamelCase : List[Any] = logging.getLogger(__name__) @dataclass class a ( a__ ): snake_case__ = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) snake_case__ = field(default=a__ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) snake_case__ = field(default=a__ , metadata={'''help''': '''whether to use adafactor'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) snake_case__ = field(default=a__ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) snake_case__ = field( default=a__ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) snake_case__ = field( default='''linear''' , metadata={'''help''': F"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
309
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[int] , _UpperCAmelCase : str ): lowerCAmelCase = int(_UpperCAmelCase ) # Initialize Result lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCAmelCase ): # Find denominations while int(_UpperCAmelCase ) >= int(_UpperCAmelCase ): total_value -= int(_UpperCAmelCase ) answer.append(_UpperCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __UpperCamelCase : Any = [] __UpperCamelCase : List[Any] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __UpperCamelCase : Any = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) __UpperCamelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __UpperCamelCase : List[str] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] __UpperCamelCase : Any = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') __UpperCamelCase : List[str] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
309
1
"""simple docstring""" from __future__ import annotations from random import random class a__ : def __init__( self : Tuple, lowerCAmelCase : int | None = None ) -> List[Any]: lowercase : Tuple = value lowercase : Optional[int] = random() lowercase : Node | None = None lowercase : Node | None = None def __repr__( self : Tuple ) -> str: from pprint import pformat if self.left is None and self.right is None: return f'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {f'''{self.value}: {self.prior:.5}''': (self.left, self.right)}, indent=1 ) def __str__( self : Optional[Any] ) -> str: lowercase : List[str] = str(self.value ) + ' ' lowercase : List[Any] = str(self.left or '' ) lowercase : Any = str(self.right or '' ) return value + left + right def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowercase , lowercase : Tuple = split(root.left , _UpperCAmelCase ) return left, root else: lowercase , lowercase : Tuple = split(root.right , _UpperCAmelCase ) return root, right def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowercase : int = merge(left.right , _UpperCAmelCase ) return left else: lowercase : Dict = merge(_UpperCAmelCase , right.left ) return right def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: '''simple docstring''' lowercase : Optional[int] = Node(_UpperCAmelCase ) lowercase , lowercase : List[Any] = split(_UpperCAmelCase , _UpperCAmelCase ) return merge(merge(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: '''simple docstring''' lowercase , lowercase : Union[str, Any] = split(_UpperCAmelCase , value - 1 ) lowercase , lowercase : Optional[int] = split(_UpperCAmelCase , _UpperCAmelCase ) return merge(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( _UpperCAmelCase ) -> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=',' ) inorder(root.right ) def lowercase__ ( _UpperCAmelCase , _UpperCAmelCase ) -> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": lowercase : Any = insert(_UpperCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": lowercase : Union[str, Any] = erase(_UpperCAmelCase , int(arg[1:] ) ) else: print('Unknown command' ) return root def lowercase__ ( ) -> None: '''simple docstring''' lowercase : List[Any] = None print( 'enter numbers to create a tree, + value to add value into treap, ' '- value to erase all nodes with value. \'q\' to quit. ' ) lowercase : int = input() while args != "q": lowercase : Any = interact_treap(_UpperCAmelCase , _UpperCAmelCase ) print(_UpperCAmelCase ) lowercase : int = input() print('good by!' ) if __name__ == "__main__": import doctest doctest.testmod() main()
255
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a__ : def __init__( self : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Optional[Any]=13, lowerCAmelCase : str=7, lowerCAmelCase : Union[str, Any]=True, lowerCAmelCase : Optional[int]=True, lowerCAmelCase : Dict=True, lowerCAmelCase : List[str]=True, lowerCAmelCase : List[Any]=99, lowerCAmelCase : Tuple=32, lowerCAmelCase : int=2, lowerCAmelCase : Dict=4, lowerCAmelCase : List[str]=37, lowerCAmelCase : Any="gelu", lowerCAmelCase : Optional[int]=0.1, lowerCAmelCase : Tuple=0.1, lowerCAmelCase : Optional[int]=512, lowerCAmelCase : Dict=16, lowerCAmelCase : Tuple=2, lowerCAmelCase : Union[str, Any]=0.02, lowerCAmelCase : str=3, lowerCAmelCase : Any=4, lowerCAmelCase : List[str]=None, lowerCAmelCase : Union[str, Any]=1000, ) -> Dict: lowercase : Optional[Any] = parent lowercase : Tuple = batch_size lowercase : List[Any] = seq_length lowercase : List[str] = is_training lowercase : Optional[Any] = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : List[Any] = use_labels lowercase : Optional[Any] = vocab_size lowercase : int = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : str = intermediate_size lowercase : Union[str, Any] = hidden_act lowercase : str = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = type_vocab_size lowercase : Optional[int] = type_sequence_label_size lowercase : str = initializer_range lowercase : Any = num_labels lowercase : List[Any] = num_choices lowercase : Optional[int] = scope lowercase : str = range_bbox def lowercase ( self : str ) -> Optional[int]: lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase : str = bbox[i, j, 3] lowercase : Tuple = bbox[i, j, 1] lowercase : Union[str, Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase : Optional[int] = bbox[i, j, 2] lowercase : List[str] = bbox[i, j, 0] lowercase : Union[str, Any] = t lowercase : Any = tf.convert_to_tensor(lowerCAmelCase ) lowercase : Optional[Any] = None if self.use_input_mask: lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None if self.use_token_type_ids: lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase : Dict = None lowercase : List[str] = None lowercase : List[Any] = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) lowercase : Tuple = LayoutLMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : int, lowerCAmelCase : Tuple, lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[Any], lowerCAmelCase : Tuple, lowerCAmelCase : List[Any] ) -> Dict: lowercase : Dict = TFLayoutLMModel(config=lowerCAmelCase ) lowercase : str = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Union[str, Any] = model(lowerCAmelCase, lowerCAmelCase, token_type_ids=lowerCAmelCase ) lowercase : Any = model(lowerCAmelCase, lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def lowercase ( self : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Optional[int], lowerCAmelCase : Tuple, lowerCAmelCase : List[str] ) -> Any: lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=lowerCAmelCase ) lowercase : List[Any] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Any, lowerCAmelCase : Tuple, lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Dict, lowerCAmelCase : List[str], lowerCAmelCase : Tuple, lowerCAmelCase : List[str], lowerCAmelCase : int ) -> List[str]: lowercase : Optional[Any] = self.num_labels lowercase : Optional[int] = TFLayoutLMForSequenceClassification(config=lowerCAmelCase ) lowercase : Tuple = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase ( self : Tuple, lowerCAmelCase : Union[str, Any], lowerCAmelCase : List[str], lowerCAmelCase : Optional[int], lowerCAmelCase : List[str], lowerCAmelCase : List[str], lowerCAmelCase : int, lowerCAmelCase : Optional[Any], lowerCAmelCase : Dict ) -> Dict: lowercase : Optional[int] = self.num_labels lowercase : int = TFLayoutLMForTokenClassification(config=lowerCAmelCase ) lowercase : List[str] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : Any, lowerCAmelCase : Optional[Any], lowerCAmelCase : List[str], lowerCAmelCase : List[Any], lowerCAmelCase : List[Any], lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : Union[str, Any], lowerCAmelCase : Tuple ) -> Optional[Any]: lowercase : List[str] = TFLayoutLMForQuestionAnswering(config=lowerCAmelCase ) lowercase : Optional[int] = model(lowerCAmelCase, lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase ( self : Tuple ) -> Union[str, Any]: lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a__ ( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, unittest.TestCase ): _lowerCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _lowerCamelCase = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = True _lowerCamelCase = 10 def lowercase ( self : Tuple ) -> int: lowercase : int = TFLayoutLMModelTester(self ) lowercase : int = ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() def lowercase ( self : str ) -> List[Any]: lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase ( self : List[Any] ) -> Tuple: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase ( self : int ) -> List[str]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase ( self : Dict ) -> int: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) def lowercase ( self : List[str] ) -> Any: lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) @slow def lowercase ( self : Dict ) -> List[Any]: for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFLayoutLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def lowercase ( self : List[Any] ) -> List[Any]: pass def lowercase__ ( ) -> str: '''simple docstring''' lowercase : Any = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 lowercase : List[Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowercase : List[str] = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 lowercase : Dict = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowercase : List[Any] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a__ ( unittest.TestCase ): @slow def lowercase ( self : Optional[int] ) -> str: lowercase : Any = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the sequence output on [0, :3, :3] lowercase : Dict = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]], ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], lowerCAmelCase, atol=1e-3 ) ) # test the pooled output on [1, :3] lowercase : Any = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3], lowerCAmelCase, atol=1e-3 ) ) @slow def lowercase ( self : List[Any] ) -> Any: # initialize model with randomly initialized sequence classification head lowercase : List[str] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=2 ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : Optional[int] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=tf.convert_to_tensor([1, 1] ), ) # test whether we get a loss as a scalar lowercase : List[str] = outputs.loss lowercase : List[Any] = (2,) self.assertEqual(loss.shape, lowerCAmelCase ) # test the shape of the logits lowercase : str = outputs.logits lowercase : List[str] = (2, 2) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : List[Any] ) -> str: # initialize model with randomly initialized token classification head lowercase : Tuple = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased', num_labels=13 ) lowercase , lowercase , lowercase , lowercase , lowercase : str = prepare_layoutlm_batch_inputs() # forward pass lowercase : List[str] = model( input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase, labels=lowerCAmelCase ) # test the shape of the logits lowercase : Union[str, Any] = outputs.logits lowercase : Union[str, Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape, lowerCAmelCase ) @slow def lowercase ( self : Union[str, Any] ) -> int: # initialize model with randomly initialized token classification head lowercase : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowercase , lowercase , lowercase , lowercase , lowercase : Any = prepare_layoutlm_batch_inputs() # forward pass lowercase : int = model(input_ids=lowerCAmelCase, bbox=lowerCAmelCase, attention_mask=lowerCAmelCase, token_type_ids=lowerCAmelCase ) # test the shape of the logits lowercase : str = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape, lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape, lowerCAmelCase )
255
1
'''simple docstring''' def _a ( _lowerCamelCase = 3 , _lowerCamelCase = 7 , _lowerCamelCase = 100_0000 ) -> int: """simple docstring""" __snake_case : Dict = 0 __snake_case : Tuple = 1 for current_denominator in range(1 , limit + 1 ): __snake_case : List[str] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __snake_case : int = current_numerator __snake_case : int = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
363
'''simple docstring''' __UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def _a ( ) -> None: """simple docstring""" __snake_case : Dict = input("""Enter message: """ ) __snake_case : Optional[int] = input("""Enter key [alphanumeric]: """ ) __snake_case : Tuple = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __snake_case : Any = """encrypt""" __snake_case : Optional[Any] = encrypt_message(_lowerCamelCase , _lowerCamelCase ) elif mode.lower().startswith("""d""" ): __snake_case : Optional[int] = """decrypt""" __snake_case : Any = decrypt_message(_lowerCamelCase , _lowerCamelCase ) print(F'''\n{mode.title()}ed message:''' ) print(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """encrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" return translate_message(_lowerCamelCase , _lowerCamelCase , """decrypt""" ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: """simple docstring""" __snake_case : str = [] __snake_case : Dict = 0 __snake_case : Optional[int] = key.upper() for symbol in message: __snake_case : Any = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_lowerCamelCase ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_lowerCamelCase ): __snake_case : Tuple = 0 else: translated.append(_lowerCamelCase ) return "".join(_lowerCamelCase ) if __name__ == "__main__": main()
13
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def A_ ( _lowercase ): '''simple docstring''' snake_case_ :Optional[int] = torch.load(_lowercase, map_location="""cpu""" ) if "model" in sd.keys(): snake_case_ :str = torch.load(_lowercase, map_location="""cpu""" )["""model"""] # pop unnecessary weights snake_case_ :Tuple = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(_lowercase ) snake_case_ :str = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: snake_case_ :List[Any] = sd.pop(_lowercase ) snake_case_ :Tuple = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: snake_case_ :Any = sd[key] # We split QKV in separate Q,K,V snake_case_ :Dict = key.replace(""".qkv_proj.""", """.q_proj.""" ) snake_case_ :Optional[Any] = key.replace(""".qkv_proj.""", """.k_proj.""" ) snake_case_ :Optional[Any] = key.replace(""".qkv_proj.""", """.v_proj.""" ) snake_case_ :Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 snake_case_, snake_case_, snake_case_ :Any = torch.split(_lowercase, depth // 3, dim=0 ) snake_case_ :List[Any] = q snake_case_ :Union[str, Any] = k snake_case_ :Optional[int] = v del sd[key] return sd @torch.no_grad() def A_ ( _lowercase, _lowercase, _lowercase=None ): '''simple docstring''' snake_case_ :Optional[int] = load_checkpoint(_lowercase ) if config is not None: snake_case_ :List[str] = OPTConfig.from_pretrained(_lowercase ) else: snake_case_ :List[Any] = OPTConfig() snake_case_ :str = OPTModel(_lowercase ).half().eval() model.load_state_dict(_lowercase ) # Check results Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") __a = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
66
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes UpperCamelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def a__ ( ) -> Dict: if os.name == "nt": UpperCAmelCase : List[str] = CursorInfo() UpperCAmelCase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Dict = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a__ ( ) -> Optional[int]: if os.name == "nt": UpperCAmelCase : int = CursorInfo() UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) UpperCAmelCase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase , ctypes.byref(UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a__ ( ) -> Optional[Any]: try: hide_cursor() yield finally: show_cursor()
336
0
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : torch.FloatTensor class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self ,A__ = 1_6 ,A__ = 8_8 ,A__ = None ,A__ = None ,A__ = 1 ,A__ = 0.0 ,A__ = 3_2 ,A__ = None ,A__ = False ,A__ = None ,A__ = "geglu" ,A__ = True ,A__ = True ,): super().__init__() lowercase = num_attention_heads lowercase = attention_head_dim lowercase = num_attention_heads * attention_head_dim lowercase = in_channels lowercase = torch.nn.GroupNorm(num_groups=A__ ,num_channels=A__ ,eps=1E-6 ,affine=A__) lowercase = nn.Linear(A__ ,A__) # 3. Define transformers blocks lowercase = nn.ModuleList( [ BasicTransformerBlock( A__ ,A__ ,A__ ,dropout=A__ ,cross_attention_dim=A__ ,activation_fn=A__ ,attention_bias=A__ ,double_self_attention=A__ ,norm_elementwise_affine=A__ ,) for d in range(A__) ]) lowercase = nn.Linear(A__ ,A__) def A__ ( self ,A__ ,A__=None ,A__=None ,A__=None ,A__=1 ,A__=None ,A__ = True ,): lowercase , lowercase , lowercase , lowercase = hidden_states.shape lowercase = batch_frames // num_frames lowercase = hidden_states lowercase = hidden_states[None, :].reshape(A__ ,A__ ,A__ ,A__ ,A__) lowercase = hidden_states.permute(0 ,2 ,1 ,3 ,4) lowercase = self.norm(A__) lowercase = hidden_states.permute(0 ,3 ,4 ,2 ,1).reshape(batch_size * height * width ,A__ ,A__) lowercase = self.proj_in(A__) # 2. Blocks for block in self.transformer_blocks: lowercase = block( A__ ,encoder_hidden_states=A__ ,timestep=A__ ,cross_attention_kwargs=A__ ,class_labels=A__ ,) # 3. Output lowercase = self.proj_out(A__) lowercase = ( hidden_states[None, None, :] .reshape(A__ ,A__ ,A__ ,A__ ,A__) .permute(0 ,3 ,4 ,1 ,2) .contiguous() ) lowercase = hidden_states.reshape(A__ ,A__ ,A__ ,A__) lowercase = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=A__)
97
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self ,A__ ,A__=7 ,A__=3 ,A__=3_0 ,A__=4_0_0 ,A__=True ,A__=None ,A__=True ,A__=[0.5, 0.5, 0.5] ,A__=[0.5, 0.5, 0.5] ,A__=True ,A__=1 / 2_5_5 ,A__=True ,): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = do_normalize lowercase = image_mean lowercase = image_std lowercase = do_rescale lowercase = rescale_factor lowercase = do_pad def A__ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self ,A__ ,A__=False): if not batched: lowercase = image_inputs[0] if isinstance(A__ ,Image.Image): lowercase , lowercase = image.size else: lowercase , lowercase = image.shape[1], image.shape[2] if w < h: lowercase = int(self.size['''shortest_edge'''] * h / w) lowercase = self.size['''shortest_edge'''] elif w > h: lowercase = self.size['''shortest_edge'''] lowercase = int(self.size['''shortest_edge'''] * w / h) else: lowercase = self.size['''shortest_edge'''] lowercase = self.size['''shortest_edge'''] else: lowercase = [] for image in image_inputs: lowercase , lowercase = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) lowercase = max(A__ ,key=lambda A__: item[0])[0] lowercase = max(A__ ,key=lambda A__: item[1])[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Dict =ConditionalDetrImageProcessor if is_vision_available() else None def A__ ( self): lowercase = ConditionalDetrImageProcessingTester(self) @property def A__ ( self): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self): lowercase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(A__ ,'''image_mean''')) self.assertTrue(hasattr(A__ ,'''image_std''')) self.assertTrue(hasattr(A__ ,'''do_normalize''')) self.assertTrue(hasattr(A__ ,'''do_resize''')) self.assertTrue(hasattr(A__ ,'''size''')) def A__ ( self): lowercase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3}) self.assertEqual(image_processor.do_pad ,A__) lowercase = self.image_processing_class.from_dict( self.image_processor_dict ,size=4_2 ,max_size=8_4 ,pad_and_return_pixel_mask=A__) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2, '''longest_edge''': 8_4}) self.assertEqual(image_processor.do_pad ,A__) def A__ ( self): pass def A__ ( self): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A__) for image in image_inputs: self.assertIsInstance(A__ ,Image.Image) # Test not batched input lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''').pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(A__) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase , lowercase = self.image_processor_tester.get_expected_values(A__ ,batched=A__) lowercase = image_processing(A__ ,return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def A__ ( self): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A__ ,numpify=A__) for image in image_inputs: self.assertIsInstance(A__ ,np.ndarray) # Test not batched input lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''').pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(A__) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase = image_processing(A__ ,return_tensors='''pt''').pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(A__ ,batched=A__) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def A__ ( self): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=A__ ,torchify=A__) for image in image_inputs: self.assertIsInstance(A__ ,torch.Tensor) # Test not batched input lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''').pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(A__) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched lowercase = image_processing(A__ ,return_tensors='''pt''').pixel_values lowercase , lowercase = self.image_processor_tester.get_expected_values(A__ ,batched=A__) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def A__ ( self): # prepare image and target lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''') as f: lowercase = json.loads(f.read()) lowercase = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them lowercase = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''') lowercase = image_processing(images=A__ ,annotations=A__ ,return_tensors='''pt''') # verify pixel values lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding['''pixel_values'''].shape ,A__) lowercase = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,A__ ,atol=1E-4)) # verify area lowercase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,A__)) # verify boxes lowercase = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,A__) lowercase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,A__ ,atol=1E-3)) # verify image_id lowercase = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,A__)) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,A__)) # verify class_labels lowercase = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,A__)) # verify orig_size lowercase = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,A__)) # verify size lowercase = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,A__)) @slow def A__ ( self): # prepare image, target and masks_path lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''') as f: lowercase = json.loads(f.read()) lowercase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} lowercase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them lowercase = ConditionalDetrImageProcessor(format='''coco_panoptic''') lowercase = image_processing(images=A__ ,annotations=A__ ,masks_path=A__ ,return_tensors='''pt''') # verify pixel values lowercase = torch.Size([1, 3, 8_0_0, 1_0_6_6]) self.assertEqual(encoding['''pixel_values'''].shape ,A__) lowercase = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,A__ ,atol=1E-4)) # verify area lowercase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,A__)) # verify boxes lowercase = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,A__) lowercase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,A__ ,atol=1E-3)) # verify image_id lowercase = torch.tensor([3_9_7_6_9]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,A__)) # verify is_crowd lowercase = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,A__)) # verify class_labels lowercase = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,A__)) # verify masks lowercase = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,A__) # verify orig_size lowercase = torch.tensor([4_8_0, 6_4_0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,A__)) # verify size lowercase = torch.tensor([8_0_0, 1_0_6_6]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,A__))
97
1
SCREAMING_SNAKE_CASE : dict[tuple[int, int, int], int] = {} def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on _lowercase : Dict = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one _lowercase : str = _calculate(days - 1 , lowerCamelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 _lowercase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter _lowercase : Tuple = _calculate(days - 1 , lowerCamelCase_ , 0 ) _lowercase : Tuple = state_late + state_absent + state_ontime _lowercase : str = prizestrings return prizestrings def UpperCamelCase_( lowerCamelCase_ = 30 ) -> int: return _calculate(lowerCamelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
21
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if isinstance(lowerCamelCase_ , collections.abc.Iterable ): return x return (x, x) @require_flax class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase ( self) -> str: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : str = np.abs((a - b)).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''') def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Any = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Any = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : str = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) self.assertEqual(output['text_embeds'].shape, (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['image_embeds'].shape, (pixel_values.shape[0], model.config.projection_dim)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase , _lowercase : Tuple = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : List[str] = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : Tuple = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase) _lowercase : Any = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : Tuple = model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase) _lowercase : str = after_output[0] _lowercase : Optional[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-3) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase , _lowercase : Any = self.get_vision_text_model(lowerCamelCase, lowerCamelCase) _lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model} _lowercase : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase) _lowercase : Tuple = model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase) _lowercase : int = output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase), vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : Optional[Any] = to_atuple(vision_model.config.image_size) _lowercase : Any = to_atuple(vision_model.config.patch_size) _lowercase : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase : Dict = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len)) _lowercase : List[str] = output.text_model_output.attentions self.assertEqual(len(lowerCamelCase), text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" pt_model.to(lowerCamelCase) pt_model.eval() # prepare inputs _lowercase : Any = inputs_dict _lowercase : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase : Tuple = pt_model(**lowerCamelCase).to_tuple() _lowercase : Any = fx_model(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase) _lowercase : List[Any] = fx_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4]): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase) _lowercase : List[Any] = VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase) pt_model_loaded.to(lowerCamelCase) pt_model_loaded.eval() with torch.no_grad(): _lowercase : Optional[Any] = pt_model_loaded(**lowerCamelCase).to_tuple() self.assertEqual(len(lowerCamelCase), len(lowerCamelCase), 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4]): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Optional[Any] = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : str = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase) _lowercase : List[Any] = fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : str = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase) _lowercase : Tuple = VisionTextDualEncoderModel(lowerCamelCase) _lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(lowerCamelCase) _lowercase : List[str] = load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase) def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase) @is_pt_flax_cross_test def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[Any] = self.prepare_config_and_inputs() _lowercase : List[str] = config_inputs_dict.pop('vision_config') _lowercase : str = config_inputs_dict.pop('text_config') _lowercase : int = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowercase : Optional[int] = model_a(**lowerCamelCase) _lowercase : Tuple = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase) _lowercase : int = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase) _lowercase : List[Any] = model_a(**lowerCamelCase) _lowercase : Tuple = after_outputs[0] _lowercase : Dict = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCamelCase, 1E-5) @require_flax class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : List[Any] = 13 _lowercase : str = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Tuple = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Union[str, Any] = random_attention_mask([batch_size, 4]) _lowercase : int = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : List[Any] = FlaxViTModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = FlaxViTModelTester(self) _lowercase : Any = FlaxBertModelTester(self) _lowercase : Dict = vit_model_tester.prepare_config_and_inputs() _lowercase : Any = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : List[str] = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _lowerCamelCase( _a, unittest.TestCase ): def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip', 'hf-internal-testing/tiny-bert', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) _lowercase : Tuple = 13 _lowercase : Any = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) _lowercase : Union[str, Any] = ids_tensor([batch_size, 4], model.config.text_config.vocab_size) _lowercase : Any = random_attention_mask([batch_size, 4]) _lowercase : Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Any = FlaxCLIPVisionModel(lowerCamelCase) _lowercase : Optional[Any] = FlaxBertModel(lowerCamelCase) return vision_model, text_model def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = FlaxCLIPVisionModelTester(self) _lowercase : Union[str, Any] = FlaxBertModelTester(self) _lowercase : Tuple = clip_model_tester.prepare_config_and_inputs() _lowercase : str = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase : Dict = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian', logit_scale_init_value=1.0) _lowercase : List[str] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian') _lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') _lowercase : List[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='np') _lowercase : List[Any] = model(**lowerCamelCase) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) _lowercase : Optional[int] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]]) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3))
21
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: A_ : List[str] = None A_ : Union[str, Any] = logging.get_logger(__name__) A_ : int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A_ : List[str] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } A_ : List[Any] = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } A_ : Any = '▁' class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Tuple = VOCAB_FILES_NAMES UpperCAmelCase__: int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: int = BigBirdTokenizer UpperCAmelCase__: List[Any] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__: List[int] = [] def __init__( self , A__=None , A__=None , A__="<unk>" , A__="<s>" , A__="</s>" , A__="<pad>" , A__="[SEP]" , A__="[MASK]" , A__="[CLS]" , **A__ , ): A__ : List[str] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else bos_token A__ : Dict = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else eos_token A__ : Union[str, Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else unk_token A__ : Union[str, Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else pad_token A__ : Optional[Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else cls_token A__ : Union[str, Any] = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A__ : str = AddedToken(A__ , lstrip=A__ , rstrip=A__ ) if isinstance(A__ , A__ ) else mask_token super().__init__( A__ , tokenizer_file=A__ , bos_token=A__ , eos_token=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , **A__ , ) A__ : Optional[int] = vocab_file A__ : int = False if not self.vocab_file else True def __A ( self , A__ , A__ = None ): A__ : Optional[int] = [self.sep_token_id] A__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , A__ , A__ = None , A__ = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(A__ )) + [1] return [1] + ([0] * len(A__ )) + [1] + ([0] * len(A__ )) + [1] def __A ( self , A__ , A__ = None ): A__ : Tuple = [self.sep_token_id] A__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A__ , A__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A__ : List[str] = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file , A__ ) return (out_vocab_file,)
364
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _a : '''simple docstring''' def __init__( self , A__ , A__=3 , A__=7 , A__=True , A__=True , A__=False , A__=True , A__=99 , A__=32 , A__=5 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=512 , A__=16 , A__=2 , A__=0.0_2 , A__=3 , A__=4 , A__=None , ): A__ : List[Any] = parent A__ : List[str] = batch_size A__ : Optional[int] = seq_length A__ : Optional[int] = is_training A__ : Any = use_input_mask A__ : Tuple = use_token_type_ids A__ : str = use_labels A__ : Tuple = vocab_size A__ : Any = hidden_size A__ : List[str] = num_hidden_layers A__ : Optional[int] = num_attention_heads A__ : Optional[Any] = intermediate_size A__ : Optional[Any] = hidden_act A__ : Tuple = hidden_dropout_prob A__ : Union[str, Any] = attention_probs_dropout_prob A__ : List[str] = max_position_embeddings A__ : Union[str, Any] = type_vocab_size A__ : str = type_sequence_label_size A__ : Tuple = initializer_range A__ : Tuple = num_labels A__ : Dict = num_choices A__ : List[str] = scope def __A ( self ): A__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ : Any = None if self.use_input_mask: A__ : int = random_attention_mask([self.batch_size, self.seq_length] ) A__ : str = None A__ : Union[str, Any] = None A__ : List[str] = None A__ : Optional[Any] = None if self.use_labels: A__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A__ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=A__ , ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ): A__ : List[str] = FalconModel(config=A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , attention_mask=A__ ) A__ : Union[str, Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Union[str, Any] = True A__ : Union[str, Any] = FalconModel(A__ ) model.to(A__ ) model.eval() A__ : Tuple = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , ) A__ : Union[str, Any] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , ) A__ : List[str] = model(A__ , attention_mask=A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Any = FalconForCausalLM(config=A__ ) model.to(A__ ) model.eval() A__ : Tuple = model(A__ , attention_mask=A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): A__ : Optional[Any] = True A__ : Union[str, Any] = True A__ : int = FalconForCausalLM(config=A__ ) model.to(A__ ) model.eval() # first forward pass A__ : List[Any] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , use_cache=A__ , ) A__ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) A__ : Optional[int] = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , output_hidden_states=A__ , )["""hidden_states"""][0] A__ : Any = model( A__ , attention_mask=A__ , encoder_hidden_states=A__ , encoder_attention_mask=A__ , past_key_values=A__ , output_hidden_states=A__ , )["""hidden_states"""][0] # select random slice A__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() A__ : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A__ , A__ , atol=1e-3 ) ) def __A ( self ): A__ : List[str] = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : Tuple = config_and_inputs A__ : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a (__magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__: Tuple = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase__: Optional[int] = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__: str = False UpperCAmelCase__: int = False def __A ( self ): A__ : List[Any] = FalconModelTester(self ) A__ : Union[str, Any] = ConfigTester(self , config_class=A__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): A__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def __A ( self ): A__ , *A__ : List[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: A__ : Tuple = alibi self.model_tester.create_and_check_model(A__ , *A__ ) def __A ( self ): A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[int] = 3 A__ : int = input_dict["""input_ids"""] A__ : int = input_ids.ne(1 ).to(A__ ) A__ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Optional[int] = FalconForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : int = model(A__ , attention_mask=A__ , labels=A__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): A__ , A__ : str = self.model_tester.prepare_config_and_inputs_for_common() A__ : Dict = 3 A__ : Tuple = """single_label_classification""" A__ : List[Any] = input_dict["""input_ids"""] A__ : Dict = input_ids.ne(1 ).to(A__ ) A__ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) A__ : Any = FalconForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : Any = model(A__ , attention_mask=A__ , labels=A__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): A__ , A__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() A__ : List[str] = input_dict["""input_ids"""] A__ : List[str] = FalconForCausalLM(A__ ) model.to(A__ ) model.eval() A__ : Any = model(A__ , use_cache=A__ ) A__ : Any = input_ids.shape[0] A__ : Union[str, Any] = model._convert_to_rw_cache(result.past_key_values ) A__ : int = model._convert_cache_to_standard_format(A__ , A__ ) for layer in range(len(A__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __A ( self ): A__ , A__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() A__ : Optional[Any] = 3 A__ : List[Any] = """multi_label_classification""" A__ : Tuple = input_dict["""input_ids"""] A__ : List[Any] = input_ids.ne(1 ).to(A__ ) A__ : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) A__ : Optional[int] = FalconForSequenceClassification(A__ ) model.to(A__ ) model.eval() A__ : List[Any] = model(A__ , attention_mask=A__ , labels=A__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ): # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: A__ , A__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(A__ , """use_cache""" ): return A__ : Optional[Any] = model_class(A__ ).to(A__ ) if "use_cache" not in inputs: A__ : Optional[int] = True A__ : List[Any] = model(**A__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return A__ : str = ( getattr(A__ , """decoder_layers""" , A__ ) or getattr(A__ , """num_decoder_layers""" , A__ ) or config.num_hidden_layers ) A__ : Dict = getattr(A__ , """num_kv_heads""" , config.num_attention_heads ) A__ : List[str] = getattr(A__ , """d_model""" , config.hidden_size ) A__ : Union[str, Any] = embed_dim // num_attention_heads A__ : str = outputs["""past_key_values"""] self.assertEqual(len(A__ ) , A__ ) A__ , A__ : int = inputs["""input_ids"""].shape for i in range(A__ ): if config.new_decoder_architecture: A__ : Any = config.num_attention_heads elif config.multi_query: A__ : List[Any] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _a (unittest.TestCase ): '''simple docstring''' @slow def __A ( self ): A__ : Dict = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) A__ : List[Any] = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(A__ ) A__ : Optional[int] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A__ ) A__ : Optional[Any] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) A__ : Any = model.generate(**A__ , do_sample=A__ , max_new_tokens=19 ) A__ : Optional[int] = tokenizer.batch_decode(A__ )[0] self.assertEqual(A__ , A__ ) @slow def __A ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: A__ : Dict = AutoTokenizer.from_pretrained(A__ ) A__ : List[str] = FalconForCausalLM.from_pretrained(A__ ) model.eval() model.to(A__ ) A__ : Union[str, Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**A__ , do_sample=A__ , max_new_tokens=4 ) model.generate(**A__ , do_sample=A__ , max_new_tokens=4 ) model.generate(**A__ , num_beams=2 , max_new_tokens=4 ) @slow def __A ( self ): # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: A__ : Dict = AutoTokenizer.from_pretrained(A__ ) A__ : Any = FalconForCausalLM.from_pretrained(A__ ) model.eval() model.to(device=A__ ) A__ : List[str] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(A__ ) # Test results are the same with and without cache A__ : Tuple = model.generate(**A__ , do_sample=A__ , max_new_tokens=20 , use_cache=A__ ) A__ : Optional[Any] = model.generate(**A__ , do_sample=A__ , max_new_tokens=20 , use_cache=A__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
141
0
def _SCREAMING_SNAKE_CASE ( lowercase : list , lowercase : list ): '''simple docstring''' _validate_point(lowercase ) _validate_point(lowercase ) if len(lowercase ) != len(lowercase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(lowercase , lowercase ) ) ) def _SCREAMING_SNAKE_CASE ( lowercase : list[float] ): '''simple docstring''' if point: if isinstance(lowercase , lowercase ): for item in point: if not isinstance(lowercase , (int, float) ): lowerCamelCase_ = ( 'Expected a list of numbers as input, found ' f"""{type(lowercase ).__name__}""" ) raise TypeError(lowercase ) else: lowerCamelCase_ = f"""Expected a list of numbers as input, found {type(lowercase ).__name__}""" raise TypeError(lowercase ) else: raise ValueError('Missing an input' ) def _SCREAMING_SNAKE_CASE ( lowercase : list , lowercase : list ): '''simple docstring''' _validate_point(lowercase ) _validate_point(lowercase ) if len(lowercase ) != len(lowercase ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(lowercase , lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
204
lowerCamelCase : Tuple = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = [False] * len(lowercase ) lowerCamelCase_ = [s] lowerCamelCase_ = True while queue: lowerCamelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase ) lowerCamelCase_ = True lowerCamelCase_ = u return visited[t] def _SCREAMING_SNAKE_CASE ( lowercase : List[str] , lowercase : Tuple , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = [-1] * (len(lowercase )) lowerCamelCase_ = 0 lowerCamelCase_ = [] lowerCamelCase_ = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase , lowercase , lowercase , lowercase ): lowerCamelCase_ = float('Inf' ) lowerCamelCase_ = sink while s != source: # Find the minimum value in select path lowerCamelCase_ = min(lowercase , graph[parent[s]][s] ) lowerCamelCase_ = parent[s] max_flow += path_flow lowerCamelCase_ = sink while v != source: lowerCamelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowerCamelCase_ = parent[v] for i in range(len(lowercase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
204
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def A_ ( A__ ) -> str: a__ : str = filter(lambda A__ : p.requires_grad , model.parameters() ) a__ : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase : int = logging.getLogger(__name__) def A_ ( A__ , A__ ) -> Optional[int]: if metric == "rouge2": a__ : str = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": a__ : Tuple = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": a__ : str = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) a__ : Optional[int] = ModelCheckpoint( dirpath=a__ , filename=a__ , monitor=F'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def A_ ( A__ , A__ ) -> List[Any]: return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=a__ , verbose=a__ , ) class A__ ( pl.Callback ): """simple docstring""" def __lowercase ( self , lowercase , lowercase) -> int: '''simple docstring''' a__ : List[Any] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(lowercase_) @rank_zero_only def __lowercase ( self , lowercase , lowercase , lowercase , lowercase=True) -> None: '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****') a__ : Optional[Any] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results a__ : Optional[Any] = Path(pl_module.hparams.output_dir) if type_path == "test": a__ : Optional[Any] = od / 'test_results.txt' a__ : List[str] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. a__ : List[str] = od / F'{type_path}_results/{trainer.global_step:05d}.txt' a__ : Optional[int] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=lowercase_) generations_file.parent.mkdir(exist_ok=lowercase_) with open(lowercase_ , 'a+') as writer: for key in sorted(lowercase_): if key in ["log", "progress_bar", "preds"]: continue a__ : str = metrics[key] if isinstance(lowercase_ , torch.Tensor): a__ : List[Any] = val.item() a__ : Optional[int] = F'{key}: {val:.6f}\n' writer.write(lowercase_) if not save_generations: return if "preds" in metrics: a__ : Dict = '\n'.join(metrics['preds']) generations_file.open('w+').write(lowercase_) @rank_zero_only def __lowercase ( self , lowercase , lowercase) -> Dict: '''simple docstring''' try: a__ : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: a__ : Any = pl_module.model.num_parameters() a__ : List[str] = count_trainable_parameters(lowercase_) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6}) @rank_zero_only def __lowercase ( self , lowercase , lowercase) -> List[str]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(lowercase_ , lowercase_ , 'test') @rank_zero_only def __lowercase ( self , lowercase , lowercase) -> Tuple: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
369
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Union[str, Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __A : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __A : bool = field(default=__UpperCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) __A : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def A_ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ : int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) a__ : Optional[Any] = import_module('tasks' ) try: a__ : List[Any] = getattr(A__ , model_args.task_type ) a__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task a__ : Tuple = token_classification_task.get_labels(data_args.labels ) a__ : Dict[int, str] = dict(enumerate(A__ ) ) a__ : Union[str, Any] = len(A__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , idalabel=A__ , labelaid={label: i for i, label in enumerate(A__ )} , cache_dir=model_args.cache_dir , ) a__ : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) a__ : List[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) # Get datasets a__ : int = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) a__ : Optional[int] = ( TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A__ , A__ ) -> Tuple[List[int], List[int]]: a__ : Union[str, Any] = np.argmax(A__ , axis=2 ) a__ , a__ : Dict = preds.shape a__ : Union[str, Any] = [[] for _ in range(A__ )] a__ : Optional[int] = [[] for _ in range(A__ )] for i in range(A__ ): for j in range(A__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A__ ) -> Dict: a__ , a__ : Union[str, Any] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A__ , A__ ), "precision": precision_score(A__ , A__ ), "recall": recall_score(A__ , A__ ), "f1": fa_score(A__ , A__ ), } # Data collator a__ : Union[str, Any] = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer a__ : List[str] = Trainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , data_collator=A__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Any = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ : Optional[Any] = trainer.evaluate() a__ : List[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) results.update(A__ ) # Predict if training_args.do_predict: a__ : Optional[Any] = TokenClassificationDataset( token_classification_task=A__ , data_dir=data_args.data_dir , tokenizer=A__ , labels=A__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) a__ , a__ , a__ : Any = trainer.predict(A__ ) a__ , a__ : Union[str, Any] = align_predictions(A__ , A__ ) a__ : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A__ , A__ ) writer.write('%s = %s\n' % (key, value) ) # Save predictions a__ : Tuple = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A__ , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A__ , A__ , A__ ) return results def A_ ( A__ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
225
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def UpperCAmelCase ( lowercase , lowercase , lowercase ): """simple docstring""" if not arr: return None, None, 0 if low == high: return low, high, arr[low] __lowercase = (low + high) // 2 __lowercase = max_subarray(A__ , A__ , A__ ) __lowercase = max_subarray(A__ , mid + 1 , A__ ) __lowercase = max_cross_sum(A__ , A__ , A__ , A__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def UpperCAmelCase ( lowercase , lowercase , lowercase , lowercase ): """simple docstring""" __lowercase = float('''-inf''' ), -1 __lowercase = float('''-inf''' ), -1 __lowercase = 0 for i in range(A__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: __lowercase = summ __lowercase = i __lowercase = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: __lowercase = summ __lowercase = i return max_left, max_right, (left_sum + right_sum) def UpperCAmelCase ( lowercase ): """simple docstring""" __lowercase = [randint(1 , A__ ) for _ in range(A__ )] __lowercase = time.time() max_subarray(A__ , 0 , input_size - 1 ) __lowercase = time.time() return end - start def UpperCAmelCase ( ): """simple docstring""" __lowercase = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] __lowercase = [time_max_subarray(A__ ) for input_size in input_sizes] print('''No of Inputs\t\tTime Taken''' ) for input_size, runtime in zip(A__ , A__ ): print(A__ , '''\t\t''' , A__ ) plt.plot(A__ , A__ ) plt.xlabel('''Number of Inputs''' ) plt.ylabel('''Time taken in seconds''' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
210
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__=False ) -> List[Any]: snake_case__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def UpperCamelCase__ ( A__ , A__ , A__=False ) -> Dict: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = '' else: snake_case__ : List[Any] = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Tuple = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) snake_case__ : List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : int = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size] snake_case__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Tuple = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : int = in_proj_bias[-config.hidden_size :] def UpperCamelCase__ ( A__ , A__ , A__ ) -> str: snake_case__ : Optional[int] = dct.pop(A__ ) snake_case__ : int = val def UpperCamelCase__ ( ) -> Dict: snake_case__ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Dict = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : Any = 1000 snake_case__ : Union[str, Any] = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : int = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): snake_case__ : Optional[int] = 192 snake_case__ : str = 768 snake_case__ : Optional[Any] = 12 snake_case__ : Tuple = 3 elif deit_name[9:].startswith('small' ): snake_case__ : str = 384 snake_case__ : str = 1536 snake_case__ : Dict = 12 snake_case__ : str = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): snake_case__ : List[Any] = 1024 snake_case__ : str = 4096 snake_case__ : Tuple = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : Optional[int] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Tuple = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model snake_case__ : int = DeiTForImageClassificationWithTeacher(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : Union[str, Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : List[Any] = DeiTImageProcessor(size=A__ , crop_size=config.image_size ) snake_case__ : Tuple = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : Dict = model(A__ ) snake_case__ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Tuple=True ,__UpperCamelCase : Tuple="pt" ): """simple docstring""" A_ = {"add_prefix_space": True} if isinstance(__UpperCamelCase ,__UpperCamelCase ) and not line.startswith(" " ) else {} A_ = padding_side return tokenizer( [line] ,max_length=__UpperCamelCase ,padding="max_length" if pad_to_max_length else None ,truncation=__UpperCamelCase ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,**__UpperCamelCase ,) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[int]=None ,): """simple docstring""" A_ = input_ids.ne(__UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]="train" , UpperCAmelCase : Any=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="" , ): super().__init__() A_ = Path(UpperCAmelCase ).joinpath(type_path + ".source" ) A_ = Path(UpperCAmelCase ).joinpath(type_path + ".target" ) A_ = self.get_char_lens(self.src_file ) A_ = max_source_length A_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' A_ = tokenizer A_ = prefix if n_obs is not None: A_ = self.src_lens[:n_obs] A_ = src_lang A_ = tgt_lang def __len__( self : Union[str, Any] ): return len(self.src_lens ) def __getitem__( self : Optional[int] , UpperCAmelCase : List[str] ): A_ = index + 1 # linecache starts at 1 A_ = self.prefix + linecache.getline(str(self.src_file ) , UpperCAmelCase ).rstrip("\n" ) A_ = linecache.getline(str(self.tgt_file ) , UpperCAmelCase ).rstrip("\n" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer ) A_ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer A_ = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_source_length , "right" ) A_ = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_target_length , "right" ) A_ = source_inputs["input_ids"].squeeze() A_ = target_inputs["input_ids"].squeeze() A_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __A ( UpperCAmelCase : Dict ): return [len(UpperCAmelCase ) for x in Path(UpperCAmelCase ).open().readlines()] def __A ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ): A_ = torch.stack([x["input_ids"] for x in batch] ) A_ = torch.stack([x["attention_mask"] for x in batch] ) A_ = torch.stack([x["decoder_input_ids"] for x in batch] ) A_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer.pad_token_id ) A_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer.pad_token_id ) A_ = trim_batch(UpperCAmelCase , UpperCAmelCase ) A_ , A_ = trim_batch(UpperCAmelCase , UpperCAmelCase , attention_mask=UpperCAmelCase ) A_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch __a :int = getLogger(__name__) def __snake_case ( __UpperCamelCase : List[List] ): """simple docstring""" return list(itertools.chain.from_iterable(__UpperCamelCase ) ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = get_git_info() save_json(__UpperCamelCase ,os.path.join(__UpperCamelCase ,"git_log.json" ) ) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ,__UpperCamelCase : Tuple=4 ,**__UpperCamelCase : int ): """simple docstring""" with open(__UpperCamelCase ,"w" ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ,indent=__UpperCamelCase ,**__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(__UpperCamelCase ) as f: return json.load(__UpperCamelCase ) def __snake_case ( ): """simple docstring""" A_ = git.Repo(search_parent_directories=__UpperCamelCase ) A_ = { "repo_id": str(__UpperCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __snake_case ( __UpperCamelCase : Callable ,__UpperCamelCase : Iterable ): """simple docstring""" return list(map(__UpperCamelCase ,__UpperCamelCase ) ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ): """simple docstring""" with open(__UpperCamelCase ,"wb" ) as f: return pickle.dump(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" def remove_articles(__UpperCamelCase : Optional[int] ): return re.sub(R"\b(a|an|the)\b" ," " ,__UpperCamelCase ) def white_space_fix(__UpperCamelCase : List[Any] ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase : Tuple ): A_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : str ): """simple docstring""" A_ = normalize_answer(__UpperCamelCase ).split() A_ = normalize_answer(__UpperCamelCase ).split() A_ = Counter(__UpperCamelCase ) & Counter(__UpperCamelCase ) A_ = sum(common.values() ) if num_same == 0: return 0 A_ = 1.0 * num_same / len(__UpperCamelCase ) A_ = 1.0 * num_same / len(__UpperCamelCase ) A_ = (2 * precision * recall) / (precision + recall) return fa def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ): """simple docstring""" return normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str] ): """simple docstring""" assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = 0 for hypo, pred in zip(__UpperCamelCase ,__UpperCamelCase ): em += exact_match_score(__UpperCamelCase ,__UpperCamelCase ) if len(__UpperCamelCase ) > 0: em /= len(__UpperCamelCase ) return {"em": em} def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" return model_prefix.startswith("rag" ) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : str ): """simple docstring""" A_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ = "dropout_rate" for p in extra_params: if getattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): if not hasattr(__UpperCamelCase ,__UpperCamelCase ) and not hasattr(__UpperCamelCase ,equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__UpperCamelCase ) ) delattr(__UpperCamelCase ,__UpperCamelCase ) continue A_ = p if hasattr(__UpperCamelCase ,__UpperCamelCase ) else equivalent_param[p] setattr(__UpperCamelCase ,__UpperCamelCase ,getattr(__UpperCamelCase ,__UpperCamelCase ) ) delattr(__UpperCamelCase ,__UpperCamelCase ) return hparams, config
369
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): A_ : Union[str, Any] = AutoencoderKL A_ : List[Any] = 'sample' A_ : List[Any] = 1e-2 @property def a (self : Dict ): """simple docstring""" __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(a__ ) return {"sample": image} @property def a (self : Any ): """simple docstring""" return (3, 32, 32) @property def a (self : Optional[Any] ): """simple docstring""" return (3, 32, 32) def a (self : int ): """simple docstring""" __snake_case = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def a (self : Tuple ): """simple docstring""" pass def a (self : int ): """simple docstring""" pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def a (self : int ): """simple docstring""" __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**a__ ) model.to(a__ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(a__ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**a__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(a__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**a__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def a (self : Tuple ): """simple docstring""" __snake_case , __snake_case = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(a__ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def a (self : Union[str, Any] ): """simple docstring""" __snake_case = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __snake_case = model.to(a__ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=a__ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(a__ ) with torch.no_grad(): __snake_case = model(a__ , sample_posterior=a__ , generator=a__ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(a__ , a__ , rtol=1E-2 ) ) @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Tuple , a__ : Optional[Any] , a__ : List[str] ): """simple docstring""" return f"""gaussian_noise_s={seed}_shape={'_'.join([str(a__ ) for s in shape] )}.npy""" def a (self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a (self : Optional[int] , a__ : Optional[Any]=0 , a__ : List[Any]=(4, 3, 512, 512) , a__ : Optional[Any]=False ): """simple docstring""" __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(a__ , a__ ) ) ).to(a__ ).to(a__ ) return image def a (self : Optional[Any] , a__ : Dict="CompVis/stable-diffusion-v1-4" , a__ : List[Any]=False ): """simple docstring""" __snake_case = '''fp16''' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( a__ , subfolder='''vae''' , torch_dtype=a__ , revision=a__ , ) model.to(a__ ).eval() return model def a (self : Union[str, Any] , a__ : int=0 ): """simple docstring""" if torch_device == "mps": return torch.manual_seed(a__ ) return torch.Generator(device=a__ ).manual_seed(a__ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a (self : Optional[int] , a__ : int , a__ : Union[str, Any] , a__ : Optional[int] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ ) __snake_case = self.get_generator(a__ ) with torch.no_grad(): __snake_case = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a__ , a__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def a (self : Union[str, Any] , a__ : Union[str, Any] , a__ : str ): """simple docstring""" __snake_case = self.get_sd_vae_model(fpaa=a__ ) __snake_case = self.get_sd_image(a__ , fpaa=a__ ) __snake_case = self.get_generator(a__ ) with torch.no_grad(): __snake_case = model(a__ , generator=a__ , sample_posterior=a__ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def a (self : Optional[Any] , a__ : str , a__ : Tuple , a__ : List[Any] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ ) with torch.no_grad(): __snake_case = model(a__ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(a__ , a__ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def a (self : str , a__ : Optional[int] , a__ : Any ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def a (self : List[Any] , a__ : Any , a__ : Optional[int] ): """simple docstring""" __snake_case = self.get_sd_vae_model(fpaa=a__ ) __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(a__ ) assert torch_all_close(a__ , a__ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def a (self : Tuple , a__ : Any ): """simple docstring""" __snake_case = self.get_sd_vae_model(fpaa=a__ ) __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) , fpaa=a__ ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a__ , a__ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def a (self : int , a__ : Optional[int] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(a__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(a__ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(a__ , a__ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def a (self : str , a__ : Optional[Any] , a__ : List[str] ): """simple docstring""" __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(a__ ) __snake_case = self.get_generator(a__ ) with torch.no_grad(): __snake_case = model.encode(a__ ).latent_dist __snake_case = dist.sample(generator=a__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(a__ ) __snake_case = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(a__ , a__ , atol=a__ )
24
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
67
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) set_seed(770) __A = { """c_attn""": """att_proj""", """c_proj""": """out_proj""", """c_fc""": """in_proj""", """transformer.""": """""", """h.""": """layers.""", """ln_1""": """layernorm_1""", """ln_2""": """layernorm_2""", """ln_f""": """layernorm_final""", """wpe""": """position_embeds_layer""", """wte""": """input_embeds_layer""", } __A = { """text_small""": { """repo_id""": """suno/bark""", """file_name""": """text.pt""", }, """coarse_small""": { """repo_id""": """suno/bark""", """file_name""": """coarse.pt""", }, """fine_small""": { """repo_id""": """suno/bark""", """file_name""": """fine.pt""", }, """text""": { """repo_id""": """suno/bark""", """file_name""": """text_2.pt""", }, """coarse""": { """repo_id""": """suno/bark""", """file_name""": """coarse_2.pt""", }, """fine""": { """repo_id""": """suno/bark""", """file_name""": """fine_2.pt""", }, } __A = os.path.dirname(os.path.abspath(__file__)) __A = os.path.join(os.path.expanduser("""~"""), """.cache""") __A = os.path.join(os.getenv("""XDG_CACHE_HOME""", default_cache_dir), """suno""", """bark_v0""") def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) ->int: """simple docstring""" lowerCAmelCase__ :List[str] = model_type if use_small: key += "_small" return os.path.join(_SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]['file_name'] ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , local_dir=_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) ->Any: """simple docstring""" if model_type == "text": lowerCAmelCase__ :int = BarkSemanticModel lowerCAmelCase__ :List[Any] = BarkSemanticConfig lowerCAmelCase__ :int = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCAmelCase__ :List[Any] = BarkCoarseModel lowerCAmelCase__ :str = BarkCoarseConfig lowerCAmelCase__ :List[str] = BarkCoarseGenerationConfig elif model_type == "fine": lowerCAmelCase__ :Optional[int] = BarkFineModel lowerCAmelCase__ :Tuple = BarkFineConfig lowerCAmelCase__ :Tuple = BarkFineGenerationConfig else: raise NotImplementedError() lowerCAmelCase__ :Union[str, Any] = F"{model_type}_small" if use_small else model_type lowerCAmelCase__ :Tuple = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info(F"{model_type} model not found, downloading into `{CACHE_DIR}`." ) _download(model_info['repo_id'] , model_info['file_name'] ) lowerCAmelCase__ :List[str] = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) # this is a hack lowerCAmelCase__ :Any = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowerCAmelCase__ :Dict = model_args['vocab_size'] lowerCAmelCase__ :Optional[int] = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCAmelCase__ :Optional[Any] = model_args.pop('n_head' ) lowerCAmelCase__ :Optional[int] = model_args.pop('n_embd' ) lowerCAmelCase__ :Any = model_args.pop('n_layer' ) lowerCAmelCase__ :List[str] = ConfigClass(**checkpoint['model_args'] ) lowerCAmelCase__ :str = ModelClass(config=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = GenerationConfigClass() lowerCAmelCase__ :List[Any] = model_generation_config lowerCAmelCase__ :List[str] = checkpoint['model'] # fixup checkpoint lowerCAmelCase__ :List[str] = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(_SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation lowerCAmelCase__ :Tuple = k[len(_SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: lowerCAmelCase__ :Tuple = new_k.replace(_SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) lowerCAmelCase__ :Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Tuple = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCAmelCase__ :int = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowerCAmelCase__ :Union[str, Any] = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCAmelCase__ :List[str] = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"extra keys found: {extra_keys}" ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"missing keys: {missing_keys}" ) model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[Any] = model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Union[str, Any] = checkpoint['best_val_loss'].item() logger.info(F"model loaded: {round(n_params/1e6 , 1 )}M params, {round(_SCREAMING_SNAKE_CASE , 3 )} loss" ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) ->str: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCAmelCase__ :int = 'cpu' # do conversion on cpu lowerCAmelCase__ :Any = _get_ckpt_path(_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = _load_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) # load bark initial model lowerCAmelCase__ :Optional[int] = _bark_load_model(_SCREAMING_SNAKE_CASE , 'cpu' , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) if model_type == "text": lowerCAmelCase__ :Union[str, Any] = bark_model['model'] if model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowerCAmelCase__ :Optional[Any] = 5 lowerCAmelCase__ :Optional[Any] = 10 if model_type in ["text", "coarse"]: lowerCAmelCase__ :List[Any] = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCAmelCase__ :str = bark_model(_SCREAMING_SNAKE_CASE )[0] lowerCAmelCase__ :Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) # take last logits lowerCAmelCase__ :Any = output_new_model_total.logits[:, [-1], :] else: lowerCAmelCase__ :Any = 3 lowerCAmelCase__ :Tuple = 8 lowerCAmelCase__ :List[str] = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCAmelCase__ :Any = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = bark_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('initial and new outputs are not equal' ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :str = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = BarkSemanticConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) lowerCAmelCase__ :Tuple = BarkCoarseConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) lowerCAmelCase__ :Tuple = BarkFineConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) lowerCAmelCase__ :Dict = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ :List[Any] = BarkSemanticModel.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Union[str, Any] = BarkCoarseModel.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = BarkFineModel.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowerCAmelCase__ :Optional[Any] = BarkConfig.from_sub_model_configs( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :int = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCAmelCase__ :Dict = BarkModel(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Any = semantic lowerCAmelCase__ :Union[str, Any] = coarseAcoustic lowerCAmelCase__ :str = fineAcoustic lowerCAmelCase__ :Dict = codec lowerCAmelCase__ :Optional[int] = bark_generation_config Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) bark.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument("""model_type""", type=str, help="""text, coarse or fine.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--is_small""", action="""store_true""", help="""convert the small version instead of the large.""") __A = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
254
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __A = random.Random() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) ->Union[str, Any]: """simple docstring""" if rng is None: lowerCAmelCase__ :int = global_rng lowerCAmelCase__ :str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=4_0_0 , __UpperCAmelCase=2_0_0_0 , __UpperCAmelCase=1_0 , __UpperCAmelCase=1_6_0 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=4_0_0_0 , __UpperCAmelCase=False , __UpperCAmelCase=True , ): '''simple docstring''' lowerCAmelCase__ :int = parent lowerCAmelCase__ :Optional[int] = batch_size lowerCAmelCase__ :Optional[Any] = min_seq_length lowerCAmelCase__ :Optional[int] = max_seq_length lowerCAmelCase__ :Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ :Union[str, Any] = padding_value lowerCAmelCase__ :Optional[int] = sampling_rate lowerCAmelCase__ :Optional[int] = return_attention_mask lowerCAmelCase__ :Union[str, Any] = do_normalize lowerCAmelCase__ :Any = feature_size lowerCAmelCase__ :Union[str, Any] = chunk_length lowerCAmelCase__ :List[Any] = hop_length def snake_case ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case ( self , __UpperCAmelCase=False , __UpperCAmelCase=False ): '''simple docstring''' def _flatten(__UpperCAmelCase ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: lowerCAmelCase__ :Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ :Union[str, Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ :Optional[int] = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :Union[str, Any] = WhisperFeatureExtractor if is_speech_available() else None def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = WhisperFeatureExtractionTester(self ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[Any] = feat_extract_first.save_pretrained(__UpperCAmelCase )[0] check_json_file_has_correct_format(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.feature_extraction_class.from_pretrained(__UpperCAmelCase ) lowerCAmelCase__ :str = feat_extract_first.to_dict() lowerCAmelCase__ :List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ :int = feat_extract_first.mel_filters lowerCAmelCase__ :Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ :Optional[int] = os.path.join(__UpperCAmelCase , 'feat_extract.json' ) feat_extract_first.to_json_file(__UpperCAmelCase ) lowerCAmelCase__ :str = self.feature_extraction_class.from_json_file(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = feat_extract_first.to_dict() lowerCAmelCase__ :List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ :str = feat_extract_first.mel_filters lowerCAmelCase__ :Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ :List[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase__ :int = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ :int = feature_extractor(__UpperCAmelCase , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ :Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCAmelCase__ :Dict = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test batched lowerCAmelCase__ :Optional[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :Dict = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ :List[str] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase__ :Optional[Any] = np.asarray(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :List[Any] = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) # Test truncation required lowerCAmelCase__ :Any = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] lowerCAmelCase__ :Any = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] lowerCAmelCase__ :str = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCAmelCase__ :Union[str, Any] = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs_truncated] lowerCAmelCase__ :Any = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features lowerCAmelCase__ :int = feature_extractor(__UpperCAmelCase , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def snake_case ( self ): '''simple docstring''' import torch lowerCAmelCase__ :str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ :Dict = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) lowerCAmelCase__ :Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ :List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ :List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase__ :str = ds.sort('id' ).select(range(__UpperCAmelCase ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on lowerCAmelCase__ :Tuple = self._load_datasamples(1 ) lowerCAmelCase__ :Any = WhisperFeatureExtractor() lowerCAmelCase__ :List[str] = feature_extractor(__UpperCAmelCase , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , __UpperCAmelCase , atol=1E-4 ) ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ :int = self._load_datasamples(1 )[0] lowerCAmelCase__ :Any = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue lowerCAmelCase__ :Any = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCAmelCase )[0] self.assertTrue(np.all(np.mean(__UpperCAmelCase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase ) - 1 ) < 1E-3 ) )
254
1
def UpperCamelCase ( __lowercase : Dict = 60_08_51_47_51_43 ): '''simple docstring''' try: A_ : List[str] = int(_UpperCamelCase ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) A_ : Union[str, Any] = 2 A_ : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A_ : int = i while n % i == 0: A_ : Union[str, Any] = n // i i += 1 return int(_UpperCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
140
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def snake_case ( self ): __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __lowerCAmelCase = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], "image_std": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], "do_convert_rgb": True, } __lowerCAmelCase = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__a , __a ) def snake_case ( self , **__a ): return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__a ) __lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="np" ) __lowerCAmelCase = processor(images=__a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = processor(text=__a ) __lowerCAmelCase = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__a ) __lowerCAmelCase = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "Alexandra,T-shirt的价格是15便士。" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
57
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCamelCase : int = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _lowerCamelCase : Tuple = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _lowerCamelCase : str = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _lowerCamelCase : List[Any] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _lowerCamelCase : Union[str, Any] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _lowerCamelCase : str = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _lowerCamelCase : Dict = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def __a ( ) ->List[str]: """simple docstring""" A , A = randrange(len(UpperCAmelCase ) ), randrange(len(UpperCAmelCase ) ) A = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] A , A = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __a ( UpperCAmelCase = 100 ) ->Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(UpperCAmelCase )) @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" assert PokerHand(UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->Tuple: """simple docstring""" assert PokerHand(UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" A = PokerHand(UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->Any: """simple docstring""" assert PokerHand(UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase ) ->str: """simple docstring""" assert PokerHand(UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , UpperCAmelCase ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" assert PokerHand(UpperCAmelCase ).compare_with(PokerHand(UpperCAmelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def __a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" assert PokerHand(UpperCAmelCase ).compare_with(PokerHand(UpperCAmelCase ) ) == expected def __a ( ) ->Dict: """simple docstring""" A = [PokerHand(UpperCAmelCase ) for hand in SORTED_HANDS] A = poker_hands.copy() shuffle(UpperCAmelCase ) A = chain(sorted(UpperCAmelCase ) ) for index, hand in enumerate(UpperCAmelCase ): assert hand == poker_hands[index] def __a ( ) ->int: """simple docstring""" A = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __a ( ) ->str: """simple docstring""" A = PokerHand("""2C 4S AS 3D 5C""" ) A = True A = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __a ( ) ->Tuple: """simple docstring""" A = 0 A = os.path.abspath(os.path.dirname(UpperCAmelCase ) ) A = os.path.join(UpperCAmelCase , """poker_hands.txt""" ) with open(UpperCAmelCase ) as file_hand: for line in file_hand: A = line[:14].strip() A = line[15:].strip() A , A = PokerHand(UpperCAmelCase ), PokerHand(UpperCAmelCase ) A = player.compare_with(UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 376
355
'''simple docstring''' from __future__ import annotations def __a ( UpperCAmelCase ) ->list[int]: """simple docstring""" return [ord(UpperCAmelCase ) - 96 for elem in plain] def __a ( UpperCAmelCase ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __a ( ) ->None: """simple docstring""" A = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , UpperCAmelCase ) print("""Decoded:""" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
337
0
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments UpperCamelCase_ = logging.getLogger(__name__) @dataclass class a_ (_a ): __lowerCAmelCase : Optional[float] = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) __lowerCAmelCase : bool = field(default=_a , metadata={"""help""": """Whether to SortishSamler or not."""} ) __lowerCAmelCase : bool = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) __lowerCAmelCase : bool = field(default=_a , metadata={"""help""": """whether to use adafactor"""} ) __lowerCAmelCase : Optional[float] = field( default=_a , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field( default=_a , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field(default=_a , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[float] = field( default=_a , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) __lowerCAmelCase : Optional[str] = field( default="""linear""" , metadata={"""help""": f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
309
'''simple docstring''' import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class a_ (unittest.TestCase ): def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = """laion/clap-htsat-unfused""" _lowerCAmelCase : int = tempfile.mkdtemp() def __UpperCamelCase ( self , **snake_case_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self , **snake_case_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_feature_extractor() _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase : int = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) _lowerCAmelCase : Dict = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = floats_list((3, 1_0_0_0) ) _lowerCAmelCase : List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) _lowerCAmelCase : Optional[Any] = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.get_feature_extractor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Tuple = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Union[str, Any] = """This is a test string""" _lowerCAmelCase : Union[str, Any] = processor(text=snake_case_ ) _lowerCAmelCase : Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_feature_extractor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) _lowerCAmelCase : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[Any] = processor.batch_decode(snake_case_ ) _lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = self.get_feature_extractor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
309
1
'''simple docstring''' from collections import deque class _lowercase : def __init__( self: int , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): lowerCamelCase__ : int = process_name # process name lowerCamelCase__ : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase__ : List[str] = arrival_time lowerCamelCase__ : Tuple = burst_time # remaining burst time lowerCamelCase__ : str = 0 # total time of the process wait in ready queue lowerCamelCase__ : Optional[Any] = 0 # time from arrival time to completion time class _lowercase : def __init__( self: Any , UpperCamelCase__: int , UpperCamelCase__: list[int] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int , ): # total number of mlfq's queues lowerCamelCase__ : Tuple = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase__ : List[Any] = time_slices # unfinished process is in this ready_queue lowerCamelCase__ : int = queue # current time lowerCamelCase__ : Optional[int] = current_time # finished process is in this sequence queue lowerCamelCase__ : deque[Process] = deque() def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : int = [] for i in range(len(UpperCamelCase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase_ ( self: Any , UpperCamelCase__: list[Process] ): lowerCamelCase__ : Optional[int] = [] for i in range(len(UpperCamelCase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : List[Any] = [] for i in range(len(UpperCamelCase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase_ ( self: int , UpperCamelCase__: deque[Process] ): return [q.burst_time for q in queue] def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: deque[Process] ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of finished process while len(UpperCamelCase__ ) != 0: lowerCamelCase__ : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase__ : Dict = 0 # set the process's turnaround time because it is finished lowerCamelCase__ : List[str] = self.current_time - cp.arrival_time # set the completion time lowerCamelCase__ : int = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase__ ) ): lowerCamelCase__ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase__ : Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase__ : Any = 0 # set the finish time lowerCamelCase__ : List[Any] = self.current_time # update the process' turnaround time because it is finished lowerCamelCase__ : Any = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase_ ( self: Tuple ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase__ , lowerCamelCase__ : str = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _A : Optional[Any] =Process('''P1''', 0, 53) _A : List[Any] =Process('''P2''', 0, 17) _A : Any =Process('''P3''', 0, 68) _A : Tuple =Process('''P4''', 0, 24) _A : int =3 _A : Tuple =[17, 25] _A : List[Any] =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) _A : Dict =Process('''P1''', 0, 53) _A : Union[str, Any] =Process('''P2''', 0, 17) _A : int =Process('''P3''', 0, 68) _A : Dict =Process('''P4''', 0, 24) _A : List[str] =3 _A : List[Any] =[17, 25] _A : Any =deque([Pa, Pa, Pa, Pa]) _A : List[str] =MLFQ(number_of_queues, time_slices, queue, 0) _A : Union[str, Any] =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
129
'''simple docstring''' from __future__ import annotations from typing import Any class _lowercase ( _lowercase ): pass class _lowercase : def __init__( self: Optional[int] , UpperCamelCase__: Any ): lowerCamelCase__ : Any = data lowerCamelCase__ : Node | None = None def __iter__( self: List[Any] ): lowerCamelCase__ : Optional[Any] = self lowerCamelCase__ : int = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase__ ) yield node.data lowerCamelCase__ : List[str] = node.next_node @property def lowerCamelCase_ ( self: Optional[Any] ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _A : Any =Node(1) _A : Optional[int] =Node(2) _A : Dict =Node(3) _A : Optional[Any] =Node(4) print(root_node.has_loop) # False _A : Any =root_node.next_node print(root_node.has_loop) # True _A : Dict =Node(5) _A : Union[str, Any] =Node(6) _A : str =Node(5) _A : int =Node(6) print(root_node.has_loop) # False _A : Optional[Any] =Node(1) print(root_node.has_loop) # False
129
1
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class snake_case__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[Any] ) ->Tuple: snake_case__ : int = "laion/clap-htsat-unfused" snake_case__ : Optional[int] = tempfile.mkdtemp() def lowercase_ ( self : Union[str, Any], **_snake_case : Optional[Any] ) ->Optional[int]: return RobertaTokenizer.from_pretrained(self.checkpoint, **lowerCAmelCase__ ) def lowercase_ ( self : Tuple, **_snake_case : List[Any] ) ->int: return ClapFeatureExtractor.from_pretrained(self.checkpoint, **lowerCAmelCase__ ) def lowercase_ ( self : Union[str, Any] ) ->int: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : Tuple ) ->Tuple: snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Union[str, Any] = self.get_feature_extractor() snake_case__ : Tuple = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Optional[int] = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowerCAmelCase__ ) def lowercase_ ( self : List[str] ) ->str: snake_case__ : int = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Dict = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) snake_case__ : Optional[int] = self.get_feature_extractor(do_normalize=lowerCAmelCase__, padding_value=1.0 ) snake_case__ : Tuple = ClapProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCAmelCase__, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCAmelCase__ ) self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowerCAmelCase__ ) def lowercase_ ( self : str ) ->Tuple: snake_case__ : Tuple = self.get_feature_extractor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : Union[str, Any] = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) snake_case__ : Union[str, Any] = floats_list((3, 1_0_0_0) ) snake_case__ : Union[str, Any] = feature_extractor(lowerCAmelCase__, return_tensors='np' ) snake_case__ : List[Any] = processor(audios=lowerCAmelCase__, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def lowercase_ ( self : List[str] ) ->List[Any]: snake_case__ : List[str] = self.get_feature_extractor() snake_case__ : int = self.get_tokenizer() snake_case__ : Tuple = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) snake_case__ : Tuple = "This is a test string" snake_case__ : int = processor(text=lowerCAmelCase__ ) snake_case__ : Optional[int] = tokenizer(lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def lowercase_ ( self : List[Any] ) ->List[Any]: snake_case__ : Optional[Any] = self.get_feature_extractor() snake_case__ : Optional[int] = self.get_tokenizer() snake_case__ : str = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) snake_case__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : Union[str, Any] = processor.batch_decode(lowerCAmelCase__ ) snake_case__ : Dict = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ ) def lowercase_ ( self : Union[str, Any] ) ->int: snake_case__ : str = self.get_feature_extractor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Dict = ClapProcessor(tokenizer=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) self.assertListEqual( processor.model_input_names[2:], feature_extractor.model_input_names, msg='`processor` and `feature_extractor` model input names do not match', )
277
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int): SCREAMING_SNAKE_CASE_: str = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = 20 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase__) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_: List[str] = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_: Any = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_: Dict = jax.nn.softmax(lowerCAmelCase__ , axis=-1) SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_: str = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) SCREAMING_SNAKE_CASE_: int = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase__ , scores.copy() , cur_len=lowerCAmelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: List[str] = None SCREAMING_SNAKE_CASE_: str = 10 SCREAMING_SNAKE_CASE_: Tuple = 2 # create ramp distribution SCREAMING_SNAKE_CASE_: Optional[Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_: Any = 5 SCREAMING_SNAKE_CASE_: str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_: Any = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_: Any = top_k_warp_safety_check(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: Tuple = None SCREAMING_SNAKE_CASE_: Dict = 10 SCREAMING_SNAKE_CASE_: Dict = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_: Tuple = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_: int = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_: Optional[Any] = np.exp(top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_: Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_: Union[str, Any] = np.broadcast_to(np.arange(lowerCAmelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_: Dict = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_: str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = 20 SCREAMING_SNAKE_CASE_: List[str] = 4 SCREAMING_SNAKE_CASE_: Optional[int] = 0 SCREAMING_SNAKE_CASE_: str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_: str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_: int = 5 SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_: List[str] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = 15 SCREAMING_SNAKE_CASE_: Any = min_dist_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: int = 20 SCREAMING_SNAKE_CASE_: str = 4 SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_: List[str] = 1 SCREAMING_SNAKE_CASE_: Union[str, Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_: List[Any] = 3 SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Any = 20 SCREAMING_SNAKE_CASE_: Optional[Any] = 4 SCREAMING_SNAKE_CASE_: Dict = 0 SCREAMING_SNAKE_CASE_: List[Any] = 5 SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_: List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: Dict = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_: List[str] = 3 SCREAMING_SNAKE_CASE_: str = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = logits_processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) self.assertFalse(jnp.isinf(lowerCAmelCase__).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = 4 SCREAMING_SNAKE_CASE_: List[Any] = 10 SCREAMING_SNAKE_CASE_: int = 15 SCREAMING_SNAKE_CASE_: Dict = 2 SCREAMING_SNAKE_CASE_: int = 1 SCREAMING_SNAKE_CASE_: List[Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: int = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Tuple = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Optional[int] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list SCREAMING_SNAKE_CASE_: Dict = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Any = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Tuple = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # with processor list SCREAMING_SNAKE_CASE_: str = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Tuple = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Optional[int] = 4 SCREAMING_SNAKE_CASE_: int = 10 SCREAMING_SNAKE_CASE_: List[str] = 15 SCREAMING_SNAKE_CASE_: List[Any] = 2 SCREAMING_SNAKE_CASE_: Union[str, Any] = 1 SCREAMING_SNAKE_CASE_: str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_: Tuple = ids_tensor((batch_size, sequence_length) , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_: List[Any] = self._get_uniform_logits(lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_: Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_: Union[str, Any] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_: Dict = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_: int = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = 10 # no processor list def run_no_processor_list(lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict): SCREAMING_SNAKE_CASE_: Any = temp_dist_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_k_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = top_p_warp(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = min_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Union[str, Any] = bos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = eos_dist_proc(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores # with processor list def run_processor_list(lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_: Dict = processor(lowerCAmelCase__ , lowerCAmelCase__ , cur_len=lowerCAmelCase__) return scores SCREAMING_SNAKE_CASE_: str = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[int] = jax.jit(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = jitted_run_no_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = jitted_run_processor_list(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
13
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _SCREAMING_SNAKE_CASE : UpperCAmelCase_ :str = XGLMConfig UpperCAmelCase_ :Optional[Any] = {} UpperCAmelCase_ :Any = "gelu" def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=2 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.0_2 , ) -> Union[str, Any]: lowerCAmelCase_ :Any = parent lowerCAmelCase_ :List[Any] = batch_size lowerCAmelCase_ :List[Any] = seq_length lowerCAmelCase_ :str = is_training lowerCAmelCase_ :str = use_input_mask lowerCAmelCase_ :Tuple = use_labels lowerCAmelCase_ :Optional[int] = vocab_size lowerCAmelCase_ :Dict = d_model lowerCAmelCase_ :str = num_hidden_layers lowerCAmelCase_ :Dict = num_attention_heads lowerCAmelCase_ :Optional[int] = ffn_dim lowerCAmelCase_ :Tuple = activation_function lowerCAmelCase_ :List[Any] = activation_dropout lowerCAmelCase_ :str = attention_dropout lowerCAmelCase_ :Union[str, Any] = max_position_embeddings lowerCAmelCase_ :Optional[int] = initializer_range lowerCAmelCase_ :Any = None lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :Dict = 2 lowerCAmelCase_ :Union[str, Any] = 1 def __lowerCAmelCase ( self ) -> Any: return XGLMConfig.from_pretrained("""facebook/xglm-564M""" ) def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) lowerCAmelCase_ :List[str] = None if self.use_input_mask: lowerCAmelCase_ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ :int = self.get_config() lowerCAmelCase_ :List[str] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowerCAmelCase ( self ) -> Union[str, Any]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__a , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__a , ) def __lowerCAmelCase ( self ) -> Dict: lowerCAmelCase_ :List[str] = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) :List[Any] = config_and_inputs lowerCAmelCase_ :Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): UpperCAmelCase_ :str = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase_ :Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase_ :List[str] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase_ :Optional[int] = False UpperCAmelCase_ :Union[str, Any] = False UpperCAmelCase_ :Union[str, Any] = False def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :List[str] = TFXGLMModelTester(self ) lowerCAmelCase_ :str = ConfigTester(self , config_class=__a , n_embd=37 ) def __lowerCAmelCase ( self ) -> List[str]: self.config_tester.run_common_tests() @slow def __lowerCAmelCase ( self ) -> int: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ :str = TFXGLMModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip(reason="""Currently, model embeddings are going to undergo a major refactor.""" ) def __lowerCAmelCase ( self ) -> str: super().test_resize_token_embeddings() @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCAmelCase ( self , __A=True ) -> Any: lowerCAmelCase_ :Optional[Any] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase_ :Union[str, Any] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowerCAmelCase_ :str = [2, 268, 9865, 67, 11, 1988, 5_7252, 9865, 5, 984, 67, 1988, 21_3838, 1658, 53, 7_0446, 33, 6657, 278, 1581] # fmt: on lowerCAmelCase_ :int = model.generate(__a , do_sample=__a , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __a ) @slow def __lowerCAmelCase ( self ) -> int: lowerCAmelCase_ :Union[str, Any] = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase_ :int = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) tf.random.set_seed(0 ) lowerCAmelCase_ :int = tokenizer("""Today is a nice day and""" , return_tensors="""tf""" ) lowerCAmelCase_ :Any = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(""":/CPU:0""" ): lowerCAmelCase_ :Dict = model.generate(__a , do_sample=__a , seed=[7, 0] ) lowerCAmelCase_ :Any = tokenizer.decode(output_ids[0] , skip_special_tokens=__a ) lowerCAmelCase_ :str = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(__a , __a ) @slow def __lowerCAmelCase ( self ) -> List[Any]: lowerCAmelCase_ :Optional[int] = TFXGLMForCausalLM.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase_ :Dict = XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) lowerCAmelCase_ :int = 'left' # use different length sentences to test batching lowerCAmelCase_ :Optional[Any] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] lowerCAmelCase_ :int = tokenizer(__a , return_tensors="""tf""" , padding=__a ) lowerCAmelCase_ :List[Any] = inputs['input_ids'] lowerCAmelCase_ :Tuple = model.generate(input_ids=__a , attention_mask=inputs["""attention_mask"""] , max_new_tokens=12 ) lowerCAmelCase_ :List[str] = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCAmelCase_ :List[Any] = model.generate(input_ids=__a , max_new_tokens=12 ) lowerCAmelCase_ :List[str] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCAmelCase_ :List[str] = model.generate(input_ids=__a , max_new_tokens=12 ) lowerCAmelCase_ :Optional[int] = tokenizer.batch_decode(__a , skip_special_tokens=__a ) lowerCAmelCase_ :Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) lowerCAmelCase_ :List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) lowerCAmelCase_ :int = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] )
350
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( lowercase__ : Accelerator , lowercase__ : int = 1_6 , lowercase__ : str = "bert-base-cased" ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ :List[str] = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase_ :Optional[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowercase__ : List[str] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ :str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ :str = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ :List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase_ :Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ :Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def _snake_case ( lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : int ) -> List[str]: '''simple docstring''' model.eval() lowerCAmelCase_ :Dict = 0 for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase_ :Optional[int] = model(**lowercase__ ) lowerCAmelCase_ :Optional[int] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowercase__ ) - 1: lowerCAmelCase_ :Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase_ :Any = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowercase__ , references=lowercase__ , ) lowerCAmelCase_ :Tuple = metric.compute() return eval_metric["accuracy"] def _snake_case ( lowercase__ : str , lowercase__ : List[str] ) -> Any: '''simple docstring''' lowerCAmelCase_ :Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ :int = config["""lr"""] lowerCAmelCase_ :Union[str, Any] = int(config["""num_epochs"""] ) lowerCAmelCase_ :Optional[int] = int(config["""seed"""] ) lowerCAmelCase_ :Union[str, Any] = int(config["""batch_size"""] ) lowerCAmelCase_ :Optional[Any] = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ :Dict = get_dataloaders(lowercase__ , lowercase__ , lowercase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ :str = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase_ :List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ :str = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ :Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCAmelCase_ :Any = 1 lowerCAmelCase_ :str = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ :List[str] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase_ :int = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ :List[str] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ :List[Any] = 0 lowerCAmelCase_ :str = evaluate.load("""glue""" , """mrpc""" ) lowerCAmelCase_ :Optional[Any] = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase_ :Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase_ :Optional[Any] = args.resume_from_checkpoint.split("""epoch_""" )[1] lowerCAmelCase_ :int = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase_ :Union[str, Any] = int(lowercase__ ) + 1 lowerCAmelCase_ :Optional[int] = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.print("""resumed checkpoint performance:""" , lowercase__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: lowerCAmelCase_ :List[str] = json.load(lowercase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase_ :List[Any] = {} for epoch in range(lowercase__ , lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase_ :Optional[int] = model(**lowercase__ ) lowerCAmelCase_ :Dict = outputs.loss lowerCAmelCase_ :int = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase_ :List[str] = f"""epoch_{epoch}""" lowerCAmelCase_ :Any = os.path.join(args.output_dir , lowercase__ ) accelerator.save_state(lowercase__ ) lowerCAmelCase_ :List[Any] = evaluation_loop(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase_ :Union[str, Any] = accuracy lowerCAmelCase_ :Any = lr_scheduler.get_lr()[0] lowerCAmelCase_ :str = optimizer.param_groups[0]["""lr"""] lowerCAmelCase_ :List[Any] = epoch lowerCAmelCase_ :Tuple = overall_step accelerator.print(f"""epoch {epoch}:""" , lowercase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def _snake_case ( ) -> int: '''simple docstring''' lowerCAmelCase_ :List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowercase__ , default=lowercase__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowercase__ , default=lowercase__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=2 , help="""Number of train epochs.""" , ) lowerCAmelCase_ :Optional[int] = parser.parse_args() lowerCAmelCase_ :List[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
1
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: A =None A =logging.get_logger(__name__) A ='▁' A ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} A ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } A ={ 'google/pegasus-xsum': 5_12, } class _a ( __a ): __a : Optional[Any] = VOCAB_FILES_NAMES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = PegasusTokenizer __a : List[str] = ["""input_ids""", """attention_mask"""] def __init__( self : List[Any] , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : str="<pad>" , lowercase : Union[str, Any]="</s>" , lowercase : List[Any]="<unk>" , lowercase : Tuple="<mask_2>" , lowercase : Any="<mask_1>" , lowercase : List[Any]=None , lowercase : Any=103 , **lowercase : Dict , ): '''simple docstring''' UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase , lowercase ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase )}, but is" f" {type(lowercase )}" ) UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase ) , self.offset - 1 ) ] if len(set(lowercase ) ) != len(lowercase ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) UpperCAmelCase = additional_special_tokens_extended else: UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( lowercase , tokenizer_file=lowercase , pad_token=lowercase , eos_token=lowercase , unk_token=lowercase , mask_token=lowercase , mask_token_sent=lowercase , offset=lowercase , additional_special_tokens=lowercase , **lowercase , ) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def A ( self : List[Any] , lowercase : List , lowercase : Optional[List] = None , lowercase : bool = False ): '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowercase ) elif token_ids_a is None: return self._special_token_mask(lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def A ( self : List[str] , lowercase : Union[str, Any] , lowercase : List[Any]=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def A ( self : Optional[int] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase = os.path.join( lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ): copyfile(self.vocab_file , lowercase ) return (out_vocab_file,)
34
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version A =logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') A ={ 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization A ={ 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } A =sorted(arg_to_scheduler.keys()) A ='{' + ', '.join(arg_to_scheduler_choices) + '}' class _a ( pl.LightningModule ): def __init__( self : List[str] , lowercase : argparse.Namespace , lowercase : List[Any]=None , lowercase : Dict="base" , lowercase : Optional[int]=None , lowercase : Dict=None , lowercase : Tuple=None , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowercase ) UpperCAmelCase = 0 UpperCAmelCase = Path(self.hparams.output_dir ) UpperCAmelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCAmelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=lowercase , **lowercase , ) else: UpperCAmelCase = config UpperCAmelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams , lowercase , lowercase ): assert hasattr(self.config , lowercase ), f"model config doesn't have a `{p}` attribute" setattr(self.config , lowercase , getattr(self.hparams , lowercase ) ) if tokenizer is None: UpperCAmelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowercase , ) else: UpperCAmelCase = tokenizer UpperCAmelCase = MODEL_MODES[mode] if model is None: UpperCAmelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=lowercase , ) else: UpperCAmelCase = model def A ( self : List[Any] , *lowercase : List[str] , **lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_type.from_pretrained(*lowercase , **lowercase ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = arg_to_scheduler[self.hparams.lr_scheduler] UpperCAmelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCAmelCase = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def A ( self : str ): '''simple docstring''' UpperCAmelCase = self.model UpperCAmelCase = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: UpperCAmelCase = Adafactor( lowercase , lr=self.hparams.learning_rate , scale_parameter=lowercase , relative_step=lowercase ) else: UpperCAmelCase = AdamW( lowercase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCAmelCase = optimizer UpperCAmelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def A ( self : List[Any] , lowercase : int , lowercase : List[str] ): '''simple docstring''' return self.validation_step(lowercase , lowercase ) def A ( self : List[Any] , lowercase : Tuple ): '''simple docstring''' return self.validation_end(lowercase ) def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCAmelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def A ( self : List[str] , lowercase : Any ): '''simple docstring''' if stage == "test": UpperCAmelCase = len(self.test_dataloader().dataset ) else: UpperCAmelCase = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=lowercase ) UpperCAmelCase = len(self.train_dataloader().dataset ) def A ( self : List[str] , lowercase : str , lowercase : int , lowercase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def A ( self : Union[str, Any] ): '''simple docstring''' return self.train_loader def A ( self : Optional[Any] ): '''simple docstring''' return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : List[Any] ): '''simple docstring''' return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=lowercase ) def A ( self : Any , lowercase : Union[str, Any] ): '''simple docstring''' return os.path.join( self.hparams.data_dir , '''cached_{}_{}_{}'''.format( lowercase , list(filter(lowercase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def A ( self : List[str] , lowercase : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase = self.output_dir.joinpath('''best_tfmr''' ) UpperCAmelCase = self.step_count self.model.save_pretrained(lowercase ) self.tokenizer.save_pretrained(lowercase ) @staticmethod def A ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' , default=lowercase , type=lowercase , required=lowercase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--config_name''' , default='''''' , type=lowercase , help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' , default=lowercase , type=lowercase , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument( '''--cache_dir''' , default=str(Path(lowercase ).parent / '''test_run''' / '''cache''' ) , type=lowercase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , ) parser.add_argument( '''--encoder_layerdrop''' , type=lowercase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--decoder_layerdrop''' , type=lowercase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--dropout''' , type=lowercase , help='''Dropout probability (Optional). Goes into model.config''' , ) parser.add_argument( '''--attention_dropout''' , type=lowercase , help='''Attention dropout probability (Optional). Goes into model.config''' , ) parser.add_argument('''--learning_rate''' , default=5E-5 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' , default='''linear''' , choices=lowercase , metavar=lowercase , type=lowercase , help='''Learning rate scheduler''' , ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-8 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' , default=0 , type=lowercase , help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' , default=4 , type=lowercase , help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=lowercase ) parser.add_argument('''--train_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--eval_batch_size''' , default=32 , type=lowercase ) parser.add_argument('''--adafactor''' , action='''store_true''' ) class _a ( pl.Callback ): def A ( self : Dict , lowercase : Optional[Any] , lowercase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowercase ) class _a ( pl.Callback ): def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase = {f"lr_group_{i}": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(lowercase ) def A ( self : Tuple , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log results for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def A ( self : Dict , lowercase : pl.Trainer , lowercase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) UpperCAmelCase = trainer.callback_metrics # Log and save results to file UpperCAmelCase = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' ) with open(lowercase , '''w''' ) as writer: for key in sorted(lowercase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(lowercase , str(metrics[key] ) ) ) def snake_case_ (_a : int , _a : Optional[Any] ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '''--output_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''model_checkpoints''' ) , type=_a , help='''The output directory where the model predictions and checkpoints will be written.''' , ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_a , default='''O2''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_tpu_cores''' , dest='''tpu_cores''' , type=_a ) parser.add_argument('''--max_grad_norm''' , dest='''gradient_clip_val''' , default=1.0 , type=_a , help='''Max gradient norm''' ) parser.add_argument('''--do_train''' , action='''store_true''' , help='''Whether to run training.''' ) parser.add_argument('''--do_predict''' , action='''store_true''' , help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''' , dest='''accumulate_grad_batches''' , type=_a , default=1 , help='''Number of updates steps to accumulate before performing a backward/update pass.''' , ) parser.add_argument('''--seed''' , type=_a , default=4_2 , help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''' , default=str(Path(_a ).parent / '''test_run''' / '''dummy-train-data''' ) , type=_a , help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''' , ) def snake_case_ (_a : BaseTransformer , _a : argparse.Namespace , _a : List[Any]=None , _a : Tuple=True , _a : int=[] , _a : Any=None , _a : int=None , **_a : Optional[Any] , ): pl.seed_everything(args.seed ) # init model UpperCAmelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_a ) # add custom checkpoints if checkpoint_callback is None: UpperCAmelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='''checkpoint''' , monitor='''val_loss''' , mode='''min''' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_a ) if logging_callback is None: UpperCAmelCase = LoggingCallback() UpperCAmelCase = {} if args.fpaa: UpperCAmelCase = 1_6 if args.gpus > 1: UpperCAmelCase = '''auto''' UpperCAmelCase = '''ddp''' UpperCAmelCase = args.accumulate_grad_batches UpperCAmelCase = None UpperCAmelCase = '''auto''' UpperCAmelCase = pl.Trainer.from_argparse_args( _a , weights_summary=_a , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=_a , val_check_interval=1 , num_sanity_val_steps=2 , **_a , ) if args.do_train: trainer.fit(_a ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
34
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = """▁""" __lowerCAmelCase = {"""vocab_file""": """sentencepiece.bpe.model"""} __lowerCAmelCase = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } __lowerCAmelCase = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" __UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple ,_a : str ,_a : Any="<s>" ,_a : Optional[Any]="</s>" ,_a : Union[str, Any]="</s>" ,_a : Union[str, Any]="<s>" ,_a : Optional[int]="<unk>" ,_a : Union[str, Any]="<pad>" ,_a : int="<mask>" ,_a : Optional[Dict[str, Any]] = None ,**_a : int ,): '''simple docstring''' _a : Optional[int] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token _a : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,cls_token=_a ,pad_token=_a ,mask_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) _a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _a : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _a : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _a : List[str] = 1 _a : Tuple = len(self.sp_model ) + self.fairseq_offset _a : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ): '''simple docstring''' _a : List[Any] = self.__dict__.copy() _a : Optional[Any] = None _a : Dict = self.sp_model.serialized_model_proto() return state def __setstate__( self : Any ,_a : int ): '''simple docstring''' _a : Optional[Any] = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _a : str = {} _a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __lowercase ( self : List[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a : List[str] = [self.cls_token_id] _a : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowercase ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def __lowercase ( self : Any ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' _a : List[Any] = [self.sep_token_id] _a : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def __lowercase ( self : int ): '''simple docstring''' _a : Union[str, Any] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowercase ( self : Tuple ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def __lowercase ( self : Optional[int] ,_a : Dict ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a : Optional[Any] = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowercase ( self : List[str] ,_a : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowercase ( self : Dict ,_a : Union[str, Any] ): '''simple docstring''' _a : Dict = ''.join(_a ).replace(_a ,' ' ).strip() return out_string def __lowercase ( self : Any ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : Any = os.path.join( _a ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,'wb' ) as fi: _a : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
355
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ = None, ) -> List[str]: __UpperCAmelCase : Dict = {} if train_file is not None: __UpperCAmelCase : Dict = [train_file] if eval_file is not None: __UpperCAmelCase : Union[str, Any] = [eval_file] if test_file is not None: __UpperCAmelCase : Any = [test_file] __UpperCAmelCase : List[str] = datasets.load_dataset("csv", data_files=snake_case__ ) __UpperCAmelCase : Dict = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase : Union[str, Any] = features_name.pop(snake_case__ ) __UpperCAmelCase : Tuple = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase : List[Any] = {label: i for i, label in enumerate(snake_case__ )} __UpperCAmelCase : Optional[Any] = tokenizer.model_input_names __UpperCAmelCase : str = {} if len(snake_case__ ) == 1: for k in files.keys(): __UpperCAmelCase : Optional[int] = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( example[features_name[0]], truncation=snake_case__, max_length=snake_case__, padding="max_length" ), batched=snake_case__, ) elif len(snake_case__ ) == 2: for k in files.keys(): __UpperCAmelCase : Dict = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=snake_case__, max_length=snake_case__, padding="max_length", ), batched=snake_case__, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase : Any = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase : Optional[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase : str = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase : Any = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase : str = ( tf.data.Dataset.from_generator( snake_case__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase : Dict = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase : List[Any] = ( tf.data.Dataset.from_generator( snake_case__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase : str = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase : List[str] = ( tf.data.Dataset.from_generator( snake_case__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase : Optional[int] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _snake_case = logging.getLogger(__name__) @dataclass class _snake_case : lowerCamelCase__: str = field(metadata={"help": "Which column contains the label"} ) lowerCamelCase__: Tuple = field(default=lowerCamelCase_ , metadata={"help": "The path of the training file"} ) lowerCamelCase__: Dict = field(default=lowerCamelCase_ , metadata={"help": "The path of the development file"} ) lowerCamelCase__: str = field(default=lowerCamelCase_ , metadata={"help": "The path of the test file"} ) lowerCamelCase__: Tuple = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase__: Union[str, Any] = field( default=lowerCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _snake_case : lowerCamelCase__: Any = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase__: str = field( default=lowerCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase__: List[str] = field( default=lowerCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase__: Optional[int] = field(default=lowerCamelCase_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase__: Dict = field( default=lowerCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def _UpperCamelCase ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=snake_case__, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) __UpperCAmelCase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(snake_case__ ), labelaid=snake_case__, idalabel={id: label for label, id in labelaid.items()}, finetuning_task="text-classification", cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): __UpperCAmelCase : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool(".bin" in model_args.model_name_or_path ), config=snake_case__, cache_dir=model_args.cache_dir, ) def compute_metrics(snake_case__ ) -> Dict: __UpperCAmelCase : List[str] = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase : Any = TFTrainer( model=snake_case__, args=snake_case__, train_dataset=snake_case__, eval_dataset=snake_case__, compute_metrics=snake_case__, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase : Tuple = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : Optional[int] = trainer.evaluate() __UpperCAmelCase : Any = os.path.join(training_args.output_dir, "eval_results.txt" ) with open(snake_case__, "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(snake_case__ ) return results if __name__ == "__main__": main()
157
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> bool: if num < 0: return False _a = num _a = 0 while num > 0: _a = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
63
0
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = """hf-internal-testing/tiny-random-t5""" lowerCamelCase = AutoTokenizer.from_pretrained(A ) lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A ) lowerCamelCase = tokenizer("""This is me""" , return_tensors="""pt""" ) lowerCamelCase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCamelCase = model.generate(**A ) lowerCamelCase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCamelCase = model_reloaded.generate(**A ) self.assertTrue(torch.allclose(A , A ) ) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = """hf-internal-testing/tiny-random-t5""" lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(A ) lowerCamelCase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(A ): model.save_pretrained(A ) lowerCamelCase = model.reverse_bettertransformer() model.save_pretrained(A )
66
import math import tensorflow as tf from packaging import version def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(math.pi , x.dtype ) lowerCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__ , 3 )) )) return x * cdf def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCamelCase = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return tf.clip_by_value(_gelu(lowerCamelCase__ ) , -10 , 10 ) def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int]=-1 ): '''simple docstring''' lowerCamelCase , lowerCamelCase = tf.split(lowerCamelCase__ , 2 , axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return tf.keras.activations.gelu(lowerCamelCase__ , approximate=lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = tf.keras.activations.gelu UpperCAmelCase : Optional[Any] = approximate_gelu_wrap else: UpperCAmelCase : List[Any] = _gelu UpperCAmelCase : str = _gelu_new UpperCAmelCase : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
66
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __A = logging.get_logger(__name__) def a__ ( __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ) -> Tuple: return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE ) @dataclass class snake_case : SCREAMING_SNAKE_CASE_ : List[str] = list_field( default=[], metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) }, ) SCREAMING_SNAKE_CASE_ : List[int] = list_field( default=[8], metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) SCREAMING_SNAKE_CASE_ : List[int] = list_field( default=[8, 32, 1_28, 5_12], metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""}, ) SCREAMING_SNAKE_CASE_ : bool = field( default=__snake_case, metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""}, ) SCREAMING_SNAKE_CASE_ : bool = field( default=__snake_case, metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""}, ) SCREAMING_SNAKE_CASE_ : bool = field( default=__snake_case, metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) SCREAMING_SNAKE_CASE_ : bool = field(default=__snake_case, metadata={"""help""": """Use FP16 to accelerate inference."""} ) SCREAMING_SNAKE_CASE_ : bool = field(default=__snake_case, metadata={"""help""": """Benchmark training of model"""} ) SCREAMING_SNAKE_CASE_ : bool = field(default=__snake_case, metadata={"""help""": """Verbose memory tracing"""} ) SCREAMING_SNAKE_CASE_ : bool = field( default=__snake_case, metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""}, ) SCREAMING_SNAKE_CASE_ : bool = field( default=__snake_case, metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" }, ) SCREAMING_SNAKE_CASE_ : bool = field(default=__snake_case, metadata={"""help""": """Trace memory line by line"""} ) SCREAMING_SNAKE_CASE_ : bool = field(default=__snake_case, metadata={"""help""": """Save result to a CSV file"""} ) SCREAMING_SNAKE_CASE_ : bool = field(default=__snake_case, metadata={"""help""": """Save all print statements in a log file"""} ) SCREAMING_SNAKE_CASE_ : bool = field(default=__snake_case, metadata={"""help""": """Whether to print environment information"""} ) SCREAMING_SNAKE_CASE_ : bool = field( default=__snake_case, metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) }, ) SCREAMING_SNAKE_CASE_ : str = field( default=F"""inference_time_{round(time() )}.csv""", metadata={"""help""": """CSV filename used if saving time results to csv."""}, ) SCREAMING_SNAKE_CASE_ : str = field( default=F"""inference_memory_{round(time() )}.csv""", metadata={"""help""": """CSV filename used if saving memory results to csv."""}, ) SCREAMING_SNAKE_CASE_ : str = field( default=F"""train_time_{round(time() )}.csv""", metadata={"""help""": """CSV filename used if saving time results to csv for training."""}, ) SCREAMING_SNAKE_CASE_ : str = field( default=F"""train_memory_{round(time() )}.csv""", metadata={"""help""": """CSV filename used if saving memory results to csv for training."""}, ) SCREAMING_SNAKE_CASE_ : str = field( default=F"""env_info_{round(time() )}.csv""", metadata={"""help""": """CSV filename used if saving environment information."""}, ) SCREAMING_SNAKE_CASE_ : str = field( default=F"""log_{round(time() )}.csv""", metadata={"""help""": """Log filename used if print statements are saved in log."""}, ) SCREAMING_SNAKE_CASE_ : int = field(default=3, metadata={"""help""": """Times an experiment will be run."""} ) SCREAMING_SNAKE_CASE_ : bool = field( default=__snake_case, metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) }, ) def lowercase_ ( self : str)-> List[str]: '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , UpperCamelCase__ , ) def lowercase_ ( self : Dict)-> Union[str, Any]: '''simple docstring''' return json.dumps(dataclasses.asdict(self) , indent=2) @property def lowercase_ ( self : Union[str, Any])-> List[str]: '''simple docstring''' if len(self.models) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased'].") return self.models @property def lowercase_ ( self : Dict)-> Any: '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU.") return False else: return True
217
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): def lowercase_ ( self : Optional[int])-> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self : int)-> str: '''simple docstring''' __lowerCAmelCase: str = 1 __lowerCAmelCase: Union[str, Any] = 3 __lowerCAmelCase: Union[str, Any] = (3_2, 3_2) __lowerCAmelCase: Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCamelCase__) return image @property def lowercase_ ( self : Tuple)-> str: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , attention_head_dim=8 , use_linear_projection=UpperCamelCase__ , only_cross_attention=(True, True, False) , num_class_embeds=1_0_0 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: Tuple = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase_ ( self : Any)-> Optional[Any]: '''simple docstring''' torch.manual_seed(0) __lowerCAmelCase: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="gelu" , projection_dim=5_1_2 , ) return CLIPTextModel(UpperCamelCase__) def lowercase_ ( self : List[str])-> Dict: '''simple docstring''' __lowerCAmelCase: Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: int = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: List[str] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Tuple = self.dummy_vae __lowerCAmelCase: Optional[Any] = self.dummy_text_encoder __lowerCAmelCase: Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: List[Any] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Tuple = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Any = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[int] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[str] = output.images __lowerCAmelCase: Union[str, Any] = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: List[str] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , return_dict=UpperCamelCase__ , )[0] __lowerCAmelCase: int = image[0, -3:, -3:, -1] __lowerCAmelCase: Dict = image_from_tuple[0, -3:, -3:, -1] __lowerCAmelCase: Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowerCAmelCase: List[Any] = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def lowercase_ ( self : List[str])-> Optional[Any]: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __lowerCAmelCase: Dict = self.dummy_cond_unet_upscale __lowerCAmelCase: List[str] = DDPMScheduler() __lowerCAmelCase: Union[str, Any] = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Optional[int] = self.dummy_vae __lowerCAmelCase: List[Any] = self.dummy_text_encoder __lowerCAmelCase: Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: str = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # make sure here that pndm scheduler skips prk __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: Optional[int] = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: List[str] = "A painting of a squirrel eating a burger" __lowerCAmelCase: List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 __lowerCAmelCase: Dict = torch.Generator(device=UpperCamelCase__).manual_seed(0) __lowerCAmelCase: Optional[Any] = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=2_0 , num_inference_steps=2 , output_type="np" , ) __lowerCAmelCase: List[Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU") def lowercase_ ( self : Tuple)-> Any: '''simple docstring''' __lowerCAmelCase: Union[str, Any] = self.dummy_cond_unet_upscale __lowerCAmelCase: int = DDPMScheduler() __lowerCAmelCase: int = DDIMScheduler(prediction_type="v_prediction") __lowerCAmelCase: Dict = self.dummy_vae __lowerCAmelCase: int = self.dummy_text_encoder __lowerCAmelCase: List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") __lowerCAmelCase: List[Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1)[0] __lowerCAmelCase: Optional[int] = Image.fromarray(np.uinta(UpperCamelCase__)).convert("RGB").resize((6_4, 6_4)) # put models in fp16, except vae as it overflows in fp16 __lowerCAmelCase: List[Any] = unet.half() __lowerCAmelCase: List[str] = text_encoder.half() # make sure here that pndm scheduler skips prk __lowerCAmelCase: List[Any] = StableDiffusionUpscalePipeline( unet=UpperCamelCase__ , low_res_scheduler=UpperCamelCase__ , scheduler=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , max_noise_level=3_5_0 , ) __lowerCAmelCase: str = sd_pipe.to(UpperCamelCase__) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__) __lowerCAmelCase: Optional[Any] = "A painting of a squirrel eating a burger" __lowerCAmelCase: str = torch.manual_seed(0) __lowerCAmelCase: Dict = sd_pipe( [prompt] , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type="np" , ).images __lowerCAmelCase: Optional[Any] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def lowercase_ ( self : Tuple)-> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : List[Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy") __lowerCAmelCase: str = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(UpperCamelCase__) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: Tuple = "a cat sitting on a park bench" __lowerCAmelCase: int = torch.manual_seed(0) __lowerCAmelCase: List[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 1e-3 def lowercase_ ( self : Optional[int])-> Any: '''simple docstring''' __lowerCAmelCase: Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy") __lowerCAmelCase: Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Tuple = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing() __lowerCAmelCase: str = "a cat sitting on a park bench" __lowerCAmelCase: List[str] = torch.manual_seed(0) __lowerCAmelCase: Optional[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , output_type="np" , ) __lowerCAmelCase: Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image).max() < 5e-1 def lowercase_ ( self : Optional[int])-> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCAmelCase: Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png") __lowerCAmelCase: Union[str, Any] = "stabilityai/stable-diffusion-x4-upscaler" __lowerCAmelCase: Any = StableDiffusionUpscalePipeline.from_pretrained( UpperCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(UpperCamelCase__) pipe.set_progress_bar_config(disable=UpperCamelCase__) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() __lowerCAmelCase: int = "a cat sitting on a park bench" __lowerCAmelCase: Dict = torch.manual_seed(0) __lowerCAmelCase: Dict = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , output_type="np" , ) __lowerCAmelCase: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 1_0**9
217
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : List[Any] = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Dict ="""markuplm""" def __init__( self , lowerCAmelCase__=3_0522 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=256 , lowerCAmelCase__=1024 , lowerCAmelCase__=216 , lowerCAmelCase__=1001 , lowerCAmelCase__=32 , lowerCAmelCase__=50 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[int]: super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) a : Union[str, Any] = vocab_size a : Optional[Any] = hidden_size a : str = num_hidden_layers a : List[str] = num_attention_heads a : Union[str, Any] = hidden_act a : Optional[Any] = intermediate_size a : List[str] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : str = max_position_embeddings a : Any = type_vocab_size a : Optional[Any] = initializer_range a : Any = layer_norm_eps a : Tuple = position_embedding_type a : Tuple = use_cache a : Optional[Any] = classifier_dropout # additional properties a : Tuple = max_depth a : Optional[Any] = max_xpath_tag_unit_embeddings a : int = max_xpath_subs_unit_embeddings a : List[Any] = tag_pad_id a : Union[str, Any] = subs_pad_id a : Dict = xpath_unit_hidden_size
79
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a : Optional[int] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Union[str, Any] ="""albert""" def __init__( self , lowerCAmelCase__=3_0000 , lowerCAmelCase__=128 , lowerCAmelCase__=4096 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=64 , lowerCAmelCase__=1_6384 , lowerCAmelCase__=1 , lowerCAmelCase__="gelu_new" , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=512 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0.1 , lowerCAmelCase__="absolute" , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , **lowerCAmelCase__ , ) -> List[str]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) a : str = vocab_size a : Optional[Any] = embedding_size a : List[str] = hidden_size a : Optional[int] = num_hidden_layers a : Optional[Any] = num_hidden_groups a : str = num_attention_heads a : Optional[int] = inner_group_num a : List[Any] = hidden_act a : str = intermediate_size a : List[Any] = hidden_dropout_prob a : int = attention_probs_dropout_prob a : Tuple = max_position_embeddings a : Optional[int] = type_vocab_size a : str = initializer_range a : int = layer_norm_eps a : List[str] = classifier_dropout_prob a : int = position_embedding_type class __UpperCamelCase ( a__ ): @property def __a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a : str = {0: "batch", 1: "choice", 2: "sequence"} else: a : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
79
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase__ ( UpperCamelCase__ = "laptop" ): '''simple docstring''' _a : str = F"""https://www.amazon.in/laptop/s?k={product}""" _a : Union[str, Any] = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _a : List[str] = BeautifulSoup(requests.get(__snake_case , headers=__snake_case ).text ) # Initialize a Pandas dataframe with the column titles _a : Dict = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: _a : Any = item.ha.text _a : Union[str, Any] = "https://www.amazon.in/" + item.ha.a["href"] _a : Any = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: _a : Union[str, Any] = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: _a : Optional[Any] = "Not available" try: _a : Union[str, Any] = ( "₹" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: _a : Dict = "" try: _a : str = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 1_0_0 ) except ValueError: _a : List[str] = float("""nan""" ) except AttributeError: pass _a : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a : Union[str, Any] = " " _a : Union[str, Any] = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = 'headphones' get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
294
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowercase ( __snake_case ) -> List[str]: if isinstance(__snake_case ,collections.abc.Iterable ): return x return (x, x) @require_flax class A__ : '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[Any]) -> str: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: List[str]) -> Tuple: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: float) -> List[Any]: """simple docstring""" __lowerCAmelCase : str = np.abs((a - b)).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F"""Difference between torch and flax is {diff} (>= {tol}).""") def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: Tuple) -> List[str]: """simple docstring""" __lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim)) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=None , **_SCREAMING_SNAKE_CASE: List[str]) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim)) def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None , **_SCREAMING_SNAKE_CASE: Tuple) -> str: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = after_output[0] __lowerCAmelCase : Any = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Any = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} __lowerCAmelCase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCAmelCase : List[str] = to_atuple(vision_model.config.image_size) __lowerCAmelCase : Any = to_atuple(vision_model.config.patch_size) __lowerCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __lowerCAmelCase : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __lowerCAmelCase : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int) -> str: """simple docstring""" pt_model.to(_SCREAMING_SNAKE_CASE) pt_model.eval() # prepare inputs __lowerCAmelCase : Union[str, Any] = inputs_dict __lowerCAmelCase : Union[str, Any] = {k: torch.tensor(v.tolist()) for k, v in flax_inputs.items()} with torch.no_grad(): __lowerCAmelCase : Any = pt_model(**_SCREAMING_SNAKE_CASE).to_tuple() __lowerCAmelCase : List[Any] = fx_model(**_SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(_SCREAMING_SNAKE_CASE) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4]): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = fx_model_loaded(**_SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(_SCREAMING_SNAKE_CASE) , "Output lengths differ between Flax and PyTorch") for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4]): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE) pt_model_loaded.to(_SCREAMING_SNAKE_CASE) pt_model_loaded.eval() with torch.no_grad(): __lowerCAmelCase : Optional[Any] = pt_model_loaded(**_SCREAMING_SNAKE_CASE).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE) , len(_SCREAMING_SNAKE_CASE) , "Output lengths differ between Flax and PyTorch") for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4]): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4e-2) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = fx_state self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params) self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> str: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Dict = self.prepare_config_and_inputs() self.check_save_load(**_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int) -> Dict: """simple docstring""" __lowerCAmelCase : List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_SCREAMING_SNAKE_CASE) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : Dict = self.prepare_config_and_inputs() __lowerCAmelCase : List[Any] = config_inputs_dict.pop("vision_config") __lowerCAmelCase : str = config_inputs_dict.pop("text_config") __lowerCAmelCase : Union[str, Any] = config_inputs_dict self.check_equivalence_pt_to_flax(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.check_equivalence_flax_to_pt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) @slow def _SCREAMING_SNAKE_CASE ( self: str) -> Dict: """simple docstring""" __lowerCAmelCase , __lowerCAmelCase : Dict = self.get_pretrained_model_and_inputs() __lowerCAmelCase : Union[str, Any] = model_a(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = model_a(**_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = after_outputs[0] __lowerCAmelCase : List[Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5) @require_flax class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-bert" , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = 13 __lowerCAmelCase : Optional[int] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __lowerCAmelCase : List[Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4]) __lowerCAmelCase : str = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = FlaxViTModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = FlaxBertModel(_SCREAMING_SNAKE_CASE) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" __lowerCAmelCase : List[Any] = FlaxViTModelTester(self) __lowerCAmelCase : Optional[Any] = FlaxBertModelTester(self) __lowerCAmelCase : int = vit_model_tester.prepare_config_and_inputs() __lowerCAmelCase : List[str] = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase : Tuple = vision_config_and_inputs __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Dict) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-clip" , "hf-internal-testing/tiny-bert" , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = 13 __lowerCAmelCase : List[str] = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ]) __lowerCAmelCase : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size) __lowerCAmelCase : str = random_attention_mask([batch_size, 4]) __lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> int: """simple docstring""" __lowerCAmelCase : int = FlaxCLIPVisionModel(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[str] = FlaxBertModel(_SCREAMING_SNAKE_CASE) return vision_model, text_model def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = FlaxCLIPVisionModelTester(self) __lowerCAmelCase : str = FlaxBertModelTester(self) __lowerCAmelCase : Optional[Any] = clip_model_tester.prepare_config_and_inputs() __lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase : Any = vision_config_and_inputs __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class A__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self: List[str]) -> List[str]: """simple docstring""" __lowerCAmelCase : Dict = FlaxVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian" , logit_scale_init_value=1.0) __lowerCAmelCase : str = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian") __lowerCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") __lowerCAmelCase : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np") __lowerCAmelCase : List[str] = model(**_SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __lowerCAmelCase : List[str] = np.array([[1.228_4727, 0.310_4122]]) self.assertTrue(np.allclose(outputs.logits_per_image , _SCREAMING_SNAKE_CASE , atol=1e-3))
269
0
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCAmelCase_ = 5_0003 UpperCAmelCase_ = 5_0002 @require_sentencepiece @require_tokenizers class lowercase__ ( A__ , unittest.TestCase ): '''simple docstring''' a : Dict = PLBartTokenizer a : Any = None a : List[Any] = False def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ : List[str] = PLBartTokenizer(__A, language_codes='''base''', keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Tuple = PLBartTokenizer(__A, language_codes='''base''', keep_accents=__A ) UpperCamelCase__ : int = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__A, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) UpperCamelCase__ : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) UpperCamelCase__ : str = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) UpperCamelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) UpperCamelCase__ : Optional[int] = tokenizer.vocab_size UpperCamelCase__ : List[Any] = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 4, __A )] self.assertListEqual(__A, ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) UpperCamelCase__ : Tuple = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" UpperCamelCase__ : int = tokenizer(__A ).input_ids self.assertEqual( tokenizer.decode(__A, skip_special_tokens=__A, clean_up_tokenization_spaces=__A ), __A, ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : str = PLBartTokenizer(__A, language_codes='''multi''', keep_accents=__A ) UpperCamelCase__ : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__A, ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ), [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]], ) UpperCamelCase__ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ], ) UpperCamelCase__ : Tuple = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) UpperCamelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A, [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ], ) UpperCamelCase__ : Optional[int] = tokenizer.vocab_size UpperCamelCase__ : Optional[int] = [tokenizer.convert_ids_to_tokens(__A ) for x in range(end - 7, __A )] self.assertListEqual( __A, ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) UpperCamelCase__ : Optional[int] = """java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" UpperCamelCase__ : str = tokenizer(__A ).input_ids self.assertEqual( tokenizer.decode(__A, skip_special_tokens=__A, clean_up_tokenization_spaces=__A ), __A, ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = "uclanlp/plbart-python-en_XX" a : Any = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] a : Any = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] a : Any = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def UpperCamelCase__ ( cls ) -> str: """simple docstring""" UpperCamelCase__ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name, language_codes='''base''', src_lang='''python''', tgt_lang='''en_XX''' ) UpperCamelCase__ : Optional[int] = 1 return cls def UpperCamelCase__ ( self ) -> Any: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''], 50001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''], 50002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''], 50003 ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, __A ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" self.assertIn(__A, self.tokenizer.all_special_ids ) UpperCamelCase__ : Optional[Any] = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] UpperCamelCase__ : List[str] = self.tokenizer.decode(__A, skip_special_tokens=__A ) UpperCamelCase__ : List[str] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=__A ) self.assertEqual(__A, __A ) self.assertNotIn(self.tokenizer.eos_token, __A ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" UpperCamelCase__ : Union[str, Any] = ["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0], __A ) UpperCamelCase__ : Any = 10 UpperCamelCase__ : Any = self.tokenizer(__A, max_length=__A, truncation=__A ).input_ids[0] self.assertEqual(ids[-2], 2 ) self.assertEqual(ids[-1], __A ) self.assertEqual(len(__A ), __A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ), [50004, 50001] ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" UpperCamelCase__ : Tuple = tempfile.mkdtemp() UpperCamelCase__ : str = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__A ) UpperCamelCase__ : Union[str, Any] = PLBartTokenizer.from_pretrained(__A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, __A ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[Any] = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=__A, return_tensors='''pt''' ) UpperCamelCase__ : str = shift_tokens_right(batch['''labels'''], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist(), [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0], __A ) self.assertEqual(batch.decoder_input_ids[1][-1], 2 ) self.assertEqual(batch.labels[1][-2:].tolist(), [2, EN_CODE] ) @require_torch def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=__A, truncation=__A, max_length=len(self.expected_src_tokens ), return_tensors='''pt''', ) UpperCamelCase__ : Any = shift_tokens_right(batch['''labels'''], self.tokenizer.pad_token_id ) self.assertIsInstance(__A, __A ) self.assertEqual((2, 26), batch.input_ids.shape ) self.assertEqual((2, 26), batch.attention_mask.shape ) UpperCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, __A ) self.assertEqual(2, batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id, PYTHON_CODE] ) def UpperCamelCase__ ( self ) -> Tuple: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.tokenizer(self.src_text, padding=__A, truncation=__A, max_length=3, return_tensors='''pt''' ) UpperCamelCase__ : int = self.tokenizer( text_target=self.tgt_text, padding=__A, truncation=__A, max_length=10, return_tensors='''pt''' ) UpperCamelCase__ : Dict = targets["""input_ids"""] UpperCamelCase__ : Tuple = shift_tokens_right(__A, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = self.tokenizer._build_translation_inputs( '''A test''', return_tensors='''pt''', src_lang='''en_XX''', tgt_lang='''java''' ) self.assertEqual( nested_simplify(__A ), { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50001, }, )
351
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__ : '''simple docstring''' def __init__( self, __magic_name__, __magic_name__=13, __magic_name__=32, __magic_name__=3, __magic_name__=4, __magic_name__=[10, 20, 30, 40], __magic_name__=[2, 2, 3, 2], __magic_name__=True, __magic_name__=True, __magic_name__=37, __magic_name__="gelu", __magic_name__=10, __magic_name__=0.02, __magic_name__=["stage2", "stage3", "stage4"], __magic_name__=3, __magic_name__=None, ) -> str: """simple docstring""" UpperCamelCase__ : List[Any] = parent UpperCamelCase__ : Tuple = batch_size UpperCamelCase__ : Tuple = image_size UpperCamelCase__ : Optional[int] = num_channels UpperCamelCase__ : int = num_stages UpperCamelCase__ : Union[str, Any] = hidden_sizes UpperCamelCase__ : str = depths UpperCamelCase__ : str = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : Optional[Any] = type_sequence_label_size UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : str = out_features UpperCamelCase__ : Union[str, Any] = num_labels UpperCamelCase__ : Dict = scope UpperCamelCase__ : List[str] = num_stages def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : Dict = None if self.use_labels: UpperCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCamelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def UpperCamelCase__ ( self ) -> str: """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=__magic_name__, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=__magic_name__, loss_ignore_index=255, num_labels=self.num_labels, ) def UpperCamelCase__ ( self, __magic_name__, __magic_name__, __magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] = UperNetForSemanticSegmentation(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCamelCase__ : Any = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) ,( UpperCamelCase__ ) ,( UpperCamelCase__ ) , ) : List[Any] = config_and_inputs UpperCamelCase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' a : Union[str, Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else () a : List[str] = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} a : Union[str, Any] = False a : Tuple = False a : int = False a : List[str] = False a : Union[str, Any] = False a : str = False def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = UperNetModelTester(self ) UpperCamelCase__ : List[str] = ConfigTester(self, config_class=__magic_name__, has_text_modality=__magic_name__, hidden_size=37 ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self ) -> str: """simple docstring""" return def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(__magic_name__ ) UpperCamelCase__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : List[Any] = [*signature.parameters.keys()] UpperCamelCase__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __magic_name__ ) def UpperCamelCase__ ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def UpperCamelCase__ ( self ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCamelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ): UpperCamelCase__ : Any = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): UpperCamelCase__ : Optional[int] = model(**self._prepare_for_class(__magic_name__, __magic_name__ ) ) UpperCamelCase__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : Any = self.model_tester.num_stages self.assertEqual(len(__magic_name__ ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) UpperCamelCase__ ,UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : str = True check_hidden_states_output(__magic_name__, __magic_name__, __magic_name__ ) def UpperCamelCase__ ( self ) -> Any: """simple docstring""" UpperCamelCase__ ,UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Union[str, Any] = _config_zero_init(__magic_name__ ) UpperCamelCase__ : Union[str, Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCamelCase__ : Optional[int] = model_class(config=__magic_name__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass @slow def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : int = UperNetForSemanticSegmentation.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowerCAmelCase_ ( ) -> int: UpperCamelCase__ : Tuple = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) UpperCamelCase__ : str = Image.open(__UpperCAmelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ) -> int: """simple docstring""" UpperCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) UpperCamelCase__ : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(__magic_name__ ) UpperCamelCase__ : Any = prepare_img() UpperCamelCase__ : List[Any] = processor(images=__magic_name__, return_tensors='''pt''' ).to(__magic_name__ ) with torch.no_grad(): UpperCamelCase__ : Optional[int] = model(**__magic_name__ ) UpperCamelCase__ : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : int = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], __magic_name__, atol=1E-4 ) ) def UpperCamelCase__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase__ : Any = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) UpperCamelCase__ : Dict = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(__magic_name__ ) UpperCamelCase__ : str = prepare_img() UpperCamelCase__ : int = processor(images=__magic_name__, return_tensors='''pt''' ).to(__magic_name__ ) with torch.no_grad(): UpperCamelCase__ : Dict = model(**__magic_name__ ) UpperCamelCase__ : Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, __magic_name__ ) UpperCamelCase__ : Tuple = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], __magic_name__, atol=1E-4 ) )
247
0
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __snake_case ( __UpperCamelCase : Optional[Any] ): # picklable for multiprocessing """simple docstring""" return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __snake_case ( ): """simple docstring""" with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" A_ = [1, 2, 3] with pytest.raises(__UpperCamelCase ): with parallel_backend("unsupported backend" ): map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=2 ) with pytest.raises(__UpperCamelCase ): with parallel_backend("unsupported backend" ): map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" ,[2, -1] ) def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa assert map_nested(__UpperCamelCase ,__UpperCamelCase ,num_proc=__UpperCamelCase ) == expected_map_nested_sa
312
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Dict , UpperCAmelCase : int = 768 , ): super().__init__() A_ = nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) A_ = nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def __A ( self : str , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ): A_ = nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) A_ = nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = (embeds - self.mean) * 1.0 / self.std return embeds def __A ( self : int , UpperCAmelCase : int ): A_ = (embeds * self.std) + self.mean return embeds
312
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ['image_processor', 'feature_extractor'] __SCREAMING_SNAKE_CASE : Union[str, Any] = 'TvltImageProcessor' __SCREAMING_SNAKE_CASE : List[str] = 'TvltFeatureExtractor' def __init__( self : Tuple , A : Optional[int] , A : List[str] ): super().__init__(image_processor=A , feature_extractor=A ) _UpperCAmelCase : Any = image_processor _UpperCAmelCase : List[str] = feature_extractor def __call__( self : Optional[int] , A : Optional[Any]=None , A : Any=None , A : Optional[Any]=None , A : Optional[Any]=None , A : List[str]=False , A : Optional[Any]=False , *A : Optional[Any] , **A : Optional[int] , ): if images is None and audio is None: raise ValueError("You need to specify either an `images` or `audio` input to process." ) _UpperCAmelCase : List[Any] = None if images is not None: _UpperCAmelCase : str = self.image_processor(A , mask_pixel=A , *A , **A ) if images_mixed is not None: _UpperCAmelCase : Tuple = self.image_processor(A , is_mixed=A , *A , **A ) if audio is not None: _UpperCAmelCase : Optional[Any] = self.feature_extractor( A , *A , sampling_rate=A , mask_audio=A , **A ) _UpperCAmelCase : Any = {} if audio is not None: output_dict.update(A ) if images is not None: output_dict.update(A ) if images_mixed_dict is not None: output_dict.update(A ) return output_dict @property def snake_case_ ( self : Optional[Any] ): _UpperCAmelCase : Union[str, Any] = self.image_processor.model_input_names _UpperCAmelCase : Optional[int] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
202
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : int = 'owlvit_text_model' def __init__( self : int , A : int=4_9_4_0_8 , A : Optional[Any]=5_1_2 , A : Optional[Any]=2_0_4_8 , A : str=1_2 , A : int=8 , A : Tuple=1_6 , A : List[Any]="quick_gelu" , A : Tuple=1e-5 , A : Union[str, Any]=0.0 , A : List[Any]=0.02 , A : str=1.0 , A : str=0 , A : List[str]=4_9_4_0_6 , A : str=4_9_4_0_7 , **A : Optional[Any] , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : Tuple = layer_norm_eps _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : List[Any] = initializer_factor @classmethod def snake_case_ ( cls : Any , A : Union[str, os.PathLike] , **A : Dict ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : int = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'owlvit_vision_model' def __init__( self : Union[str, Any] , A : Optional[int]=7_6_8 , A : int=3_0_7_2 , A : List[str]=1_2 , A : List[str]=1_2 , A : Optional[int]=3 , A : Optional[int]=7_6_8 , A : str=3_2 , A : Tuple="quick_gelu" , A : Dict=1e-5 , A : Optional[int]=0.0 , A : List[Any]=0.02 , A : str=1.0 , **A : Tuple , ): super().__init__(**A ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Dict = num_attention_heads _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : Any = attention_dropout _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Tuple = initializer_factor @classmethod def snake_case_ ( cls : Optional[int] , A : Union[str, os.PathLike] , **A : int ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get("model_type" ) == "owlvit": _UpperCAmelCase : Tuple = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = 'owlvit' __SCREAMING_SNAKE_CASE : Optional[Any] = True def __init__( self : Optional[Any] , A : Dict=None , A : Tuple=None , A : Optional[Any]=5_1_2 , A : Optional[Any]=2.6_592 , A : int=True , **A : Tuple , ): super().__init__(**A ) if text_config is None: _UpperCAmelCase : List[Any] = {} logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." ) if vision_config is None: _UpperCAmelCase : Tuple = {} logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." ) _UpperCAmelCase : str = OwlViTTextConfig(**A ) _UpperCAmelCase : int = OwlViTVisionConfig(**A ) _UpperCAmelCase : Optional[Any] = projection_dim _UpperCAmelCase : str = logit_scale_init_value _UpperCAmelCase : Optional[Any] = return_dict _UpperCAmelCase : str = 1.0 @classmethod def snake_case_ ( cls : Dict , A : Union[str, os.PathLike] , **A : Any ): cls._set_token_in_kwargs(A ) _UpperCAmelCase , _UpperCAmelCase : str = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A , **A ) @classmethod def snake_case_ ( cls : Optional[int] , A : Dict , A : Dict , **A : Optional[Any] ): _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : int = text_config _UpperCAmelCase : Dict = vision_config return cls.from_dict(A , **A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.text_config.to_dict() _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _UpperCamelCase ): @property def snake_case_ ( self : List[str] ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def snake_case_ ( self : Optional[int] ): return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def snake_case_ ( self : str ): return 1e-4 def snake_case_ ( self : str , A : "ProcessorMixin" , A : int = -1 , A : int = -1 , A : Optional["TensorType"] = None , ): _UpperCAmelCase : Optional[Any] = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _UpperCAmelCase : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def snake_case_ ( self : List[Any] ): return 1_4
202
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { """caidas/swin2sr-classicalsr-x2-64""": ( """https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = """swin2sr""" __lowerCAmelCase = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[int] , lowerCamelCase_ : Tuple=64 , lowerCamelCase_ : Union[str, Any]=1 , lowerCamelCase_ : Optional[Any]=3 , lowerCamelCase_ : Union[str, Any]=180 , lowerCamelCase_ : List[str]=[6, 6, 6, 6, 6, 6] , lowerCamelCase_ : Dict=[6, 6, 6, 6, 6, 6] , lowerCamelCase_ : Optional[int]=8 , lowerCamelCase_ : Optional[int]=2.0 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Union[str, Any]=0.0 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : Tuple="gelu" , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=0.0_2 , lowerCamelCase_ : int=1E-5 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Dict=1.0 , lowerCamelCase_ : Union[str, Any]="1conv" , lowerCamelCase_ : Optional[Any]="pixelshuffle" , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = upscale UpperCamelCase = img_range UpperCamelCase = resi_connection UpperCamelCase = upsampler
343
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(UpperCamelCase_ ) if not _is_chinese_char(UpperCamelCase_ ): return 0 return 1 def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() for token in tokens: UpperCamelCase = len(UpperCamelCase_ ) > 1 and is_chinese(UpperCamelCase_ ) if chinese_word: word_set.add(UpperCamelCase_ ) UpperCamelCase = list(UpperCamelCase_ ) return word_list def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(UpperCamelCase_ ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(UpperCamelCase_ ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , UpperCamelCase_ ) for i in range(UpperCamelCase_ , 1 , -1 ): UpperCamelCase = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = """##""" + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(UpperCamelCase_ ) for r in res] ltp_res.extend(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for i in range(0 , len(UpperCamelCase_ ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=UpperCamelCase_ , truncation=UpperCamelCase_ , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) UpperCamelCase = [] for input_ids, chinese_word in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(UpperCamelCase_ ) input_tokens.append(UpperCamelCase_ ) UpperCamelCase = add_sub_symbol(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCamelCase_ ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(UpperCamelCase_ ) == 1 and _is_chinese_char(ord(UpperCamelCase_ ) ): ref_id.append(UpperCamelCase_ ) ref_ids.append(UpperCamelCase_ ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) return ref_ids def lowercase( UpperCamelCase_ ) -> List[Any]: '''simple docstring''' # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(UpperCamelCase_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase = [json.dumps(UpperCamelCase_ ) + """\n""" for ref in ref_ids] f.writelines(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""prepare_chinese_ref""") parser.add_argument( """--file_name""", type=str, default="""./resources/chinese-demo.txt""", help="""file need process, same as training data in lm""", ) parser.add_argument( """--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path""" ) parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""") parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""") _SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
343
1
_UpperCAmelCase : Any = 256 # Modulus to hash a string _UpperCAmelCase : str = 100_0003 def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = len(UpperCamelCase__ ) snake_case_ = len(UpperCamelCase__ ) if p_len > t_len: return False snake_case_ = 0 snake_case_ = 0 snake_case_ = 1 # Calculating the hash of pattern and substring of text for i in range(UpperCamelCase__ ): snake_case_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case_ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case_ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = 'abc1abc12' snake_case_ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case_ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) and not rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) # Test 2) snake_case_ = 'ABABX' snake_case_ = 'ABABZABABYABABX' assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) # Test 3) snake_case_ = 'AAAB' snake_case_ = 'ABAAAAAB' assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) # Test 4) snake_case_ = 'abcdabcy' snake_case_ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) # Test 5) snake_case_ = 'Lü' snake_case_ = 'Lüsai' assert rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) snake_case_ = 'Lue' assert not rabin_karp(UpperCamelCase__ , UpperCamelCase__ ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
200
from __future__ import annotations def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ): '''simple docstring''' if start is None: snake_case_ = 0 if end is None: snake_case_ = len(UpperCamelCase__ ) - 1 if start >= end: return snake_case_ = (start + end) // 2 slowsort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) slowsort(UpperCamelCase__ , mid + 1 , UpperCamelCase__ ) if sequence[end] < sequence[mid]: snake_case_ , snake_case_ = sequence[mid], sequence[end] slowsort(UpperCamelCase__ , UpperCamelCase__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
200
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase_ ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = StableDiffusionLatentUpscalePipeline _snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } _snake_case = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} _snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _snake_case = frozenset([] ) _snake_case = True @property def A__ ( self ) -> Any: __lowerCAmelCase = 1 __lowerCAmelCase = 4 __lowerCAmelCase = (16, 16) __lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case_ ) return image def A__ ( self ) -> Optional[int]: torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=snake_case_ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=snake_case_ , only_cross_attention=snake_case_ , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) __lowerCAmelCase = EulerDiscreteScheduler(prediction_type="""sample""" ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) __lowerCAmelCase = CLIPTextModel(snake_case_ ) __lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowerCAmelCase = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def A__ ( self , snake_case_ , snake_case_=0 ) -> Optional[Any]: if str(snake_case_ ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(snake_case_ ) else: __lowerCAmelCase = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) __lowerCAmelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A__ ( self ) -> Optional[int]: __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs(snake_case_ ) __lowerCAmelCase = pipe(**snake_case_ ).images __lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) __lowerCAmelCase = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) __lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case_ , 1e-3 ) def A__ ( self ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def A__ ( self ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def A__ ( self ) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def A__ ( self ) -> List[str]: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def A__ ( self ) -> int: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def A__ ( self ) -> Any: super().test_save_load_local(expected_max_difference=3e-3 ) def A__ ( self ) -> int: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def A__ ( self ) -> Dict: __lowerCAmelCase = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**snake_case_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=snake_case_ ) pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) __lowerCAmelCase = self.get_dummy_inputs(snake_case_ ) __lowerCAmelCase = 2 __lowerCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __lowerCAmelCase = getattr(snake_case_ , scheduler_enum.name ) __lowerCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe(**snake_case_ )[0] outputs.append(snake_case_ ) assert check_same_shape(snake_case_ ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> str: __lowerCAmelCase = torch.manual_seed(33 ) __lowerCAmelCase = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) __lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) __lowerCAmelCase = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" __lowerCAmelCase = pipe(snake_case_ , generator=snake_case_ , output_type="""latent""" ).images __lowerCAmelCase = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=20 , guidance_scale=0 , generator=snake_case_ , output_type="""np""" , ).images[0] __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = torch.manual_seed(33 ) __lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) __lowerCAmelCase = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) __lowerCAmelCase = upscaler( prompt=snake_case_ , image=snake_case_ , num_inference_steps=20 , guidance_scale=0 , generator=snake_case_ , output_type="""np""" , ).images[0] __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-2
301
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) SCREAMING_SNAKE_CASE_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModel) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowerCAmelCase_ ( _BaseAutoModelClass ): '''simple docstring''' _snake_case = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
301
1
from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES __A : Tuple = "tiny-wmt19-en-ru" # Build # borrowed from a test __A : Dict = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] __A : Optional[Any] = dict(zip(vocab, range(len(vocab)))) __A : Union[str, Any] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: __A : int = Path(tmpdirname) __A : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] __A : Optional[int] = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] __A : Optional[Any] = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) __A : Optional[Any] = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) __A : str = FSMTConfig( langs=["ru", "en"], src_vocab_size=1000, tgt_vocab_size=1000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) __A : List[Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test __A : Optional[int] = tokenizer(["Making tiny model"], return_tensors="pt") __A : Tuple = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
361
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __A : List[str] = logging.get_logger(__name__) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : Tuple=False ): '''simple docstring''' lowerCAmelCase_ : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : List[str] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCamelCase_ ( A__ : Any , A__ : Any , A__ : Tuple=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : Optional[Any] = """""" else: lowerCAmelCase_ : Optional[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : List[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Union[str, Any] = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : List[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Any = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def UpperCamelCase_ ( A__ : str ): '''simple docstring''' lowerCAmelCase_ : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(A__ , A__ ) def UpperCamelCase_ ( A__ : List[Any] , A__ : Optional[Any] , A__ : Dict ): '''simple docstring''' lowerCAmelCase_ : Tuple = dct.pop(A__ ) lowerCAmelCase_ : Tuple = val def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Optional[int] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = ViTConfig() lowerCAmelCase_ : Any = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase_ : int = True lowerCAmelCase_ : Tuple = int(vit_name[-12:-10] ) lowerCAmelCase_ : Optional[int] = int(vit_name[-9:-6] ) else: lowerCAmelCase_ : Optional[int] = 10_00 lowerCAmelCase_ : Tuple = """huggingface/label-files""" lowerCAmelCase_ : Any = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Dict = json.load(open(hf_hub_download(A__ , A__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Union[str, Any] = {int(A__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Union[str, Any] = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = int(vit_name[-6:-4] ) lowerCAmelCase_ : Dict = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): lowerCAmelCase_ : int = 1_92 lowerCAmelCase_ : List[str] = 7_68 lowerCAmelCase_ : List[str] = 12 lowerCAmelCase_ : int = 3 elif vit_name[9:].startswith("""small""" ): lowerCAmelCase_ : Optional[Any] = 3_84 lowerCAmelCase_ : Optional[int] = 15_36 lowerCAmelCase_ : Dict = 12 lowerCAmelCase_ : str = 6 else: pass else: if vit_name[4:].startswith("""small""" ): lowerCAmelCase_ : Tuple = 7_68 lowerCAmelCase_ : Any = 23_04 lowerCAmelCase_ : List[str] = 8 lowerCAmelCase_ : List[str] = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): lowerCAmelCase_ : Dict = 10_24 lowerCAmelCase_ : List[Any] = 40_96 lowerCAmelCase_ : Any = 24 lowerCAmelCase_ : List[str] = 16 elif vit_name[4:].startswith("""huge""" ): lowerCAmelCase_ : Optional[int] = 12_80 lowerCAmelCase_ : Dict = 51_20 lowerCAmelCase_ : Union[str, Any] = 32 lowerCAmelCase_ : Optional[int] = 16 # load original model from timm lowerCAmelCase_ : Union[str, Any] = timm.create_model(A__ , pretrained=A__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : int = timm_model.state_dict() if base_model: remove_classification_head_(A__ ) lowerCAmelCase_ : str = create_rename_keys(A__ , A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , A__ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase_ : int = ViTModel(A__ ).eval() else: lowerCAmelCase_ : Optional[int] = ViTForImageClassification(A__ ).eval() model.load_state_dict(A__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase_ : Any = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase_ : Any = ViTImageProcessor(size=config.image_size ) lowerCAmelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : int = encoding["""pixel_values"""] lowerCAmelCase_ : int = model(A__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = timm_model.forward_features(A__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A__ , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase_ : Union[str, Any] = timm_model(A__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A__ , outputs.logits , atol=1E-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __A : Union[str, Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
89
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase__ = "." if __name__ == "__main__": UpperCAmelCase__ = os.path.join(REPO_PATH, "utils/documentation_tests.txt") UpperCAmelCase__ = [] UpperCAmelCase__ = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase__ = line.strip() UpperCAmelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase__ = "\n".join(non_existent_paths) raise ValueError(f"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return x if y == 0 else greatest_common_divisor(snake_case_ , x % y ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int: '''simple docstring''' return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ ) def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int: '''simple docstring''' UpperCAmelCase_ = 1 for i in range(1 , n + 1 ): UpperCAmelCase_ = lcm(snake_case_ , snake_case_ ) return g if __name__ == "__main__": print(f"{solution() = }")
1
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self : Tuple ): __snake_case: Dict = 10 def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[int] = [1, 2, 3, 4] __snake_case: str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase__ ( self : int ): __snake_case: Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __snake_case: Union[str, Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __snake_case: Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(A , self.block_size , 0 ) , A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" __snake_case: int = process_story(A ) self.assertEqual(A , [] ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[str] = """""" __snake_case: Optional[Any] = process_story(A ) self.assertEqual(A , [] ) self.assertEqual(A , [] ) def UpperCAmelCase__ ( self : Dict ): __snake_case: int = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) __snake_case: int = process_story(A ) __snake_case: str = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(A , A ) __snake_case: List[Any] = ["""It was the best of times."""] self.assertEqual(A , A ) def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[str] = torch.tensor([1, 2, 3, 4] ) __snake_case: Tuple = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(A , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : str ): __snake_case: Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __snake_case: List[str] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : str ): __snake_case: Dict = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __snake_case: Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(A , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : str ): __snake_case: Any = 101 __snake_case: Tuple = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __snake_case: List[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __snake_case: Tuple = compute_token_type_ids(A , A ) np.testing.assert_array_equal(A , A )
358
import argparse from collections import defaultdict import yaml __UpperCAmelCase : int = "docs/source/en/_toctree.yml" def A__ ( SCREAMING_SNAKE_CASE__) -> Dict: __snake_case: Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE__) for doc in model_doc: counts[doc["local"]] += 1 __snake_case: Dict = [key for key, value in counts.items() if value > 1] __snake_case: Optional[Any] = [] for duplicate_key in duplicates: __snake_case: Tuple = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key}) if len(SCREAMING_SNAKE_CASE__) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""") # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1]) # Sort return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__: s["title"].lower()) def A__ ( SCREAMING_SNAKE_CASE__=False) -> List[str]: with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""") as f: __snake_case: Optional[int] = yaml.safe_load(f.read()) # Get to the API doc __snake_case: Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case: str = content[api_idx]["""sections"""] # Then to the model doc __snake_case: List[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __snake_case: Dict = api_doc[model_idx]["""sections"""] __snake_case: int = [(idx, section) for idx, section in enumerate(SCREAMING_SNAKE_CASE__) if """sections""" in section] __snake_case: Optional[int] = False for idx, modality_doc in modalities_docs: __snake_case: Dict = modality_doc["""sections"""] __snake_case: List[str] = clean_model_doc_toc(SCREAMING_SNAKE_CASE__) if old_modality_doc != new_modality_doc: __snake_case: List[str] = True if overwrite: __snake_case: Dict = new_modality_doc if diff: if overwrite: __snake_case: Dict = model_doc __snake_case: int = api_doc with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""") as f: f.write(yaml.dump(SCREAMING_SNAKE_CASE__ , allow_unicode=SCREAMING_SNAKE_CASE__)) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""") if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __UpperCAmelCase : str = parser.parse_args() check_model_doc(args.fix_and_overwrite)
293
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a =logging.get_logger(__name__) a ={ """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Optional[int] = '''data2vec-vision''' def __init__( self : List[str] ,SCREAMING_SNAKE_CASE__ : Any=7_6_8 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=1_2 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 ,SCREAMING_SNAKE_CASE__ : Optional[int]="gelu" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 ,SCREAMING_SNAKE_CASE__ : Tuple=0.02 ,SCREAMING_SNAKE_CASE__ : List[str]=1E-12 ,SCREAMING_SNAKE_CASE__ : List[Any]=2_2_4 ,SCREAMING_SNAKE_CASE__ : Any=1_6 ,SCREAMING_SNAKE_CASE__ : str=3 ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : str=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=False ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : List[Any]=[3, 5, 7, 1_1] ,SCREAMING_SNAKE_CASE__ : List[str]=[1, 2, 3, 6] ,SCREAMING_SNAKE_CASE__ : Dict=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.4 ,SCREAMING_SNAKE_CASE__ : int=2_5_6 ,SCREAMING_SNAKE_CASE__ : Any=1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=False ,SCREAMING_SNAKE_CASE__ : Tuple=2_5_5 ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Union[str, Any] = num_attention_heads __lowerCamelCase : List[Any] = intermediate_size __lowerCamelCase : List[Any] = hidden_act __lowerCamelCase : int = hidden_dropout_prob __lowerCamelCase : Dict = attention_probs_dropout_prob __lowerCamelCase : str = initializer_range __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : Optional[Any] = image_size __lowerCamelCase : List[Any] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : int = use_mask_token __lowerCamelCase : Tuple = use_absolute_position_embeddings __lowerCamelCase : Dict = use_relative_position_bias __lowerCamelCase : Optional[Any] = use_shared_relative_position_bias __lowerCamelCase : Optional[int] = layer_scale_init_value __lowerCamelCase : List[str] = drop_path_rate __lowerCamelCase : Optional[int] = use_mean_pooling # decode head attributes (semantic segmentation) __lowerCamelCase : Any = out_indices __lowerCamelCase : Any = pool_scales # auxiliary head attributes (semantic segmentation) __lowerCamelCase : Any = use_auxiliary_head __lowerCamelCase : int = auxiliary_loss_weight __lowerCamelCase : Dict = auxiliary_channels __lowerCamelCase : Optional[int] = auxiliary_num_convs __lowerCamelCase : List[Any] = auxiliary_concat_input __lowerCamelCase : Dict = semantic_loss_ignore_index class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Dict = version.parse('''1.11''' ) @property def lowerCAmelCase ( self : Tuple): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def lowerCAmelCase ( self : Any): return 1E-4
73
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
def lowerCamelCase__ ( A__ : int , A__ : int ): '''simple docstring''' __lowerCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowerCamelCase = n - k # Calculate C(n,k) for i in range(A__ ): result *= n - i result //= i + 1 return result def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return binomial_coefficient(2 * node_count , A__ ) // (node_count + 1) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' if n < 0: raise ValueError("""factorial() not defined for negative values""" ) __lowerCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase__ ( A__ : int ): '''simple docstring''' return catalan_number(A__ ) * factorial(A__ ) if __name__ == "__main__": UpperCAmelCase_ = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
361
from math import ceil, sqrt def lowerCamelCase__ ( A__ : int = 1000000 ): '''simple docstring''' __lowerCamelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCamelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
29
0
"""simple docstring""" from maths.prime_check import is_prime def lowercase (snake_case__ : int ) -> int: '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case__ ) if is_prime(snake_case__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
155
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=_a ) class SCREAMING_SNAKE_CASE__ ( _a ): _a = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _a = Features({'audio': Audio()} ) _a = Features({'labels': ClassLabel} ) _a = "audio" _a = "labels" def __lowercase ( self : List[str] , lowerCAmelCase : Optional[int] ): if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) lowerCAmelCase = copy.deepcopy(self ) lowerCAmelCase = self.label_schema.copy() lowerCAmelCase = features[self.label_column] lowerCAmelCase = label_schema return task_template @property def __lowercase ( self : List[str] ): return { self.audio_column: "audio", self.label_column: "labels", }
155
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def lowercase ( ) -> Optional[Any]: _UpperCamelCase = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a__ ) _UpperCamelCase = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a__ ) env_command_parser(subparsers=a__ ) launch_command_parser(subparsers=a__ ) tpu_command_parser(subparsers=a__ ) test_command_parser(subparsers=a__ ) # Let's go _UpperCamelCase = parser.parse_args() if not hasattr(a__ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a__ ) if __name__ == "__main__": main()
54
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase = """ Human: <<task>> Assistant: """ UpperCAmelCase = """huggingface-tools/default-prompts""" UpperCAmelCase = {"""chat""": """chat_prompt_template.txt""", """run""": """run_prompt_template.txt"""} def lowercase ( a__ : int , a__ : int , a__ : Any="run" ) -> Any: if prompt_or_repo_id is None: _UpperCamelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , a__ ) is not None: return prompt_or_repo_id _UpperCamelCase = cached_file( a__ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(a__ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
54
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : int ): if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCamelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCamelCase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class UpperCAmelCase ( A_ ): A__ : int = ["pixel_values"] def __init__(self : Any , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : int , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Dict = size if size is not None else {"shortest_edge": 2_24} snake_case : Optional[Any] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) snake_case : Optional[Any] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} snake_case : str = get_size_dict(snake_case__ , param_name="crop_size" ) snake_case : Any = do_resize snake_case : Optional[Any] = size snake_case : Tuple = do_center_crop snake_case : Dict = crop_size snake_case : Tuple = resample snake_case : Dict = do_rescale snake_case : Any = rescale_factor snake_case : Optional[int] = do_normalize snake_case : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' snake_case : Optional[int] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" in size: snake_case : Union[str, Any] = get_resize_output_image_size(snake_case__ , size["shortest_edge"] , default_to_square=snake_case__ ) elif "height" in size and "width" in size: snake_case : Optional[int] = (size["height"], size["width"]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Any , ) -> np.ndarray: '''simple docstring''' snake_case : Optional[Any] = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(snake_case__ , size=(size["height"], size["width"]) , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ) -> List[str]: '''simple docstring''' return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ) -> np.ndarray: '''simple docstring''' return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. snake_case : List[Any] = to_numpy_array(snake_case__ ) if do_resize: snake_case : int = self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) if do_center_crop: snake_case : List[str] = self.center_crop(snake_case__ , size=snake_case__ ) if do_rescale: snake_case : int = self.rescale(image=snake_case__ , scale=snake_case__ ) if do_normalize: snake_case : Union[str, Any] = self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) snake_case : List[str] = to_channel_dimension_format(snake_case__ , snake_case__ ) return image def _SCREAMING_SNAKE_CASE (self : Dict , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : List[Any] , ) -> PIL.Image.Image: '''simple docstring''' snake_case : Union[str, Any] = do_resize if do_resize is not None else self.do_resize snake_case : Union[str, Any] = resample if resample is not None else self.resample snake_case : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Dict = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : Any = do_normalize if do_normalize is not None else self.do_normalize snake_case : Tuple = image_mean if image_mean is not None else self.image_mean snake_case : Tuple = image_std if image_std is not None else self.image_std snake_case : Dict = size if size is not None else self.size snake_case : Any = get_size_dict(snake_case__ , default_to_square=snake_case__ ) snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size snake_case : List[Any] = get_size_dict(snake_case__ , param_name="crop_size" ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) snake_case : Tuple = make_batched(snake_case__ ) snake_case : Optional[Any] = [ [ self._preprocess_image( image=snake_case__ , do_resize=snake_case__ , size=snake_case__ , resample=snake_case__ , do_center_crop=snake_case__ , crop_size=snake_case__ , do_rescale=snake_case__ , rescale_factor=snake_case__ , do_normalize=snake_case__ , image_mean=snake_case__ , image_std=snake_case__ , data_format=snake_case__ , ) for img in video ] for video in videos ] snake_case : List[str] = {"pixel_values": videos} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
59
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __lowerCamelCase = logging.getLogger(__name__) __lowerCamelCase = """pytorch_model.bin""" @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} ,) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) A__ : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "A csv or a json file containing the validation data."} ) A__ : Optional[str] = dataclasses.field( default=A_ ,metadata={"help": "The name of the task to train on."} ,) A__ : Optional[List[str]] = dataclasses.field( default=A_ ,metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class UpperCAmelCase : A__ : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) A__ : Optional[str] = dataclasses.field( default="accuracy" ,metadata={"help": "The evaluation metric used for the task."} ) A__ : Optional[str] = dataclasses.field( default="no" ,metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } ,) A__ : Optional[int] = dataclasses.field( default=10 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} ,) A__ : Optional[bool] = dataclasses.field( default=A_ ,metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} ,) A__ : Optional[float] = dataclasses.field( default=0.0 ,metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} ,) A__ : Optional[int] = dataclasses.field( default=1_00 ,metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} ,) A__ : Optional[int] = dataclasses.field( default=A_ ,metadata={"help": "Random seed for initialization."} ,) def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): snake_case : Tuple = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: snake_case : Optional[int] = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 snake_case : int = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) snake_case : List[str] = dataset.sort("probability" , reverse=__lowerCamelCase ) snake_case : Tuple = dataset.select(range(__lowerCamelCase ) ) snake_case : List[Any] = dataset.remove_columns(["label", "probability"] ) snake_case : Any = dataset.rename_column("prediction" , "label" ) snake_case : str = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) snake_case : List[str] = dataset.shuffle(seed=args.seed ) snake_case : int = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase , index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , **__lowerCamelCase : List[Any] ): snake_case : int = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() snake_case : Dict = STModelArguments(model_name_or_path=__lowerCamelCase ) snake_case : Tuple = STDataArguments(train_file=__lowerCamelCase , infer_file=__lowerCamelCase ) snake_case : str = STTrainingArguments(output_dir=__lowerCamelCase ) snake_case : int = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase ): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Sanity checks snake_case : List[str] = {} snake_case : Optional[int] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None snake_case : str = args.train_file snake_case : Tuple = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None snake_case : Tuple = args.eval_file for key in data_files: snake_case : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: snake_case : Union[str, Any] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) snake_case : List[Any] = f"""{args.output_dir}/self-train_iter-{{}}""".format snake_case : Optional[int] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() snake_case : Dict = None snake_case : Union[str, Any] = None snake_case : Tuple = 0 snake_case : List[Any] = False # Show the progress bar snake_case : List[Any] = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): snake_case : str = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 snake_case : Dict = os.path.join(__lowerCamelCase , "stage-1" ) snake_case : Optional[Any] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase , __lowerCamelCase ): arguments_dict.update({key: value} ) snake_case : int = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data snake_case : str = os.path.join(__lowerCamelCase , "best-checkpoint" ) snake_case : Dict = os.path.join(__lowerCamelCase , "stage-2" ) # Update arguments_dict snake_case : List[str] = model_path snake_case : Optional[Any] = data_files["train"] snake_case : Optional[Any] = current_output_dir snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "best-checkpoint" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowerCamelCase ) snake_case : int = iteration snake_case : Tuple = data_dir_format(iteration + 1 ) snake_case : Tuple = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase , "best-checkpoint" ) ) snake_case : Optional[int] = config.idalabel snake_case : List[Any] = os.path.join(__lowerCamelCase , "eval_results_best-checkpoint.json" ) snake_case : Union[str, Any] = os.path.join(__lowerCamelCase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase , "r" ) as f: snake_case : Dict = float(json.load(__lowerCamelCase )[args.eval_metric] ) snake_case : Optional[int] = os.path.join(__lowerCamelCase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. snake_case : Optional[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] snake_case : Dict = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.wait_for_everyone() snake_case : str = os.path.join(__lowerCamelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: snake_case : List[Any] = eval_result if best_iteration is None: snake_case : List[Any] = new_iteration snake_case : int = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: snake_case : int = new_iteration snake_case : Union[str, Any] = new_eval_result snake_case : str = 0 else: if new_eval_result == best_eval_result: snake_case : Any = new_iteration snake_case : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: snake_case : Tuple = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowerCamelCase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowerCamelCase , "eval_results_best-iteration.json" ) , )
59
1
import math import tensorflow as tf from packaging import version def snake_case( __magic_name__ ) -> List[Any]: '''simple docstring''' lowercase : Any = tf.convert_to_tensor(__magic_name__ ) lowercase : Optional[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def snake_case( __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Any = tf.convert_to_tensor(__magic_name__ ) lowercase : Tuple = tf.cast(math.pi , x.dtype ) lowercase : str = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowercase : List[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__magic_name__ , 3 )) )) return x * cdf def snake_case( __magic_name__ ) -> Dict: '''simple docstring''' lowercase : List[str] = tf.convert_to_tensor(__magic_name__ ) return x * tf.tanh(tf.math.softplus(__magic_name__ ) ) def snake_case( __magic_name__ ) -> List[str]: '''simple docstring''' lowercase : List[str] = tf.convert_to_tensor(__magic_name__ ) lowercase : str = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowercase : Optional[int] = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def snake_case( __magic_name__ ) -> Optional[int]: '''simple docstring''' lowercase : str = tf.convert_to_tensor(__magic_name__ ) lowercase : List[str] = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def snake_case( __magic_name__ ) -> str: '''simple docstring''' return tf.clip_by_value(_gelu(__magic_name__ ) , -10 , 10 ) def snake_case( __magic_name__ , __magic_name__=-1 ) -> Any: '''simple docstring''' lowercase : Any = tf.split(__magic_name__ , 2 , axis=__magic_name__ ) return a * tf.math.sigmoid(__magic_name__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' return tf.keras.activations.gelu(__magic_name__ , approximate=__magic_name__ ) lowerCAmelCase_ = tf.keras.activations.gelu lowerCAmelCase_ = approximate_gelu_wrap else: lowerCAmelCase_ = _gelu lowerCAmelCase_ = _gelu_new lowerCAmelCase_ = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def snake_case( __magic_name__ ) -> int: '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
371
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) lowerCAmelCase_ = Path(__file__).parent / 'model_card_template.md' lowerCAmelCase_ = uuida().hex lowerCAmelCase_ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase_ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def snake_case( __magic_name__ = None ) -> str: '''simple docstring''' lowercase : List[Any] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('''DIFFUSERS_IS_CI''' , '''''' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__magic_name__ , __magic_name__ ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__magic_name__ , __magic_name__ ): ua += "; " + user_agent return ua def snake_case( __magic_name__ , __magic_name__ = None , __magic_name__ = None ) -> Optional[Any]: '''simple docstring''' if token is None: lowercase : int = HfFolder.get_token() if organization is None: lowercase : List[str] = whoami(__magic_name__ )['''name'''] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( '''Modelcard rendering is based on Jinja templates.''' ''' Please make sure to have `jinja` installed before using `create_model_card`.''' ''' To install it, please run `pip install Jinja2`.''' ) if hasattr(__magic_name__ , '''local_rank''' ) and args.local_rank not in [-1, 0]: return lowercase : Optional[Any] = args.hub_token if hasattr(__magic_name__ , '''hub_token''' ) else None lowercase : int = get_full_repo_name(__magic_name__ , token=__magic_name__ ) lowercase : Dict = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='''en''' , license='''apache-2.0''' , library_name='''diffusers''' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__magic_name__ , model_name=__magic_name__ , repo_name=__magic_name__ , dataset_name=args.dataset_name if hasattr(__magic_name__ , '''dataset_name''' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__magic_name__ , '''gradient_accumulation_steps''' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta1''' ) else None , adam_betaa=args.adam_betaa if hasattr(__magic_name__ , '''adam_beta2''' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__magic_name__ , '''adam_weight_decay''' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__magic_name__ , '''adam_epsilon''' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__magic_name__ , '''lr_scheduler''' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__magic_name__ , '''lr_warmup_steps''' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__magic_name__ , '''ema_inv_gamma''' ) else None , ema_power=args.ema_power if hasattr(__magic_name__ , '''ema_power''' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__magic_name__ , '''ema_max_decay''' ) else None , mixed_precision=args.mixed_precision , ) lowercase : Any = os.path.join(args.output_dir , '''README.md''' ) model_card.save(__magic_name__ ) def snake_case( __magic_name__ , __magic_name__ = None ) -> int: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash lowercase : Dict = str(Path(__magic_name__ ).as_posix() ) lowercase : Any = re.search(r'''snapshots/([^/]+)/''' , __magic_name__ ) if search is None: return None lowercase : List[Any] = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__magic_name__ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase_ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase_ = os.path.join(hf_cache_home, 'diffusers') def snake_case( __magic_name__ = None , __magic_name__ = None ) -> None: '''simple docstring''' if new_cache_dir is None: lowercase : str = DIFFUSERS_CACHE if old_cache_dir is None: lowercase : List[str] = old_diffusers_cache lowercase : str = Path(__magic_name__ ).expanduser() lowercase : Dict = Path(__magic_name__ ).expanduser() for old_blob_path in old_cache_dir.glob('''**/blobs/*''' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowercase : List[Any] = new_cache_dir / old_blob_path.relative_to(__magic_name__ ) new_blob_path.parent.mkdir(parents=__magic_name__ , exist_ok=__magic_name__ ) os.replace(__magic_name__ , __magic_name__ ) try: os.symlink(__magic_name__ , __magic_name__ ) except OSError: logger.warning( '''Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.''' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase_ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase_ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase_ = int(f.read()) except ValueError: lowerCAmelCase_ = 0 if cache_version < 1: lowerCAmelCase_ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase_ = '\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def snake_case( __magic_name__ , __magic_name__ = None ) -> str: '''simple docstring''' if variant is not None: lowercase : List[str] = weights_name.split('''.''' ) lowercase : Any = splits[:-1] + [variant] + splits[-1:] lowercase : Tuple = '''.'''.join(__magic_name__ ) return weights_name def snake_case( __magic_name__ , *, __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , ) -> Dict: '''simple docstring''' lowercase : Union[str, Any] = str(__magic_name__ ) if os.path.isfile(__magic_name__ ): return pretrained_model_name_or_path elif os.path.isdir(__magic_name__ ): if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) ): # Load from a PyTorch checkpoint lowercase : Dict = os.path.join(__magic_name__ , __magic_name__ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) ): lowercase : str = os.path.join(__magic_name__ , __magic_name__ , __magic_name__ ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__magic_name__ ).base_version ) >= version.parse('''0.20.0''' ) ): try: lowercase : int = hf_hub_download( __magic_name__ , filename=_add_variant(__magic_name__ , __magic_name__ ) , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""" , __magic_name__ , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__magic_name__ , __magic_name__ )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__magic_name__ , __magic_name__ )}' so that the correct variant file can be added.""" , __magic_name__ , ) try: # 2. Load model file as usual lowercase : Dict = hf_hub_download( __magic_name__ , filename=__magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , proxies=__magic_name__ , resume_download=__magic_name__ , local_files_only=__magic_name__ , use_auth_token=__magic_name__ , user_agent=__magic_name__ , subfolder=__magic_name__ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ '''listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ''' '''token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ''' '''login`.''' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ '''this model name. Check the model page at ''' F"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ''' \nCheckout your internet connection or see how to run the library in''' ''' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.''' ) except EnvironmentError: raise EnvironmentError( F"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ '''\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ''' F"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
116
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> List[str]: snake_case_ = data snake_case_ = None class UpperCamelCase_ : '''simple docstring''' def __init__( self ) -> str: snake_case_ = None snake_case_ = None def __iter__( self ) -> Iterator[Any]: snake_case_ = self.head while self.head: yield node.data snake_case_ = node.next if node == self.head: break def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> Any: return "->".join(str(a ) for item in iter(self ) ) def _UpperCamelCase ( self , a ) -> None: self.insert_nth(len(self ) , a ) def _UpperCamelCase ( self , a ) -> None: self.insert_nth(0 , a ) def _UpperCamelCase ( self , a , a ) -> None: if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) snake_case_ = Node(a ) if self.head is None: snake_case_ = new_node # first node points itself snake_case_ = snake_case_ = new_node elif index == 0: # insert at head snake_case_ = self.head snake_case_ = snake_case_ = new_node else: snake_case_ = self.head for _ in range(index - 1 ): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = new_node if index == len(self ) - 1: # insert at tail snake_case_ = new_node def _UpperCamelCase ( self ) -> List[Any]: return self.delete_nth(0 ) def _UpperCamelCase ( self ) -> Any: return self.delete_nth(len(self ) - 1 ) def _UpperCamelCase ( self , a = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) snake_case_ = self.head if self.head == self.tail: # just one node snake_case_ = snake_case_ = None elif index == 0: # delete head node snake_case_ = self.tail.next.next snake_case_ = self.head.next else: snake_case_ = self.head for _ in range(index - 1 ): snake_case_ = temp.next snake_case_ = temp.next snake_case_ = temp.next.next if index == len(self ) - 1: # delete at tail snake_case_ = temp return delete_node.data def _UpperCamelCase ( self ) -> bool: return len(self ) == 0 def __UpperCAmelCase ( ): snake_case_ = CircularLinkedList() assert len(a_) == 0 assert circular_linked_list.is_empty() is True assert str(a_) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5): assert len(a_) == i circular_linked_list.insert_nth(a_ , i + 1) assert str(a_) == "->".join(str(a_) for i in range(1 , 6)) circular_linked_list.insert_tail(6) assert str(a_) == "->".join(str(a_) for i in range(1 , 7)) circular_linked_list.insert_head(0) assert str(a_) == "->".join(str(a_) for i in range(0 , 7)) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(a_) == "->".join(str(a_) for i in range(1 , 6)) assert circular_linked_list.delete_nth(2) == 3 circular_linked_list.insert_nth(2 , 3) assert str(a_) == "->".join(str(a_) for i in range(1 , 6)) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
178
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCAmelCase ( a_): return (data["data"], data["target"]) def __UpperCAmelCase ( a_ , a_ , a_): snake_case_ = XGBRegressor(verbosity=0 , random_state=42) xgb.fit(a_ , a_) # Predict target for test data snake_case_ = xgb.predict(a_) snake_case_ = predictions.reshape(len(a_) , 1) return predictions def __UpperCAmelCase ( ): snake_case_ = fetch_california_housing() snake_case_ , snake_case_ = data_handling(a_) snake_case_ , snake_case_ , snake_case_ , snake_case_ = train_test_split( a_ , a_ , test_size=0.25 , random_state=1) snake_case_ = xgboost(a_ , a_ , a_) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(a_ , a_)}''') print(f'''Mean Square Error : {mean_squared_error(a_ , a_)}''') if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
178
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class a : def __init__( self :Dict ,__lowercase :Tuple ,__lowercase :Union[str, Any]=9_9 ,__lowercase :Tuple=1_3 ,__lowercase :int=1_6 ,__lowercase :Tuple=7 ,__lowercase :Dict=True ,__lowercase :str=True ,__lowercase :List[Any]=True ,__lowercase :List[Any]=False ,__lowercase :int=True ,__lowercase :List[str]=2 ,__lowercase :Optional[int]=3_2 ,__lowercase :Dict=4 ,__lowercase :Optional[int]=4 ,__lowercase :Any=3_0 ,__lowercase :str=0 ,__lowercase :List[str]=1 ,__lowercase :Dict=2 ,__lowercase :Union[str, Any]=None ,): snake_case__ : Optional[Any] = parent snake_case__ : Any = batch_size snake_case__ : List[str] = decoder_seq_length # For common tests snake_case__ : int = self.decoder_seq_length snake_case__ : Any = is_training snake_case__ : List[Any] = use_attention_mask snake_case__ : Dict = use_labels snake_case__ : int = vocab_size snake_case__ : Union[str, Any] = d_model snake_case__ : Dict = d_model snake_case__ : Dict = decoder_layers snake_case__ : List[str] = decoder_layers snake_case__ : List[str] = decoder_ffn_dim snake_case__ : Dict = decoder_attention_heads snake_case__ : Dict = decoder_attention_heads snake_case__ : Tuple = eos_token_id snake_case__ : Dict = bos_token_id snake_case__ : str = pad_token_id snake_case__ : Optional[int] = decoder_start_token_id snake_case__ : Any = use_cache snake_case__ : str = max_position_embeddings snake_case__ : List[str] = None snake_case__ : Optional[int] = decoder_seq_length snake_case__ : str = 2 snake_case__ : Optional[int] = 1 def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) snake_case__ : str = None if self.use_attention_mask: snake_case__ : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] ,vocab_size=2 ) snake_case__ : Optional[Any] = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) snake_case__ : str = TrOCRConfig( vocab_size=self.vocab_size ,d_model=self.d_model ,decoder_layers=self.decoder_layers ,decoder_ffn_dim=self.decoder_ffn_dim ,decoder_attention_heads=self.decoder_attention_heads ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,use_cache=self.use_cache ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,max_position_embeddings=self.max_position_embeddings ,) return (config, input_ids, attention_mask, lm_labels) def __lowerCamelCase ( self :int ,__lowercase :Dict ,__lowercase :List[str] ,__lowercase :Any ,__lowercase :Tuple ,): snake_case__ : Any = True snake_case__ : Any = TrOCRDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() snake_case__ : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case__ : List[Any] = model(__lowerCamelCase ,use_cache=__lowerCamelCase ) snake_case__ : Dict = model(__lowerCamelCase ) snake_case__ : Tuple = model(__lowerCamelCase ,use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) snake_case__ : Optional[int] = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids snake_case__ : Optional[Any] = ids_tensor((2, 1) ,config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case__ : Optional[int] = torch.cat([input_ids, next_tokens] ,dim=-1 ) snake_case__ : List[Any] = model(__lowerCamelCase )['''last_hidden_state'''] snake_case__ : Optional[Any] = model(__lowerCamelCase ,past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice snake_case__ : List[Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() snake_case__ : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case__ : Optional[int] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-3 ) def __lowerCamelCase ( self :Dict ): snake_case__ : Optional[int] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = config_and_inputs snake_case__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): __lowerCAmelCase : str = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __lowerCAmelCase : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () __lowerCAmelCase : str = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} __lowerCAmelCase : Dict = True __lowerCAmelCase : Union[str, Any] = False def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[str] = TrOCRStandaloneDecoderModelTester(self ,is_training=__lowerCamelCase ) snake_case__ : Tuple = ConfigTester(self ,config_class=__lowerCamelCase ) def __lowerCamelCase ( self :List[str] ): pass def __lowerCamelCase ( self :Optional[int] ): pass def __lowerCamelCase ( self :Optional[Any] ): pass def __lowerCamelCase ( self :Dict ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__lowerCamelCase ) def __lowerCamelCase ( self :List[Any] ): return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def __lowerCamelCase ( self :List[str] ): pass
367
from manim import * class a ( __lowerCamelCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Optional[Any] = Rectangle(height=0.5 ,width=0.5 ) snake_case__ : Optional[int] = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) snake_case__ : Optional[Any] = Rectangle(height=0.25 ,width=0.25 ) snake_case__ : Tuple = [mem.copy() for i in range(6 )] snake_case__ : Optional[int] = [mem.copy() for i in range(6 )] snake_case__ : List[str] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : List[Any] = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : List[Any] = Text('''CPU''' ,font_size=2_4 ) snake_case__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowercase ) snake_case__ : Union[str, Any] = [mem.copy() for i in range(4 )] snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : int = Text('''GPU''' ,font_size=2_4 ) snake_case__ : Any = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) gpu.move_to([-1, -1, 0] ) self.add(__lowercase ) snake_case__ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case__ : Optional[int] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Optional[Any] = Text('''Model''' ,font_size=2_4 ) snake_case__ : Dict = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) model.move_to([3, -1.0, 0] ) self.add(__lowercase ) snake_case__ : List[str] = [] snake_case__ : int = [] for i, rect in enumerate(__lowercase ): snake_case__ : Dict = fill.copy().set_fill(__lowercase ,opacity=0.8 ) target.move_to(__lowercase ) model_arr.append(__lowercase ) snake_case__ : Dict = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowercase ,opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__lowercase ) self.add(*__lowercase ,*__lowercase ) snake_case__ : Tuple = [meta_mem.copy() for i in range(6 )] snake_case__ : Optional[int] = [meta_mem.copy() for i in range(6 )] snake_case__ : str = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Union[str, Any] = VGroup(*__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Tuple = VGroup(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0 ) snake_case__ : Dict = Text('''Disk''' ,font_size=2_4 ) snake_case__ : Optional[Any] = Group(__lowercase ,__lowercase ).arrange(__lowercase ,buff=0.5 ,aligned_edge=__lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(__lowercase ,__lowercase ) snake_case__ : Tuple = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case__ : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=1_8 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__lowercase ,__lowercase ) snake_case__ : Any = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=1_8 ,) blue_text.next_to(__lowercase ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) self.add(__lowercase ) snake_case__ : List[str] = MarkupText( F"""Now watch as an input is passed through the model\nand how the memory is utilized and handled.""" ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ) ) snake_case__ : Optional[Any] = Square(0.3 ) input.set_fill(__lowercase ,opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] ,__lowercase ,buff=0.5 ) self.play(Write(__lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] ,direction=__lowercase ,buff=0.02 ) self.play(MoveToTarget(__lowercase ) ) self.play(FadeOut(__lowercase ) ) snake_case__ : Optional[Any] = Arrow(start=__lowercase ,end=__lowercase ,color=__lowercase ,buff=0.5 ) a.next_to(model_arr[0].get_left() ,__lowercase ,buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) snake_case__ : Dict = MarkupText( F"""As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.""" ,font_size=2_4 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ,run_time=3 ) ) snake_case__ : Tuple = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(__lowercase ) ,Circumscribe(model_arr[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(model_cpu_arr[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,) self.play(MoveToTarget(model_cpu_arr[0] ) ) snake_case__ : int = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 ,__lowercase ,buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) snake_case__ : Tuple = AnimationGroup( FadeOut(__lowercase ,run_time=0.5 ) ,MoveToTarget(__lowercase ,run_time=0.5 ) ,FadeIn(__lowercase ,run_time=0.5 ) ,lag_ratio=0.2 ) self.play(__lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: snake_case__ : str = 0.7 self.play( Circumscribe(model_arr[i] ,**__lowercase ) ,Circumscribe(cpu_left_col_base[i] ,**__lowercase ) ,Circumscribe(cpu_left_col_base[i + 1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,Circumscribe(model_arr[i + 1] ,color=__lowercase ,**__lowercase ) ,) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) ,MoveToTarget(model_cpu_arr[i + 1] ) ,) else: self.play( MoveToTarget(model_cpu_arr[i] ,run_time=0.7 ) ,MoveToTarget(model_cpu_arr[i + 1] ,run_time=0.7 ) ,) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() ,RIGHT + 0.02 ,buff=0.2 ) self.play( Circumscribe(model_arr[-1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(cpu_left_col_base[-1] ,color=__lowercase ,**__lowercase ) ,Circumscribe(gpu_rect[0] ,color=__lowercase ,**__lowercase ) ,) self.play(MoveToTarget(model_cpu_arr[i] ) ) snake_case__ : List[str] = a_c snake_case__ : Optional[int] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] ,RIGHT + 0.02 ,buff=0.5 ) self.play( FadeOut(__lowercase ) ,FadeOut(__lowercase ,run_time=0.5 ) ,) snake_case__ : Optional[int] = MarkupText(F"""Inference on a model too large for GPU memory\nis successfully completed.""" ,font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowercase ,run_time=3 ) ,MoveToTarget(__lowercase ) ) self.wait()
44
0
"""simple docstring""" from math import isqrt, loga def snake_case_ ( A_ : int ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, A_, A_ ): _lowerCamelCase : str = False return [i for i in range(2, A_ ) if is_prime[i]] def snake_case_ ( A_ : int = 80_08_00, A_ : int = 80_08_00 ): '''simple docstring''' _lowerCamelCase : Dict = degree * loga(A_ ) _lowerCamelCase : Any = int(A_ ) _lowerCamelCase : List[Any] = calculate_prime_numbers(A_ ) _lowerCamelCase : Dict = 0 _lowerCamelCase : Dict = 0 _lowerCamelCase : str = len(A_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
72
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "openai/imagegpt-small": "", "openai/imagegpt-medium": "", "openai/imagegpt-large": "", } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'imagegpt' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowercase=512 + 1 , lowercase=32 * 32 , lowercase=512 , lowercase=24 , lowercase=8 , lowercase=None , lowercase="quick_gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-5 , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=False , lowercase=False , lowercase=False , **lowercase , ) -> Any: lowerCAmelCase = vocab_size lowerCAmelCase = n_positions lowerCAmelCase = n_embd lowerCAmelCase = n_layer lowerCAmelCase = n_head lowerCAmelCase = n_inner lowerCAmelCase = activation_function lowerCAmelCase = resid_pdrop lowerCAmelCase = embd_pdrop lowerCAmelCase = attn_pdrop lowerCAmelCase = layer_norm_epsilon lowerCAmelCase = initializer_range lowerCAmelCase = scale_attn_weights lowerCAmelCase = use_cache lowerCAmelCase = scale_attn_by_inverse_layer_idx lowerCAmelCase = reorder_and_upcast_attn lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=lowercase , **lowercase ) class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def _snake_case ( self , lowercase , lowercase = 1 , lowercase = -1 , lowercase = False , lowercase = None , lowercase = 3 , lowercase = 32 , lowercase = 32 , ) -> Mapping[str, Any]: lowerCAmelCase = self._generate_dummy_images(lowercase , lowercase , lowercase , lowercase ) lowerCAmelCase = dict(preprocessor(images=lowercase , return_tensors=lowercase ) ) return inputs
46
0
"""simple docstring""" def lowercase__ ( _UpperCAmelCase ) -> int: '''simple docstring''' assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowercase : List[Any] = f'''The input value of [n={number}] has to be > 0''' raise ValueError(_UpperCAmelCase ) else: lowercase : str = sylvester(number - 1 ) lowercase : Union[str, Any] = num - 1 lowercase : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
53
"""simple docstring""" import os from pathlib import Path def lowercase__ ( ) -> str: '''simple docstring''' from torch.utils.cpp_extension import load lowercase : List[str] = Path(_UpperCAmelCase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' lowercase : Optional[int] = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , _UpperCAmelCase , with_cuda=_UpperCAmelCase , extra_include_paths=[str(_UpperCAmelCase )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
53
1
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'''\[([^\]]+)\]''') def _A ( A__ ): """simple docstring""" __lowercase = _re_indent.search(A__ ) return "" if search is None else search.groups()[0] def _A ( A__ , A__="" , A__=None , A__=None ): """simple docstring""" __lowercase = 0 __lowercase = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(A__ ): index += 1 __lowercase = ['''\n'''.join(lines[:index] )] else: __lowercase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowercase = [lines[index]] index += 1 while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(A__ ) ) if index < len(A__ ) - 1: __lowercase = [lines[index + 1]] index += 1 else: __lowercase = [] else: blocks.append('''\n'''.join(A__ ) ) __lowercase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A__ ) > 0: blocks.append('''\n'''.join(A__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def _A ( A__ ): """simple docstring""" def _inner(A__ ): return key(A__ ).lower().replace('''_''' , '''''' ) return _inner def _A ( A__ , A__=None ): """simple docstring""" def noop(A__ ): return x if key is None: __lowercase = noop # Constants are all uppercase, they go first. __lowercase = [obj for obj in objects if key(A__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowercase = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()] # Functions begin with a lowercase, they go last. __lowercase = [obj for obj in objects if not key(A__ )[0].isupper()] __lowercase = ignore_underscore(A__ ) return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) def _A ( A__ ): """simple docstring""" def _replace(A__ ): __lowercase = match.groups()[0] if "," not in imports: return F"[{imports}]" __lowercase = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] return "[" + ", ".join([F"\"{k}\"" for k in sort_objects(A__ )] ) + "]" __lowercase = import_statement.split('''\n''' ) if len(A__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowercase = 2 if lines[1].strip() == '''[''' else 1 __lowercase = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowercase = sort_objects(A__ , key=lambda A__ : x[1] ) __lowercase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowercase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowercase = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowercase = keys[:-1] __lowercase = get_indent(lines[1] ) + ''', '''.join([F"\"{k}\"" for k in sort_objects(A__ )] ) return "\n".join(A__ ) else: # Finally we have to deal with imports fitting on one line __lowercase = _re_bracket_content.sub(_replace , A__ ) return import_statement def _A ( A__ , A__=True ): """simple docstring""" with open(A__ , encoding='''utf-8''' ) as f: __lowercase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowercase = split_code_in_indented_blocks( A__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowercase = main_blocks[block_idx] __lowercase = block.split('''\n''' ) # Get to the start of the imports. __lowercase = 0 while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowercase = len(A__ ) else: line_idx += 1 if line_idx >= len(A__ ): continue # Ignore beginning and last line: they don't contain anything. __lowercase = '''\n'''.join(block_lines[line_idx:-1] ) __lowercase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowercase = split_code_in_indented_blocks(A__ , indent_level=A__ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowercase = _re_direct_key if '''_import_structure = {''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowercase = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowercase = [(i, key) for i, key in enumerate(A__ ) if key is not None] __lowercase = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowercase = 0 __lowercase = [] for i in range(len(A__ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowercase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(A__ ) count += 1 # And we put our main block back together with its first and last line. __lowercase = '''\n'''.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(A__ ): if check_only: return True else: print(F"Overwriting {file}." ) with open(A__ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(A__ ) ) def _A ( A__=True ): """simple docstring""" __lowercase = [] for root, _, files in os.walk(A__ ): if "__init__.py" in files: __lowercase = sort_imports(os.path.join(A__ , '''__init__.py''' ) , check_only=A__ ) if result: __lowercase = [os.path.join(A__ , '''__init__.py''' )] if len(A__ ) > 0: raise ValueError(F"Would overwrite {len(A__ )} files, run `make style`." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
104
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
97
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) class __A ( __snake_case ): """simple docstring""" __lowerCAmelCase = ["pixel_values"] def __init__( self , __A = True , __A = None , __A = PILImageResampling.BICUBIC , __A = True , __A = True , __A = 1 / 255 , __A = None , __A = True , __A = None , __A = None , **__A , ) -> None: super().__init__(**lowerCamelCase_ ) a =size if size is not None else {"""height""": 224, """width""": 224} a =get_size_dict(lowerCamelCase_ ) a =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} a =get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ , param_name='''crop_size''' ) a =do_resize a =do_rescale a =do_normalize a =do_center_crop a =crop_size a =size a =resample a =rescale_factor a =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a =image_std if image_std is not None else IMAGENET_DEFAULT_STD def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = PILImageResampling.BILINEAR , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(lowerCamelCase_ ) if "shortest_edge" in size: a =get_resize_output_image_size(lowerCamelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCamelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a =(size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A , ) -> np.ndarray: a =get_size_dict(lowerCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCamelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A = None , **__A ) -> np.ndarray: return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A , __A = None , **__A , ) -> np.ndarray: return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = None , __A = ChannelDimension.FIRST , **__A , ) -> BatchFeature: a =do_resize if do_resize is not None else self.do_resize a =do_rescale if do_rescale is not None else self.do_rescale a =do_normalize if do_normalize is not None else self.do_normalize a =do_center_crop if do_center_crop is not None else self.do_center_crop a =crop_size if crop_size is not None else self.crop_size a =get_size_dict(lowerCamelCase_ , param_name='''crop_size''' , default_to_square=lowerCamelCase_ ) a =resample if resample is not None else self.resample a =rescale_factor if rescale_factor is not None else self.rescale_factor a =image_mean if image_mean is not None else self.image_mean a =image_std if image_std is not None else self.image_std a =size if size is not None else self.size a =get_size_dict(lowerCamelCase_ ) if not is_batched(lowerCamelCase_ ): a =[images] if not valid_images(lowerCamelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. a =[to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: a =[self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: a =[self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: a =[self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: a =[self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] a =[to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] a ={"""pixel_values""": images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
365
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer lowerCamelCase_ : str = ["""bert-base-uncased""", """bert-base-cased"""] lowerCamelCase_ : List[str] = """hf-internal-testing/tiny-bert-tf-only""" if is_tf_available(): class __A ( tf.keras.Model ): """simple docstring""" def __init__( self , __A ) -> Dict: super().__init__() a =tokenizer a =AutoConfig.from_pretrained(__A ) a =TFAutoModel.from_config(__A ) def SCREAMING_SNAKE_CASE ( self , __A ) -> int: a =self.tokenizer(__A ) a =self.bert(**__A ) return out["pooler_output"] @require_tf @require_tensorflow_text class __A ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self ) -> str: super().setUp() a =[ BertTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false a =[TFBertTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__A , use_fast_bert_tokenizer=__A ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a =[ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] a =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): a =tokenizer(__A , return_tensors='''tf''' , padding='''longest''' ) a =tf_tokenizer(__A ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> str: for tf_tokenizer in self.tf_tokenizers: a =tf_tokenizer(self.paired_sentences ) a =tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: a =tf.function(__A ) for test_inputs in (self.test_sentences, self.paired_sentences): a =tf.constant(__A ) a =compiled_tokenizer(__A ) a =tf_tokenizer(__A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: a =ModelToSave(tokenizer=__A ) a =tf.convert_to_tensor(self.test_sentences ) a =model(__A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a =Path(__A ) / '''saved.model''' model.save(__A ) a =tf.keras.models.load_model(__A ) a =loaded_model(__A ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
215
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase : def __init__( self ,A__ ,A__=1_4 ,A__=7 ,A__=True ,A__=True ,A__=True ,A__=True ,A__=True ,A__=9_9 ,A__=3_2 ,A__=5 ,A__=4 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=5_1_2 ,A__=1_6 ,A__=2 ,A__=0.02 ,A__=3 ,A__=4 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_token_type_ids lowercase = use_input_mask lowercase = use_labels lowercase = use_mc_token_ids lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope lowercase = self.vocab_size - 1 def A__ ( self): lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length]) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size) lowercase = None if self.use_mc_token_ids: lowercase = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels) lowercase = ids_tensor([self.batch_size] ,self.num_choices) lowercase = self.get_config() lowercase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def A__ ( self): return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,*A__): lowercase = CTRLModel(config=A__) model.to(A__) model.eval() model(A__ ,token_type_ids=A__ ,head_mask=A__) model(A__ ,token_type_ids=A__) lowercase = model(A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values) ,config.n_layer) def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__ ,*A__): lowercase = CTRLLMHeadModel(A__) model.to(A__) model.eval() lowercase = model(A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.loss.shape ,()) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) def A__ ( self): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def A__ ( self ,A__ ,A__ ,A__ ,A__ ,*A__): lowercase = self.num_labels lowercase = CTRLForSequenceClassification(A__) model.to(A__) model.eval() lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = model(A__ ,token_type_ids=A__ ,labels=A__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : List[Any] =(CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase_ : Optional[Any] =(CTRLLMHeadModel,) if is_torch_available() else () lowercase_ : Dict =( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : Any =True lowercase_ : Tuple =False lowercase_ : List[Any] =False def A__ ( self ,A__ ,A__ ,A__ ,A__ ,A__): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def A__ ( self): lowercase = CTRLModelTester(self) lowercase = ConfigTester(self ,config_class=A__ ,n_embd=3_7) def A__ ( self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*A__) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def A__ ( self): pass @slow def A__ ( self): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = CTRLModel.from_pretrained(A__) self.assertIsNotNone(A__) @unittest.skip('''The model doesn\'t support left padding''') # and it's not used enough to be worth fixing :) def A__ ( self): pass @require_torch class lowercase ( unittest.TestCase ): def A__ ( self): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def A__ ( self): lowercase = CTRLLMHeadModel.from_pretrained('''ctrl''') model.to(A__) lowercase = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] ,dtype=torch.long ,device=A__) # Legal the president is lowercase = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase = model.generate(A__ ,do_sample=A__) self.assertListEqual(output_ids[0].tolist() ,A__)
101
import os import sys lowercase__ :Tuple = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowercase__ :List[Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoConfig.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoTokenizer.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModel.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def UpperCamelCase ( *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*lowerCAmelCase__ , **lowerCAmelCase__ )
101
1
'''simple docstring''' def _A ( A__ , A__ ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __lowercase = str(bin(A__ ) )[2:] # remove the leading "0b" __lowercase = str(bin(A__ ) )[2:] __lowercase = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
52
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase__ = {'''configuration_glpn''': ['''GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GLPNConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''GLPNFeatureExtractor'''] lowerCAmelCase__ = ['''GLPNImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GLPN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GLPNForDepthEstimation''', '''GLPNLayer''', '''GLPNModel''', '''GLPNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
52
1
"""simple docstring""" from sklearn.metrics import fa_score import datasets __magic_name__ = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" __magic_name__ = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" __magic_name__ = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): """simple docstring""" def snake_case_ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""")), """references""": datasets.Sequence(datasets.Value("""int32""")), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32"""), """references""": datasets.Value("""int32"""), }) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=1 , lowerCAmelCase__="binary" , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = fa_score( lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ , pos_label=lowerCAmelCase__ , average=lowerCAmelCase__ , sample_weight=lowerCAmelCase__) return {"f1": float(lowerCAmelCase__) if score.size == 1 else score}
100
"""simple docstring""" import requests from bsa import BeautifulSoup def _lowerCAmelCase ( UpperCamelCase_ = "AAPL" ): __SCREAMING_SNAKE_CASE = f"https://in.finance.yahoo.com/quote/{symbol}?s={symbol}" __SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(UpperCamelCase_ ).text , """html.parser""" ) __SCREAMING_SNAKE_CASE = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
100
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _UpperCAmelCase : Union[str, Any] = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } _UpperCAmelCase : Any = { """gpt-neox-20b""": 20_48, } class lowerCAmelCase ( __lowerCAmelCase ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : List[str] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[str]="<|endoftext|>" , UpperCAmelCase : int="<|endoftext|>" , UpperCAmelCase : Optional[int]="<|endoftext|>" , UpperCAmelCase : Tuple=False , **UpperCAmelCase : int , ) -> Dict: super().__init__( lowerCAmelCase_ , lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowerCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase_ ) != add_prefix_space: lowerCamelCase__ : List[Any] = getattr(lowerCAmelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase__ : Union[str, Any] = add_prefix_space lowerCamelCase__ : Tuple = pre_tok_class(**lowerCAmelCase_ ) lowerCamelCase__ : str = add_prefix_space def A_ ( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple = None ) -> Tuple[str]: lowerCamelCase__ : List[Any] = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase : List[Any] ) -> List[int]: lowerCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: lowerCamelCase__ : List[str] = input_ids[-self.model_max_length :] return input_ids
364
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> bool: lowerCamelCase__ : List[Any] = get_failure_array(_UpperCAmelCase ) # 2) Step through text searching for pattern lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0 # index into text, pattern while i < len(_UpperCAmelCase ): if pattern[j] == text[i]: if j == (len(_UpperCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: lowerCamelCase__ : str = failure[j - 1] continue i += 1 return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> list[int]: lowerCamelCase__ : int = [0] lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Any = 1 while j < len(_UpperCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: lowerCamelCase__ : int = failure[i - 1] continue j += 1 failure.append(_UpperCAmelCase ) return failure if __name__ == "__main__": # Test 1) _UpperCAmelCase : Union[str, Any] = """abc1abc12""" _UpperCAmelCase : List[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" _UpperCAmelCase : Dict = """alskfjaldsk23adsfabcabc""" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) _UpperCAmelCase : Any = """ABABX""" _UpperCAmelCase : Union[str, Any] = """ABABZABABYABABX""" assert kmp(pattern, text) # Test 3) _UpperCAmelCase : int = """AAAB""" _UpperCAmelCase : str = """ABAAAAAB""" assert kmp(pattern, text) # Test 4) _UpperCAmelCase : Optional[Any] = """abcdabcy""" _UpperCAmelCase : List[Any] = """abcxabcdabxabcdabcdabcy""" assert kmp(pattern, text) # Test 5) _UpperCAmelCase : str = """aabaabaaa""" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
45
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor A_ : str = logging.get_logger(__name__) class lowerCamelCase (A__ ): def __init__( self : Tuple , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Optional[int] ) -> None: warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
165
"""simple docstring""" from collections import defaultdict class lowerCamelCase : def __init__( self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Any ) -> Any: SCREAMING_SNAKE_CASE__ = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 SCREAMING_SNAKE_CASE__ = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(__UpperCAmelCase ) ) ] SCREAMING_SNAKE_CASE__ = defaultdict(__UpperCAmelCase ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 SCREAMING_SNAKE_CASE__ = (1 << len(__UpperCAmelCase )) - 1 def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int] ) -> Optional[int]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement SCREAMING_SNAKE_CASE__ = self.count_ways_until(__UpperCAmelCase , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. SCREAMING_SNAKE_CASE__ = total_ways_util return self.dp[mask][task_no] def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] ) -> List[str]: # Store the list of persons for each task for i in range(len(__UpperCAmelCase ) ): for j in task_performed[i]: self.task[j].append(__UpperCAmelCase ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": A_ : Any = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. A_ : Any = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
165
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowercase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowercase__ = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def _snake_case ( lowercase__ , lowercase__ , lowercase__=8 ): _lowerCamelCase : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( lowercase ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , ): super().__init__() self.register_modules( unet=lowercase , scheduler=lowercase , movq=lowercase , ) _lowerCamelCase : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A_ ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): if latents is None: _lowerCamelCase : str = randn_tensor(lowercase , generator=lowercase , device=lowercase , dtype=lowercase ) else: if latents.shape != shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _lowerCamelCase : Any = latents.to(lowercase ) _lowerCamelCase : Tuple = latents * scheduler.init_noise_sigma return latents def A_ ( self , lowercase=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowerCamelCase : List[str] = torch.device(F'''cuda:{gpu_id}''' ) _lowerCamelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase , lowercase ) def A_ ( self , lowercase=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _lowerCamelCase : List[Any] = torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowercase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : Tuple = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase : List[str] = cpu_offload_with_hook(lowercase , lowercase , prev_module_hook=lowercase ) # We'll offload the last model manually. _lowerCamelCase : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A_ ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase ) def __call__( self , lowercase , lowercase , lowercase , lowercase = 512 , lowercase = 512 , lowercase = 100 , lowercase = 4.0 , lowercase = 1 , lowercase = None , lowercase = None , lowercase = "pil" , lowercase = True , ): _lowerCamelCase : Union[str, Any] = self._execution_device _lowerCamelCase : Optional[int] = guidance_scale > 1.0 if isinstance(lowercase , lowercase ): _lowerCamelCase : int = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): _lowerCamelCase : Union[str, Any] = torch.cat(lowercase , dim=0 ) if isinstance(lowercase , lowercase ): _lowerCamelCase : Any = torch.cat(lowercase , dim=0 ) _lowerCamelCase : Optional[int] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _lowerCamelCase : Any = image_embeds.repeat_interleave(lowercase , dim=0 ) _lowerCamelCase : List[str] = negative_image_embeds.repeat_interleave(lowercase , dim=0 ) _lowerCamelCase : List[str] = hint.repeat_interleave(lowercase , dim=0 ) _lowerCamelCase : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) _lowerCamelCase : Union[str, Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase ) self.scheduler.set_timesteps(lowercase , device=lowercase ) _lowerCamelCase : int = self.scheduler.timesteps _lowerCamelCase : Optional[Any] = self.movq.config.latent_channels _lowerCamelCase : Tuple = downscale_height_and_width(lowercase , lowercase , self.movq_scale_factor ) # create initial latent _lowerCamelCase : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowercase , lowercase , lowercase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : Union[str, Any] = {'image_embeds': image_embeds, 'hint': hint} _lowerCamelCase : Optional[Any] = self.unet( sample=lowercase , timestep=lowercase , encoder_hidden_states=lowercase , added_cond_kwargs=lowercase , return_dict=lowercase , )[0] if do_classifier_free_guidance: _lowerCamelCase : int = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCamelCase : List[Any] = noise_pred.chunk(2 ) _lowerCamelCase : Optional[int] = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Any = self.scheduler.step( lowercase , lowercase , lowercase , generator=lowercase , )[0] # post-processing _lowerCamelCase : int = self.movq.decode(lowercase , force_not_quantize=lowercase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _lowerCamelCase : Dict = image * 0.5 + 0.5 _lowerCamelCase : Any = image.clamp(0 , 1 ) _lowerCamelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCamelCase : List[Any] = self.numpy_to_pil(lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase )
354
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
0
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _UpperCAmelCase : Tuple = 16 _UpperCAmelCase : Any = 32 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = 16 ) -> Tuple: lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('bert-base-cased' ) lowerCamelCase__ : int = load_dataset('glue' , 'mrpc' ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ : List[str] = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ : Dict = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ : List[Any] = 8 else: lowerCamelCase__ : Optional[int] = None return tokenizer.pad( _UpperCAmelCase , padding='longest' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. lowerCamelCase__ : Tuple = DataLoader( tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) lowerCamelCase__ : Any = DataLoader( tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _UpperCAmelCase : Tuple = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , _UpperCAmelCase ) == "1": lowerCamelCase__ : Any = 2 # Initialize accelerator lowerCamelCase__ : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : str = config['lr'] lowerCamelCase__ : Dict = int(config['num_epochs'] ) lowerCamelCase__ : int = int(config['seed'] ) lowerCamelCase__ : int = int(config['batch_size'] ) lowerCamelCase__ : str = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCAmelCase ) def inner_training_loop(_UpperCAmelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : List[Any] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate scheduler lowerCamelCase__ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase__ : List[str] = model(**_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = outputs.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : List[str] = model(**_UpperCAmelCase ) lowerCamelCase__ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : int = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) lowerCamelCase__ : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _UpperCAmelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE ( ) -> Dict: lowerCamelCase__ : Dict = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowerCamelCase__ : Union[str, Any] = parser.parse_args() lowerCamelCase__ : int = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
50
from bisect import bisect from itertools import accumulate def __magic_name__ ( A : Optional[Any], A : List[str], A : Tuple, A : Optional[Any] ): '''simple docstring''' a = sorted(zip(A, A ), key=lambda A : x[0] / x[1], reverse=A ) a , a = [i[0] for i in r], [i[1] for i in r] a = list(accumulate(A ) ) a = bisect(A, A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
107
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ : Any = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def __a ( _UpperCamelCase: str , _UpperCamelCase: Union[str, Any]=100 , _UpperCamelCase: List[str]=" " ) -> List[str]: """simple docstring""" _snake_case = text.split(_UpperCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )] def __a ( _UpperCamelCase: dict ) -> dict: """simple docstring""" _snake_case , _snake_case = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_UpperCamelCase ): titles.append(title if title is not None else "" ) texts.append(_UpperCamelCase ) return {"title": titles, "text": texts} def __a ( _UpperCamelCase: dict , _UpperCamelCase: DPRContextEncoder , _UpperCamelCase: DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" _snake_case = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_UpperCamelCase , padding="longest" , return_tensors="pt" )["input_ids"] _snake_case = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __a ( _UpperCamelCase: "RagExampleArguments" , _UpperCamelCase: "ProcessingArguments" , _UpperCamelCase: "IndexHnswArguments" , ) -> Dict: """simple docstring""" logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _snake_case = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _snake_case = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings _snake_case = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase ) _snake_case = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _snake_case = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _snake_case = dataset.map( partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , ) # And finally save your dataset _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_UpperCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _snake_case = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_UpperCamelCase ) # And save the index _snake_case = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_UpperCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _a : SCREAMING_SNAKE_CASE_ : str = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=__lowerCAmelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) SCREAMING_SNAKE_CASE_ : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=str(Path(__lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=__lowerCAmelCase , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) SCREAMING_SNAKE_CASE_ : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class _a : SCREAMING_SNAKE_CASE_ : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) SCREAMING_SNAKE_CASE_ : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ : List[str] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ : str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
142
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = ["""image_processor""", """tokenizer"""] SCREAMING_SNAKE_CASE_ : List[Any] = """BridgeTowerImageProcessor""" SCREAMING_SNAKE_CASE_ : List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: super().__init__(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = 0 ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = False ,_SCREAMING_SNAKE_CASE = True ,_SCREAMING_SNAKE_CASE = None ,**_SCREAMING_SNAKE_CASE ,) -> BatchEncoding: _snake_case = self.tokenizer( text=_SCREAMING_SNAKE_CASE ,add_special_tokens=_SCREAMING_SNAKE_CASE ,padding=_SCREAMING_SNAKE_CASE ,truncation=_SCREAMING_SNAKE_CASE ,max_length=_SCREAMING_SNAKE_CASE ,stride=_SCREAMING_SNAKE_CASE ,pad_to_multiple_of=_SCREAMING_SNAKE_CASE ,return_token_type_ids=_SCREAMING_SNAKE_CASE ,return_attention_mask=_SCREAMING_SNAKE_CASE ,return_overflowing_tokens=_SCREAMING_SNAKE_CASE ,return_special_tokens_mask=_SCREAMING_SNAKE_CASE ,return_offsets_mapping=_SCREAMING_SNAKE_CASE ,return_length=_SCREAMING_SNAKE_CASE ,verbose=_SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) # add pixel_values + pixel_mask _snake_case = self.image_processor( _SCREAMING_SNAKE_CASE ,return_tensors=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,do_center_crop=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def _lowercase ( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ) -> Any: _snake_case = self.tokenizer.model_input_names _snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
142
1
'''simple docstring''' _lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : Tuple = True __UpperCamelCase : Dict = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) order.append(_lowerCamelCase ) return order def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : int = True __UpperCamelCase : List[str] = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return component def __lowerCAmelCase ( snake_case__ ): __UpperCamelCase : Optional[Any] = len(_lowerCamelCase ) * [False] __UpperCamelCase : dict[int, list[int]] = {vert: [] for vert in range(len(_lowerCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_lowerCamelCase ) __UpperCamelCase : List[str] = [] for i, was_visited in enumerate(_lowerCamelCase ): if not was_visited: order += topology_sort(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : Optional[int] = [] __UpperCamelCase : Optional[Any] = len(_lowerCamelCase ) * [False] for i in range(len(_lowerCamelCase ) ): __UpperCamelCase : List[str] = order[len(_lowerCamelCase ) - i - 1] if not visited[vert]: __UpperCamelCase : List[Any] = find_components(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) components_list.append(_lowerCamelCase ) return components_list
298
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase_ = logging.get_logger(__name__) class a_ : def __init__( self , snake_case_ , snake_case_ ): _lowerCAmelCase : List[str] = question_encoder _lowerCAmelCase : Optional[Any] = generator _lowerCAmelCase : Optional[Any] = self.question_encoder def __UpperCamelCase ( self , snake_case_ ): if os.path.isfile(snake_case_ ): raise ValueError(f'Provided path ({save_directory}) should be a directory, not a file' ) os.makedirs(snake_case_ , exist_ok=snake_case_ ) _lowerCAmelCase : Any = os.path.join(snake_case_ , """question_encoder_tokenizer""" ) _lowerCAmelCase : Tuple = os.path.join(snake_case_ , """generator_tokenizer""" ) self.question_encoder.save_pretrained(snake_case_ ) self.generator.save_pretrained(snake_case_ ) @classmethod def __UpperCamelCase ( cls , snake_case_ , **snake_case_ ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer _lowerCAmelCase : Dict = kwargs.pop("""config""" , snake_case_ ) if config is None: _lowerCAmelCase : List[Any] = RagConfig.from_pretrained(snake_case_ ) _lowerCAmelCase : int = AutoTokenizer.from_pretrained( snake_case_ , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" ) _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( snake_case_ , config=config.generator , subfolder="""generator_tokenizer""" ) return cls(question_encoder=snake_case_ , generator=snake_case_ ) def __call__( self , *snake_case_ , **snake_case_ ): return self.current_tokenizer(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.batch_decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self , *snake_case_ , **snake_case_ ): return self.generator.decode(*snake_case_ , **snake_case_ ) def __UpperCamelCase ( self ): _lowerCAmelCase : str = self.question_encoder def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.generator def __UpperCamelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = "longest" , snake_case_ = None , snake_case_ = True , **snake_case_ , ): warnings.warn( """`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """ """regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """ """context manager to prepare your targets. See the documentation of your specific tokenizer for more """ """details""" , snake_case_ , ) if max_length is None: _lowerCAmelCase : Any = self.current_tokenizer.model_max_length _lowerCAmelCase : List[Any] = self( snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , max_length=snake_case_ , padding=snake_case_ , truncation=snake_case_ , **snake_case_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: _lowerCAmelCase : List[str] = self.current_tokenizer.model_max_length _lowerCAmelCase : List[str] = self( text_target=snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ , **snake_case_ , ) _lowerCAmelCase : Dict = labels["""input_ids"""] return model_inputs
309
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase : '''simple docstring''' def __init__(self , __a , ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 13 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = 99 UpperCAmelCase__ = 32 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 37 UpperCAmelCase__ = 'gelu' UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 512 UpperCAmelCase__ = 16 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase__ = model(__a ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForMaskedLM(config=__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> List[str]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForQuestionAnswering(config=__a ) UpperCAmelCase__ = { 'input_ids': input_ids, 'attention_mask': input_mask, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForSequenceClassification(__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFDistilBertForMultipleChoice(__a ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ (self , __a , __a , __a , __a , __a , __a ) -> Any: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForTokenClassification(__a ) UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} UpperCAmelCase__ = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = TFDistilBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__a , dim=37 ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ (self ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__a ) def UpperCamelCase__ (self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__a ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__a ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__a ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__a ) @slow def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase__ = TFDistilBertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_tf class lowercase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__a )[0] UpperCAmelCase__ = [1, 6, 768] self.assertEqual(output.shape , __a ) UpperCAmelCase__ = tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1E-4 )
335
class lowercase : # Public class to implement a graph '''simple docstring''' def __init__(self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = row UpperCAmelCase__ = col UpperCAmelCase__ = graph def UpperCamelCase__ (self , __a , __a , __a ) -> bool: """simple docstring""" return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def UpperCamelCase__ (self , __a , __a , __a ) -> None: """simple docstring""" UpperCAmelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCAmelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCAmelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __a ) def UpperCamelCase__ (self ) -> int: # And finally, count all islands. """simple docstring""" UpperCAmelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCAmelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__a , __a , __a ) count += 1 return count
335
1
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0] __UpperCamelCase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0] # select random slice __UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowercase = (LlamaForCausalLM,) if is_torch_available() else () lowercase = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = LlamaModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = 'single_label_classification' __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = 'multi_label_classification' __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = ids_tensor([1, 10] , config.vocab_size ) __UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCamelCase = original_model(__UpperCAmelCase ).last_hidden_state __UpperCamelCase = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCamelCase = {'type': scaling_type, 'factor': 1_0.0} __UpperCamelCase = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCamelCase = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCamelCase = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) __UpperCamelCase = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCamelCase = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) __UpperCamelCase = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCamelCase = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) __UpperCamelCase = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCamelCase = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCamelCase = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338] __UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) __UpperCamelCase = model(torch.tensor(__UpperCAmelCase ) ) __UpperCamelCase = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCamelCase = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip('Model is curently gated' ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' __UpperCamelCase = 'Simply put, the theory of relativity states that ' __UpperCamelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) __UpperCamelCase = tokenizer.encode(__UpperCAmelCase , return_tensors='pt' ) __UpperCamelCase = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCamelCase = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ = None , A_ = None , A_ = True , A_ = None , A_ = False , A_ = None , A_ = True , A_ = "arrow" , **A_ , ) -> int: """simple docstring""" super().__init__( split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , **A_ , ) UpperCamelCase = load_from_cache_file UpperCamelCase = file_format UpperCamelCase = Spark( df=A_ , features=A_ , cache_dir=A_ , working_dir=A_ , **A_ , ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCamelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=A_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
110
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = CTRLTokenizer __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ )
110
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _a = None _a = logging.get_logger(__name__) _a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _a = { 'vocab_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model', }, 'tokenizer_file': { 'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json', 'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json', }, } _a = { 'google/fnet-base': 512, 'google/fnet-large': 512, } _a = '▁' class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["""input_ids""", """token_type_ids"""] SCREAMING_SNAKE_CASE__ : Tuple = FNetTokenizer def __init__( self , lowercase_=None , lowercase_=None , lowercase_=False , lowercase_=True , lowercase_=True , lowercase_="<unk>" , lowercase_="[SEP]" , lowercase_="<pad>" , lowercase_="[CLS]" , lowercase_="[MASK]" , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : int = ( AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ , normalized=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token ) super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , **lowercase_ , ) UpperCAmelCase_ : Any = do_lower_case UpperCAmelCase_ : Tuple = remove_space UpperCAmelCase_ : str = keep_accents UpperCAmelCase_ : Any = vocab_file UpperCAmelCase_ : List[Any] = False if not self.vocab_file else True def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Tuple = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[str] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
61
1
from collections.abc import Sequence from queue import Queue class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None ): snake_case = start snake_case = end snake_case = val snake_case = (start + end) // 2 snake_case = left snake_case = right def __repr__( self ): return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class A__ : """simple docstring""" def __init__( self , __snake_case , __snake_case ): snake_case = collection snake_case = function if self.collection: snake_case = self._build_tree(0 , len(__snake_case ) - 1 ) def a_ ( self , __snake_case , __snake_case ): self._update_tree(self.root , __snake_case , __snake_case ) def a_ ( self , __snake_case , __snake_case ): return self._query_range(self.root , __snake_case , __snake_case ) def a_ ( self , __snake_case , __snake_case ): if start == end: return SegmentTreeNode(__snake_case , __snake_case , self.collection[start] ) snake_case = (start + end) // 2 snake_case = self._build_tree(__snake_case , __snake_case ) snake_case = self._build_tree(mid + 1 , __snake_case ) return SegmentTreeNode(__snake_case , __snake_case , self.fn(left.val , right.val ) , __snake_case , __snake_case ) def a_ ( self , __snake_case , __snake_case , __snake_case ): if node.start == i and node.end == i: snake_case = val return if i <= node.mid: self._update_tree(node.left , __snake_case , __snake_case ) else: self._update_tree(node.right , __snake_case , __snake_case ) snake_case = self.fn(node.left.val , node.right.val ) def a_ ( self , __snake_case , __snake_case , __snake_case ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __snake_case , __snake_case ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __snake_case , node.mid ) , self._query_range(node.right , node.mid + 1 , __snake_case ) , ) else: # range in right child tree return self._query_range(node.right , __snake_case , __snake_case ) def a_ ( self ): if self.root is not None: snake_case = Queue() queue.put(self.root ) while not queue.empty(): snake_case = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) _SCREAMING_SNAKE_CASE : Optional[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
213
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def UpperCAmelCase__ (): """simple docstring""" snake_case = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = '''imagenet-1k-id2label.json''' snake_case = 10_00 snake_case = '''huggingface/label-files''' snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(UpperCamelCase_ ,UpperCamelCase_ ,repo_type='''dataset''' ) ) ,'''r''' ) ) snake_case = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=UpperCamelCase_ ,idalabel=UpperCamelCase_ ,labelaid=UpperCamelCase_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(UpperCamelCase_ ) snake_case = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) snake_case = image_size snake_case = torch.load(UpperCamelCase_ ,map_location=torch.device('''cpu''' ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(UpperCamelCase_ ) snake_case = list_of_state_dict + embeddings(UpperCamelCase_ ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=3_84, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=R"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
213
1
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ : Union[str, Any] = logging.get_logger(__name__) a_ : int = {"""vocab_file""": """spiece.model"""} a_ : Tuple = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } a_ : Tuple = { """AI-Sweden/gpt-sw3-126m""": 2048, """AI-Sweden/gpt-sw3-350m""": 2048, """AI-Sweden/gpt-sw3-1.6b""": 2048, """AI-Sweden/gpt-sw3-6.7b""": 2048, """AI-Sweden/gpt-sw3-20b""": 2048, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["input_ids", "attention_mask"] def __init__( self , UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase = None , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase_ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) lowerCamelCase_ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCamelCase_ = "<|endoftext|>" if eos_token is None else eos_token lowerCamelCase_ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCamelCase_ = unk_token if pad_token is None else pad_token lowerCamelCase_ = eos_token if bos_token is None else bos_token else: lowerCamelCase_ = "<pad>" if pad_token is None else pad_token lowerCamelCase_ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase , remove_space=UpperCamelCase , keep_accents=UpperCamelCase , bos_token=UpperCamelCase , eos_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = remove_space lowerCamelCase_ = keep_accents lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase ) # Used for whitespace normalization in input texts # fmt : off lowerCamelCase_ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCamelCase_ = re.compile( f'''[{"".join(map(UpperCamelCase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' ) def __getstate__( self ): """simple docstring""" lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def snake_case ( self ): """simple docstring""" return len(self.sp_model ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.non_printing_characters_re.sub("" , UpperCamelCase ) # Normalize whitespaces lowerCamelCase_ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization lowerCamelCase_ = unicodedata.normalize("NFC" , UpperCamelCase ) return text def snake_case ( self , UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.preprocess_text(UpperCamelCase ) return self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase ) @staticmethod def snake_case ( UpperCamelCase ): """simple docstring""" return out_string def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [] lowerCamelCase_ = "" lowerCamelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase ) + token lowerCamelCase_ = True lowerCamelCase_ = [] else: current_sub_tokens.append(UpperCamelCase ) lowerCamelCase_ = False out_string += self.sp_model.decode(UpperCamelCase ) return out_string def snake_case ( self ): """simple docstring""" lowerCamelCase_ = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,) def snake_case ( self , UpperCamelCase , UpperCamelCase = False ): """simple docstring""" if isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = self.preprocess_text(UpperCamelCase ) lowerCamelCase_ = self.sp_model.encode(UpperCamelCase ) else: lowerCamelCase_ = [self.preprocess_text(UpperCamelCase ) for t in text] lowerCamelCase_ = self.sp_model.encode(UpperCamelCase ) if return_tensors is True or return_tensors == "pt": lowerCamelCase_ = torch.tensor(UpperCamelCase ) return token_ids def snake_case ( self , UpperCamelCase ): """simple docstring""" return self.sp_model.decode(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] lowerCamelCase_ = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(UpperCamelCase ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=UpperCamelCase )
55
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __snake_case ( ): lowerCamelCase_ = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=UpperCAmelCase_ ) lowerCamelCase_ = parser.add_subparsers(help="accelerate command helpers" ) # Register commands get_config_parser(subparsers=UpperCAmelCase_ ) env_command_parser(subparsers=UpperCAmelCase_ ) launch_command_parser(subparsers=UpperCAmelCase_ ) tpu_command_parser(subparsers=UpperCAmelCase_ ) test_command_parser(subparsers=UpperCAmelCase_ ) # Let's go lowerCamelCase_ = parser.parse_args() if not hasattr(UpperCAmelCase_ , "func" ): parser.print_help() exit(1 ) # Run args.func(UpperCAmelCase_ ) if __name__ == "__main__": main()
55
1
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''nielsr/canine-s''': 2_0_4_8, } # Unicode defines 1,114,112 total “codepoints” __SCREAMING_SNAKE_CASE : Tuple = 1_1_1_4_1_1_2 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : List[str] = 0xE000 __SCREAMING_SNAKE_CASE : List[str] = 0xE001 __SCREAMING_SNAKE_CASE : Dict = 0xE002 __SCREAMING_SNAKE_CASE : Dict = 0xE003 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0xE004 # Maps special codepoints to human-readable names. __SCREAMING_SNAKE_CASE : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __SCREAMING_SNAKE_CASE : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCamelCase__=chr(lowerCamelCase__ ) , lowerCamelCase__=chr(lowerCamelCase__ ) , lowerCamelCase__=chr(lowerCamelCase__ ) , lowerCamelCase__=chr(lowerCamelCase__ ) , lowerCamelCase__=chr(lowerCamelCase__ ) , lowerCamelCase__=chr(lowerCamelCase__ ) , lowerCamelCase__=False , lowerCamelCase__=2_0_4_8 , **lowerCamelCase__ , ): _lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token _lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token _lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token _lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token _lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , model_max_length=lowerCamelCase__ , **lowerCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. _lowerCamelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _lowerCamelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _lowerCamelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } _lowerCamelCase = UNICODE_VOCAB_SIZE _lowerCamelCase = len(self._special_codepoints ) @property def snake_case__ ( self ): return self._unicode_vocab_size def snake_case__ ( self , lowerCamelCase__ ): return list(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ ): try: return ord(lowerCamelCase__ ) except TypeError: raise ValueError(F"""invalid token: '{token}'""" ) def snake_case__ ( self , lowerCamelCase__ ): try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCamelCase__ ) except TypeError: raise ValueError(F"""invalid id: {index}""" ) def snake_case__ ( self , lowerCamelCase__ ): return "".join(lowerCamelCase__ ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) _lowerCamelCase = [1] + ([0] * len(lowerCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(lowerCamelCase__ )) + [1] return result def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] _lowerCamelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): return ()
73
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
73
1
import math import flax.linen as nn import jax.numpy as jnp def SCREAMING_SNAKE_CASE_ ( __A : jnp.ndarray , __A : int , __A : float = 1 , __A : float = 1 , __A : float = 1.0e4 , __A : bool = False , __A : float = 1.0 , ) -> jnp.ndarray: """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" a_ : int = float(embedding_dim // 2 ) a_ : str = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) a_ : Optional[int] = min_timescale * jnp.exp(jnp.arange(__A , dtype=jnp.floataa ) * -log_timescale_increment ) a_ : Optional[int] = jnp.expand_dims(__A , 1 ) * jnp.expand_dims(__A , 0 ) # scale embeddings a_ : str = scale * emb if flip_sin_to_cos: a_ : str = jnp.concatenate([jnp.cos(__A ), jnp.sin(__A )] , axis=1 ) else: a_ : Any = jnp.concatenate([jnp.sin(__A ), jnp.cos(__A )] , axis=1 ) a_ : Optional[int] = jnp.reshape(__A , [jnp.shape(__A )[0], embedding_dim] ) return signal class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : jnp.dtype = jnp.floataa @nn.compact def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : Optional[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = nn.silu(SCREAMING_SNAKE_CASE__ ) a_ : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(SCREAMING_SNAKE_CASE__ ) return temb class SCREAMING_SNAKE_CASE__ ( nn.Module ): snake_case__ : int = 32 snake_case__ : bool = False snake_case__ : float = 1 @nn.compact def __call__( self : str , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: return get_sinusoidal_embeddings( SCREAMING_SNAKE_CASE__ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
32
'''simple docstring''' from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _UpperCamelCase ( ): '''simple docstring''' import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join UpperCAmelCase__ = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _UpperCamelCase ( ): '''simple docstring''' assert _test_patching.open is open UpperCAmelCase__ = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__ ): pass def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.len is mock assert _test_patching.len is len def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_start_and_stop_mock__""" UpperCAmelCase__ = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _UpperCamelCase ( ): '''simple docstring''' from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join UpperCAmelCase__ = """__test_patch_submodule_successive_join__""" UpperCAmelCase__ = """__test_patch_submodule_successive_dirname__""" UpperCAmelCase__ = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__ ): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__ ): pass
346
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = None __snake_case = None @property def UpperCamelCase__ ( self ): return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''padding_value''' ) ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) for x, y in zip(_UpperCAmelCase , processed_features[input_name] ) ) ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = self.feat_extract_tester.seq_length_diff snake_case_ = self.feat_extract_tester.max_seq_length + pad_diff snake_case_ = self.feat_extract_tester.min_seq_length snake_case_ = self.feat_extract_tester.batch_size snake_case_ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , padding=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) snake_case_ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' )[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy snake_case_ = feat_extract.pad(_UpperCAmelCase , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , pad_to_multiple_of=10 ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] self.assertTrue(all(len(_UpperCAmelCase ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) snake_case_ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_UpperCAmelCase ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct snake_case_ = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1E-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1E-3 ) def UpperCamelCase__ ( self , _UpperCAmelCase=False ): def _inputs_have_equal_length(_UpperCAmelCase ): snake_case_ = len(input[0] ) for input_slice in input[1:]: if len(_UpperCAmelCase ) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase ): if not np.allclose(np.asarray(_UpperCAmelCase ) , np.asarray(_UpperCAmelCase ) , atol=1E-3 ): return False return True snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) # truncate to smallest snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to smallest with np snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) # truncate to middle snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase , return_tensors='''np''' , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=_UpperCAmelCase ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) snake_case_ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''longest''' , truncation=_UpperCAmelCase )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_UpperCAmelCase ): feat_extract.pad(_UpperCAmelCase , padding='''max_length''' , truncation=_UpperCAmelCase )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy snake_case_ = 12 snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) snake_case_ = input_a[input_name] snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=_UpperCAmelCase , ) snake_case_ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of snake_case_ = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: snake_case_ = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase ) ) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase ) ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_padding(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) def UpperCamelCase__ ( self ): self._check_truncation(numpify=_UpperCAmelCase ) @require_torch def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) @require_tf def UpperCamelCase__ ( self ): snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' )[input_name] snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.pad(_UpperCAmelCase , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , _UpperCAmelCase ) def UpperCamelCase__ ( self ): snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**_UpperCAmelCase ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_common() snake_case_ = [len(_UpperCAmelCase ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = min(_UpperCAmelCase ) snake_case_ = feat_extract.pad( _UpperCAmelCase , padding='''max_length''' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='''np''' ) self.assertIn('''attention_mask''' , _UpperCAmelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
267
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def is_in_circle(snake_case_ , snake_case_ ) -> bool: _UpperCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _UpperCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(snake_case_ ) ) # The ratio of the area for circle to square is pi/4. _UpperCAmelCase = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ = 0.0 , snake_case_ = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(snake_case_ , snake_case_ ) ) for _ in range(snake_case_ ) ) * (max_value - min_value) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ = 0.0 , snake_case_ = 1.0 ): '''simple docstring''' def identity_function(snake_case_ ) -> float: return x _UpperCAmelCase = area_under_curve_estimator( snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _UpperCAmelCase = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def function_to_integrate(snake_case_ ) -> float: return sqrt(4.0 - x * x ) _UpperCAmelCase = area_under_curve_estimator( snake_case_ , snake_case_ , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
133
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = torch.load(snake_case_ , map_location="cpu" ) _UpperCAmelCase = chkpt["model"] # We have the base model one level deeper than the original XLM repository _UpperCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: _UpperCAmelCase = v else: _UpperCAmelCase = v _UpperCAmelCase = chkpt["params"] _UpperCAmelCase = {n: v for n, v in config.items() if not isinstance(snake_case_ , (torch.FloatTensor, numpy.ndarray) )} _UpperCAmelCase = chkpt["dico_word2id"] _UpperCAmelCase = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model _UpperCAmelCase = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _UpperCAmelCase = pytorch_dump_folder_path + "/" + CONFIG_NAME _UpperCAmelCase = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(snake_case_ , snake_case_ ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case_ , indent=2 ) + "\n" ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(snake_case_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case_ , indent=2 ) + "\n" ) if __name__ == "__main__": lowercase_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ : Optional[int] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
133
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = '' _UpperCAmelCase :str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _UpperCAmelCase :str = None # compression type in fsspec. ex: "gzip" _UpperCAmelCase :str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , A_ = "" , A_ = None , A_ = None , **A_ ): '''simple docstring''' super().__init__(self , **A_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCamelCase : List[Any] = fsspec.open( A_ , mode="rb" , protocol=A_ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCamelCase : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) UpperCamelCase : Optional[Any] = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) UpperCamelCase : List[Any] = None @classmethod def __UpperCamelCase( cls , A_ ): '''simple docstring''' return super()._strip_protocol(A_ ).lstrip("/" ) def __UpperCamelCase( self ): '''simple docstring''' if self.dir_cache is None: UpperCamelCase : Dict = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} UpperCamelCase : List[Any] = {f["name"]: f} def __UpperCamelCase( self , A_ ): '''simple docstring''' return self.file.open().read() def __UpperCamelCase( self , A_ , A_ = "rb" , A_=None , A_=True , A_=None , **A_ , ): '''simple docstring''' UpperCamelCase : List[Any] = self._strip_protocol(A_ ) if mode != "rb": raise ValueError(F"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""" ) return self.file.open() class A__ ( __snake_case ): _UpperCAmelCase :List[str] = 'bz2' _UpperCAmelCase :Dict = 'bz2' _UpperCAmelCase :Union[str, Any] = '.bz2' class A__ ( __snake_case ): _UpperCAmelCase :Any = 'gzip' _UpperCAmelCase :List[Any] = 'gzip' _UpperCAmelCase :Any = '.gz' class A__ ( __snake_case ): _UpperCAmelCase :Optional[int] = 'lz4' _UpperCAmelCase :Tuple = 'lz4' _UpperCAmelCase :int = '.lz4' class A__ ( __snake_case ): _UpperCAmelCase :int = 'xz' _UpperCAmelCase :Union[str, Any] = 'xz' _UpperCAmelCase :Tuple = '.xz' class A__ ( __snake_case ): _UpperCAmelCase :Union[str, Any] = 'zstd' _UpperCAmelCase :Optional[Any] = 'zstd' _UpperCAmelCase :Union[str, Any] = '.zst' def __init__( self , A_ , A_ = "rb" , A_ = None , A_ = None , A_ = DEFAULT_BLOCK_SIZE , **A_ , ): '''simple docstring''' super().__init__( fo=A_ , mode=A_ , target_protocol=A_ , target_options=A_ , block_size=A_ , **A_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCamelCase : Any = self.file.__enter__ class A__ : def __init__( self , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = file_ def __enter__( self ): '''simple docstring''' self._file.__enter__() return self def __exit__( self , *A_ , **A_ ): '''simple docstring''' self._file.__exit__(*A_ , **A_ ) def __iter__( self ): '''simple docstring''' return iter(self._file ) def __UpperCamelCase( self ): '''simple docstring''' return next(self._file ) def __getattr__( self , A_ ): '''simple docstring''' return getattr(self._file , A_ ) def fixed_enter(*A_ , **A_ ): return WrappedFile(_enter(*A_ , **A_ ) ) UpperCamelCase : str = fixed_enter
140
class A__ : # Public class to implement a graph def __init__( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = row UpperCamelCase : Any = col UpperCamelCase : Optional[Any] = graph def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCamelCase( self , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Any = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order UpperCamelCase : Dict = [-1, 0, 1, -1, 1, -1, 0, 1] UpperCamelCase : Any = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , A_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , A_ ) def __UpperCamelCase( self ): # And finally, count all islands. '''simple docstring''' UpperCamelCase : str = [[False for j in range(self.COL )] for i in range(self.ROW )] UpperCamelCase : int = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(A_ , A_ , A_ ) count += 1 return count
140
1
import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def A (__A : List[str] , __A : Optional[Any]=False ) -> List[Any]: """simple docstring""" try: UpperCAmelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCAmelCase_ = default else: # KEY is set, convert it to True or False. try: UpperCAmelCase_ = strtobool(__A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value snake_case_ : Any = parse_flag_from_env("RUN_SLOW", default=False) def A (__A : Any ) -> Tuple: """simple docstring""" return unittest.skip('''Test was skipped''' )(__A ) def A (__A : int ) -> Dict: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(__A ) def A (__A : Dict ) -> int: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(__A ) def A (__A : Dict ) -> Tuple: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(__A ) def A (__A : Optional[Any] ) -> Any: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(__A ) def A (__A : List[Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(__A ) def A (__A : int ) -> Optional[int]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(__A ) def A (__A : Any ) -> List[Any]: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(__A ) def A (__A : List[Any] ) -> List[str]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(__A ) def A (__A : List[Any] ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(__A ) def A (__A : List[str] ) -> List[str]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(__A ) def A (__A : Optional[int] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(__A ) def A (__A : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(__A ) def A (__A : Union[str, Any] ) -> int: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(__A ) def A (__A : Dict ) -> Optional[int]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(__A ) def A (__A : Union[str, Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(__A ) def A (__A : Any=None , __A : List[Any]=None ) -> List[str]: """simple docstring""" if test_case is None: return partial(__A , version=__A ) return unittest.skipUnless(is_torch_version('''>=''' , __A ) , F"""test requires torch version >= {version}""" )(__A ) def A (__A : Union[str, Any] ) -> Any: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(__A ) def A (__A : Union[str, Any] ) -> str: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(__A ) def A (__A : Any ) -> Optional[Any]: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(__A ) snake_case_ : Optional[int] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def A (__A : Union[str, Any] ) -> Tuple: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(__A ) class __snake_case ( unittest.TestCase ): UpperCAmelCase__ : List[Any] = True @classmethod def lowerCamelCase ( cls : List[Any]): """simple docstring""" UpperCAmelCase_ = tempfile.mkdtemp() @classmethod def lowerCamelCase ( cls : Dict): """simple docstring""" if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def lowerCamelCase ( self : Tuple): """simple docstring""" if self.clear_on_setup: for path in Path(self.tmpdir).glob('''**/*'''): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_snake_case) class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[int]): """simple docstring""" super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __snake_case ( unittest.TestCase ): def lowerCamelCase ( self : Optional[Any] , _snake_case : Union[mock.Mock, List[mock.Mock]]): """simple docstring""" UpperCAmelCase_ = mocks if isinstance(_snake_case , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def A (__A : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ = AcceleratorState() UpperCAmelCase_ = tensor[None].clone().to(state.device ) UpperCAmelCase_ = gather(__A ).cpu() UpperCAmelCase_ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , __A ): return False return True class __snake_case : def __init__( self : List[Any] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]): """simple docstring""" UpperCAmelCase_ = returncode UpperCAmelCase_ = stdout UpperCAmelCase_ = stderr async def A (__A : List[Any] , __A : Union[str, Any] ) -> Tuple: """simple docstring""" while True: UpperCAmelCase_ = await stream.readline() if line: callback(__A ) else: break async def A (__A : Optional[int] , __A : Optional[int]=None , __A : Any=None , __A : List[Any]=None , __A : Any=False , __A : Optional[int]=False ) -> _RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(__A ) ) UpperCAmelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCAmelCase_ = [] UpperCAmelCase_ = [] def tee(__A : Optional[int] , __A : List[Any] , __A : str , __A : Any="" ): UpperCAmelCase_ = line.decode('''utf-8''' ).rstrip() sink.append(__A ) if not quiet: print(__A , __A , file=__A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda __A : tee(__A , __A , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda __A : tee(__A , __A , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=__A , ) return _RunOutput(await p.wait() , __A , __A ) def A (__A : Dict , __A : Any=None , __A : Any=None , __A : List[Any]=180 , __A : Optional[int]=False , __A : Any=True ) -> _RunOutput: """simple docstring""" UpperCAmelCase_ = asyncio.get_event_loop() UpperCAmelCase_ = loop.run_until_complete( _stream_subprocess(__A , env=__A , stdin=__A , timeout=__A , quiet=__A , echo=__A ) ) UpperCAmelCase_ = ''' '''.join(__A ) if result.returncode > 0: UpperCAmelCase_ = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __snake_case ( a ): pass def A (__A : List[str] , __A : Tuple=False ) -> Optional[Any]: """simple docstring""" try: UpperCAmelCase_ = subprocess.check_output(__A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(__A , '''decode''' ): UpperCAmelCase_ = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(__A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
51
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Dict = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
51
1
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_lowerCamelCase , _lowerCamelCase ) ) ) def lowerCamelCase_( _lowerCamelCase ) -> None: '''simple docstring''' if point: if isinstance(_lowerCamelCase , _lowerCamelCase ): for item in point: if not isinstance(_lowerCamelCase , (int, float) ): _lowerCamelCase : Dict = ( "Expected a list of numbers as input, found " F"""{type(_lowerCamelCase ).__name__}""" ) raise TypeError(_lowerCamelCase ) else: _lowerCamelCase : Optional[int] = F"""Expected a list of numbers as input, found {type(_lowerCamelCase ).__name__}""" raise TypeError(_lowerCamelCase ) else: raise ValueError("Missing an input" ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' _validate_point(_lowerCamelCase ) _validate_point(_lowerCamelCase ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_lowerCamelCase , _lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
'''simple docstring''' class a__ : def __init__( self : List[Any] , a : Tuple ): """simple docstring""" __lowerCamelCase = arr.split(''',''' ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" __lowerCamelCase = [int(self.array[0] )] * len(self.array ) __lowerCamelCase = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): __lowerCamelCase = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) __lowerCamelCase = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __UpperCAmelCase =input("please input some numbers:") __UpperCAmelCase =SubArray(whole_array) __UpperCAmelCase =array.solve_sub_array() print(("the results is:", re))
67
"""simple docstring""" # flake8: noqa # Lint as: python3 _UpperCAmelCase = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
173
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCAmelCase = pytest.mark.integration @require_faiss class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(lowerCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: import faiss lowerCAmelCase__ = self._create_dummy_dataset() lowerCAmelCase__ = dset.map( lambda lowerCamelCase_ , lowerCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ) lowerCAmelCase__ = dset.add_faiss_index('''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: import faiss lowerCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __SCREAMING_SNAKE_CASE ( self ) -> int: import faiss lowerCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(lowerCamelCase_ , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: from elasticsearch import Elasticsearch lowerCAmelCase__ = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowerCAmelCase__ = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} lowerCAmelCase__ = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=lowerCamelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: import faiss lowerCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase__ = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase__ = 1 lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase__ = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase__ , lowerCAmelCase__ = index.search_batch(lowerCamelCase_ ) self.assertRaises(lowerCamelCase_ , index.search_batch , queries[0] ) lowerCAmelCase__ = [scores[0] for scores in total_scores] lowerCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: import faiss lowerCAmelCase__ = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase__ = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: import faiss lowerCAmelCase__ = faiss.IndexFlat(5 ) lowerCAmelCase__ = FaissIndex(custom_index=lowerCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: import faiss lowerCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCamelCase_ ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase__ = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase__ = 1 lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _snake_case ( A ) -> Tuple: import faiss lowerCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase__ = '''index.faiss''' lowerCAmelCase__ = F"""mock://{index_name}""" index.save(A , storage_options=mockfs.storage_options ) lowerCAmelCase__ = FaissIndex.load(A , storage_options=mockfs.storage_options ) lowerCAmelCase__ = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase__ = 1 lowerCAmelCase__ , lowerCAmelCase__ = index.search(A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: lowerCAmelCase__ = Elasticsearch() lowerCAmelCase__ = {'''acknowledged''': True} lowerCAmelCase__ = ElasticSearchIndex(es_client=lowerCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query lowerCAmelCase__ = '''foo''' lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase__ = '''foo''' lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search(lowerCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase__ = ['''foo''', '''bar''', '''foobar'''] lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search_batch(lowerCamelCase_ ) lowerCAmelCase__ = [scores[0] for scores in total_scores] lowerCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ ) # batched queries with timeout lowerCAmelCase__ = ['''foo''', '''bar''', '''foobar'''] lowerCAmelCase__ = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} lowerCAmelCase__ , lowerCAmelCase__ = index.search_batch(lowerCamelCase_ , request_timeout=30 ) lowerCAmelCase__ = [scores[0] for scores in total_scores] lowerCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCamelCase_ )
228
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _snake_case ( A , A , A , A=5 ) -> List[str]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 lowerCAmelCase__ = torch.tensor(tokenizer.encode(A , add_special_tokens=A ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase__ = model(A )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase__ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase__ = logits[0, masked_index, :] lowerCAmelCase__ = logits.softmax(dim=0 ) lowerCAmelCase__ , lowerCAmelCase__ = prob.topk(k=A , dim=0 ) lowerCAmelCase__ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A ) )] ) lowerCAmelCase__ = tokenizer.mask_token lowerCAmelCase__ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): lowerCAmelCase__ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(A ) , A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A , A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __UpperCAmelCase = CamembertTokenizer.from_pretrained('''camembert-base''') __UpperCAmelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() __UpperCAmelCase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
228
1
import math import tensorflow as tf from packaging import version def snake_case ( snake_case__ :Tuple) -> Union[str, Any]: _A = tf.convert_to_tensor(snake_case__) _A = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0) , x.dtype))) return x * cdf def snake_case ( snake_case__ :str) -> List[Any]: _A = tf.convert_to_tensor(snake_case__) _A = tf.cast(math.pi , x.dtype) _A = tf.cast(0.04_4715 , x.dtype) _A = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(snake_case__ , 3)))) return x * cdf def snake_case ( snake_case__ :Any) -> List[str]: _A = tf.convert_to_tensor(snake_case__) return x * tf.tanh(tf.math.softplus(snake_case__)) def snake_case ( snake_case__ :Union[str, Any]) -> Optional[int]: _A = tf.convert_to_tensor(snake_case__) _A = tf.cast(0.04_4715 , x.dtype) _A = tf.cast(0.79_7884_5608 , x.dtype) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x))) def snake_case ( snake_case__ :int) -> List[str]: _A = tf.convert_to_tensor(snake_case__) _A = tf.cast(1.702 , x.dtype) return x * tf.math.sigmoid(coeff * x) def snake_case ( snake_case__ :Any) -> Optional[int]: return tf.clip_by_value(_gelu(snake_case__) , -10 , 10) def snake_case ( snake_case__ :int , snake_case__ :Optional[Any]=-1) -> List[Any]: _A , _A = tf.split(snake_case__ , 2 , axis=snake_case__) return a * tf.math.sigmoid(snake_case__) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def snake_case ( snake_case__ :str) -> List[Any]: return tf.keras.activations.gelu(snake_case__ , approximate=snake_case__) _SCREAMING_SNAKE_CASE = tf.keras.activations.gelu _SCREAMING_SNAKE_CASE = approximate_gelu_wrap else: _SCREAMING_SNAKE_CASE = _gelu _SCREAMING_SNAKE_CASE = _gelu_new _SCREAMING_SNAKE_CASE = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def snake_case ( snake_case__ :Tuple) -> List[str]: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys())}''')
180
import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE = 'src/transformers' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*try:') # Catches a line with else: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*else:') def snake_case ( snake_case__ :Optional[Any]) -> List[str]: if _re_test_backend.search(snake_case__) is None: return None _A = [b[0] for b in _re_backend.findall(snake_case__)] backends.sort() return "_and_".join(snake_case__) def snake_case ( snake_case__ :Any) -> Any: with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: _A = f.readlines() _A = 0 while line_index < len(snake_case__) and not lines[line_index].startswith("""_import_structure = {"""): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith("""if TYPE_CHECKING""") and find_backend(lines[line_index]) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__): _A = _re_one_line_import_struct.search(snake_case__).groups()[0] _A = re.findall("""\[([^\]]+)\]""" , snake_case__) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """)]) line_index += 1 continue _A = _re_import_struct_key_value.search(snake_case__) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """) if len(snake_case__) > 0] objects.extend(snake_case__) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING"""): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 4): _A = lines[line_index] if _re_import_struct_add_one.search(snake_case__) is not None: objects.append(_re_import_struct_add_one.search(snake_case__).groups()[0]) elif _re_import_struct_add_many.search(snake_case__) is not None: _A = _re_import_struct_add_many.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_between_brackets.search(snake_case__) is not None: _A = _re_between_brackets.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_quote_object.search(snake_case__) is not None: objects.append(_re_quote_object.search(snake_case__).groups()[0]) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) elif line.startswith(""" """ * 12 + """\""""): objects.append(line[13:-3]) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(snake_case__) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("""else""") ): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 8): objects.append(line[8:-2]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case__): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 8): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 12): objects.append(line[12:-2]) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case ( snake_case__ :Dict , snake_case__ :int) -> List[Any]: def find_duplicates(snake_case__ :Union[str, Any]): return [k for k, v in collections.Counter(snake_case__).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''') _A = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): _A = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''') return errors def snake_case ( ) -> int: _A = [] for root, _, files in os.walk(snake_case__): if "__init__.py" in files: _A = os.path.join(snake_case__ , """__init__.py""") _A = parse_init(snake_case__) if objects is not None: _A = analyze_results(*snake_case__) if len(snake_case__) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case__)) if len(snake_case__) > 0: raise ValueError("""\n\n""".join(snake_case__)) def snake_case ( ) -> Optional[Any]: _A = [] for path, directories, files in os.walk(snake_case__): for folder in directories: # Ignore private modules if folder.startswith("""_"""): directories.remove(snake_case__) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__) / folder).glob("""*.py"""))) == 0: continue _A = str((Path(snake_case__) / folder).relative_to(snake_case__)) _A = short_path.replace(os.path.sep , """.""") submodules.append(snake_case__) for fname in files: if fname == "__init__.py": continue _A = str((Path(snake_case__) / fname).relative_to(snake_case__)) _A = short_path.replace(""".py""" , """""").replace(os.path.sep , """.""") if len(submodule.split(""".""")) == 1: submodules.append(snake_case__) return submodules _SCREAMING_SNAKE_CASE = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case ( ) -> Union[str, Any]: # This is to make sure the transformers module imported is the one in the repo. _A = importlib.util.spec_from_file_location( """transformers""" , os.path.join(snake_case__ , """__init__.py""") , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _A = spec.loader.load_module() _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case__) > 0: _A = """\n""".join(F'''- {module}''' for module in module_not_registered) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""") if __name__ == "__main__": check_all_inits() check_submodules()
180
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __SCREAMING_SNAKE_CASE = 299792458 # Symbols __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = symbols("""ct x y z""") def UpperCAmelCase ( _lowerCamelCase ): if velocity > c: raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!" ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError("Speed must be greater than or equal to 1!" ) return velocity / c def UpperCAmelCase ( _lowerCamelCase ): return 1 / sqrt(1 - beta(_lowerCamelCase ) ** 2 ) def UpperCAmelCase ( _lowerCamelCase ): return np.array( [ [gamma(_lowerCamelCase ), -gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), 0, 0], [-gamma(_lowerCamelCase ) * beta(_lowerCamelCase ), gamma(_lowerCamelCase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase = None ): # Ensure event is not empty if event is None: A : Tuple = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(_lowerCamelCase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __SCREAMING_SNAKE_CASE = transform(29979245) print("""Example of four vector: """) print(F"""ct' = {four_vector[0]}""") print(F"""x' = {four_vector[1]}""") print(F"""y' = {four_vector[2]}""") print(F"""z' = {four_vector[3]}""") # Substitute symbols with numerical values __SCREAMING_SNAKE_CASE = {ct: c, x: 1, y: 1, z: 1} __SCREAMING_SNAKE_CASE = [four_vector[i].subs(sub_dict) for i in range(4)] print(F"""\n{numerical_vector}""")
256
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} __SCREAMING_SNAKE_CASE = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } __SCREAMING_SNAKE_CASE = {"""bert_for_seq_generation""": 512} class lowerCamelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = [] a__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : Optional[int]="<pad>" , __lowerCamelCase : Optional[int]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Tuple , ) -> None: A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) A : Union[str, Any] = vocab_file A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: A : str = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ) -> Tuple: A : Tuple = self.__dict__.copy() A : Optional[int] = None return state def __setstate__( self : Dict , __lowerCamelCase : Union[str, Any] ) -> Tuple: A : Optional[int] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A : int = {} A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : str ) -> List[str]: return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Union[str, Any] ) -> Dict: return self.sp_model.piece_to_id(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Tuple ) -> Optional[Any]: A : Optional[int] = self.sp_model.IdToPiece(__lowerCamelCase ) return token def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , __lowerCamelCase : Optional[int] ) -> List[str]: A : List[str] = [] A : List[str] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCamelCase ) + token A : Union[str, Any] = [] else: current_sub_tokens.append(__lowerCamelCase ) out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return A : str = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: A : str = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
256
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class snake_case ( unittest.TestCase ): '''simple docstring''' A_ : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING A_ : Dict = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = pipeline(task='''text-generation''', model='''sshleifer/tiny-ctrl''', framework='''pt''' ) # Using `do_sample=False` to force deterministic output __A = text_generator('''This is a test''', do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase, [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], ) __A = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _lowerCamelCase, [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ], ) __A = text_generator('''This is a test''', do_sample=_lowerCamelCase, num_return_sequences=2, return_tensors=_lowerCamelCase ) self.assertEqual( _lowerCamelCase, [ {'''generated_token_ids''': ANY(_lowerCamelCase )}, {'''generated_token_ids''': ANY(_lowerCamelCase )}, ], ) __A = text_generator.model.config.eos_token_id __A = '''<pad>''' __A = text_generator( ['''This is a test''', '''This is a second test'''], do_sample=_lowerCamelCase, num_return_sequences=2, batch_size=2, return_tensors=_lowerCamelCase, ) self.assertEqual( _lowerCamelCase, [ [ {'''generated_token_ids''': ANY(_lowerCamelCase )}, {'''generated_token_ids''': ANY(_lowerCamelCase )}, ], [ {'''generated_token_ids''': ANY(_lowerCamelCase )}, {'''generated_token_ids''': ANY(_lowerCamelCase )}, ], ], ) @require_tf def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = pipeline(task='''text-generation''', model='''sshleifer/tiny-ctrl''', framework='''tf''' ) # Using `do_sample=False` to force deterministic output __A = text_generator('''This is a test''', do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase, [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], ) __A = text_generator(['''This is a test''', '''This is a second test'''], do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase, [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ], ) def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : Union[str, Any], _lowerCamelCase : Tuple, _lowerCamelCase : Union[str, Any] ): '''simple docstring''' __A = TextGenerationPipeline(model=_lowerCamelCase, tokenizer=_lowerCamelCase ) return text_generator, ["This is a test", "Another test"] def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = '''Hello I believe in''' __A = pipeline('''text-generation''', model='''hf-internal-testing/tiny-random-gpt2''' ) __A = text_generator(_lowerCamelCase ) self.assertEqual( _lowerCamelCase, [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}], ) __A = text_generator(_lowerCamelCase, stop_sequence=''' fe''' ) self.assertEqual(_lowerCamelCase, [{'''generated_text''': '''Hello I believe in fe'''}] ) def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int], _lowerCamelCase : Any ): '''simple docstring''' __A = text_generator.model __A = text_generator.tokenizer __A = text_generator('''This is a test''' ) self.assertEqual(_lowerCamelCase, [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __A = text_generator('''This is a test''', return_full_text=_lowerCamelCase ) self.assertEqual(_lowerCamelCase, [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertNotIn('''This is a test''', outputs[0]['''generated_text'''] ) __A = pipeline(task='''text-generation''', model=_lowerCamelCase, tokenizer=_lowerCamelCase, return_full_text=_lowerCamelCase ) __A = text_generator('''This is a test''' ) self.assertEqual(_lowerCamelCase, [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertNotIn('''This is a test''', outputs[0]['''generated_text'''] ) __A = text_generator('''This is a test''', return_full_text=_lowerCamelCase ) self.assertEqual(_lowerCamelCase, [{'''generated_text''': ANY(_lowerCamelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) __A = text_generator(['''This is great !''', '''Something else'''], num_return_sequences=2, do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase, [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ], ) if text_generator.tokenizer.pad_token is not None: __A = text_generator( ['''This is great !''', '''Something else'''], num_return_sequences=2, batch_size=2, do_sample=_lowerCamelCase ) self.assertEqual( _lowerCamelCase, [ [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], [{'''generated_text''': ANY(_lowerCamelCase )}, {'''generated_text''': ANY(_lowerCamelCase )}], ], ) with self.assertRaises(_lowerCamelCase ): __A = text_generator('''test''', return_full_text=_lowerCamelCase, return_text=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): __A = text_generator('''test''', return_full_text=_lowerCamelCase, return_tensors=_lowerCamelCase ) with self.assertRaises(_lowerCamelCase ): __A = text_generator('''test''', return_text=_lowerCamelCase, return_tensors=_lowerCamelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): __A = text_generator('''''' ) self.assertEqual(_lowerCamelCase, [{'''generated_text''': ANY(_lowerCamelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): __A = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. __A = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00, max_new_tokens=20 ) __A = text_generator('''This is a test''' * 5_00, handle_long_generation='''hole''', max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_lowerCamelCase ): text_generator( '''This is a test''' * 5_00, handle_long_generation='''hole''', max_new_tokens=tokenizer.model_max_length + 10, ) @require_torch @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' import torch # Classic `model_kwargs` __A = pipeline( model='''hf-internal-testing/tiny-random-bloom''', model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa}, ) self.assertEqual(pipe.model.device, torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloataa ) __A = pipe('''This is a test''' ) self.assertEqual( _lowerCamelCase, [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ], ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) __A = pipeline(model='''hf-internal-testing/tiny-random-bloom''', device_map='''auto''', torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device, torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloataa ) __A = pipe('''This is a test''' ) self.assertEqual( _lowerCamelCase, [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ], ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 __A = pipeline(model='''hf-internal-testing/tiny-random-bloom''', device_map='''auto''' ) self.assertEqual(pipe.model.device, torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.floataa ) __A = pipe('''This is a test''' ) self.assertEqual( _lowerCamelCase, [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ], ) @require_torch @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' import torch __A = pipeline(model='''hf-internal-testing/tiny-random-bloom''', device=0, torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' import torch __A = pipeline(model='''hf-internal-testing/tiny-random-bloom''', device_map='''auto''', torch_dtype=torch.floataa ) pipe('''This is a test''', do_sample=_lowerCamelCase, top_p=0.5 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = '''Hello world''' __A = pipeline('''text-generation''', model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": __A = logging.get_logger('''transformers.generation.tf_utils''' ) else: __A = logging.get_logger('''transformers.generation.utils''' ) __A = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_lowerCamelCase ) as cl: __A = text_generator(_lowerCamelCase, max_length=10, max_new_tokens=1 ) self.assertIn(_lowerCamelCase, cl.out ) # The user only sets one -> no warning with CaptureLogger(_lowerCamelCase ) as cl: __A = text_generator(_lowerCamelCase, max_new_tokens=1 ) self.assertNotIn(_lowerCamelCase, cl.out ) with CaptureLogger(_lowerCamelCase ) as cl: __A = text_generator(_lowerCamelCase, max_length=10 ) self.assertNotIn(_lowerCamelCase, cl.out )
266
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase_ = random.Random() if is_torch_available(): import torch def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase=1.0 , __UpperCamelCase=None , __UpperCamelCase=None ): """simple docstring""" if rng is None: __A = global_rng __A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any, _lowerCamelCase : List[str], _lowerCamelCase : Any=7, _lowerCamelCase : Optional[int]=4_00, _lowerCamelCase : Optional[int]=20_00, _lowerCamelCase : Dict=1, _lowerCamelCase : Optional[Any]=0.0, _lowerCamelCase : int=1_60_00, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : Dict=True, ): '''simple docstring''' __A = parent __A = batch_size __A = min_seq_length __A = max_seq_length __A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __A = feature_size __A = padding_value __A = sampling_rate __A = return_attention_mask __A = do_normalize def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[Any]=False, _lowerCamelCase : int=False ): '''simple docstring''' def _flatten(_lowerCamelCase : List[str] ): return list(itertools.chain(*_lowerCamelCase ) ) if equal_length: __A = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __A = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff ) ] if numpify: __A = [np.asarray(_lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : int = ASTFeatureExtractor def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = ASTFeatureExtractionTester(self ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' # Tests that all call wrap to encode_plus and batch_encode_plus __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A = [floats_list((1, x) )[0] for x in range(8_00, 14_00, 2_00 )] __A = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __A = feat_extract(speech_inputs[0], return_tensors='''np''' ).input_values __A = feat_extract(np_speech_inputs[0], return_tensors='''np''' ).input_values self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test batched __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __A = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] __A = np.asarray(_lowerCamelCase ) __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values __A = feat_extract(_lowerCamelCase, return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(_lowerCamelCase, _lowerCamelCase ): self.assertTrue(np.allclose(_lowerCamelCase, _lowerCamelCase, atol=1e-3 ) ) @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' import torch __A = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A = np.random.rand(1_00 ).astype(np.floataa ) __A = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __A = feature_extractor.pad([{'''input_values''': inputs}], return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' from datasets import load_dataset __A = load_dataset('''hf-internal-testing/librispeech_asr_dummy''', '''clean''', split='''validation''' ) # automatic decoding with librispeech __A = ds.sort('''id''' ).select(range(_lowerCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # fmt: off __A = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on __A = self._load_datasamples(1 ) __A = ASTFeatureExtractor() __A = feature_extractor(_lowerCamelCase, return_tensors='''pt''' ).input_values self.assertEquals(input_values.shape, (1, 10_24, 1_28) ) self.assertTrue(torch.allclose(input_values[0, 0, :30], _lowerCamelCase, atol=1e-4 ) )
266
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Optional[int]: random.seed(UpperCAmelCase__ ) np.random.seed(UpperCAmelCase__ ) torch.manual_seed(UpperCAmelCase__ ) torch.cuda.manual_seed_all(UpperCAmelCase__ ) # ^^ safe to call this function even if cuda is not available class __SCREAMING_SNAKE_CASE : def __init__( self : Any , snake_case : Iterable[torch.nn.Parameter] , snake_case : float = 0.9999 , snake_case : float = 0.0 , snake_case : int = 0 , snake_case : bool = False , snake_case : Union[float, int] = 1.0 , snake_case : Union[float, int] = 2 / 3 , snake_case : Optional[Any] = None , snake_case : Dict[str, Any] = None , **snake_case : Tuple , ): '''simple docstring''' if isinstance(snake_case , torch.nn.Module ): A__ : Any = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , snake_case , standard_warn=snake_case , ) A__ : int = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility A__ : Any = True if kwargs.get("""max_value""" , snake_case ) is not None: A__ : Union[str, Any] = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , snake_case , standard_warn=snake_case ) A__ : Tuple = kwargs["""max_value"""] if kwargs.get("""min_value""" , snake_case ) is not None: A__ : List[str] = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , snake_case , standard_warn=snake_case ) A__ : List[str] = kwargs["""min_value"""] A__ : Any = list(snake_case ) A__ : Optional[Any] = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , snake_case ) is not None: A__ : str = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , snake_case , standard_warn=snake_case ) self.to(device=kwargs["""device"""] ) A__ : List[str] = None A__ : Union[str, Any] = decay A__ : Tuple = min_decay A__ : Tuple = update_after_step A__ : Optional[Any] = use_ema_warmup A__ : List[Any] = inv_gamma A__ : Optional[int] = power A__ : Optional[Any] = 0 A__ : int = None # set in `step()` A__ : int = model_cls A__ : Any = model_config @classmethod def _UpperCamelCase ( cls : str , snake_case : Tuple , snake_case : Optional[Any] ): '''simple docstring''' A__ : str = model_cls.load_config(snake_case , return_unused_kwargs=snake_case ) A__ : Union[str, Any] = model_cls.from_pretrained(snake_case ) A__ : List[Any] = cls(model.parameters() , model_cls=snake_case , model_config=model.config ) ema_model.load_state_dict(snake_case ) return ema_model def _UpperCamelCase ( self : int , snake_case : Optional[Any] ): '''simple docstring''' if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) A__ : List[Any] = self.model_cls.from_config(self.model_config ) A__ : List[str] = self.state_dict() state_dict.pop("""shadow_params""" , snake_case ) model.register_to_config(**snake_case ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case ) def _UpperCamelCase ( self : str , snake_case : int ): '''simple docstring''' A__ : Any = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: A__ : Optional[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: A__ : Optional[int] = (1 + step) / (10 + step) A__ : Dict = min(snake_case , self.decay ) # make sure decay is not smaller than min_decay A__ : Dict = max(snake_case , self.min_decay ) return cur_decay_value @torch.no_grad() def _UpperCamelCase ( self : Optional[int] , snake_case : Iterable[torch.nn.Parameter] ): '''simple docstring''' if isinstance(snake_case , torch.nn.Module ): A__ : Any = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , snake_case , standard_warn=snake_case , ) A__ : Dict = parameters.parameters() A__ : str = list(snake_case ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. A__ : str = self.get_decay(self.optimization_step ) A__ : Any = decay A__ : str = 1 - decay A__ : List[str] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): A__ : int = deepspeed.zero.GatheredParameters(snake_case , modifier_rank=snake_case ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case ) def _UpperCamelCase ( self : Tuple , snake_case : Iterable[torch.nn.Parameter] ): '''simple docstring''' A__ : Tuple = list(snake_case ) for s_param, param in zip(self.shadow_params , snake_case ): param.data.copy_(s_param.to(param.device ).data ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Any=None , snake_case : List[Any]=None ): '''simple docstring''' A__ : str = [ p.to(device=snake_case , dtype=snake_case ) if p.is_floating_point() else p.to(device=snake_case ) for p in self.shadow_params ] def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _UpperCamelCase ( self : Union[str, Any] , snake_case : Iterable[torch.nn.Parameter] ): '''simple docstring''' A__ : int = [param.detach().cpu().clone() for param in parameters] def _UpperCamelCase ( self : int , snake_case : Iterable[torch.nn.Parameter] ): '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , snake_case ): param.data.copy_(c_param.data ) # Better memory-wise. A__ : Any = None def _UpperCamelCase ( self : Union[str, Any] , snake_case : dict ): '''simple docstring''' A__ : int = copy.deepcopy(snake_case ) A__ : str = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) A__ : Tuple = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , snake_case ): raise ValueError("""Invalid min_decay""" ) A__ : List[Any] = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , snake_case ): raise ValueError("""Invalid optimization_step""" ) A__ : Optional[Any] = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , snake_case ): raise ValueError("""Invalid update_after_step""" ) A__ : Optional[int] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case ): raise ValueError("""Invalid use_ema_warmup""" ) A__ : List[Any] = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) A__ : Optional[int] = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) A__ : str = state_dict.get("""shadow_params""" , snake_case ) if shadow_params is not None: A__ : Optional[Any] = shadow_params if not isinstance(self.shadow_params , snake_case ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(snake_case , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
354
"""simple docstring""" import cva import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , snake_case : float , snake_case : int ): '''simple docstring''' if k in (0.04, 0.06): A__ : Optional[int] = k A__ : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : List[Any] ): '''simple docstring''' return str(self.k ) def _UpperCamelCase ( self : int , snake_case : str ): '''simple docstring''' A__ : List[str] = cva.imread(snake_case , 0 ) A__ , A__ : Union[str, Any] = img.shape A__ : list[list[int]] = [] A__ : Optional[Any] = img.copy() A__ : List[str] = cva.cvtColor(snake_case , cva.COLOR_GRAY2RGB ) A__ , A__ : List[Any] = np.gradient(snake_case ) A__ : List[Any] = dx**2 A__ : Any = dy**2 A__ : Dict = dx * dy A__ : Any = 0.04 A__ : Optional[Any] = self.window_size // 2 for y in range(snake_case , h - offset ): for x in range(snake_case , w - offset ): A__ : List[str] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : Optional[int] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A__ : int = (wxx * wyy) - (wxy**2) A__ : Any = wxx + wyy A__ : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ , A_ = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
296
0
import math def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> bool: lowerCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ = 1 / 1_2_3_4_5 ) -> int: lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 3 while True: lowerCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(snake_case__ ): lowerCAmelCase = int(snake_case__ ) total_partitions += 1 if check_partition_perfect(snake_case__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(snake_case__ ) integer += 1 if __name__ == "__main__": print(f'{solution() = }')
338
from typing import TYPE_CHECKING from ...utils import _LazyModule lowercase__ : int = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys lowercase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
338
1
'''simple docstring''' from __future__ import annotations class _snake_case : def __init__( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : List[Any] = text, pattern UpperCAmelCase_ : Dict = len(_snake_case ), len(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): for i in range(self.patLen - 1 ,-1 ,-1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase__ ( self ,_snake_case ): for i in range(self.patLen - 1 ,-1 ,-1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase__ ( self ): # searches pattern in text and returns index positions UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.textLen - self.patLen + 1 ): UpperCAmelCase_ : Tuple = self.mismatch_in_text(_snake_case ) if mismatch_index == -1: positions.append(_snake_case ) else: UpperCAmelCase_ : Optional[int] = self.match_in_pattern(self.text[mismatch_index] ) UpperCAmelCase_ : Union[str, Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _lowerCamelCase = """ABAABA""" _lowerCamelCase = """AB""" _lowerCamelCase = BoyerMooreSearch(text, pattern) _lowerCamelCase = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
363
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def a__ ( ) -> None: """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
67
0
'''simple docstring''' from collections.abc import Generator def SCREAMING_SNAKE_CASE_ ( ) -> Generator[int, None, None]: _a : Any =0, 1 while True: _a : List[str] =b, a + b yield b def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 1000 ) -> int: _a : Union[str, Any] =1 _a : Tuple =fibonacci_generator() while len(str(next(__a ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
276
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase_ : """simple docstring""" pass
235
0
'''simple docstring''' class _snake_case : def __init__( self , _lowerCamelCase): UpperCAmelCase__ : int = set_counts UpperCAmelCase__ : Optional[int] = max(_lowerCamelCase) UpperCAmelCase__ : List[str] = len(_lowerCamelCase) UpperCAmelCase__ : Any = [1] * num_sets UpperCAmelCase__ : List[Any] = list(range(_lowerCamelCase)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Any = self.get_parent(_lowerCamelCase) UpperCAmelCase__ : List[str] = self.get_parent(_lowerCamelCase) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Tuple = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCAmelCase__ : Optional[int] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCAmelCase__ : str = 0 UpperCAmelCase__ : int = src_parent UpperCAmelCase__ : List[str] = self.set_counts[src_parent] UpperCAmelCase__ : Dict = max(self.max_set , _lowerCamelCase) return True def snake_case__ ( self , _lowerCamelCase): if self.parents[disj_set] == disj_set: return disj_set UpperCAmelCase__ : str = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
352
'''simple docstring''' import functools def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # Validation if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(UpperCamelCase__ ) != 3 or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(UpperCamelCase__ ) == 0: return 0 if min(UpperCamelCase__ ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(UpperCamelCase__ ) >= 3_6_6: raise ValueError("""All days elements should be less than 366""" ) UpperCAmelCase__ : Union[str, Any] = set(UpperCamelCase__ ) @functools.cache def dynamic_programming(UpperCamelCase__ ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
283
0
'''simple docstring''' import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = (DDPMParallelScheduler,) def _lowerCAmelCase ( self : List[str] , **lowerCAmelCase__ : Dict ) -> Any: """simple docstring""" _UpperCAmelCase : Any = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**lowerCAmelCase__ ) return config def _lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , ) def _lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : Tuple = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.scheduler_classes[0] _UpperCAmelCase : str = self.get_scheduler_config() _UpperCAmelCase : int = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.dummy_model() _UpperCAmelCase : Dict = self.dummy_sample_deter _UpperCAmelCase : List[Any] = self.dummy_sample_deter + 0.1 _UpperCAmelCase : Tuple = self.dummy_sample_deter - 0.1 _UpperCAmelCase : Union[str, Any] = samplea.shape[0] _UpperCAmelCase : Union[str, Any] = torch.stack([samplea, samplea, samplea] , dim=0 ) _UpperCAmelCase : List[Any] = torch.arange(lowerCAmelCase__ )[0:3, None].repeat(1 , lowerCAmelCase__ ) _UpperCAmelCase : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _UpperCAmelCase : Any = scheduler.batch_step_no_noise(lowerCAmelCase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) _UpperCAmelCase : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : str = len(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = self.dummy_model() _UpperCAmelCase : List[str] = self.dummy_sample_deter _UpperCAmelCase : List[Any] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual _UpperCAmelCase : str = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : Any = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample _UpperCAmelCase : Union[str, Any] = pred_prev_sample _UpperCAmelCase : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : List[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" _UpperCAmelCase : Tuple = self.scheduler_classes[0] _UpperCAmelCase : Tuple = self.get_scheduler_config(prediction_type="v_prediction" ) _UpperCAmelCase : Any = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Any = len(lowerCAmelCase__ ) _UpperCAmelCase : List[str] = self.dummy_model() _UpperCAmelCase : List[Any] = self.dummy_sample_deter _UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual _UpperCAmelCase : Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 _UpperCAmelCase : List[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample _UpperCAmelCase : List[str] = pred_prev_sample _UpperCAmelCase : List[str] = torch.sum(torch.abs(lowerCAmelCase__ ) ) _UpperCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Optional[int] = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : Optional[int] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase__ ): if i == len(lowerCAmelCase__ ) - 1: _UpperCAmelCase : List[Any] = -1 else: _UpperCAmelCase : Tuple = timesteps[i + 1] _UpperCAmelCase : List[Any] = scheduler.previous_timestep(lowerCAmelCase__ ) _UpperCAmelCase : str = prev_t.item() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = self.scheduler_classes[0] _UpperCAmelCase : List[Any] = self.get_scheduler_config() _UpperCAmelCase : List[Any] = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : int = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase__ , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase : Dict = self.scheduler_classes[0] _UpperCAmelCase : Optional[int] = self.get_scheduler_config() _UpperCAmelCase : Dict = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = [1_0_0, 8_7, 5_0, 1, 0] _UpperCAmelCase : Tuple = len(lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" _UpperCAmelCase : int = self.scheduler_classes[0] _UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() _UpperCAmelCase : str = scheduler_class(**lowerCAmelCase__ ) _UpperCAmelCase : int = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase__ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
145
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A__ : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = str(id_ ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : Tuple = [] _UpperCAmelCase : int = {} # {vertex:distance} def __lt__( self : List[str] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" return self.key < other.key def __repr__( self : int ) -> Any: """simple docstring""" return self.id def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" self.neighbors.append(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[Any] = weight def __UpperCAmelCase ( a_: Any, a_: Optional[Any], a_: Optional[Any], a_: List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], a_ ) graph[b - 1].add_edge(graph[a - 1], a_ ) def __UpperCAmelCase ( a_: list, a_: Vertex ): _UpperCAmelCase : Optional[int] = [] for u in graph: _UpperCAmelCase : Dict = math.inf _UpperCAmelCase : Any = None _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = graph[:] while q: _UpperCAmelCase : List[Any] = min(a_ ) q.remove(a_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _UpperCAmelCase : Optional[Any] = u _UpperCAmelCase : List[Any] = u.edges[v.id] for i in range(1, len(a_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __UpperCAmelCase ( a_: list, a_: Vertex ): for u in graph: _UpperCAmelCase : Optional[Any] = math.inf _UpperCAmelCase : str = None _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : List[str] = list(a_ ) hq.heapify(a_ ) while h: _UpperCAmelCase : str = hq.heappop(a_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _UpperCAmelCase : Any = u _UpperCAmelCase : Optional[int] = u.edges[v.id] hq.heapify(a_ ) for i in range(1, len(a_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __UpperCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
145
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase__ : List[Any] = [ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : List[Any] = Github(os.environ["""GITHUB_TOKEN"""] ) A_ : Union[str, Any] = g.get_repo("""huggingface/diffusers""" ) A_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: A_ : Dict = sorted(issue.get_comments() , key=lambda a_ : i.created_at , reverse=_a ) A_ : Optional[int] = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
365
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path UpperCamelCase__ : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) UpperCamelCase__ : Tuple = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} UpperCamelCase__ : Optional[Any] = 'zero2' UpperCamelCase__ : Optional[int] = 'zero3' UpperCamelCase__ : Dict = [ZEROa, ZEROa] def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" A_ : int = parameterized.to_safe_name("""_""".join(str(a_ ) for x in param.args ) ) return F"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test UpperCamelCase__ : Tuple = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _lowerCAmelCase ( __A ): """simple docstring""" @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Dict: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) @require_torch_multi_gpu @parameterized.expand(_lowerCamelCase , name_func=_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> int: self.run_and_check( stage=_lowerCamelCase , model=_lowerCamelCase , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = True , _lowerCamelCase = True , _lowerCamelCase = True , ) -> List[str]: A_ : Union[str, Any] = models[model] A_ : Tuple = self.run_trainer( stage=_lowerCamelCase , model_name=_lowerCamelCase , eval_steps=_lowerCamelCase , num_train_epochs=1 , distributed=_lowerCamelCase , fpaa=_lowerCamelCase , ) self.do_checks(_lowerCamelCase ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 10 , _lowerCamelCase = 1 , _lowerCamelCase = True , _lowerCamelCase = True , ) -> Any: A_ : Dict = self.get_auto_remove_tmp_dir("""./xxx""" , after=_lowerCamelCase ) A_ : str = F"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(_lowerCamelCase )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["""--fp16"""] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = F"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : Union[str, Any] = [F"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : Tuple = self.get_launcher(_lowerCamelCase ) A_ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowerCamelCase , env=self.get_env() ) return output_dir def UpperCAmelCase_ ( self , _lowerCamelCase=False ) -> Any: # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return F"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
164
0
from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( a_ , a_ ) -> bool: """simple docstring""" return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def UpperCAmelCase ( a_ ) -> list[str]: """simple docstring""" __A = [] __A = 1_1 __A = int("1" + "0" * digit_len ) for num in range(a_ , a_ ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __A = 1_0 return solutions def UpperCAmelCase ( a_ = 2 ) -> int: """simple docstring""" __A = 1.0 for fraction in fraction_list(a_ ): __A = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
15
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE :Optional[int] = NewType('DataClass', Any) SCREAMING_SNAKE_CASE :int = NewType('DataClassType', Any) def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" if isinstance(a_ , a_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def UpperCAmelCase ( a_ ) -> Callable[[str], Any]: """simple docstring""" __A = {str(a_ ): choice for choice in choices} return lambda a_ : str_to_choice.get(a_ , a_ ) def UpperCAmelCase ( *, a_ = None , a_ = None , a_ = dataclasses.MISSING , a_ = dataclasses.MISSING , a_ = None , **a_ , ) -> dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __A = {} if aliases is not None: __A = aliases if help is not None: __A = help return dataclasses.field(metadata=a_ , default=a_ , default_factory=a_ , **a_ ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 def __init__( self : Union[str, Any] ,A : Union[DataClassType, Iterable[DataClassType]] ,**A : List[Any] ): # To make the default appear when using --help if "formatter_class" not in kwargs: __A = ArgumentDefaultsHelpFormatter super().__init__(**A ) if dataclasses.is_dataclass(A ): __A = [dataclass_types] __A = list(A ) for dtype in self.dataclass_types: self._add_dataclass_arguments(A ) @staticmethod def UpperCamelCase_ ( A : ArgumentParser ,A : dataclasses.Field ): __A = f'''--{field.name}''' __A = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type ,A ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __A = kwargs.pop("aliases" ,[] ) if isinstance(A ,A ): __A = [aliases] __A = getattr(field.type ,"__origin__" ,field.type ) if origin_type is Union or (hasattr(A ,"UnionType" ) and isinstance(A ,types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(A ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(A ) not in field.type.__args__: # filter `str` in Union __A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __A = getattr(field.type ,"__origin__" ,field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __A = ( field.type.__args__[0] if isinstance(A ,field.type.__args__[1] ) else field.type.__args__[1] ) __A = getattr(field.type ,"__origin__" ,field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __A = {} if origin_type is Literal or (isinstance(field.type ,A ) and issubclass(field.type ,A )): if origin_type is Literal: __A = field.type.__args__ else: __A = [x.value for x in field.type] __A = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __A = field.default else: __A = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __A = copy(A ) # Hack because type=bool in argparse does not behave as we want. __A = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __A = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __A = default # This tells argparse we accept 0 or 1 value after --field_name __A = "?" # This is the value that will get picked if we do --field_name (without value) __A = True elif isclass(A ) and issubclass(A ,A ): __A = field.type.__args__[0] __A = "+" if field.default_factory is not dataclasses.MISSING: __A = field.default_factory() elif field.default is dataclasses.MISSING: __A = True else: __A = field.type if field.default is not dataclasses.MISSING: __A = field.default elif field.default_factory is not dataclasses.MISSING: __A = field.default_factory() else: __A = True parser.add_argument(A ,*A ,**A ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __A = False parser.add_argument(f'''--no_{field.name}''' ,action="store_false" ,dest=field.name ,**A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : DataClassType ): if hasattr(A ,"_argument_group_name" ): __A = self.add_argument_group(dtype._argument_group_name ) else: __A = self try: __A = get_type_hints(A ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A ): __A = ".".join(map(A ,sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(A ): if not field.init: continue __A = type_hints[field.name] self._parse_dataclass_field(A ,A ) def UpperCamelCase_ ( self : Union[str, Any] ,A : List[Any]=None ,A : List[Any]=False ,A : Optional[Any]=True ,A : Union[str, Any]=None ,A : Union[str, Any]=None ,): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __A = [] if args_filename: args_files.append(Path(A ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __A = ArgumentParser() args_file_parser.add_argument(A ,type=A ,action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __A , __A = args_file_parser.parse_known_args(args=A ) __A = vars(A ).get(args_file_flag.lstrip("-" ) ,A ) if cmd_args_file_paths: args_files.extend([Path(A ) for p in cmd_args_file_paths] ) __A = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __A = file_args + args if args is not None else file_args + sys.argv[1:] __A , __A = self.parse_known_args(args=A ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in vars(A ).items() if k in keys} for k in keys: delattr(A ,A ) __A = dtype(**A ) outputs.append(A ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(A ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def UpperCamelCase_ ( self : Dict ,A : Dict[str, Any] ,A : bool = False ): __A = set(args.keys() ) __A = [] for dtype in self.dataclass_types: __A = {f.name for f in dataclasses.fields(A ) if f.init} __A = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __A = dtype(**A ) outputs.append(A ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(A )}''' ) return tuple(A ) def UpperCamelCase_ ( self : List[str] ,A : str ,A : bool = False ): with open(Path(A ) ,encoding="utf-8" ) as open_json_file: __A = json.loads(open_json_file.read() ) __A = self.parse_dict(A ,allow_extra_keys=A ) return tuple(A ) def UpperCamelCase_ ( self : int ,A : str ,A : bool = False ): __A = self.parse_dict(yaml.safe_load(Path(A ).read_text() ) ,allow_extra_keys=A ) return tuple(A )
15
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar UpperCamelCase_ = TypeVar('T') UpperCamelCase_ = TypeVar('U') class snake_case ( Generic[T, U] ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase) ->List[Any]: a_ = key a_ = val a_ = None a_ = None def __repr__( self) ->str: return ( F'''Node: key: {self.key}, val: {self.val}, ''' F'''has next: {bool(self.next)}, has prev: {bool(self.prev)}''' ) class snake_case ( Generic[T, U] ): def __init__( self) ->None: a_ = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase) a_ = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase) a_ = self.rear, self.head def __repr__( self) ->str: a_ = ["""DoubleLinkedList"""] a_ = self.head while node.next is not None: rep.append(str(__UpperCAmelCase)) a_ = node.next rep.append(str(self.rear)) return ",\n ".join(__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->None: a_ = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None a_ = node a_ = previous a_ = node a_ = self.rear def UpperCAmelCase__ ( self , __UpperCAmelCase) ->DoubleLinkedListNode[T, U] | None: if node.prev is None or node.next is None: return None a_ = node.next a_ = node.prev a_ = None a_ = None return node class snake_case ( Generic[T, U] ): a_ : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self , __UpperCAmelCase) ->Dict: a_ = DoubleLinkedList() a_ = capacity a_ = 0 a_ = 0 a_ = 0 a_ = {} def __repr__( self) ->str: return ( F'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' F'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self , __UpperCAmelCase) ->bool: return key in self.cache def UpperCAmelCase__ ( self , __UpperCAmelCase) ->U | None: # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 a_ = self.cache[key] a_ = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__UpperCAmelCase) return node.val self.miss += 1 return None def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->None: if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity a_ = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__UpperCAmelCase) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 a_ = DoubleLinkedListNode(__UpperCAmelCase , __UpperCAmelCase) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value a_ = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list a_ = value self.list.add(__UpperCAmelCase) @classmethod def UpperCAmelCase__ ( cls , __UpperCAmelCase = 1_28) ->Callable[[Callable[[T], U]], Callable[..., U]]: def cache_decorator_inner(__UpperCAmelCase) -> Callable[..., U]: def cache_decorator_wrapper(*__UpperCAmelCase) -> U: if func not in cls.decorator_function_to_instance_map: a_ = LRUCache(__UpperCAmelCase) a_ = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: a_ = func(*__UpperCAmelCase) cls.decorator_function_to_instance_map[func].put(args[0] , __UpperCAmelCase) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__UpperCAmelCase , "cache_info" , __UpperCAmelCase) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black _a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _a = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''')) _UpperCamelCase = self.diffusers_dir shutil.copy( os.path.join(__a , '''src/diffusers/schedulers/scheduling_ddpm.py''') , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''') , ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = '''src/diffusers''' shutil.rmtree(self.diffusers_dir) def UpperCAmelCase ( self , __a , __a , __a , __a=None) -> Any: '''simple docstring''' _UpperCamelCase = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _UpperCamelCase = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19) _UpperCamelCase = black.format_str(__a , mode=__a) _UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''') with open(__a , '''w''' , newline='''\n''') as f: f.write(__a) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__a)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=__a) with open(__a , '''r''') as f: self.assertTrue(f.read() , __a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''') self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , __a , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , __a) , ) # Copy consistency with a really long name _UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , F'''{long_class_name}SchedulerOutput''' , re.sub('''Bert''' , __a , __a) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , __a , overwrite_result=re.sub('''DDPM''' , '''Test''' , __a) , )
194
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _a = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") _a = parser.parse_args() if args.model_type == "bert": _a = BertForMaskedLM.from_pretrained(args.model_name) _a = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") _a = model.state_dict() _a = {} for w in ["word_embeddings", "position_embeddings"]: _a = state_dict[F"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: _a = state_dict[F"""{prefix}.embeddings.LayerNorm.{w}"""] _a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] _a = state_dict[ F"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 _a = state_dict["""cls.predictions.decoder.weight"""] _a = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: _a = state_dict[F"""cls.predictions.transform.dense.{w}"""] _a = state_dict[F"""cls.predictions.transform.LayerNorm.{w}"""] print(F"""N layers selected for distillation: {std_idx}""") print(F"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(F"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
194
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a ( a__ ): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''CLIPImageProcessor''' snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ): """simple docstring""" lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) lowerCAmelCase = kwargs.pop('feature_extractor' ) lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ): """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCAmelCase = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: lowerCAmelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: lowerCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCamelCase__ ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.tokenizer.model_input_names lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCamelCase__ ( self ): """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
354
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a : def __init__( self , _snake_case , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = 'gelu' lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 5_12 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ): """simple docstring""" ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case ) lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ): """simple docstring""" lowerCAmelCase = True lowerCAmelCase = TFEsmModel(config=_snake_case ) lowerCAmelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } lowerCAmelCase = model(_snake_case ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(_snake_case , encoder_hidden_states=_snake_case ) # Also check the case where encoder outputs are not passed lowerCAmelCase = model(_snake_case , attention_mask=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM(config=_snake_case ) lowerCAmelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFEsmForTokenClassification(config=_snake_case ) lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} lowerCAmelCase = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFEsmModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass @unittest.skip('Protein models do not support embedding resizing.' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase ,lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCAmelCase = model.get_bias() assert isinstance(_snake_case , _snake_case ) for k, v in name.items(): assert isinstance(_snake_case , tf.Variable ) else: lowerCAmelCase = model.get_output_embeddings() assert x is None lowerCAmelCase = model.get_bias() assert name is None @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(_snake_case )[0] lowerCAmelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _snake_case ) # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) lowerCAmelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCAmelCase = model(_snake_case )[0] # compare the actual values for a slice. lowerCAmelCase = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
309
0
import copy import random from transformers import CLIPTokenizer class _A ( __UpperCAmelCase ): def __init__( self : int , *__SCREAMING_SNAKE_CASE : List[Any] , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = {} def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any] , *__SCREAMING_SNAKE_CASE : Any , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = super().add_tokens(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) if num_added_tokens == 0: raise ValueError( F'The tokenizer already contains the token {placeholder_token}. Please pass a different' ''' `placeholder_token` that is not already in the tokenizer.''') def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , *__SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=1 , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = [] if num_vec_per_token == 1: self.try_adding_tokens(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) output.append(__SCREAMING_SNAKE_CASE) else: __a = [] for i in range(__SCREAMING_SNAKE_CASE): __a = placeholder_token + F'_{i}' self.try_adding_tokens(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) output.append(__SCREAMING_SNAKE_CASE) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F'The tokenizer already has placeholder token {token} that can get confused with' F' {placeholder_token}keep placeholder tokens independent') __a = output def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : int=1.0): '''simple docstring''' if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = [] for i in range(len(__SCREAMING_SNAKE_CASE)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__SCREAMING_SNAKE_CASE)) return output for placeholder_token in self.token_map: if placeholder_token in text: __a = self.token_map[placeholder_token] __a = tokens[: 1 + int(len(__SCREAMING_SNAKE_CASE) * prop_tokens_to_load)] if vector_shuffle: __a = copy.copy(__SCREAMING_SNAKE_CASE) random.shuffle(__SCREAMING_SNAKE_CASE) __a = text.replace(__SCREAMING_SNAKE_CASE , ''' '''.join(__SCREAMING_SNAKE_CASE)) return text def __call__( self : str , __SCREAMING_SNAKE_CASE : Optional[int] , *__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : int=1.0 , **__SCREAMING_SNAKE_CASE : int): '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( __SCREAMING_SNAKE_CASE , vector_shuffle=__SCREAMING_SNAKE_CASE , prop_tokens_to_load=__SCREAMING_SNAKE_CASE) , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , *__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Union[str, Any]=1.0 , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( __SCREAMING_SNAKE_CASE , vector_shuffle=__SCREAMING_SNAKE_CASE , prop_tokens_to_load=__SCREAMING_SNAKE_CASE) , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
49
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _A ( __UpperCAmelCase ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : NestedDataStructureLike[PathLike] , __SCREAMING_SNAKE_CASE : Optional[NamedSplit] = None , __SCREAMING_SNAKE_CASE : Optional[Features] = None , __SCREAMING_SNAKE_CASE : str = None , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : bool = False , __SCREAMING_SNAKE_CASE : Optional[int] = None , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , split=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = path_or_paths if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) else {self.split: path_or_paths} __a = Text( cache_dir=__SCREAMING_SNAKE_CASE , data_files=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : List[str]): '''simple docstring''' if self.streaming: __a = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: __a = None __a = None __a = None __a = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) __a = self.builder.as_dataset( split=self.split , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory) return dataset
49
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github UpperCAmelCase : int = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def _SCREAMING_SNAKE_CASE () -> List[str]: '''simple docstring''' lowercase_ = Github(os.environ["""GITHUB_TOKEN"""] ) lowercase_ = g.get_repo("""huggingface/diffusers""" ) lowercase_ = repo.get_issues(state="""open""" ) for issue in open_issues: lowercase_ = sorted(issue.get_comments() , key=lambda __lowerCAmelCase : i.created_at , reverse=__lowerCAmelCase ) lowercase_ = comments[0] if len(__lowerCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
355
"""simple docstring""" from __future__ import annotations import numpy as np def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[np.ndarray, np.ndarray]: '''simple docstring''' lowercase_ , lowercase_ = np.shape(__lowerCAmelCase ) if rows != columns: lowercase_ = ( """'table' has to be of square shaped array but got a """ F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(__lowerCAmelCase ) lowercase_ = np.zeros((rows, columns) ) lowercase_ = np.zeros((rows, columns) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("""No LU decomposition exists""" ) lowercase_ = (table[i][j] - total) / upper[j][j] lowercase_ = 1 for j in range(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ = sum(lower[i][k] * upper[k][j] for k in range(__lowerCAmelCase ) ) lowercase_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
313
0
from typing import TYPE_CHECKING from ...utils import _LazyModule lowerCamelCase = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
199
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCamelCase = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCamelCase = TaTokenizerFast lowerCamelCase = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCamelCase = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
199
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Tuple = '''deberta-v2''' def __init__( self ,SCREAMING_SNAKE_CASE__=12_81_00 ,SCREAMING_SNAKE_CASE__=15_36 ,SCREAMING_SNAKE_CASE__=24 ,SCREAMING_SNAKE_CASE__=24 ,SCREAMING_SNAKE_CASE__=61_44 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-7 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=-1 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__="gelu" ,**SCREAMING_SNAKE_CASE__ ,) -> Union[str, Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE :Tuple = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE :int = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE :List[str] = type_vocab_size __SCREAMING_SNAKE_CASE :Dict = initializer_range __SCREAMING_SNAKE_CASE :str = relative_attention __SCREAMING_SNAKE_CASE :Dict = max_relative_positions __SCREAMING_SNAKE_CASE :str = pad_token_id __SCREAMING_SNAKE_CASE :Optional[int] = position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE__ ) == str: __SCREAMING_SNAKE_CASE :Any = [x.strip() for x in pos_att_type.lower().split('''|''' )] __SCREAMING_SNAKE_CASE :List[Any] = pos_att_type __SCREAMING_SNAKE_CASE :Optional[int] = vocab_size __SCREAMING_SNAKE_CASE :Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE :List[str] = kwargs.get('''pooler_hidden_size''' ,SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :str = pooler_dropout __SCREAMING_SNAKE_CASE :Optional[int] = pooler_hidden_act class _SCREAMING_SNAKE_CASE( A ): @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE :Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE :Union[str, Any] = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return 12 def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = -1 ,SCREAMING_SNAKE_CASE__ = False ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = 3 ,SCREAMING_SNAKE_CASE__ = 40 ,SCREAMING_SNAKE_CASE__ = 40 ,SCREAMING_SNAKE_CASE__ = None ,) -> Mapping[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE__ ,framework=SCREAMING_SNAKE_CASE__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
239
"""simple docstring""" from __future__ import annotations import math def __lowerCamelCase ( a_ : int , a_ : int , a_ : bool , a_ : list[int] , a_ : float ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(a_ ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , a_ , a_ , a_ ) , minimax(depth + 1 , node_index * 2 + 1 , a_ , a_ , a_ ) , ) return min( minimax(depth + 1 , node_index * 2 , a_ , a_ , a_ ) , minimax(depth + 1 , node_index * 2 + 1 , a_ , a_ , a_ ) , ) def __lowerCamelCase ( ) -> None: __SCREAMING_SNAKE_CASE :Dict = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] __SCREAMING_SNAKE_CASE :Optional[int] = math.log(len(a_ ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , a_ , a_ , a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
239
1
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __lowercase = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , ): '''simple docstring''' output_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , enable_onnx_checker=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) else: export( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=SCREAMING_SNAKE_CASE , output_names=SCREAMING_SNAKE_CASE , dynamic_axes=SCREAMING_SNAKE_CASE , do_constant_folding=SCREAMING_SNAKE_CASE , opset_version=SCREAMING_SNAKE_CASE , ) @torch.no_grad() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ): '''simple docstring''' __UpperCamelCase :List[str] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase :List[Any] = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: __UpperCamelCase :Tuple = '''cpu''' __UpperCamelCase :Union[str, Any] = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE , torch_dtype=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = Path(SCREAMING_SNAKE_CASE ) # TEXT ENCODER __UpperCamelCase :str = pipeline.text_encoder.config.max_position_embeddings __UpperCamelCase :int = pipeline.text_encoder.config.hidden_size __UpperCamelCase :int = pipeline.tokenizer( '''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=SCREAMING_SNAKE_CASE , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''sequence'''}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.text_encoder # UNET __UpperCamelCase :Dict = pipeline.unet.config.in_channels __UpperCamelCase :Union[str, Any] = pipeline.unet.config.sample_size __UpperCamelCase :Optional[Any] = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet , model_args=( torch.randn(2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(2 ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=SCREAMING_SNAKE_CASE , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''timestep''': {0: '''batch'''}, '''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''}, } , opset=SCREAMING_SNAKE_CASE , use_external_data_format=SCREAMING_SNAKE_CASE , ) __UpperCamelCase :Optional[Any] = str(unet_path.absolute().as_posix() ) __UpperCamelCase :Union[str, Any] = os.path.dirname(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = onnx.load(SCREAMING_SNAKE_CASE ) # clean up existing tensor files shutil.rmtree(SCREAMING_SNAKE_CASE ) os.mkdir(SCREAMING_SNAKE_CASE ) # collate external tensor files into one onnx.save_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , save_as_external_data=SCREAMING_SNAKE_CASE , all_tensors_to_one_file=SCREAMING_SNAKE_CASE , location='''weights.pb''' , convert_attribute=SCREAMING_SNAKE_CASE , ) del pipeline.unet # VAE ENCODER __UpperCamelCase :str = pipeline.vae __UpperCamelCase :str = vae_encoder.config.in_channels __UpperCamelCase :Union[str, Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __UpperCamelCase :Optional[int] = lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : vae_encoder.encode(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )[0].sample() onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={ '''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE , ) # VAE DECODER __UpperCamelCase :str = pipeline.vae __UpperCamelCase :Optional[int] = vae_decoder.config.latent_channels __UpperCamelCase :str = vae_decoder.config.out_channels # forward only through the decoder part __UpperCamelCase :Dict = vae_encoder.decode onnx_export( SCREAMING_SNAKE_CASE , model_args=( torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __UpperCamelCase :Any = pipeline.safety_checker __UpperCamelCase :Tuple = safety_checker.config.vision_config.num_channels __UpperCamelCase :Any = safety_checker.config.vision_config.image_size __UpperCamelCase :Tuple = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), torch.randn(1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).to(device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ), ) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={ '''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, '''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''}, } , opset=SCREAMING_SNAKE_CASE , ) del pipeline.safety_checker __UpperCamelCase :Optional[int] = OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' ) __UpperCamelCase :List[Any] = pipeline.feature_extractor else: __UpperCamelCase :Any = None __UpperCamelCase :str = None __UpperCamelCase :Tuple = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) print('''ONNX pipeline saved to''' , SCREAMING_SNAKE_CASE ) del pipeline del onnx_pipeline __UpperCamelCase :Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE , provider='''CPUExecutionProvider''' ) print('''ONNX pipeline is loadable''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') __lowercase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
43
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : Optional[Any] =IFPipeline lowercase_ : List[str] =TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowercase_ : List[str] =TEXT_TO_IMAGE_BATCH_PARAMS lowercase_ : int =PipelineTesterMixin.required_optional_params - {'''latents'''} def A__ ( self): return self._get_dummy_components() def A__ ( self ,A__ ,A__=0): if str(A__).startswith('''mps'''): lowercase = torch.manual_seed(A__) else: lowercase = torch.Generator(device=A__).manual_seed(A__) lowercase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def A__ ( self): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''') def A__ ( self): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1) def A__ ( self): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2) def A__ ( self): self._test_save_load_local() def A__ ( self): self._test_inference_batch_single_identical( expected_max_diff=1E-2 ,) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,) def A__ ( self): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def A__ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A__ ( self): # if lowercase = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa) lowercase = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' ,variant='''fp16''' ,torch_dtype=torch.floataa ,text_encoder=A__ ,tokenizer=A__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') lowercase , lowercase = pipe_a.encode_prompt('''anime turtle''' ,device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() lowercase = None lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img lowercase = IFImgaImgPipeline(**pipe_a.components) lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(A__ ,A__ ,A__ ,A__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting lowercase = IFInpaintingPipeline(**pipe_a.components) lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(A__ ,A__ ,A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def A__ ( self ,A__ ,A__ ,A__ ,A__): # pipeline 1 _start_torch_memory_measurement() lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(1)).to(A__) lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,num_inference_steps=2 ,generator=A__ ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(A__ ,A__) # pipeline 2 _start_torch_memory_measurement() lowercase = torch.Generator(device='''cpu''').manual_seed(0) lowercase = floats_tensor((1, 3, 6_4, 6_4) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(0)).to(A__) lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) ,rng=random.Random(1)).to(A__) lowercase = pipe_a( prompt_embeds=A__ ,negative_prompt_embeds=A__ ,image=A__ ,mask_image=A__ ,original_image=A__ ,generator=A__ ,num_inference_steps=2 ,output_type='''np''' ,) lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 lowercase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(A__ ,A__) def UpperCamelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
101
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowercase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = IFInpaintingSuperResolutionPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ (self ) -> Tuple: """simple docstring""" return self._get_superresolution_dummy_components() def UpperCamelCase__ (self , __a , __a=0 ) -> Dict: """simple docstring""" if str(__lowerCAmelCase ).startswith('mps' ): UpperCAmelCase__ = torch.manual_seed(__lowerCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCAmelCase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ (self ) -> Union[str, Any]: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ (self ) -> int: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ (self ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" self._test_save_load_local() def UpperCamelCase__ (self ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
358
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase_( snake_case__: Optional[int] , snake_case__: List[Any] , snake_case__: Union[str, Any] ) -> Tuple: UpperCAmelCase__ = OmegaConf.load(snake_case__ ) UpperCAmelCase__ = torch.load(snake_case__ , map_location='cpu' )['model'] UpperCAmelCase__ = list(state_dict.keys() ) # extract state_dict for VQVAE UpperCAmelCase__ = {} UpperCAmelCase__ = 'first_stage_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] # extract state_dict for UNetLDM UpperCAmelCase__ = {} UpperCAmelCase__ = 'model.diffusion_model.' for key in keys: if key.startswith(snake_case__ ): UpperCAmelCase__ = state_dict[key] UpperCAmelCase__ = config.model.params.first_stage_config.params UpperCAmelCase__ = config.model.params.unet_config.params UpperCAmelCase__ = VQModel(**snake_case__ ).eval() vqvae.load_state_dict(snake_case__ ) UpperCAmelCase__ = UNetLDMModel(**snake_case__ ).eval() unet.load_state_dict(snake_case__ ) UpperCAmelCase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='scaled_linear' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=snake_case__ , ) UpperCAmelCase__ = LDMPipeline(snake_case__ , snake_case__ , snake_case__ ) pipeline.save_pretrained(snake_case__ ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) _UpperCamelCase = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
335
0