code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
16
'''simple docstring''' def __lowerCAmelCase ( snake_case__ ): return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(snake_case__ ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__('''doctest''').testmod()
298
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A_ : List[Any] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" A_ : List[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" A_ : Dict = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): '''simple docstring''' def a__ (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string', id='token' ), id='sequence' ), id='references' ), } ), ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ = 1, lowerCamelCase_ = 4, ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCamelCase_, hypotheses=lowerCamelCase_, min_len=lowerCamelCase_, max_len=lowerCamelCase_ ) }
365
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a_ ( snake_case_ ): '''simple docstring''' @staticmethod @abstractmethod def a__ (lowerCamelCase_ ): '''simple docstring''' raise NotImplementedError() @abstractmethod def a__ (self ): '''simple docstring''' raise NotImplementedError()
316
0
'''simple docstring''' import math class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowerCamelCase=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 A_ : Optional[Any] = n A_ : List[str] = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # adjacency matrix for weight A_ : Tuple = [ [math.inf for j in range(0 , _lowerCamelCase )] for i in range(0 , _lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Optional[int] = w def UpperCAmelCase_ ( self ) -> List[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A_ : Optional[int] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Tuple: return self.dp[u][v] if __name__ == "__main__": UpperCamelCase__ : Any = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
344
'''simple docstring''' def UpperCAmelCase ( a_ = 1_0_0 ) -> int: """simple docstring""" A_ : Dict = n * (n + 1) * (2 * n + 1) / 6 A_ : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'{solution() = }')
344
1
def __UpperCamelCase ( _A = 1000000 ): lowerCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _A ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
167
import pprint import requests _A = '''https://zenquotes.io/api''' def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def __UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": _A = random_quotes() pprint.pprint(response)
167
1
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , __magic_name__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
38
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer UpperCAmelCase_ : Optional[Any] = ['''bert-base-uncased''', '''bert-base-cased'''] UpperCAmelCase_ : List[str] = '''hf-internal-testing/tiny-bert-tf-only''' if is_tf_available(): class _SCREAMING_SNAKE_CASE ( tf.keras.Model ): def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] ): super().__init__() UpperCamelCase :Any = tokenizer UpperCamelCase :List[str] = AutoConfig.from_pretrained(__lowerCamelCase ) UpperCamelCase :List[str] = TFAutoModel.from_config(__lowerCamelCase ) def _A ( self : Tuple , __lowerCamelCase : str ): UpperCamelCase :str = self.tokenizer(__lowerCamelCase ) UpperCamelCase :Any = self.bert(**__lowerCamelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Dict ): super().setUp() UpperCamelCase :int = [ BertTokenizer.from_pretrained(__lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase :Any = [TFBertTokenizer.from_pretrained(__lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(__lowerCamelCase , use_fast_bert_tokenizer=__lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase :Any = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] UpperCamelCase :Union[str, Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _A ( self : Optional[int] ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase :Any = tokenizer(__lowerCamelCase , return_tensors="""tf""" , padding="""longest""" ) UpperCamelCase :str = tf_tokenizer(__lowerCamelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _A ( self : Dict ): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase :str = tf_tokenizer(self.paired_sentences ) UpperCamelCase :Any = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _A ( self : List[str] ): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase :List[Any] = tf.function(__lowerCamelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase :Any = tf.constant(__lowerCamelCase ) UpperCamelCase :List[str] = compiled_tokenizer(__lowerCamelCase ) UpperCamelCase :Optional[Any] = tf_tokenizer(__lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _A ( self : Tuple ): for tf_tokenizer in self.tf_tokenizers: UpperCamelCase :List[str] = ModelToSave(tokenizer=__lowerCamelCase ) UpperCamelCase :Union[str, Any] = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase :Union[str, Any] = model(__lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase :List[str] = Path(__lowerCamelCase ) / """saved.model""" model.save(__lowerCamelCase ) UpperCamelCase :List[Any] = tf.keras.models.load_model(__lowerCamelCase ) UpperCamelCase :Dict = loaded_model(__lowerCamelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
38
1
'''simple docstring''' UpperCamelCase__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on A_ : int = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one A_ : List[str] = _calculate(days - 1 , a_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 A_ : Optional[int] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter A_ : Optional[Any] = _calculate(days - 1 , a_ , 0 ) A_ : List[Any] = state_late + state_absent + state_ontime A_ : Optional[Any] = prizestrings return prizestrings def UpperCAmelCase ( a_ = 3_0 ) -> int: """simple docstring""" return _calculate(a_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
164
'''simple docstring''' import math def UpperCAmelCase ( a_ ) -> list: """simple docstring""" A_ : List[Any] = [True] * n A_ : List[Any] = False A_ : Union[str, Any] = False A_ : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A_ : Optional[Any] = i * 2 while index < n: A_ : Any = False A_ : str = index + i A_ : List[str] = [2] for i in range(3 , a_ , 2 ): if is_prime[i]: primes.append(a_ ) return primes def UpperCAmelCase ( a_ = 9_9_9_9_6_6_6_6_3_3_3_3 ) -> int: """simple docstring""" A_ : Any = math.floor(math.sqrt(a_ ) ) + 1_0_0 A_ : int = prime_sieve(a_ ) A_ : int = 0 A_ : Union[str, Any] = 0 A_ : List[str] = primes[prime_index] while (last_prime**2) <= limit: A_ : Tuple = primes[prime_index + 1] A_ : List[Any] = last_prime**2 A_ : Union[str, Any] = next_prime**2 # Get numbers divisible by lps(current) A_ : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A_ : Optional[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A_ : str = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A_ : Any = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
164
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __lowerCAmelCase ( unittest.TestCase ): def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =logging.get_logger() # the current default level is logging.WARNING _lowercase =logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =logging.get_verbosity() _lowercase =logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase ='Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCAmelCase ) as cl: logger.warning(lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCAmelCase ) as cl: logger.warning(lowerCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCAmelCase ) as cl: logger.warning(lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(lowerCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def A__ ( self ) -> str: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var _lowercase =logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase =os.getenv('TRANSFORMERS_VERBOSITY' , lowerCAmelCase ) _lowercase =logging.log_levels[env_level_str] _lowercase =logging.get_verbosity() self.assertEqual( lowerCAmelCase , lowerCAmelCase , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level _lowercase ='' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def A__ ( self ) -> int: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() _lowercase =logging.logging.getLogger() with CaptureLogger(lowerCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def A__ ( self ) -> Any: '''simple docstring''' transformers.utils.logging._reset_library_root_logger() _lowercase =logging.get_logger('transformers.models.bart.tokenization_bart' ) _lowercase ='Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCAmelCase ) as cl: logger.warning_advice(lowerCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCAmelCase ) as cl: logger.warning_advice(lowerCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def a ( ) -> Optional[int]: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
205
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCamelCase_ = 1_9_2 lowerCamelCase_ = 7_6_8 lowerCamelCase_ = 1_2 lowerCamelCase_ = 3 lowerCamelCase_ = [8_0_0, 1_3_3_3] lowerCamelCase_ = False elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = 3_3_0 lowerCamelCase_ = 1_4 lowerCamelCase_ = 6 lowerCamelCase_ = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCamelCase_ = 3_8_4 lowerCamelCase_ = 1_5_3_6 lowerCamelCase_ = 1_2 lowerCamelCase_ = 6 elif "yolos_b" in yolos_name: lowerCamelCase_ = [8_0_0, 1_3_4_4] lowerCamelCase_ = 9_1 lowerCamelCase_ = "huggingface/label-files" lowerCamelCase_ = "coco-detection-id2label.json" lowerCamelCase_ = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ = idalabel lowerCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) lowerCamelCase_ = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ = in_proj_weight[: config.hidden_size, :] lowerCamelCase_ = in_proj_bias[: config.hidden_size] lowerCamelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase_ = in_proj_weight[-config.hidden_size :, :] lowerCamelCase_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ ( lowerCamelCase__ ): if "backbone" in name: lowerCamelCase_ = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCamelCase_ = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCamelCase_ = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCamelCase_ = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCamelCase_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCamelCase_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCamelCase_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCamelCase_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase_ = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase_ = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCamelCase_ = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCamelCase_ = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCamelCase_ = name.replace("vit.norm" , "vit.layernorm" ) return name def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): for key in orig_state_dict.copy().keys(): lowerCamelCase_ = orig_state_dict.pop(lowerCamelCase__ ) if "qkv" in key: lowerCamelCase_ = key.split("." ) lowerCamelCase_ = int(key_split[2] ) lowerCamelCase_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCamelCase_ = val[:dim, :] lowerCamelCase_ = val[ dim : dim * 2, : ] lowerCamelCase_ = val[-dim:, :] else: lowerCamelCase_ = val[:dim] lowerCamelCase_ = val[dim : dim * 2] lowerCamelCase_ = val[-dim:] else: lowerCamelCase_ = val return orig_state_dict def lowerCamelCase_ ( ): lowerCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase_ = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = get_yolos_config(lowerCamelCase__ ) # load original state_dict lowerCamelCase_ = torch.load(lowerCamelCase__ , map_location="cpu" )["model"] # load 🤗 model lowerCamelCase_ = YolosForObjectDetection(lowerCamelCase__ ) model.eval() lowerCamelCase_ = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Check outputs on an image, prepared by YolosImageProcessor lowerCamelCase_ = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCamelCase_ = YolosImageProcessor(format="coco_detection" , size=lowerCamelCase__ ) lowerCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = outputs.logits, outputs.pred_boxes lowerCamelCase_ , lowerCamelCase_ = None, None if yolos_name == "yolos_ti": lowerCamelCase_ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) lowerCamelCase_ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": lowerCamelCase_ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) lowerCamelCase_ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": lowerCamelCase_ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) lowerCamelCase_ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": lowerCamelCase_ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) lowerCamelCase_ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": lowerCamelCase_ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) lowerCamelCase_ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'Unknown yolos_name: {yolos_name}' ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) print(F'Saving model {yolos_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: lowerCamelCase_ = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCamelCase_ = model_mapping[yolos_name] image_processor.push_to_hub(lowerCamelCase__ , organization="hustvl" ) model.push_to_hub(lowerCamelCase__ , organization="hustvl" ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __A =parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
19
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Optional[Any] = 13 _lowerCAmelCase : int = 7 _lowerCAmelCase : Dict = 30 _lowerCAmelCase : Optional[Any] = self.seq_length + self.mem_len _lowerCAmelCase : Tuple = 15 _lowerCAmelCase : Any = True _lowerCAmelCase : Dict = True _lowerCAmelCase : Tuple = 99 _lowerCAmelCase : str = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : List[str] = 32 _lowerCAmelCase : Optional[Any] = 4 _lowerCAmelCase : int = 8 _lowerCAmelCase : List[str] = 128 _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : List[str] = self.vocab_size - 1 _lowerCAmelCase : Tuple = 0.0_1 def __A ( self ): _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[int] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLModel(lowerCamelCase__ ) _lowerCAmelCase , _lowerCAmelCase : int = model(lowerCamelCase__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : int = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : str = TFTransfoXLLMHeadModel(lowerCamelCase__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(lowerCamelCase__ ).to_tuple() _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Any = model(lowerCamelCase__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : int = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[str] = TFTransfoXLForSequenceClassification(lowerCamelCase__ ) _lowerCAmelCase : int = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : int = config_and_inputs _lowerCAmelCase : Optional[int] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Any = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : str = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Dict = TFTransfoXLModelTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=lowerCamelCase__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Union[str, Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(lowerCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : List[Any] = model.get_output_embeddings() assert isinstance(lowerCamelCase__ , tf.keras.layers.Layer ) _lowerCAmelCase : Tuple = model.get_bias() assert name is None else: _lowerCAmelCase : int = model.get_output_embeddings() assert x is None _lowerCAmelCase : Union[str, Any] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFTransfoXLModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason="""This model doesn\'t play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Dict = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : int = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : Optional[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Union[str, Any] = model.generate(lowerCamelCase__ , max_length=200 , do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ )
44
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,lowerCamelCase__ : int="</s>" ,lowerCamelCase__ : str="<unk>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : int=125 ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Union[str, Any] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase__ = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase__ = len(set(filter(lambda lowerCamelCase__ : bool('extra_id' in str(lowerCamelCase__ ) ) ,lowerCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token super().__init__( eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,extra_ids=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = extra_ids UpperCAmelCase__ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase__ = len(self.special_tokens_encoder ) UpperCAmelCase__ = len(lowerCamelCase__ ) for i, token in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = self.vocab_size + i - n UpperCAmelCase__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self : Union[str, Any] ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ): if len(lowerCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ): UpperCAmelCase__ = [chr(lowerCamelCase__ ) for i in text.encode('utf-8' )] return tokens def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : str ): if token in self.special_tokens_encoder: UpperCAmelCase__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase__ = self.added_tokens_encoder[token] elif len(lowerCamelCase__ ) != 1: UpperCAmelCase__ = self.unk_token_id else: UpperCAmelCase__ = ord(lowerCamelCase__ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Any ): if index in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[index] else: UpperCAmelCase__ = chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = b'' for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) elif token in self.added_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) else: UpperCAmelCase__ = bytes([ord(lowerCamelCase__ )] ) bstring += tok_string UpperCAmelCase__ = bstring.decode('utf-8' ,errors='ignore' ) return string def __lowerCAmelCase ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): return ()
98
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" return math.sqrt(sum(pow(a - b, 2 ) for a, b in zip(snake_case__, snake_case__ ) ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[list[float] | float]]: """simple docstring""" if dataset.ndim != value_array.ndim: a = ( 'Wrong input data\'s dimensions... ' f"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(snake_case__ ) try: if dataset.shape[1] != value_array.shape[1]: a = ( 'Wrong input data\'s shape... ' f"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(snake_case__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: a = ( 'Input data have different datatype... ' f"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(snake_case__ ) a = [] for value in value_array: a = euclidean(snake_case__, dataset[0] ) a = dataset[0].tolist() for dataset_value in dataset[1:]: a = euclidean(snake_case__, snake_case__ ) if dist > temp_dist: a = temp_dist a = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" return np.dot(snake_case__, snake_case__ ) / (norm(snake_case__ ) * norm(snake_case__ )) if __name__ == "__main__": import doctest doctest.testmod()
365
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'efficientformer' def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_act a = hidden_dropout_prob a = hidden_sizes a = num_hidden_layers a = num_attention_heads a = initializer_range a = layer_norm_eps a = patch_size a = num_channels a = depths a = mlp_expansion_ratio a = downsamples a = dim a = key_dim a = attention_ratio a = resolution a = pool_size a = downsample_patch_size a = downsample_stride a = downsample_pad a = drop_path_rate a = num_metaad_blocks a = distillation a = use_layer_scale a = layer_scale_init_value a = image_size a = batch_norm_eps
330
0
'''simple docstring''' def _lowerCamelCase ( lowercase : Dict = 400_0000 ) -> Any: _a = [0, 1] _a = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 _a = 0 for j in range(len(lowercase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"""{solution() = }""")
63
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''luke''' def __init__( self : Any , _A : int=5_0267 , _A : str=50_0000 , _A : Dict=768 , _A : int=256 , _A : Tuple=12 , _A : Optional[Any]=12 , _A : Any=3072 , _A : Tuple="gelu" , _A : Any=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : Tuple=2 , _A : int=0.02 , _A : Any=1e-12 , _A : Dict=True , _A : Optional[Any]=None , _A : List[str]=1 , _A : List[str]=0 , _A : Dict=2 , **_A : List[str] , ): """simple docstring""" super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Any = entity_vocab_size __SCREAMING_SNAKE_CASE : int = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = entity_emb_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Tuple = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps __SCREAMING_SNAKE_CASE : int = use_entity_aware_attention __SCREAMING_SNAKE_CASE : Any = classifier_dropout
303
0
from jiwer import compute_measures import datasets UpperCAmelCase : Optional[int] = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase : Any = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" UpperCAmelCase : Any = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def __A ( self ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def __A ( self , A=None , A=None , A=False ) -> Optional[Any]: '''simple docstring''' if concatenate_texts: return compute_measures(A , A )["wer"] else: lowerCamelCase = 0 lowerCamelCase = 0 for prediction, reference in zip(A , A ): lowerCamelCase = compute_measures(A , A ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
66
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Dict = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = "gptj" UpperCamelCase : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A=5_04_00 , A=20_48 , A=40_96 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1e-5 , A=0.02 , A=True , A=5_02_56 , A=5_02_56 , A=False , **A , ) -> int: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = n_positions lowerCamelCase = n_embd lowerCamelCase = n_layer lowerCamelCase = n_head lowerCamelCase = n_inner lowerCamelCase = rotary_dim lowerCamelCase = activation_function lowerCamelCase = resid_pdrop lowerCamelCase = embd_pdrop lowerCamelCase = attn_pdrop lowerCamelCase = layer_norm_epsilon lowerCamelCase = initializer_range lowerCamelCase = use_cache lowerCamelCase = bos_token_id lowerCamelCase = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class __lowercase ( a_ ): """simple docstring""" def __init__( self , A , A = "default" , A = None , A = False , ) -> Union[str, Any]: '''simple docstring''' super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? lowerCamelCase = 0 @property def __A ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) lowerCamelCase = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCamelCase = {0: """batch""", 1: """sequence"""} return common_inputs @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def __A ( self ) -> int: '''simple docstring''' return self._config.n_head def __A ( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: '''simple docstring''' lowerCamelCase = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() lowerCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase , lowerCamelCase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase = seqlen + 2 lowerCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] lowerCamelCase = common_inputs["""attention_mask"""] if self.use_past: lowerCamelCase = ordered_inputs["""attention_mask"""].dtype lowerCamelCase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def __A ( self ) -> int: '''simple docstring''' return 13
66
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A , A ) -> Tuple: """simple docstring""" lowercase__ = (boundary[1] - boundary[0]) / steps lowercase__ = boundary[0] lowercase__ = boundary[1] lowercase__ = make_points(A , A , A ) lowercase__ = 0.0 y += (h / 2.0) * f(A ) for i in x_i: # print(i) y += h * f(A ) y += (h / 2.0) * f(A ) return y def _SCREAMING_SNAKE_CASE (A , A , A ) -> int: """simple docstring""" lowercase__ = a + h while x < (b - h): yield x lowercase__ = x + h def _SCREAMING_SNAKE_CASE (A ) -> Any: # enter your function here """simple docstring""" lowercase__ = (x - 0) * (x - 0) return y def _SCREAMING_SNAKE_CASE () -> List[str]: """simple docstring""" lowercase__ = 0.0 # Lower bound of integration lowercase__ = 1.0 # Upper bound of integration lowercase__ = 10.0 # define number of steps or resolution lowercase__ = [a, b] # define boundary of integration lowercase__ = method_a(A , A ) print(f"y = {y}" ) if __name__ == "__main__": main()
2
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase_ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase = StableDiffusionDiffEditPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'} lowercase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowercase = frozenset([] ) def _lowercase( self ) -> Optional[int]: torch.manual_seed(0 ) UpperCAmelCase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=A , ) UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_one=A , ) UpperCAmelCase : List[Any] = DDIMInverseScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=A , set_alpha_to_zero=A , ) torch.manual_seed(0 ) UpperCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) UpperCAmelCase : Optional[Any] = CLIPTextModel(A ) UpperCAmelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) UpperCAmelCase : int = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _lowercase( self , A , A=0 ) -> Optional[Any]: UpperCAmelCase : Any = floats_tensor((1, 16, 16) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Any = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(A ) ).to(A ) if str(A ).startswith("""mps""" ): UpperCAmelCase : List[Any] = torch.manual_seed(A ) else: UpperCAmelCase : List[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : int = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase( self , A , A=0 ) -> Optional[int]: UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[Any] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : Any = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def _lowercase( self , A , A=0 ) -> str: UpperCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(A ) ).to(A ) UpperCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase : int = Image.fromarray(np.uinta(A ) ).convert("""RGB""" ) if str(A ).startswith("""mps""" ): UpperCAmelCase : Optional[int] = torch.manual_seed(A ) else: UpperCAmelCase : Optional[int] = torch.Generator(device=A ).manual_seed(A ) UpperCAmelCase : str = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def _lowercase( self ) -> List[Any]: if not hasattr(self.pipeline_class , """_optional_components""" ): return UpperCAmelCase : Dict = self.get_dummy_components() UpperCAmelCase : int = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(A , A , A ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) UpperCAmelCase : Any = self.get_dummy_inputs(A ) UpperCAmelCase : Optional[Any] = pipe(**A )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(A ) UpperCAmelCase : Dict = self.pipeline_class.from_pretrained(A ) pipe_loaded.to(A ) pipe_loaded.set_progress_bar_config(disable=A ) for optional_component in pipe._optional_components: self.assertTrue( getattr(A , A ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(A ) UpperCAmelCase : Tuple = pipe_loaded(**A )[0] UpperCAmelCase : Optional[Any] = np.abs(output - output_loaded ).max() self.assertLess(A , 1e-4 ) def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[int] = """cpu""" UpperCAmelCase : Optional[Any] = self.get_dummy_components() UpperCAmelCase : List[str] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Union[str, Any] = self.get_dummy_mask_inputs(A ) UpperCAmelCase : List[Any] = pipe.generate_mask(**A ) UpperCAmelCase : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) UpperCAmelCase : Optional[int] = np.array([0] * 9 ) UpperCAmelCase : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = """cpu""" UpperCAmelCase : List[str] = self.get_dummy_components() UpperCAmelCase : Optional[Any] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Optional[int] = self.get_dummy_inversion_inputs(A ) UpperCAmelCase : List[str] = pipe.invert(**A ).images UpperCAmelCase : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase : Dict = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) UpperCAmelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) def _lowercase( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def _lowercase( self ) -> int: UpperCAmelCase : List[Any] = """cpu""" UpperCAmelCase : int = self.get_dummy_components() UpperCAmelCase : List[Any] = {"""beta_start""": 0.0_0_0_8_5, """beta_end""": 0.0_1_2, """beta_schedule""": """scaled_linear"""} UpperCAmelCase : int = DPMSolverMultistepScheduler(**A ) UpperCAmelCase : int = DPMSolverMultistepInverseScheduler(**A ) UpperCAmelCase : List[str] = self.pipeline_class(**A ) pipe.to(A ) pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = self.get_dummy_inversion_inputs(A ) UpperCAmelCase : Any = pipe.invert(**A ).images UpperCAmelCase : Dict = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) UpperCAmelCase : Any = np.array( [0.5_1_5_0, 0.5_1_3_4, 0.5_0_4_3, 0.5_3_7_6, 0.4_6_9_4, 0.5_1_0_5_0, 0.5_0_1_5, 0.4_4_0_7, 0.4_7_9_9] , ) UpperCAmelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A , 1e-3 ) @require_torch_gpu @slow class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def _lowercase( cls ) -> Dict: UpperCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) UpperCAmelCase : Union[str, Any] = raw_image.convert("""RGB""" ).resize((768, 768) ) UpperCAmelCase : List[str] = raw_image def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Dict = torch.manual_seed(0 ) UpperCAmelCase : int = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) UpperCAmelCase : Optional[int] = DDIMScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : Optional[int] = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : Tuple = """a bowl of fruit""" UpperCAmelCase : List[Any] = """a bowl of pears""" UpperCAmelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) UpperCAmelCase : Tuple = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A ).latents UpperCAmelCase : Any = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] UpperCAmelCase : List[str] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=A , torch_dtype=torch.floataa ) UpperCAmelCase : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCAmelCase : Any = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A ) UpperCAmelCase : int = """a bowl of fruit""" UpperCAmelCase : int = """a bowl of pears""" UpperCAmelCase : str = pipe.generate_mask( image=self.raw_image , source_prompt=A , target_prompt=A , generator=A , ) UpperCAmelCase : Any = pipe.invert( prompt=A , image=self.raw_image , inpaint_strength=0.7 , generator=A , num_inference_steps=25 , ).latents UpperCAmelCase : str = pipe( prompt=A , mask_image=A , image_latents=A , generator=A , negative_prompt=A , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] UpperCAmelCase : Tuple = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
265
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=30 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=32 ,UpperCAmelCase_=2 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=None ,): _lowercase : Optional[int] = parent _lowercase : str = batch_size _lowercase : str = image_size _lowercase : str = patch_size _lowercase : str = num_channels _lowercase : Tuple = is_training _lowercase : Dict = use_labels _lowercase : Union[str, Any] = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Dict = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = type_sequence_label_size _lowercase : Tuple = initializer_range _lowercase : Dict = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : int = (image_size // patch_size) ** 2 _lowercase : Dict = num_patches + 1 def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = TFViTModel(config=UpperCAmelCase_ ) _lowercase : str = model(UpperCAmelCase_ ,training=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _lowercase : Any = self.image_size // 2 _lowercase : Optional[Any] = pixel_values[:, :, :image_size, :image_size] _lowercase : Tuple = model(UpperCAmelCase_ ,interpolate_pos_encoding=UpperCAmelCase_ ,training=UpperCAmelCase_ ) _lowercase : List[Any] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = self.type_sequence_label_size _lowercase : int = TFViTForImageClassification(UpperCAmelCase_ ) _lowercase : List[str] = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ,training=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _lowercase : Union[str, Any] = self.image_size // 2 _lowercase : Dict = pixel_values[:, :, :image_size, :image_size] _lowercase : Optional[Any] = model(UpperCAmelCase_ ,interpolate_pos_encoding=UpperCAmelCase_ ,training=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowercase : Union[str, Any] = 1 _lowercase : Dict = TFViTForImageClassification(UpperCAmelCase_ ) _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self ): _lowercase : int = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : str = config_and_inputs _lowercase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self ): _lowercase : Optional[int] = TFViTModelTester(self ) _lowercase : Any = ConfigTester(self ,config_class=UpperCAmelCase_ ,has_text_modality=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _lowercase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,tf.keras.layers.Layer ) ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[int] = model_class(UpperCAmelCase_ ) _lowercase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Optional[int] = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase__ ( self ): _lowercase : Tuple = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ): _lowercase : int = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) _lowercase : Optional[int] = self.default_image_processor _lowercase : str = prepare_img() _lowercase : Dict = image_processor(images=UpperCAmelCase_ ,return_tensors="""tf""" ) # forward pass _lowercase : str = model(**UpperCAmelCase_ ) # verify the logits _lowercase : int = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,UpperCAmelCase_ ) _lowercase : Optional[Any] = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 )
336
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging _SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if isinstance(UpperCamelCase_ ,np.ndarray ): return list(tensor.shape ) snake_case = tf.shape(UpperCamelCase_ ) if tensor.shape == tf.TensorShape(UpperCamelCase_ ): return dynamic snake_case = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase_ )] def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ = None ,UpperCamelCase_ = None ): """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 ,axis=UpperCamelCase_ ,name=UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_=1e-5 ,UpperCamelCase_=-1 ): """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase_ ,UpperCamelCase_ ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized snake_case , snake_case = tf.nn.moments(UpperCamelCase_ ,axes=[axis] ,keepdims=UpperCamelCase_ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis snake_case = [1] * inputs.shape.rank snake_case = shape_list(UpperCamelCase_ )[axis] snake_case = tf.reshape(UpperCamelCase_ ,UpperCamelCase_ ) snake_case = tf.reshape(UpperCamelCase_ ,UpperCamelCase_ ) # Compute layer normalization using the batch_normalization # function. snake_case = tf.nn.batch_normalization( UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,offset=UpperCamelCase_ ,scale=UpperCamelCase_ ,variance_epsilon=UpperCamelCase_ ,) return outputs def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=0 ,UpperCamelCase_=-1 ): """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input snake_case = tf.shape(UpperCamelCase_ ) snake_case = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) snake_case = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] ,axis=0 ) return tf.reshape(UpperCamelCase_ ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" if not isinstance(UpperCamelCase_ ,tf.Tensor ): snake_case = tf.convert_to_tensor(UpperCamelCase_ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: snake_case = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: snake_case = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) snake_case = ( tf.cast(1 ,encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = "input_ids" ): """simple docstring""" tf.debugging.assert_less( UpperCamelCase_ ,tf.cast(UpperCamelCase_ ,dtype=tensor.dtype ) ,message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase_ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) ,) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. snake_case = [x for x in data if len(UpperCamelCase_ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) snake_case = np.asarray(UpperCamelCase_ ) snake_case = 1 snake_case = np.array_split(UpperCamelCase_ ,UpperCamelCase_ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 snake_case = np.array_split(UpperCamelCase_ ,UpperCamelCase_ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase_ ): snake_case = chunk_data else: snake_case = data def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" if name in group.attrs: snake_case = [n.decode('''utf8''' ) if hasattr(UpperCamelCase_ ,'''decode''' ) else n for n in group.attrs[name]] else: snake_case = [] snake_case = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(UpperCamelCase_ ,'''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def UpperCAmelCase__ (UpperCamelCase_ ): """simple docstring""" def _expand_single_ad_tensor(UpperCamelCase_ ): if isinstance(UpperCamelCase_ ,tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase_ ,axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor ,UpperCamelCase_ )
127
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _SCREAMING_SNAKE_CASE : Optional[Any] = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _SCREAMING_SNAKE_CASE : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _SCREAMING_SNAKE_CASE : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = len([g for position, g in enumerate(UpperCamelCase_ ) if g == main_target[position]] ) return (item, float(UpperCamelCase_ )) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = random.randint(0 ,len(UpperCamelCase_ ) - 1 ) snake_case = parent_a[:random_slice] + parent_a[random_slice:] snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = list(UpperCamelCase_ ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: snake_case = random.choice(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,): """simple docstring""" snake_case = [] # Generate more children proportionally to the fitness score. snake_case = int(parent_a[1] * 1_00 ) + 1 snake_case = 10 if child_n >= 10 else child_n for _ in range(UpperCamelCase_ ): snake_case = population_score[random.randint(0 ,UpperCamelCase_ )][0] snake_case , snake_case = crossover(parent_a[0] ,UpperCamelCase_ ) # Append new string to the population list. pop.append(mutate(UpperCamelCase_ ,UpperCamelCase_ ) ) pop.append(mutate(UpperCamelCase_ ,UpperCamelCase_ ) ) return pop def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ = True ): """simple docstring""" if N_POPULATION < N_SELECTED: snake_case = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(UpperCamelCase_ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(UpperCamelCase_ ) # Generate random starting population. snake_case = [] for _ in range(UpperCamelCase_ ): population.append(''''''.join([random.choice(UpperCamelCase_ ) for i in range(len(UpperCamelCase_ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case , snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(UpperCamelCase_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case = [evaluate(UpperCamelCase_ ,UpperCamelCase_ ) for item in population] # Check if there is a matching evolution. snake_case = sorted(UpperCamelCase_ ,key=lambda UpperCamelCase_ : x[1] ,reverse=UpperCamelCase_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(UpperCamelCase_ ) # Normalize population score to be between 0 and 1. snake_case = [ (item, score / len(UpperCamelCase_ )) for item, score in population_score ] # This is selection for i in range(UpperCamelCase_ ): population.extend(select(population_score[int(UpperCamelCase_ )] ,UpperCamelCase_ ,UpperCamelCase_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(UpperCamelCase_ ) > N_POPULATION: break if __name__ == "__main__": _SCREAMING_SNAKE_CASE : str = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _SCREAMING_SNAKE_CASE : str = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
127
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCamelCase = {'configuration_vit_mae': ['VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMAEConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMAEForPreTraining', 'ViTMAELayer', 'ViTMAEModel', 'ViTMAEPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TFViTMAEForPreTraining', 'TFViTMAEModel', 'TFViTMAEPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
177
import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : np.array ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
177
1
import random def A ( a_ ,a_ ,a_ = False ) -> dict: __UpperCamelCase : dict ={i: [] for i in range(a_ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(a_ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(a_ ): for j in range(i + 1 ,a_ ): if random.random() < probability: graph[i].append(a_ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(a_ ) return graph def A ( a_ ) -> dict: return { i: [j for j in range(a_ ) if i != j] for i in range(a_ ) } if __name__ == "__main__": import doctest doctest.testmod()
71
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ :Any = logging.get_logger(__name__) A_ :int = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( a ): """simple docstring""" UpperCamelCase__ : Optional[int] ="""vit_msn""" def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-06 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=True , **lowerCamelCase__ , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) __UpperCamelCase : int =hidden_size __UpperCamelCase : List[Any] =num_hidden_layers __UpperCamelCase : Union[str, Any] =num_attention_heads __UpperCamelCase : List[str] =intermediate_size __UpperCamelCase : Union[str, Any] =hidden_act __UpperCamelCase : str =hidden_dropout_prob __UpperCamelCase : Union[str, Any] =attention_probs_dropout_prob __UpperCamelCase : Union[str, Any] =initializer_range __UpperCamelCase : Tuple =layer_norm_eps __UpperCamelCase : Optional[Any] =image_size __UpperCamelCase : Optional[int] =patch_size __UpperCamelCase : Any =num_channels __UpperCamelCase : str =qkv_bias
71
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
310
"""simple docstring""" lowerCamelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Tuple = [False] * len(lowercase_ ) _UpperCamelCase : Dict = [s] _UpperCamelCase : List[str] = True while queue: _UpperCamelCase : Union[str, Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase_ ) _UpperCamelCase : Union[str, Any] = True _UpperCamelCase : List[str] = u return visited[t] def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ) -> str: """simple docstring""" _UpperCamelCase : int = [-1] * (len(lowercase_ )) _UpperCamelCase : Optional[int] = 0 _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ): _UpperCamelCase : int = float("Inf" ) _UpperCamelCase : Optional[Any] = sink while s != source: # Find the minimum value in select path _UpperCamelCase : List[Any] = min(lowercase_ ,graph[parent[s]][s] ) _UpperCamelCase : Union[str, Any] = parent[s] max_flow += path_flow _UpperCamelCase : Union[str, Any] = sink while v != source: _UpperCamelCase : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow _UpperCamelCase : Dict = parent[v] for i in range(len(lowercase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
310
1
from itertools import product def _UpperCamelCase ( snake_case__, snake_case__ ) -> list[int]: __UpperCAmelCase : List[str] = sides_number __UpperCAmelCase : int = max_face_number * dice_number __UpperCAmelCase : Any = [0] * (max_total + 1) __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[int] = range(snake_case__, max_face_number + 1 ) for dice_numbers in product(snake_case__, repeat=snake_case__ ): __UpperCAmelCase : List[str] = sum(snake_case__ ) totals_frequencies[total] += 1 return totals_frequencies def _UpperCamelCase ( ) -> float: __UpperCAmelCase : List[str] = total_frequency_distribution( sides_number=4, dice_number=9 ) __UpperCAmelCase : Optional[int] = total_frequency_distribution( sides_number=6, dice_number=6 ) __UpperCAmelCase : Dict = 0 __UpperCAmelCase : List[str] = 9 __UpperCAmelCase : Dict = 4 * 9 __UpperCAmelCase : Any = 6 for peter_total in range(snake_case__, max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __UpperCAmelCase : List[Any] = (4**9) * (6**6) __UpperCAmelCase : List[str] = peter_wins_count / total_games_number __UpperCAmelCase : Dict = round(snake_case__, ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
157
import argparse import os import re _snake_case = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _snake_case = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings _snake_case = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> List[Any]: with open(snake_case__, "r", encoding="utf-8" ) as f: __UpperCAmelCase : Dict = f.read() __UpperCAmelCase : Optional[Any] = content.split("\n" ) __UpperCAmelCase : int = [] __UpperCAmelCase : Optional[int] = 0 while line_idx < len(snake_case__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __UpperCAmelCase : str = len(re.search(r"^(\s*)\S", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 __UpperCAmelCase : Dict = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __UpperCAmelCase : str = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __UpperCAmelCase : Dict = sorted(snake_case__, key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case__, "w", encoding="utf-8" ) as f: f.write("\n".join(snake_case__ ) ) elif "\n".join(snake_case__ ) != content: return True def _UpperCamelCase ( snake_case__ = False ) -> Any: __UpperCAmelCase : str = [os.path.join(snake_case__, snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith(".py" )] __UpperCAmelCase : Optional[Any] = [sort_auto_mapping(snake_case__, overwrite=snake_case__ ) for fname in fnames] if not overwrite and any(snake_case__ ): __UpperCAmelCase : List[Any] = [f for f, d in zip(snake_case__, snake_case__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _snake_case = parser.parse_args() sort_all_auto_mappings(not args.check_only)
157
1
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase : Tuple = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) lowercase : Tuple = parser.parse_args() lowercase : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
311
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=2 , ) -> List[str]: """simple docstring""" A : List[str] = parent A : Optional[Any] = batch_size A : Tuple = image_size A : int = patch_size A : Optional[int] = num_channels A : str = is_training A : List[Any] = use_labels A : Any = hidden_size A : Any = num_hidden_layers A : Optional[int] = num_attention_heads A : Any = intermediate_size A : List[str] = hidden_act A : str = hidden_dropout_prob A : Tuple = attention_probs_dropout_prob A : Any = type_sequence_label_size A : Optional[int] = initializer_range A : Dict = scope A : Tuple = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) A : List[Any] = (image_size // patch_size) ** 2 A : Tuple = num_patches + 2 def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Tuple = None if self.use_labels: A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Any = TFDeiTModel(config=SCREAMING_SNAKE_CASE ) A : str = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE ) A : List[Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A : Optional[int] = 1 A : str = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE ) A : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Tuple = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" A : str = self.type_sequence_label_size A : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Optional[Any] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A : Optional[Any] = 1 A : List[str] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE ) A : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A : Optional[int] = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[int] = self.prepare_config_and_inputs() A, A, A : Tuple = config_and_inputs A : Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __magic_name__ = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Tuple = TFDeiTModelTester(self ) A : Dict = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass def __lowerCAmelCase ( self ) -> str: """simple docstring""" A, A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) A : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A, A : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(SCREAMING_SNAKE_CASE ) A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Union[str, Any] = [*signature.parameters.keys()] A : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" A : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __lowerCAmelCase ( self ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[str] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ): '''simple docstring''' A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class A ( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Union[str, Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) A : Dict = self.default_image_processor A : List[str] = prepare_img() A : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # forward pass A : Optional[int] = model(**SCREAMING_SNAKE_CASE ) # verify the logits A : List[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) A : str = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
311
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""", """self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""", """self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""", """self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""", """self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""", """self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""", """self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""", """self_attn.rotary_emb""": """encoder.embed_positions""", """self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""", """conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""", """conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""", """conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""", """conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""", """conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""", """ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""", """ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""", """ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""", """ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""", """ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""", """ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } snake_case_ : List[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): for attribute in key.split('.' ): _UpperCamelCase : Tuple = getattr(_A , _A ) if weight_type is not None: _UpperCamelCase : Dict = getattr(_A , _A ).shape else: _UpperCamelCase : str = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _UpperCamelCase : str = value elif weight_type == "weight_g": _UpperCamelCase : Union[str, Any] = value elif weight_type == "weight_v": _UpperCamelCase : Union[str, Any] = value elif weight_type == "bias": _UpperCamelCase : List[Any] = value elif weight_type == "running_mean": _UpperCamelCase : Dict = value elif weight_type == "running_var": _UpperCamelCase : int = value elif weight_type == "num_batches_tracked": _UpperCamelCase : int = value elif weight_type == "inv_freq": _UpperCamelCase : Any = value else: _UpperCamelCase : Any = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = [] _UpperCamelCase : str = fairseq_model.state_dict() _UpperCamelCase : Dict = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) _UpperCamelCase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase : Dict = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _UpperCamelCase : Any = True if "*" in mapped_key: _UpperCamelCase : str = name.split(_A )[0].split('.' )[-2] _UpperCamelCase : Dict = mapped_key.replace('*' , _A ) if "pos_bias_u" in name: _UpperCamelCase : List[Any] = None elif "pos_bias_v" in name: _UpperCamelCase : Union[str, Any] = None elif "weight_g" in name: _UpperCamelCase : Optional[Any] = 'weight_g' elif "weight_v" in name: _UpperCamelCase : List[Any] = 'weight_v' elif "bias" in name: _UpperCamelCase : Any = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCamelCase : Dict = 'weight' elif "running_mean" in name: _UpperCamelCase : str = 'running_mean' elif "inv_freq" in name: _UpperCamelCase : List[str] = 'inv_freq' elif "running_var" in name: _UpperCamelCase : str = 'running_var' elif "num_batches_tracked" in name: _UpperCamelCase : List[str] = 'num_batches_tracked' else: _UpperCamelCase : Optional[Any] = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(f'Unused weights: {unused_weights}' ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = full_name.split('conv_layers.' )[-1] _UpperCamelCase : str = name.split('.' ) _UpperCamelCase : Tuple = int(items[0] ) _UpperCamelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _UpperCamelCase : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _UpperCamelCase : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _UpperCamelCase : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _UpperCamelCase : str = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_A ) @torch.no_grad() def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=True ): if config_path is not None: _UpperCamelCase : Tuple = WavaVecaConformerConfig.from_pretrained(_A , hidden_act='swish' ) else: _UpperCamelCase : Optional[Any] = WavaVecaConformerConfig() if "rope" in checkpoint_path: _UpperCamelCase : Tuple = 'rotary' if is_finetuned: if dict_path: _UpperCamelCase : Any = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase : Optional[int] = target_dict.pad_index _UpperCamelCase : Optional[int] = target_dict.bos_index _UpperCamelCase : Tuple = target_dict.eos_index _UpperCamelCase : Tuple = len(target_dict.symbols ) _UpperCamelCase : Union[str, Any] = os.path.join(_A , 'vocab.json' ) if not os.path.isdir(_A ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_A ) ) return os.makedirs(_A , exist_ok=_A ) _UpperCamelCase : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCamelCase : Optional[Any] = 0 _UpperCamelCase : Tuple = 1 with open(_A , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_A , _A ) _UpperCamelCase : List[Any] = WavaVecaCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_A , ) _UpperCamelCase : str = True if config.feat_extract_norm == 'layer' else False _UpperCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) _UpperCamelCase : str = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) _UpperCamelCase : Union[str, Any] = WavaVecaConformerForCTC(_A ) else: _UpperCamelCase : Tuple = WavaVecaConformerForPreTraining(_A ) if is_finetuned: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _UpperCamelCase : Optional[Any] = argparse.Namespace(task='audio_pretraining' ) _UpperCamelCase : Dict = fairseq.tasks.setup_task(_A ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_A ) _UpperCamelCase : Tuple = model[0].eval() recursively_load_weights(_A , _A , not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) snake_case_ : Tuple = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
83
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class __SCREAMING_SNAKE_CASE( a_ ): _UpperCAmelCase = "gptsan-japanese" _UpperCAmelCase = [ "past_key_values", ] _UpperCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , UpperCamelCase: List[str]=3_60_00 , UpperCamelCase: List[str]=12_80 , UpperCamelCase: List[Any]=10_24 , UpperCamelCase: Any=81_92 , UpperCamelCase: Dict=40_96 , UpperCamelCase: Optional[int]=1_28 , UpperCamelCase: Any=10 , UpperCamelCase: List[Any]=0 , UpperCamelCase: Dict=16 , UpperCamelCase: Tuple=16 , UpperCamelCase: Union[str, Any]=1_28 , UpperCamelCase: List[Any]=0.0 , UpperCamelCase: Union[str, Any]=1e-5 , UpperCamelCase: int=False , UpperCamelCase: Optional[int]=0.0 , UpperCamelCase: Dict="float32" , UpperCamelCase: Any=False , UpperCamelCase: Dict=False , UpperCamelCase: List[str]=False , UpperCamelCase: Union[str, Any]=0.002 , UpperCamelCase: int=False , UpperCamelCase: str=True , UpperCamelCase: Dict=3_59_98 , UpperCamelCase: Optional[Any]=3_59_95 , UpperCamelCase: Optional[Any]=3_59_99 , **UpperCamelCase: Optional[int] , ) -> Optional[int]: snake_case__ = vocab_size snake_case__ = max_position_embeddings snake_case__ = d_model snake_case__ = d_ff snake_case__ = d_ext snake_case__ = d_spout snake_case__ = num_switch_layers snake_case__ = num_ext_layers snake_case__ = num_switch_layers + num_ext_layers snake_case__ = num_heads snake_case__ = num_experts snake_case__ = expert_capacity snake_case__ = dropout_rate snake_case__ = layer_norm_epsilon snake_case__ = router_bias snake_case__ = router_jitter_noise snake_case__ = router_dtype snake_case__ = router_ignore_padding_tokens snake_case__ = output_hidden_states snake_case__ = output_attentions snake_case__ = initializer_factor snake_case__ = output_router_logits snake_case__ = use_cache super().__init__( separator_token_id=UpperCamelCase , pad_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase , )
307
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def UpperCamelCase( lowercase_=None ) -> Optional[int]: '''simple docstring''' if subparsers is not None: snake_case_ = subparsers.add_parser("""test""" ) else: snake_case_ = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=lowercase_ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowercase_ ) return parser def UpperCamelCase( lowercase_ ) -> int: '''simple docstring''' snake_case_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: snake_case_ = script_name else: snake_case_ = f'''--config_file={args.config_file} {script_name}''' snake_case_ = ["""accelerate-launch"""] + test_args.split() snake_case_ = execute_subprocess_async(lowercase_ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def UpperCamelCase( ) -> List[str]: '''simple docstring''' snake_case_ = test_command_parser() snake_case_ = parser.parse_args() test_command(lowercase_ ) if __name__ == "__main__": main()
34
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } lowerCamelCase_ = { '''yjernite/retribert-base-uncased''': 512, } lowerCamelCase_ = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ : Union[str, Any] = RetriBertTokenizer lowerCamelCase_ : str = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase="[UNK]" , lowerCamelCase="[SEP]" , lowerCamelCase="[PAD]" , lowerCamelCase="[CLS]" , lowerCamelCase="[MASK]" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> List[Any]: super().__init__( lowerCamelCase , tokenizer_file=lowerCamelCase , do_lower_case=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , pad_token=lowerCamelCase , cls_token=lowerCamelCase , mask_token=lowerCamelCase , tokenize_chinese_chars=lowerCamelCase , strip_accents=lowerCamelCase , **lowerCamelCase , ) snake_case_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase ) != tokenize_chinese_chars ): snake_case_ = getattr(lowerCamelCase , normalizer_state.pop("""type""" ) ) snake_case_ = do_lower_case snake_case_ = strip_accents snake_case_ = tokenize_chinese_chars snake_case_ = normalizer_class(**lowerCamelCase ) snake_case_ = do_lower_case def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase=None ) -> str: snake_case_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: snake_case_ = self._tokenizer.model.save(lowerCamelCase , name=lowerCamelCase ) return tuple(lowerCamelCase )
34
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A__ : Any = 16 A__ : int = 32 def UpperCamelCase( __UpperCamelCase : int ): return int(x / 2**20 ) class __snake_case : def __enter__( self : List[str]): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase_ : int = torch.cuda.memory_allocated() return self def __exit__( self : int , *A_ : Optional[int]): gc.collect() torch.cuda.empty_cache() lowerCAmelCase_ : List[str] = torch.cuda.memory_allocated() lowerCAmelCase_ : Union[str, Any] = torch.cuda.max_memory_allocated() lowerCAmelCase_ : Any = bamb(self.end - self.begin) lowerCAmelCase_ : str = bamb(self.peak - self.begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase( __UpperCamelCase : Accelerator ,__UpperCamelCase : int = 16 ,__UpperCamelCase : str = "bert-base-cased" ,__UpperCamelCase : int = 320 ,__UpperCamelCase : int = 160 ,): lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ : int = load_dataset( '''glue''' ,'''mrpc''' ,split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} ) def tokenize_function(__UpperCamelCase : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Any = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ : Any = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(__UpperCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase ,padding='''longest''' ,return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase_ : List[Any] = DataLoader( tokenized_datasets['''train'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCAmelCase_ : Dict = DataLoader( tokenized_datasets['''validation'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : int ): # Initialize accelerator lowerCAmelCase_ : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : List[str] = config['''lr'''] lowerCAmelCase_ : List[str] = int(config['''num_epochs'''] ) lowerCAmelCase_ : str = int(config['''seed'''] ) lowerCAmelCase_ : Union[str, Any] = int(config['''batch_size'''] ) lowerCAmelCase_ : Union[str, Any] = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,args.n_train ,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCAmelCase_ : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ : List[Any] = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ : str = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : str = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ : Dict = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCAmelCase_ : Tuple = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ : List[Any] = 0 # Now we train the model lowerCAmelCase_ : Dict = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCAmelCase_ : List[Any] = model(**__UpperCamelCase ) lowerCAmelCase_ : int = outputs.loss lowerCAmelCase_ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase_ : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,'''peak_memory_utilization.json''' ) ,'''w''' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def UpperCamelCase( ): lowerCAmelCase_ : List[str] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' ,type=__UpperCamelCase ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__UpperCamelCase ,) parser.add_argument( '''--output_dir''' ,type=__UpperCamelCase ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,) parser.add_argument( '''--peak_memory_upper_bound''' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' ,) parser.add_argument( '''--n_train''' ,type=__UpperCamelCase ,default=320 ,help='''Number of training examples to use.''' ,) parser.add_argument( '''--n_val''' ,type=__UpperCamelCase ,default=160 ,help='''Number of validation examples to use.''' ,) parser.add_argument( '''--num_epochs''' ,type=__UpperCamelCase ,default=1 ,help='''Number of train epochs.''' ,) lowerCAmelCase_ : str = parser.parse_args() lowerCAmelCase_ : List[str] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
103
import argparse import os import re import packaging.version A__ : Dict = '''examples/''' A__ : Any = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } A__ : Any = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } A__ : Any = '''README.md''' def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any] ): with open(__UpperCamelCase ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCAmelCase_ : Tuple = f.read() lowerCAmelCase_ , lowerCAmelCase_ : Dict = REPLACE_PATTERNS[pattern] lowerCAmelCase_ : Tuple = replace.replace('''VERSION''' ,__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = re_pattern.sub(__UpperCamelCase ,__UpperCamelCase ) with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(__UpperCamelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ,pattern='''examples''' ) def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : List[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) if not patch: update_version_in_examples(__UpperCamelCase ) def UpperCamelCase( ): lowerCAmelCase_ : List[str] = '''🤗 Transformers currently provides the following architectures''' lowerCAmelCase_ : List[Any] = '''1. Want to contribute a new model?''' with open(__UpperCamelCase ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: lowerCAmelCase_ : Union[str, Any] = f.readlines() # Find the start of the list. lowerCAmelCase_ : int = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase_ : str = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): lowerCAmelCase_ : int = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' ,'''https://huggingface.co/docs/transformers/model_doc''' ,) index += 1 with open(__UpperCamelCase ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.writelines(__UpperCamelCase ) def UpperCamelCase( ): with open(REPLACE_FILES['''init'''] ,'''r''' ) as f: lowerCAmelCase_ : Optional[Any] = f.read() lowerCAmelCase_ : Dict = REPLACE_PATTERNS['''init'''][0].search(__UpperCamelCase ).groups()[0] return packaging.version.parse(__UpperCamelCase ) def UpperCamelCase( __UpperCamelCase : Dict=False ): lowerCAmelCase_ : Union[str, Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: lowerCAmelCase_ : List[str] = default_version.base_version elif patch: lowerCAmelCase_ : int = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: lowerCAmelCase_ : int = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. lowerCAmelCase_ : Optional[Any] = input(f"""Which version are you releasing? [{default_version}]""" ) if len(__UpperCamelCase ) == 0: lowerCAmelCase_ : List[str] = default_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase ,patch=__UpperCamelCase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def UpperCamelCase( ): lowerCAmelCase_ : Any = get_version() lowerCAmelCase_ : int = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" lowerCAmelCase_ : Optional[Any] = current_version.base_version # Check with the user we got that right. lowerCAmelCase_ : Optional[Any] = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(__UpperCamelCase ) == 0: lowerCAmelCase_ : int = dev_version print(f"""Updating version to {version}.""" ) global_version_update(__UpperCamelCase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') A__ : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
103
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : str = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase__ : Dict = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] lowercase__ : int = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } lowercase__ : Tuple = {F'funnel-transformer/{name}': 512 for name in _model_names} lowercase__ : Optional[Any] = {F'funnel-transformer/{name}': {"do_lower_case": True} for name in _model_names} class a__ ( A__ ): a : str = VOCAB_FILES_NAMES a : Any = PRETRAINED_VOCAB_FILES_MAP a : List[Any] = PRETRAINED_INIT_CONFIGURATION a : Dict = FunnelTokenizer a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[str] = 2 def __init__( self , A=None , A=None , A=True , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A="<s>" , A="</s>" , A=True , A=True , A=None , A="##" , **A , ) -> Optional[Any]: '''simple docstring''' super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , clean_text=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , wordpieces_prefix=__snake_case , **__snake_case , ) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __snake_case ) != do_lower_case or normalizer_state.get("strip_accents" , __snake_case ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __snake_case ) != tokenize_chinese_chars ): a = getattr(__snake_case , normalizer_state.pop("type" ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__snake_case ) a = do_lower_case def lowerCAmelCase_ ( self , A , A=None ) -> List[str]: '''simple docstring''' a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase_ ( self , A , A = None ) -> List[int]: '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' a = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
353
def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> int: return 1 if digit in (0, 1) else (digit * factorial(digit - 1)) def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> bool: a = 0 a = number while duplicate > 0: a , a = divmod(__UpperCamelCase , 10) fact_sum += factorial(__UpperCamelCase) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase__ : str = int(input("Enter number: ").strip()) print( F'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
180
0
"""simple docstring""" def _A (__a , __a ) -> float: """simple docstring""" def get_matched_characters(__a , __a ) -> str: SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): SCREAMING_SNAKE_CASE_ : List[Any] = int(max(0 , i - limit ) ) SCREAMING_SNAKE_CASE_ : List[Any] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__a ) SCREAMING_SNAKE_CASE_ : Dict = f'{_stra[0:_stra.index(__a )]} {_stra[_stra.index(__a ) + 1:]}' return "".join(__a ) # matching characters SCREAMING_SNAKE_CASE_ : List[str] = get_matched_characters(__a , __a ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_matched_characters(__a , __a ) SCREAMING_SNAKE_CASE_ : int = len(__a ) # transposition SCREAMING_SNAKE_CASE_ : Tuple = ( len([(ca, ca) for ca, ca in zip(__a , __a ) if ca != ca] ) // 2 ) if not match_count: SCREAMING_SNAKE_CASE_ : List[Any] = 0.0 else: SCREAMING_SNAKE_CASE_ : Optional[Any] = ( 1 / 3 * ( match_count / len(__a ) + match_count / len(__a ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("""hello""", """world"""))
91
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = None , lowercase_ = False , ) -> List[Any]: A__ = bnb_quantization_config.load_in_abit A__ = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) A__ = [] # custom device map if isinstance(lowercase_ , lowercase_ ) and len(device_map.keys() ) > 1: A__ = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ = get_keys_to_not_convert(lowercase_ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowercase_ ) A__ = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ = [] A__ = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowercase_ ) # compatibility with peft A__ = load_in_abit A__ = load_in_abit A__ = get_parameter_device(lowercase_ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) A__ = replace_with_bnb_layers(lowercase_ , lowercase_ , modules_to_not_convert=lowercase_ ) # convert param to the right dtype A__ = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ = name.replace(".weight" , "" ).replace(".bias" , "" ) A__ = getattr(lowercase_ , lowercase_ , lowercase_ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowercase_ ): param.to(lowercase_ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): A__ = replace_with_bnb_layers( lowercase_ , lowercase_ , modules_to_not_convert=lowercase_ ) A__ = get_quantized_model_device_map( lowercase_ , lowercase_ , lowercase_ , max_memory=lowercase_ , no_split_module_classes=lowercase_ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ = True A__ = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( lowercase_ , lowercase_ , lowercase_ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowercase_ , offload_state_dict=lowercase_ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowercase_ , device_map=lowercase_ , offload_dir=lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , lowercase_=None ) -> List[str]: if device_map is None: if torch.cuda.is_available(): A__ = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(lowercase_ , lowercase_ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) A__ = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ = {} A__ = special_dtypes A__ = no_split_module_classes A__ = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ = get_balanced_memory( lowercase_ , low_zero=(device_map == "balanced_low_0") , max_memory=lowercase_ , **lowercase_ , ) A__ = max_memory A__ = infer_auto_device_map(lowercase_ , **lowercase_ ) if isinstance(lowercase_ , lowercase_ ): # check if don't have any quantized module on the cpu A__ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None ) -> Optional[int]: if modules_to_not_convert is None: A__ = [] A__, A__ = _replace_with_bnb_layers( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_=None , lowercase_=None , ) -> Optional[int]: A__ = False for name, module in model.named_children(): if current_key_name is None: A__ = [] current_key_name.append(lowercase_ ) if isinstance(lowercase_ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ = ".".join(lowercase_ ) A__ = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowercase_ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: A__ = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) A__ = module.weight.data if module.bias is not None: A__ = module.bias.data bnb_module.requires_grad_(lowercase_ ) setattr(lowercase_ , lowercase_ , lowercase_ ) A__ = True if len(list(module.children() ) ) > 0: A__, A__ = _replace_with_bnb_layers( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) A__ = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: # Create a copy of the model with init_empty_weights(): A__ = deepcopy(lowercase_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ = find_tied_parameters(lowercase_ ) # For compatibility with Accelerate < 0.18 if isinstance(lowercase_ , lowercase_ ): A__ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: A__ = sum(lowercase_ , [] ) A__ = len(lowercase_ ) > 0 # Check if it is a base model A__ = False if hasattr(lowercase_ , "base_model_prefix" ): A__ = not hasattr(lowercase_ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ = list(model.named_children() ) A__ = [list_modules[-1][0]] # add last module together with tied weights A__ = set(lowercase_ ) - set(lowercase_ ) A__ = list(set(lowercase_ ) ) + list(lowercase_ ) # remove ".weight" from the keys A__ = [".weight", ".bias"] A__ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ = name.replace(lowercase_ , "" ) filtered_module_names.append(lowercase_ ) return filtered_module_names def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Dict: for m in model.modules(): if isinstance(lowercase_ , bnb.nn.Linearabit ): return True return False def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: return next(parameter.parameters() ).device def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(lowercase_ , lowercase_ , 0 , dtype=lowercase_ , value=lowercase_ ) A__ = param_name A__ = model if "." in tensor_name: A__ = tensor_name.split("." ) for split in splits[:-1]: A__ = getattr(lowercase_ , lowercase_ ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) A__ = new_module A__ = splits[-1] # offload weights A__ = False offload_weight(module._parameters[tensor_name] , lowercase_ , lowercase_ , index=lowercase_ ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , lowercase_ , index=lowercase_ , ) else: offload_weight(lowercase_ , lowercase_ , lowercase_ , index=lowercase_ ) offload_weight(lowercase_ , param_name.replace("weight" , "SCB" ) , lowercase_ , index=lowercase_ ) set_module_tensor_to_device(lowercase_ , lowercase_ , "meta" , dtype=lowercase_ , value=torch.empty(*param.size() ) )
247
0
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase_ : Tuple = logging.get_logger(__name__) lowerCamelCase_ : Union[str, Any] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "gptj" __lowerCAmelCase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __A=5_0400 , __A=2048 , __A=4096 , __A=28 , __A=16 , __A=64 , __A=None , __A="gelu_new" , __A=0.0 , __A=0.0 , __A=0.0 , __A=1E-5 , __A=0.02 , __A=True , __A=5_0256 , __A=5_0256 , __A=False , **__A , ) -> Tuple: a =vocab_size a =n_positions a =n_embd a =n_layer a =n_head a =n_inner a =rotary_dim a =activation_function a =resid_pdrop a =embd_pdrop a =attn_pdrop a =layer_norm_epsilon a =initializer_range a =use_cache a =bos_token_id a =eos_token_id super().__init__( bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A ) class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __A , __A = "default" , __A = None , __A = False , ) -> List[str]: super().__init__(__A , task=__A , patching_specs=__A , use_past=__A ) if not getattr(self._config , '''pad_token_id''' , __A ): # TODO: how to do that better? a =0 @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: a =OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__A , direction='''inputs''' ) a ={0: '''batch''', 1: '''past_sequence + sequence'''} else: a ={0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self._config.n_layer @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self._config.n_head def SCREAMING_SNAKE_CASE ( self , __A , __A = -1 , __A = -1 , __A = False , __A = None , ) -> Mapping[str, Any]: a =super(__A , self ).generate_dummy_inputs( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) # We need to order the input in the way they appears in the forward() a =OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch a , a =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values a =seqlen + 2 a =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) a =[ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers ) ] a =common_inputs['''attention_mask'''] if self.use_past: a =ordered_inputs['''attention_mask'''].dtype a =torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__A , __A , dtype=__A )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self ) -> int: return 13
355
"""simple docstring""" import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : """simple docstring""" def __init__( self , __A , __A=13 , __A=[30, 30] , __A=2 , __A=3 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A=3 , __A=None , __A=8 , __A=10 , ) -> List[Any]: a =parent a =batch_size a =image_size a =patch_size a =num_channels a =is_training a =use_labels a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =type_sequence_label_size a =initializer_range a =num_labels a =scope a =n_targets a =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens a =(image_size[1] // patch_size) * (image_size[0] // patch_size) a =num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) a =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) a =[] for i in range(self.batch_size ): a ={} a =torch.randint( high=self.num_labels , size=(self.n_targets,) , device=__A ) a =torch.rand(self.n_targets , 4 , device=__A ) labels.append(__A ) a =self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> int: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> List[Any]: a =YolosModel(config=__A ) model.to(__A ) model.eval() a =model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , __A , __A , __A ) -> Dict: a =YolosForObjectDetection(__A ) model.to(__A ) model.eval() a =model(pixel_values=__A ) a =model(__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) a =model(pixel_values=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =self.prepare_config_and_inputs() a , a , a =config_and_inputs a ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , __A , __A , __A=False ) -> Any: a =super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": a =[] for i in range(self.model_tester.batch_size ): a ={} a =torch.ones( size=(self.model_tester.n_targets,) , device=__A , dtype=torch.long ) a =torch.ones( self.model_tester.n_targets , 4 , device=__A , dtype=torch.float ) labels.append(__A ) a =labels return inputs_dict def SCREAMING_SNAKE_CASE ( self ) -> List[str]: a =YolosModelTester(self ) a =ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: # YOLOS does not use inputs_embeds pass def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a =model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =model_class(__A ) a =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a =[*signature.parameters.keys()] a =['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: a , a =self.model_tester.prepare_config_and_inputs_for_common() a =True # in YOLOS, the seq_len is different a =self.model_tester.expected_seq_len for model_class in self.all_model_classes: a =True a =False a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a =len(__A ) # Check attention is always last and order is fine a =True a =True a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =1 self.assertEqual(out_len + added_hidden_states , len(__A ) ) a =outputs.attentions self.assertEqual(len(__A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self ) -> str: def check_hidden_states_output(__A , __A , __A ): a =model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a =model(**self._prepare_for_class(__A , __A ) ) a =outputs.hidden_states a =getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__A ) , __A ) # YOLOS has a different seq_length a =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) a , a =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a =True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a =True check_hidden_states_output(__A , __A , __A ) def SCREAMING_SNAKE_CASE ( self ) -> int: a =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*__A ) @slow def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a =YolosModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _A ( ): """simple docstring""" a =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __A ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Dict: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: a =YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__A ) a =self.default_image_processor a =prepare_img() a =image_processor(images=__A , return_tensors='''pt''' ).to(__A ) # forward pass with torch.no_grad(): a =model(inputs.pixel_values ) # verify outputs a =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , __A ) a =torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=__A , ) a =torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __A , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __A , atol=1E-4 ) ) # verify postprocessing a =image_processor.post_process_object_detection( __A , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] a =torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(__A ) a =[75, 75, 17, 63, 17] a =torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(__A ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , __A , atol=1E-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , __A ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __A ) )
215
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
"""simple docstring""" from typing import Any class a : def __init__( self : Tuple , __SCREAMING_SNAKE_CASE : Any ) -> List[Any]: lowerCamelCase_ = data lowerCamelCase_ = None class a : def __init__( self : Union[str, Any] ) -> List[Any]: lowerCamelCase_ = None def UpperCamelCase ( self : Dict ) -> Optional[int]: lowerCamelCase_ = self.head while temp is not None: print(temp.data , end=' ' ) lowerCamelCase_ = temp.next print() def UpperCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: lowerCamelCase_ = Node(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.head lowerCamelCase_ = new_node def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: if node_data_a == node_data_a: return else: lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next lowerCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: lowerCamelCase_ = node_a.next if node_a is None or node_a is None: return lowerCamelCase_ , lowerCamelCase_ = node_a.data, node_a.data if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
183
0
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a__ : Tuple = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase__ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> int: super().__init__() __SCREAMING_SNAKE_CASE = nn.ModuleList(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : torch.FloatTensor , UpperCAmelCase__ : Union[torch.Tensor, float, int] , UpperCAmelCase__ : torch.Tensor , UpperCAmelCase__ : List[torch.tensor] , UpperCAmelCase__ : List[float] , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[torch.Tensor] = None , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(UpperCAmelCase__ , UpperCAmelCase__ , self.nets ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = controlnet( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) # merge samples if i == 0: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = down_samples, mid_sample else: __SCREAMING_SNAKE_CASE = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCAmelCase__ , UpperCAmelCase__ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, os.PathLike] , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Callable = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[str] = None , ) -> int: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCAmelCase__ , is_main_process=UpperCAmelCase__ , save_function=UpperCAmelCase__ , safe_serialization=UpperCAmelCase__ , variant=UpperCAmelCase__ , ) idx += 1 __SCREAMING_SNAKE_CASE = model_path_to_save + F"""_{idx}""" @classmethod def UpperCAmelCase_ ( cls : List[str] , UpperCAmelCase__ : Optional[Union[str, os.PathLike]] , **UpperCAmelCase__ : Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __SCREAMING_SNAKE_CASE = pretrained_model_path while os.path.isdir(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = ControlNetModel.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) controlnets.append(UpperCAmelCase__ ) idx += 1 __SCREAMING_SNAKE_CASE = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(UpperCAmelCase__ )} controlnets loaded from {pretrained_model_path}.""" ) if len(UpperCAmelCase__ ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(UpperCAmelCase__ )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(UpperCAmelCase__ )
352
"""simple docstring""" from __future__ import annotations import requests def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(lowerCAmelCase_ ).json() def UpperCAmelCase__ (lowerCAmelCase_ = 10 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" __SCREAMING_SNAKE_CASE = requests.get(lowerCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase_ ) for story_id in story_ids] def UpperCAmelCase__ (lowerCAmelCase_ = 10 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = hackernews_top_stories(lowerCAmelCase_ ) return "\n".join("* [{title}]({url})".format(**lowerCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
195
0
'''simple docstring''' from __future__ import annotations import numpy as np def a ( __a ) -> Union[str, Any]: '''simple docstring''' return np.maximum(0 , __a ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
97
'''simple docstring''' import re from filelock import FileLock try: import nltk __snake_case = True except (ImportError, ModuleNotFoundError): __snake_case = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def a ( __a ) -> str: '''simple docstring''' re.sub('''<n>''' , '''''' , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
97
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( _lowerCAmelCase , unittest.TestCase ): a__ : Optional[int] = KandinskyVaaPipeline a__ : Union[str, Any] = [ "image_embeds", "negative_image_embeds", ] a__ : int = ["image_embeds", "negative_image_embeds"] a__ : Any = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a__ : Union[str, Any] = False @property def a ( self : Any ): return 32 @property def a ( self : str ): return 32 @property def a ( self : Dict ): return self.time_input_dim @property def a ( self : Tuple ): return self.time_input_dim * 4 @property def a ( self : Dict ): return 1_00 @property def a ( self : Any ): torch.manual_seed(0 ) __UpperCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __UpperCAmelCase = UNetaDConditionModel(**_lowercase ) return model @property def a ( self : Any ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self : int ): torch.manual_seed(0 ) __UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def a ( self : str ): __UpperCAmelCase = self.dummy_unet __UpperCAmelCase = self.dummy_movq __UpperCAmelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_lowercase , ) __UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def a ( self : List[Any] , _lowercase : Any , _lowercase : str=0 ): __UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) __UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) if str(_lowercase ).startswith('''mps''' ): __UpperCAmelCase = torch.manual_seed(_lowercase ) else: __UpperCAmelCase = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def a ( self : Tuple ): __UpperCAmelCase = '''cpu''' __UpperCAmelCase = self.get_dummy_components() __UpperCAmelCase = self.pipeline_class(**_lowercase ) __UpperCAmelCase = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = pipe(**self.get_dummy_inputs(_lowercase ) ) __UpperCAmelCase = output.images __UpperCAmelCase = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] __UpperCAmelCase = image[0, -3:, -3:, -1] __UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCAmelCase = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int ): __UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) __UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) __UpperCAmelCase = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) __UpperCAmelCase = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase = '''red cat, 4k photo''' __UpperCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) __UpperCAmelCase , __UpperCAmelCase = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __UpperCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) __UpperCAmelCase = pipeline( image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=1_00 , output_type='''np''' , ) __UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
86
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _lowercase : int = logging.get_logger(__name__) _lowercase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase : Tuple = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _lowercase : str = {'allegro/herbert-base-cased': 5_14} _lowercase : Tuple = {} class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_INIT_CONFIGURATION a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = HerbertTokenizer def __init__( self : List[Any] , _lowercase : Optional[int]=None , _lowercase : int=None , _lowercase : Tuple=None , _lowercase : str="<s>" , _lowercase : List[str]="<unk>" , _lowercase : int="<pad>" , _lowercase : str="<mask>" , _lowercase : List[Any]="</s>" , **_lowercase : List[Any] , ): super().__init__( _lowercase , _lowercase , tokenizer_file=_lowercase , cls_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sep_token=_lowercase , **_lowercase , ) def a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.cls_token_id] __UpperCAmelCase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): __UpperCAmelCase = [self.sep_token_id] __UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self : str , _lowercase : str , _lowercase : Optional[str] = None ): __UpperCAmelCase = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
86
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' if len(_UpperCAmelCase ) == 0: return [] lowerCAmelCase : int = min(_UpperCAmelCase ), max(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = int(max_value - min_value ) + 1 lowerCAmelCase : list[list] = [[] for _ in range(_UpperCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(_UpperCAmelCase ) return [v for bucket in buckets for v in sorted(_UpperCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
138
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( unittest.TestCase): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , ) -> Optional[Any]: '''simple docstring''' a__ : Union[str, Any] =size if size is not None else {"shortest_edge": 2_0} a__ : List[str] =crop_size if crop_size is not None else {"height": 1_8, "width": 1_8} a__ : Tuple =parent a__ : Union[str, Any] =batch_size a__ : List[str] =num_channels a__ : List[Any] =image_size a__ : str =min_resolution a__ : Optional[int] =max_resolution a__ : Tuple =do_resize a__ : Union[str, Any] =size a__ : List[Any] =do_center_crop a__ : List[str] =crop_size a__ : Optional[int] =do_flip_channel_order def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : int = MobileViTImageProcessor if is_vision_available() else None def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : Tuple =MobileViTImageProcessingTester(self ) @property def _lowercase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "center_crop" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_flip_channel_order" ) ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 2_0} ) self.assertEqual(image_processor.crop_size , {"height": 1_8, "width": 1_8} ) a__ : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images a__ : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[Any] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ : Optional[Any] =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input a__ : Tuple =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : int =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : int =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a__ : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input a__ : List[str] =image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched a__ : List[str] =image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
95
0
"""simple docstring""" def _lowerCAmelCase ( UpperCAmelCase : int ): '''simple docstring''' assert ( isinstance(UpperCAmelCase , UpperCAmelCase ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 UpperCamelCase__ , UpperCamelCase__ : Optional[int] =1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
157
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : Any = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
157
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _UpperCAmelCase ( snake_case ): """simple docstring""" if isinstance(snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class __lowerCAmelCase : def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = {"""vision_model""": vision_model, """text_model""": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_snake_case , _snake_case , F'Difference between torch and flax is {diff} (>= {tol}).' ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase = model_a(**_snake_case ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1e-5 ) @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFViTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFDeiTModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFRobertaModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def snake_case ( self , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModel(_snake_case , name="""vision_model""" ) _lowerCAmelCase = TFBertModel(_snake_case , name="""text_model""" ) return vision_model, text_model def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=_snake_case ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _lowerCAmelCase = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_snake_case , padding=_snake_case , return_tensors="""np""" ) _lowerCAmelCase = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _snake_case , atol=1e-3 ) )
82
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( a , a ) -> Dict: if "xprophetnet" in prophetnet_checkpoint_path: _A: List[Any] = XLMProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Union[str, Any] = XLMProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) else: _A: Dict = ProphetNetForConditionalGenerationOld.from_pretrained(a ) _A , _A: Tuple = ProphetNetForConditionalGeneration.from_pretrained( a , output_loading_info=a ) _A: Optional[int] = ['''key_proj''', '''value_proj''', '''query_proj'''] _A: List[Any] = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _A: List[str] = key.split('''.''' ) if attributes[0] == "lm_head": _A: Optional[int] = prophet _A: Tuple = prophet_old else: _A: Tuple = prophet.prophetnet _A: Any = prophet_old.model _A: int = False for attribute in attributes: if attribute in mapping: _A: Optional[int] = mapping[attribute] if not hasattr(a , a ) and len(a ) > 0: _A: int = attribute elif hasattr(a , a ): _A: Tuple = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _A: Union[str, Any] = old_model.weight logger.info(f"""{attribute} is initialized.""" ) _A: Any = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _A: str = old_model.bias logger.info(f"""{attribute} is initialized""" ) _A: Dict = True break elif attribute in special_keys and hasattr(a , '''in_proj_weight''' ): _A: Optional[int] = old_model.in_proj_weight.shape[0] // 3 _A: Tuple = getattr(a , a ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _A: List[str] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _A: List[Any] = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _A: int = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _A: Optional[int] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _A: List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _A: int = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _A: Tuple = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." _A: Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) _A: List[Any] = True break if attribute.isdigit(): _A: Tuple = model[int(a )] _A: int = old_model[int(a )] else: _A: Union[str, Any] = getattr(a , a ) if old_attribute == "": _A: Union[str, Any] = old_model else: if not hasattr(a , a ): raise ValueError(f"""{old_model} does not have {old_attribute}""" ) _A: List[Any] = getattr(a , a ) if not is_key_init: raise ValueError(f"""{key} was not correctly initialized!""" ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
121
0
def A__ ( SCREAMING_SNAKE_CASE__) -> str: __snake_case: Any = abs(SCREAMING_SNAKE_CASE__) __snake_case: Optional[int] = 0 while n > 0: res += n % 10 n //= 10 return res def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[Any]: __snake_case: Union[str, Any] = abs(SCREAMING_SNAKE_CASE__) return n if n < 10 else n % 10 + sum_of_digits(n // 10) def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[int]: return sum(int(SCREAMING_SNAKE_CASE__) for c in str(abs(SCREAMING_SNAKE_CASE__))) def A__ ( ) -> str: from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> None: __snake_case: Any = F'''{func.__name__}({value})''' __snake_case: List[str] = timeit(F'''__main__.{call}''' , setup="""import __main__""") print(F'''{call:56} = {func(SCREAMING_SNAKE_CASE__)} -- {timing:.4f} seconds''') for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
367
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __snake_case ( __lowerCamelCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """neck_hidden_sizes""" ) ) self.parent.assertTrue(hasattr(A , """num_attention_heads""" ) ) class __snake_case : '''simple docstring''' def __init__( self : int , A : str , A : Dict=13 , A : str=32 , A : Any=2 , A : Optional[Any]=3 , A : str=640 , A : Tuple=4 , A : Dict="silu" , A : List[Any]=3 , A : Any=32 , A : Any=0.1 , A : int=0.1 , A : Dict=0.1 , A : Optional[Any]=0.02 , A : List[Any]=True , A : Tuple=True , A : Any=10 , A : Optional[int]=None , ): __snake_case: List[Any] = parent __snake_case: Dict = batch_size __snake_case: int = image_size __snake_case: Tuple = patch_size __snake_case: Tuple = num_channels __snake_case: str = last_hidden_size __snake_case: Dict = num_attention_heads __snake_case: Dict = hidden_act __snake_case: Tuple = conv_kernel_size __snake_case: List[str] = output_stride __snake_case: List[str] = hidden_dropout_prob __snake_case: Optional[Any] = attention_probs_dropout_prob __snake_case: int = classifier_dropout_prob __snake_case: List[Any] = use_labels __snake_case: Union[str, Any] = is_training __snake_case: Union[str, Any] = num_labels __snake_case: str = initializer_range __snake_case: List[Any] = scope def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case: Tuple = None __snake_case: Any = None if self.use_labels: __snake_case: Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case: str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case: Any = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase__ ( self : int ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : str , A : Optional[Any] , A : Any , A : Any , A : Union[str, Any] ): __snake_case: List[Any] = MobileViTModel(config=A ) model.to(A ) model.eval() __snake_case: int = model(A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : str , A : List[Any] , A : Any , A : Any , A : int ): __snake_case: str = self.num_labels __snake_case: Optional[int] = MobileViTForImageClassification(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] , A : str , A : Optional[Any] , A : int , A : str ): __snake_case: List[Any] = self.num_labels __snake_case: Dict = MobileViTForSemanticSegmentation(A ) model.to(A ) model.eval() __snake_case: Union[str, Any] = model(A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case: Tuple = model(A , labels=A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def UpperCAmelCase__ ( self : Dict ): __snake_case: Tuple = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case: Any = config_and_inputs __snake_case: Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase__ = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False def UpperCAmelCase__ ( self : List[str] ): __snake_case: List[Any] = MobileViTModelTester(self ) __snake_case: str = MobileViTConfigTester(self , config_class=A , has_text_modality=A ) def UpperCAmelCase__ ( self : str ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViT does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : List[Any] ): pass @unittest.skip(reason="""MobileViT does not support input and output embeddings""" ) def UpperCAmelCase__ ( self : Dict ): pass @unittest.skip(reason="""MobileViT does not output attentions""" ) def UpperCAmelCase__ ( self : Optional[Any] ): pass def UpperCAmelCase__ ( self : str ): __snake_case , __snake_case: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = model_class(A ) __snake_case: int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case: Optional[int] = [*signature.parameters.keys()] __snake_case: List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Optional[int] ): pass def UpperCAmelCase__ ( self : Dict ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ ( self : Dict ): def check_hidden_states_output(A : List[Any] , A : int , A : Tuple ): __snake_case: List[str] = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): __snake_case: str = model(**self._prepare_for_class(A , A ) ) __snake_case: Optional[int] = outputs.hidden_states __snake_case: Any = 5 self.assertEqual(len(A ) , A ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case: Union[str, Any] = 2 for i in range(len(A ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case: List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case: Optional[Any] = True check_hidden_states_output(A , A , A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case: Dict = True check_hidden_states_output(A , A , A ) def UpperCAmelCase__ ( self : int ): __snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case: List[Any] = MobileViTModel.from_pretrained(A ) self.assertIsNotNone(A ) def A__ ( ) -> Optional[int]: __snake_case: Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") return image @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase__ ( self : Dict ): return MobileViTImageProcessor.from_pretrained("""apple/mobilevit-xx-small""" ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : List[Any] ): __snake_case: Tuple = MobileViTForImageClassification.from_pretrained("""apple/mobilevit-xx-small""" ).to(A ) __snake_case: str = self.default_image_processor __snake_case: Optional[Any] = prepare_img() __snake_case: List[Any] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) # verify the logits __snake_case: List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A ) __snake_case: Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Tuple ): __snake_case: Tuple = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = model.to(A ) __snake_case: Dict = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[Any] = prepare_img() __snake_case: List[str] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: List[Any] = model(**A ) __snake_case: Optional[int] = outputs.logits # verify the logits __snake_case: Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A ) __snake_case: Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A , atol=1E-4 ) ) @slow def UpperCAmelCase__ ( self : Dict ): __snake_case: int = MobileViTForSemanticSegmentation.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: str = model.to(A ) __snake_case: Optional[Any] = MobileViTImageProcessor.from_pretrained("""apple/deeplabv3-mobilevit-xx-small""" ) __snake_case: List[str] = prepare_img() __snake_case: Optional[int] = image_processor(images=A , return_tensors="""pt""" ).to(A ) # forward pass with torch.no_grad(): __snake_case: Dict = model(**A ) __snake_case: List[Any] = outputs.logits.detach().cpu() __snake_case: List[str] = image_processor.post_process_semantic_segmentation(outputs=A , target_sizes=[(50, 60)] ) __snake_case: str = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A ) __snake_case: int = image_processor.post_process_semantic_segmentation(outputs=A ) __snake_case: Tuple = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A )
293
0
import math def lowerCAmelCase_ ( ): __snake_case : Any = input("Enter message: " ) __snake_case : List[Any] = int(input(F'Enter key [2-{len(_UpperCAmelCase ) - 1}]: ' ) ) __snake_case : List[str] = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): __snake_case : Union[str, Any] = encrypt_message(_UpperCAmelCase , _UpperCAmelCase ) elif mode.lower().startswith("d" ): __snake_case : Optional[Any] = decrypt_message(_UpperCAmelCase , _UpperCAmelCase ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : List[Any] = [""] * key for col in range(_UpperCAmelCase ): __snake_case : List[str] = col while pointer < len(_UpperCAmelCase ): cipher_text[col] += message[pointer] pointer += key return "".join(_UpperCAmelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : int = math.ceil(len(_UpperCAmelCase ) / key ) __snake_case : str = key __snake_case : str = (num_cols * num_rows) - len(_UpperCAmelCase ) __snake_case : Tuple = [""] * num_cols __snake_case : Optional[int] = 0 __snake_case : List[Any] = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): __snake_case : Union[str, Any] = 0 row += 1 return "".join(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
123
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ : int = logging.getLogger(__name__) a_ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a_ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A__ )} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) _lowercase : bool = field(default=A__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) _lowercase : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowercase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) _lowercase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) _lowercase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ): def _dataset(_UpperCAmelCase , _UpperCAmelCase=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask') return LineByLineWithRefDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , ) return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size) else: return TextDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCAmelCase) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file , args.train_ref_file) def lowerCamelCase__ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.') if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.') # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: SCREAMING_SNAKE_CASE = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.') if model_args.tokenizer_name: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name') if model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch') SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_config(_UpperCAmelCase) model.resize_token_embeddings(len(_UpperCAmelCase)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).') if data_args.block_size <= 0: SCREAMING_SNAKE_CASE = tokenizer.max_len # Our input block size will be the max possible for the model else: SCREAMING_SNAKE_CASE = min(data_args.block_size , tokenizer.max_len) # Get datasets SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": SCREAMING_SNAKE_CASE = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: SCREAMING_SNAKE_CASE = DataCollatorForWholeWordMask( tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability) else: SCREAMING_SNAKE_CASE = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability) # Initialize our Trainer SCREAMING_SNAKE_CASE = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=_UpperCAmelCase) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info('*** Evaluate ***') SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = math.exp(eval_output['eval_loss']) SCREAMING_SNAKE_CASE = {'perplexity': perplexity} SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'eval_results_lm.txt') if trainer.is_world_master(): with open(_UpperCAmelCase , 'w') as writer: logger.info('***** Eval results *****') for key in sorted(result.keys()): logger.info(' %s = %s' , _UpperCAmelCase , str(result[key])) writer.write('%s = %s\n' % (key, str(result[key]))) results.update(_UpperCAmelCase) return results def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
137
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __A ( tf.keras.layers.Layer ): def __init__(self : str , __a : int , __a : Optional[int] , __a : Union[str, Any] , __a : Dict , __a : int=1 , __a : Optional[int]=False , **__a : Optional[Any] ): super().__init__(**__a ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = d_embed UpperCAmelCase_ = d_proj UpperCAmelCase_ = cutoffs + [vocab_size] UpperCAmelCase_ = [0] + self.cutoffs UpperCAmelCase_ = div_val UpperCAmelCase_ = self.cutoffs[0] UpperCAmelCase_ = len(self.cutoffs ) - 1 UpperCAmelCase_ = self.shortlist_size + self.n_clusters UpperCAmelCase_ = keep_order UpperCAmelCase_ = [] UpperCAmelCase_ = [] def _lowercase (self : int , __a : List[str] ): if self.n_clusters > 0: UpperCAmelCase_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=__a , name="cluster_weight" ) UpperCAmelCase_ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=__a , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCAmelCase_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=__a , name=f"""out_projs_._{i}""" , ) self.out_projs.append(__a ) else: self.out_projs.append(__a ) UpperCAmelCase_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=__a , name=f"""out_layers_._{i}_._weight""" , ) UpperCAmelCase_ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=__a , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ = self.d_embed // (self.div_val**i) UpperCAmelCase_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=__a , name=f"""out_projs_._{i}""" ) self.out_projs.append(__a ) UpperCAmelCase_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=__a , name=f"""out_layers_._{i}_._weight""" , ) UpperCAmelCase_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=__a , name=f"""out_layers_._{i}_._bias""" , ) self.out_layers.append((weight, bias) ) super().build(__a ) @staticmethod def _lowercase (__a : int , __a : Any , __a : Any , __a : Optional[int]=None ): UpperCAmelCase_ = x if proj is not None: UpperCAmelCase_ = tf.einsum("ibd,ed->ibe" , __a , __a ) return tf.einsum("ibd,nd->ibn" , __a , __a ) + b @staticmethod def _lowercase (__a : Dict , __a : Union[str, Any] ): UpperCAmelCase_ = shape_list(__a ) UpperCAmelCase_ = tf.range(lp_size[0] , dtype=target.dtype ) UpperCAmelCase_ = tf.stack([r, target] , 1 ) return tf.gather_nd(__a , __a ) def _lowercase (self : str , __a : Dict , __a : Optional[Any] , __a : Dict=True , __a : str=False ): UpperCAmelCase_ = 0 if self.n_clusters == 0: UpperCAmelCase_ = self._logit(__a , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCAmelCase_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__a , logits=__a ) UpperCAmelCase_ = tf.nn.log_softmax(__a , axis=-1 ) else: UpperCAmelCase_ = shape_list(__a ) UpperCAmelCase_ = [] UpperCAmelCase_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCAmelCase_ = (target >= l_idx) & (target < r_idx) UpperCAmelCase_ = tf.where(__a ) UpperCAmelCase_ = tf.boolean_mask(__a , __a ) - l_idx if self.div_val == 1: UpperCAmelCase_ = self.out_layers[0][0][l_idx:r_idx] UpperCAmelCase_ = self.out_layers[0][1][l_idx:r_idx] else: UpperCAmelCase_ = self.out_layers[i][0] UpperCAmelCase_ = self.out_layers[i][1] if i == 0: UpperCAmelCase_ = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCAmelCase_ = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCAmelCase_ = self._logit(__a , __a , __a , self.out_projs[0] ) UpperCAmelCase_ = tf.nn.log_softmax(__a ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCAmelCase_ = tf.boolean_mask(__a , __a ) UpperCAmelCase_ = self._gather_logprob(__a , __a ) else: UpperCAmelCase_ = self._logit(__a , __a , __a , self.out_projs[i] ) UpperCAmelCase_ = tf.nn.log_softmax(__a ) UpperCAmelCase_ = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCAmelCase_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(__a ) if target is not None: UpperCAmelCase_ = tf.boolean_mask(__a , __a ) UpperCAmelCase_ = tf.boolean_mask(__a , __a ) UpperCAmelCase_ = self._gather_logprob(__a , __a ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(__a , -cur_logprob , shape_list(__a ) ) UpperCAmelCase_ = tf.concat(__a , axis=-1 ) if target is not None: if return_mean: UpperCAmelCase_ = tf.reduce_mean(__a ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(__a ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(__a , name=self.name , aggregation="mean" if return_mean else "" ) return out
106
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_: Tuple =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: Any ={'facebook/bart-base': BartForConditionalGeneration} SCREAMING_SNAKE_CASE_: int ={'facebook/bart-base': BartTokenizer} def lowerCAmelCase_ ( ) -> str: '''simple docstring''' UpperCAmelCase_ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=snake_case_ , default=snake_case_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=snake_case_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=snake_case_ , default=snake_case_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=snake_case_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=snake_case_ , ) parser.add_argument( "--config_name" , type=snake_case_ , default=snake_case_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=snake_case_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=snake_case_ , default=snake_case_ , help="Where to store the final ONNX file." ) UpperCAmelCase_ = parser.parse_args() return args def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : int="cpu" ) -> Dict: '''simple docstring''' UpperCAmelCase_ = model_dict[model_name].from_pretrained(snake_case_ ).to(snake_case_ ) UpperCAmelCase_ = tokenizer_dict[model_name].from_pretrained(snake_case_ ) if model_name in ["facebook/bart-base"]: UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = 0 return huggingface_model, tokenizer def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Dict ) -> Dict: '''simple docstring''' model.eval() UpperCAmelCase_ = None UpperCAmelCase_ = torch.jit.script(BARTBeamSearchGenerator(snake_case_ ) ) with torch.no_grad(): UpperCAmelCase_ = "My friends are cool but they eat too many carbs." UpperCAmelCase_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt" ).to(model.device ) UpperCAmelCase_ = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=snake_case_ , max_length=snake_case_ , early_stopping=snake_case_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( snake_case_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , snake_case_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=snake_case_ , ) logger.info("Model exported to {}".format(snake_case_ ) ) UpperCAmelCase_ = remove_dup_initializers(os.path.abspath(snake_case_ ) ) logger.info("Deduplicated and optimized model written to {}".format(snake_case_ ) ) UpperCAmelCase_ = onnxruntime.InferenceSession(snake_case_ ) UpperCAmelCase_ = ort_sess.run( snake_case_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(snake_case_ ), "max_length": np.array(snake_case_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = parse_args() UpperCAmelCase_ = 5 UpperCAmelCase_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase_ = torch.device(args.device ) UpperCAmelCase_ , UpperCAmelCase_ = load_model_tokenizer(args.model_name_or_path , snake_case_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(snake_case_ ) if args.max_length: UpperCAmelCase_ = args.max_length if args.num_beams: UpperCAmelCase_ = args.num_beams if args.output_file_path: UpperCAmelCase_ = args.output_file_path else: UpperCAmelCase_ = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if __name__ == "__main__": main()
106
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class UpperCamelCase__ ( __lowercase ): def __init__(self : str , snake_case_ : str ): __a : str = data def __iter__(self : str ): for element in self.data: yield element def __UpperCamelCase ( lowerCAmelCase__ : str=True ): __a : Optional[int] = Accelerator(even_batches=lowerCAmelCase__ ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __UpperCamelCase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : bool = False ): if iterable: __a : List[Any] = DummyIterableDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) else: __a : Optional[Any] = TensorDataset(torch.as_tensor(range(lowerCAmelCase__ ) ) ) __a : int = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a : Any = accelerator.prepare(lowerCAmelCase__ ) return dl def __UpperCamelCase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : List[int] , ): __a : Union[str, Any] = create_dataloader(accelerator=lowerCAmelCase__ , dataset_size=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a : str = [len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __UpperCamelCase ( ): __a : List[str] = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __UpperCamelCase ( ): __a : List[str] = create_accelerator(even_batches=lowerCAmelCase__ ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowerCAmelCase__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __UpperCamelCase ( ): __a : Tuple = create_accelerator(even_batches=lowerCAmelCase__ ) __a : Dict = torch.nn.Linear(1 , 1 ) __a : Optional[int] = accelerator.prepare(lowerCAmelCase__ ) __a : int = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) __a : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(lowerCAmelCase__ ): __a : int = ddp_model(batch[0].float() ) __a : Optional[int] = output.sum() loss.backward() batch_idxs.append(lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] ): with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for multi-GPU" in str(w[-1].message ) def __UpperCamelCase ( ): __a : List[Any] = True __a : str = False __a : Any = create_accelerator(even_batches=lowerCAmelCase__ ) __a : Union[str, Any] = torch.nn.Linear(1 , 1 ) __a : Tuple = accelerator.prepare(lowerCAmelCase__ ) __a : str = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) __a : str = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): __a : Dict = train_dl.batch_sampler.even_batches __a : Union[str, Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __UpperCamelCase ( ): __a : int = True __a : int = False __a : Union[str, Any] = create_accelerator(even_batches=lowerCAmelCase__ ) __a : int = torch.nn.Linear(1 , 1 ) __a : str = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) __a : str = create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): __a : Any = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __UpperCamelCase ( ): __a : List[str] = create_accelerator() __a : Tuple = torch.nn.Linear(1 , 1 ) __a : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) create_dataloader(lowerCAmelCase__ , dataset_size=3 , batch_size=1 , iterable=lowerCAmelCase__ ) with warnings.catch_warnings(record=lowerCAmelCase__ ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCAmelCase__ ): pass assert issubclass(w[-1].category , lowerCAmelCase__ ) assert "only supported for map-style datasets" in str(w[-1].message ) def __UpperCamelCase ( ): __a : Tuple = create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) __a : Optional[Any] = accelerator.state.distributed_type __a : List[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowerCAmelCase__ ) __a : Optional[Any] = original_state if __name__ == "__main__": main()
216
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ ={ 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ =[ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
216
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a__ ( __A ): """simple docstring""" __UpperCamelCase : List[str] = 'decision_transformer' __UpperCamelCase : List[Any] = ['past_key_values'] __UpperCamelCase : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self , __lowercase=17 , __lowercase=4 , __lowercase=1_28 , __lowercase=40_96 , __lowercase=True , __lowercase=1 , __lowercase=10_24 , __lowercase=3 , __lowercase=1 , __lowercase=None , __lowercase="relu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1e-5 , __lowercase=0.0_2 , __lowercase=True , __lowercase=True , __lowercase=5_02_56 , __lowercase=5_02_56 , __lowercase=False , __lowercase=False , **__lowercase , ): __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
9
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets _UpperCAmelCase : List[str] = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ _UpperCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ _UpperCAmelCase : Tuple = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase = new_id # turn into Numpy arrays __lowerCAmelCase = np.array(lowerCamelCase) __lowerCAmelCase = np.array(lowerCamelCase) if reduce_labels: __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label - 1 __lowerCAmelCase = 2_5_5 __lowerCAmelCase = label != ignore_index __lowerCAmelCase = np.not_equal(lowerCamelCase, lowerCamelCase) __lowerCAmelCase = pred_label[mask] __lowerCAmelCase = np.array(lowerCamelCase)[mask] __lowerCAmelCase = pred_label[pred_label == label] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = np.histogram(lowerCamelCase, bins=lowerCamelCase, range=(0, num_labels - 1))[0] __lowerCAmelCase = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) __lowerCAmelCase = np.zeros((num_labels,), dtype=np.floataa) for result, gt_seg_map in zip(lowerCamelCase, lowerCamelCase): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, lowerCamelCase = False, ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = total_intersect_and_union( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) # compute metrics __lowerCAmelCase = {} __lowerCAmelCase = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase = total_area_intersect / total_area_union __lowerCAmelCase = total_area_intersect / total_area_label __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = np.nanmean(lowerCamelCase) __lowerCAmelCase = all_acc __lowerCAmelCase = iou __lowerCAmelCase = acc if nan_to_num is not None: __lowerCAmelCase = {metric: np.nan_to_num(lowerCamelCase, nan=lowerCamelCase) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _snake_case (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { '''predictions''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), '''references''': datasets.Sequence(datasets.Sequence(datasets.Value('''uint16''' ) ) ), } ) , reference_urls=[ '''https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py''' ] , ) def _snake_case (self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = False , ): __lowerCAmelCase = mean_iou( results=__lowercase , gt_seg_maps=__lowercase , num_labels=__lowercase , ignore_index=__lowercase , nan_to_num=__lowercase , label_map=__lowercase , reduce_labels=__lowercase , ) return iou_result
9
1
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __snake_case = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _A ( ) -> List[str]: """simple docstring""" __UpperCamelCase = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __UpperCamelCase = get_sagemaker_input() else: __UpperCamelCase = get_cluster_input() return config def _A ( _lowercase=None ) -> Optional[int]: """simple docstring""" if subparsers is not None: __UpperCamelCase = subparsers.add_parser('config' , description=_lowercase ) else: __UpperCamelCase = argparse.ArgumentParser('Accelerate config command' , description=_lowercase ) parser.add_argument( '--config_file' , default=_lowercase , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=_lowercase ) return parser def _A ( _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = get_user_input() if args.config_file is not None: __UpperCamelCase = args.config_file else: if not os.path.isdir(_lowercase ): os.makedirs(_lowercase ) __UpperCamelCase = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(_lowercase ) else: config.to_yaml_file(_lowercase ) print(f'''accelerate configuration saved at {config_file}''' ) def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = config_command_parser() __UpperCamelCase = parser.parse_args() config_command(_lowercase ) if __name__ == "__main__": main()
310
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
from __future__ import annotations class __magic_name__ : def __init__( self , _lowercase = 0 )-> Optional[Any]: UpperCamelCase_ = key def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) UpperCamelCase_ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> list[str]: assert isinstance(__A , __A ) and isinstance(__A , __A ) UpperCamelCase_ = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__A ) ^ key ) for ch in content] def UpperCAmelCase_ ( self , _lowercase , _lowercase = 0 )-> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) UpperCamelCase_ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase_ = "" for ch in content: ans += chr(ord(__A ) ^ key ) return ans def UpperCAmelCase_ ( self , _lowercase , _lowercase = 0 )-> str: assert isinstance(__A , __A ) and isinstance(__A , __A ) UpperCamelCase_ = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase_ = "" for ch in content: ans += chr(ord(__A ) ^ key ) return ans def UpperCAmelCase_ ( self , _lowercase , _lowercase = 0 )-> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__A , __A ) ) except OSError: return False return True def UpperCAmelCase_ ( self , _lowercase , _lowercase )-> bool: assert isinstance(__A , __A ) and isinstance(__A , __A ) try: with open(__A ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__A , __A ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
358
from ...processing_utils import ProcessorMixin class __magic_name__ ( snake_case ): UpperCamelCase_ :str = """SpeechT5FeatureExtractor""" UpperCamelCase_ :Optional[int] = """SpeechT5Tokenizer""" def __init__( self , _lowercase , _lowercase )-> Union[str, Any]: super().__init__(_lowercase , _lowercase ) def __call__( self , *_lowercase , **_lowercase )-> Tuple: UpperCamelCase_ = kwargs.pop("audio" , _lowercase ) UpperCamelCase_ = kwargs.pop("text" , _lowercase ) UpperCamelCase_ = kwargs.pop("text_target" , _lowercase ) UpperCamelCase_ = kwargs.pop("audio_target" , _lowercase ) UpperCamelCase_ = kwargs.pop("sampling_rate" , _lowercase ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: UpperCamelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) elif text is not None: UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase ) else: UpperCamelCase_ = None if audio_target is not None: UpperCamelCase_ = self.feature_extractor(audio_target=_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_values"] elif text_target is not None: UpperCamelCase_ = self.tokenizer(_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_ids"] else: UpperCamelCase_ = None if inputs is None: return targets if targets is not None: UpperCamelCase_ = labels UpperCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> Optional[int]: UpperCamelCase_ = kwargs.pop("input_values" , _lowercase ) UpperCamelCase_ = kwargs.pop("input_ids" , _lowercase ) UpperCamelCase_ = kwargs.pop("labels" , _lowercase ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) elif input_ids is not None: UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase ) else: UpperCamelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(_lowercase , _lowercase ) and "input_ids" in labels[0]): UpperCamelCase_ = self.tokenizer.pad(_lowercase , **_lowercase ) UpperCamelCase_ = targets["input_ids"] else: UpperCamelCase_ = self.feature_extractor.feature_size UpperCamelCase_ = self.feature_extractor.num_mel_bins UpperCamelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase ) UpperCamelCase_ = feature_size_hack UpperCamelCase_ = targets["input_values"] else: UpperCamelCase_ = None if inputs is None: return targets if targets is not None: UpperCamelCase_ = labels UpperCamelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: UpperCamelCase_ = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> int: return self.tokenizer.decode(*_lowercase , **_lowercase )
60
0
SCREAMING_SNAKE_CASE :dict[tuple[int, int, int], int] = {} def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A = _calculate(days - 1 , _lowerCAmelCase , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A = _calculate(days - 1 , _lowerCAmelCase , 0 ) __A = state_late + state_absent + state_ontime __A = prizestrings return prizestrings def UpperCAmelCase ( a_ = 3_0 ) -> Tuple: """simple docstring""" return _calculate(_lowerCAmelCase , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
15
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase : Dict =TypeVar("""T""") class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = data UpperCamelCase_ = None def __str__( self ): '''simple docstring''' return F"""{self.data}""" class _lowercase (Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' UpperCamelCase_ = None def __iter__( self ): '''simple docstring''' UpperCamelCase_ = self.top while node: yield node.data UpperCamelCase_ = node.next def __str__( self ): '''simple docstring''' return "->".join([str(snake_case__ ) for item in self] ) def __len__( self ): '''simple docstring''' return len(tuple(iter(self ) ) ) def _lowerCamelCase ( self ): '''simple docstring''' return self.top is None def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' UpperCamelCase_ = Node(snake_case__ ) if not self.is_empty(): UpperCamelCase_ = self.top UpperCamelCase_ = node def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , snake_case__ ) UpperCamelCase_ = self.top UpperCamelCase_ = self.top.next return pop_node.data def _lowerCamelCase ( self ): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = None if __name__ == "__main__": from doctest import testmod testmod()
128
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip __A =logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase_ ( lowerCamelCase__ ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return max(metric_fn(lowerCamelCase__ , lowerCamelCase__ ) for gt in ground_truths ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = [line.strip() for line in open(lowerCamelCase__ , "r" ).readlines()] lowerCamelCase_ = [] if args.gold_data_mode == "qa": lowerCamelCase_ = pd.read_csv(lowerCamelCase__ , sep="\t" , header=lowerCamelCase__ ) for answer_list in data[1]: lowerCamelCase_ = ast.literal_eval(lowerCamelCase__ ) answers.append(lowerCamelCase__ ) else: lowerCamelCase_ = [line.strip() for line in open(lowerCamelCase__ , "r" ).readlines()] lowerCamelCase_ = [[reference] for reference in references] lowerCamelCase_ = lowerCamelCase_ = lowerCamelCase_ = 0 for prediction, ground_truths in zip(lowerCamelCase__ , lowerCamelCase__ ): total += 1 em += metric_max_over_ground_truths(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) fa += metric_max_over_ground_truths(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = 1_0_0.0 * em / total lowerCamelCase_ = 1_0_0.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = args.k lowerCamelCase_ = [line.strip() for line in open(lowerCamelCase__ , "r" ).readlines()] lowerCamelCase_ = [line.strip() for line in open(lowerCamelCase__ , "r" ).readlines()] lowerCamelCase_ = lowerCamelCase_ = 0 for hypo, reference in zip(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = set(hypo.split("\t" )[:k] ) lowerCamelCase_ = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowerCamelCase_ = 1_0_0.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): def strip_title(lowerCamelCase__ ): if title.startswith("\"" ): lowerCamelCase_ = title[1:] if title.endswith("\"" ): lowerCamelCase_ = title[:-1] return title lowerCamelCase_ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase__ , return_tensors="pt" , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , )["input_ids"].to(args.device ) lowerCamelCase_ = rag_model.rag.question_encoder(lowerCamelCase__ ) lowerCamelCase_ = question_enc_outputs[0] lowerCamelCase_ = rag_model.retriever( lowerCamelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) lowerCamelCase_ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowerCamelCase_ = [] for docs in all_docs: lowerCamelCase_ = [strip_title(lowerCamelCase__ ) for title in docs["title"]] provenance_strings.append("\t".join(lowerCamelCase__ ) ) return provenance_strings def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): with torch.no_grad(): lowerCamelCase_ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( lowerCamelCase__ , return_tensors="pt" , padding=lowerCamelCase__ , truncation=lowerCamelCase__ ) lowerCamelCase_ = inputs_dict.input_ids.to(args.device ) lowerCamelCase_ = inputs_dict.attention_mask.to(args.device ) lowerCamelCase_ = rag_model.generate( # rag_model overwrites generate lowerCamelCase__ , attention_mask=lowerCamelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=lowerCamelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowerCamelCase_ = rag_model.retriever.generator_tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) if args.print_predictions: for q, a in zip(lowerCamelCase__ , lowerCamelCase__ ): logger.info("Q: {} - A: {}".format(lowerCamelCase__ , lowerCamelCase__ ) ) return answers def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=lowerCamelCase__ , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=lowerCamelCase__ , choices=["exact", "compressed", "legacy"] , type=lowerCamelCase__ , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=lowerCamelCase__ , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=lowerCamelCase__ , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=lowerCamelCase__ , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=lowerCamelCase__ , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=lowerCamelCase__ , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=lowerCamelCase__ , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=lowerCamelCase__ , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=lowerCamelCase__ , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=lowerCamelCase__ , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=5_0 , type=lowerCamelCase__ , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = {} if args.model_type is None: lowerCamelCase_ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): lowerCamelCase_ = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration lowerCamelCase_ = args.n_docs if args.index_name is not None: lowerCamelCase_ = args.index_name if args.index_path is not None: lowerCamelCase_ = args.index_path else: lowerCamelCase_ = BartForConditionalGeneration lowerCamelCase_ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , lowerCamelCase__ ) lowerCamelCase_ = get_scores if args.eval_mode == "e2e" else get_precision_at_k lowerCamelCase_ = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(lowerCamelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(lowerCamelCase__ ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): lowerCamelCase_ = RagRetriever.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) lowerCamelCase_ = model_class.from_pretrained(lowerCamelCase__ , retriever=lowerCamelCase__ , **lowerCamelCase__ ) model.retriever.init_retrieval() else: lowerCamelCase_ = model_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: lowerCamelCase_ = [] for line in tqdm(lowerCamelCase__ ): questions.append(line.strip() ) if len(lowerCamelCase__ ) == args.eval_batch_size: lowerCamelCase_ = evaluate_batch_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) preds_file.write("\n".join(lowerCamelCase__ ) + "\n" ) preds_file.flush() lowerCamelCase_ = [] if len(lowerCamelCase__ ) > 0: lowerCamelCase_ = evaluate_batch_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) preds_file.write("\n".join(lowerCamelCase__ ) ) preds_file.flush() score_fn(lowerCamelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": __A =get_args() main(args)
363
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __A =logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Train language if it is different from the evaluation language.'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCAmelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCamelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , lowerCamelCase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase_ = training_args.get_process_log_level() logger.setLevel(lowerCamelCase__ ) datasets.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.set_verbosity(lowerCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. lowerCamelCase_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCamelCase_ = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = train_dataset.features["label"].names if training_args.do_eval: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = eval_dataset.features["label"].names if training_args.do_predict: lowerCamelCase_ = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = predict_dataset.features["label"].names # Labels lowerCamelCase_ = len(lowerCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase__ , idalabel={str(lowerCamelCase__ ): label for i, label in enumerate(lowerCamelCase__ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase__ )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCamelCase_ = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase_ = False def preprocess_function(lowerCamelCase__ ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=lowerCamelCase__ , max_length=data_args.max_seq_length , truncation=lowerCamelCase__ , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_train_samples ) lowerCamelCase_ = train_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCamelCase_ = train_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase__ ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_eval_samples ) lowerCamelCase_ = eval_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCamelCase_ = eval_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCamelCase_ = min(len(lowerCamelCase__ ) , data_args.max_predict_samples ) lowerCamelCase_ = predict_dataset.select(range(lowerCamelCase__ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCamelCase_ = predict_dataset.map( lowerCamelCase__ , batched=lowerCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCamelCase_ = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase__ ): lowerCamelCase_ = p.predictions[0] if isinstance(p.predictions , lowerCamelCase__ ) else p.predictions lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) return metric.compute(predictions=lowerCamelCase__ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase_ = default_data_collator elif training_args.fpaa: lowerCamelCase_ = DataCollatorWithPadding(lowerCamelCase__ , pad_to_multiple_of=8 ) else: lowerCamelCase_ = None # Initialize our Trainer lowerCamelCase_ = Trainer( model=lowerCamelCase__ , args=lowerCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase__ , tokenizer=lowerCamelCase__ , data_collator=lowerCamelCase__ , ) # Training if training_args.do_train: lowerCamelCase_ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase_ = last_checkpoint lowerCamelCase_ = trainer.train(resume_from_checkpoint=lowerCamelCase__ ) lowerCamelCase_ = train_result.metrics lowerCamelCase_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowerCamelCase__ ) trainer.save_metrics("train" , lowerCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ = trainer.evaluate(eval_dataset=lowerCamelCase__ ) lowerCamelCase_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase__ ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("eval" , lowerCamelCase__ ) trainer.save_metrics("eval" , lowerCamelCase__ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = trainer.predict(lowerCamelCase__ , metric_key_prefix="predict" ) lowerCamelCase_ = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase__ ) ) lowerCamelCase_ = min(lowerCamelCase__ , len(lowerCamelCase__ ) ) trainer.log_metrics("predict" , lowerCamelCase__ ) trainer.save_metrics("predict" , lowerCamelCase__ ) lowerCamelCase_ = np.argmax(lowerCamelCase__ , axis=1 ) lowerCamelCase_ = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCamelCase__ , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(lowerCamelCase__ ): lowerCamelCase_ = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
47
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __A = logging.get_logger(__name__) __A = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "deberta-v2" def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=128_100 , UpperCAmelCase_ : Optional[int]=1_536 , UpperCAmelCase_ : Union[str, Any]=24 , UpperCAmelCase_ : int=24 , UpperCAmelCase_ : Dict=6_144 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[Any]=1E-7 , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : List[Any]=-1 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : List[str]="gelu" , **UpperCAmelCase_ : Optional[int] , ) ->List[Any]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: List[str] =num_hidden_layers lowerCamelCase__: Dict =num_attention_heads lowerCamelCase__: Tuple =intermediate_size lowerCamelCase__: Dict =hidden_act lowerCamelCase__: int =hidden_dropout_prob lowerCamelCase__: Optional[Any] =attention_probs_dropout_prob lowerCamelCase__: List[Any] =max_position_embeddings lowerCamelCase__: Union[str, Any] =type_vocab_size lowerCamelCase__: List[Any] =initializer_range lowerCamelCase__: List[Any] =relative_attention lowerCamelCase__: List[str] =max_relative_positions lowerCamelCase__: str =pad_token_id lowerCamelCase__: Optional[Any] =position_biased_input # Backwards compatibility if type(UpperCAmelCase_) == str: lowerCamelCase__: Any =[x.strip() for x in pos_att_type.lower().split("|")] lowerCamelCase__: Tuple =pos_att_type lowerCamelCase__: Optional[Any] =vocab_size lowerCamelCase__: Tuple =layer_norm_eps lowerCamelCase__: Union[str, Any] =kwargs.get("pooler_hidden_size" , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =pooler_dropout lowerCamelCase__: Union[str, Any] =pooler_hidden_act class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__: Tuple ={0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__: Dict ={0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->int: '''simple docstring''' return 12 def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional["TensorType"] = None , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : int = 40 , UpperCAmelCase_ : "PreTrainedTokenizerBase" = None , ) ->Mapping[str, Any]: '''simple docstring''' lowerCamelCase__: List[Any] =super().generate_dummy_inputs(preprocessor=UpperCAmelCase_ , framework=UpperCAmelCase_) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
10
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase (snake_case__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: '''simple docstring''' lowerCAmelCase = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowerCAmelCase = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowerCAmelCase = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
155
0
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def lowerCamelCase ( lowerCAmelCase : BertModel , lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" __magic_name__ : List[str] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') __magic_name__ : List[str] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) __magic_name__ : Tuple = model.state_dict() def to_tf_var_name(lowerCAmelCase : str ): for patt, repl in iter(lowerCAmelCase ): __magic_name__ : Any = name.replace(lowerCAmelCase , lowerCAmelCase ) return f'bert/{name}' def create_tf_var(lowerCAmelCase : np.ndarray , lowerCAmelCase : str , lowerCAmelCase : tf.Session ): __magic_name__ : List[Any] = tf.dtypes.as_dtype(tensor.dtype ) __magic_name__ : List[Any] = tf.get_variable(dtype=lowerCAmelCase , shape=tensor.shape , name=lowerCAmelCase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowerCAmelCase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __magic_name__ : Optional[Any] = to_tf_var_name(lowerCAmelCase ) __magic_name__ : List[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __magic_name__ : Optional[Any] = torch_tensor.T __magic_name__ : Union[str, Any] = create_tf_var(tensor=lowerCAmelCase , name=lowerCAmelCase , session=lowerCAmelCase ) tf.keras.backend.set_value(lowerCAmelCase , lowerCAmelCase ) __magic_name__ : Optional[int] = session.run(lowerCAmelCase ) print(f'Successfully created {tf_name}: {np.allclose(lowerCAmelCase , lowerCAmelCase )}' ) __magic_name__ : Dict = tf.train.Saver(tf.trainable_variables() ) saver.save(lowerCAmelCase , os.path.join(lowerCAmelCase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def lowerCamelCase ( lowerCAmelCase : Any=None ): """simple docstring""" __magic_name__ : str = argparse.ArgumentParser() parser.add_argument('--model_name' , type=lowerCAmelCase , required=lowerCAmelCase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=lowerCAmelCase , default=lowerCAmelCase , required=lowerCAmelCase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=lowerCAmelCase , required=lowerCAmelCase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=lowerCAmelCase , required=lowerCAmelCase , help='Directory in which to save tensorflow model' ) __magic_name__ : List[str] = parser.parse_args(lowerCAmelCase ) __magic_name__ : Any = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowerCAmelCase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
359
'''simple docstring''' import math def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : float ): """simple docstring""" return math.pow(lowerCAmelCase , 2 ) - a def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" return 2 * x def lowerCamelCase ( lowerCAmelCase : float ): """simple docstring""" __magic_name__ : List[Any] = 2.0 while start <= a: __magic_name__ : List[str] = math.pow(lowerCAmelCase , 2 ) return start def lowerCamelCase ( lowerCAmelCase : float , lowerCAmelCase : int = 9999 , lowerCAmelCase : float = 0.00_0000_0000_0001 ): """simple docstring""" if a < 0: raise ValueError('math domain error' ) __magic_name__ : Any = get_initial_point(lowerCAmelCase ) for _ in range(lowerCAmelCase ): __magic_name__ : List[str] = value __magic_name__ : Optional[int] = value - fx(lowerCAmelCase , lowerCAmelCase ) / fx_derivative(lowerCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
275
0
import pytest __A = "__dummy_dataset1__" __A = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowerCamelCase_ ( ) -> Dict: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCamelCase_ ( ) -> Any: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = dataset_loading_script_name __lowerCamelCase = tmp_path / 'datasets' / script_name script_dir.mkdir(parents=UpperCamelCase__ ) __lowerCamelCase = script_dir / F"""{script_name}.py""" with open(UpperCamelCase__ , 'w' ) as f: f.write(UpperCamelCase__ ) return str(UpperCamelCase__ )
90
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
186
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : List[str] ): '''simple docstring''' if openai_config_file == "": _UpperCAmelCase : Optional[Any] =OpenAIGPTConfig() else: _UpperCAmelCase : str =OpenAIGPTConfig.from_json_file(__lowerCamelCase ) _UpperCAmelCase : str =OpenAIGPTModel(__lowerCamelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model _UpperCAmelCase : str =pytorch_dump_folder_path + '/' + WEIGHTS_NAME _UpperCAmelCase : Tuple =pytorch_dump_folder_path + '/' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict() , __lowerCamelCase ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(__lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase =argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) lowercase =parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
242
'''simple docstring''' lowercase =[0, 2, 4, 6, 8] lowercase =[1, 3, 5, 7, 9] def lowerCamelCase__ ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : int ): '''simple docstring''' if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _UpperCAmelCase : Union[str, Any] =0 for digit in range(1_0 ): _UpperCAmelCase : str =digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , __lowerCamelCase , __lowerCamelCase ) return result _UpperCAmelCase : Optional[Any] =0 for digita in range(1_0 ): _UpperCAmelCase : Any =digita if (remainder + digita) % 2 == 0: _UpperCAmelCase : Optional[int] =ODD_DIGITS else: _UpperCAmelCase : Union[str, Any] =EVEN_DIGITS for digita in other_parity_digits: _UpperCAmelCase : int =digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , __lowerCamelCase , __lowerCamelCase , ) return result def lowerCamelCase__ ( __lowerCamelCase : int = 9 ): '''simple docstring''' _UpperCAmelCase : Optional[int] =0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__lowerCamelCase , 0 , [0] * length , __lowerCamelCase ) return result if __name__ == "__main__": print(F"""{solution() = }""")
242
1
def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Union[str, Any]: """simple docstring""" _UpperCAmelCase = (boundary[1] - boundary[0]) / steps _UpperCAmelCase = boundary[0] _UpperCAmelCase = boundary[1] _UpperCAmelCase = make_points(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = 0.0 y += (h / 2.0) * f(__lowerCAmelCase ) for i in x_i: # print(i) y += h * f(__lowerCAmelCase ) y += (h / 2.0) * f(__lowerCAmelCase ) return y def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = a + h while x < (b - h): yield x _UpperCAmelCase = x + h def __A ( __lowerCAmelCase )-> Optional[Any]: # enter your function here """simple docstring""" _UpperCAmelCase = (x - 0) * (x - 0) return y def __A ( )-> int: """simple docstring""" _UpperCAmelCase = 0.0 # Lower bound of integration _UpperCAmelCase = 1.0 # Upper bound of integration _UpperCAmelCase = 10.0 # define number of steps or resolution _UpperCAmelCase = [a, b] # define boundary of integration _UpperCAmelCase = method_a(__lowerCAmelCase , __lowerCAmelCase ) print(F"""y = {y}""" ) if __name__ == "__main__": main()
39
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __a : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=[1, 2, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 4] , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , _SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = ['stem'] _UpperCAmelCase = MaskFormerSwinBackbone(config=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _a : int = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _a : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _a : Optional[int] = False _a : List[str] = False _a : List[str] = False _a : Optional[int] = False _a : Tuple = False def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> List[str]: """simple docstring""" return def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_SCREAMING_SNAKE_CASE ) @unittest.skip('Swin does not use inputs_embeds' ) def UpperCAmelCase__ ( self ) -> Tuple: """simple docstring""" pass @unittest.skip('Swin does not support feedforward chunking' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def UpperCAmelCase__ ( self ) -> Any: """simple docstring""" pass def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Swin has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = 0 return t def check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(_SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}. Dict has''' f''' `nan`: {torch.isnan(_SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(_SCREAMING_SNAKE_CASE )}.''' ) , ) recursive_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) check_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , {'output_hidden_states': True} ) @require_torch class __a ( unittest.TestCase , UpperCAmelCase ): _a : Any = (MaskFormerSwinBackbone,) if is_torch_available() else () _a : Any = MaskFormerSwinConfig def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" _UpperCAmelCase = MaskFormerSwinModelTester(self ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: _UpperCAmelCase = backbone_class(_SCREAMING_SNAKE_CASE ) backbone.to(_SCREAMING_SNAKE_CASE ) backbone.eval() _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _UpperCAmelCase = backbone(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
329
0
'''simple docstring''' import os import sys import unittest lowerCAmelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase_ = os.path.join("tests", "models", "bert", "test_modeling_bert.py") lowerCAmelCase_ = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> List[Any]: snake_case = get_test_to_tester_mapping(lowercase_ ) snake_case = get_test_to_tester_mapping(lowercase_ ) snake_case = {'BertModelTest': 'BertModelTester'} snake_case = { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> List[Any]: snake_case = get_model_to_test_mapping(lowercase_ ) snake_case = get_model_to_test_mapping(lowercase_ ) snake_case = { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) def _lowerCamelCase ( self ) -> str: snake_case = get_model_to_tester_mapping(lowercase_ ) snake_case = get_model_to_tester_mapping(lowercase_ ) snake_case = { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } snake_case = { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ ) self.assertEqual(get_test_info.to_json(lowercase_ ), lowercase_ )
367
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase_ = False class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self ) -> List[Any]: return 12 @property def _lowerCamelCase ( self ) -> Dict: return 12 @property def _lowerCamelCase ( self ) -> List[Any]: return 32 @property def _lowerCamelCase ( self ) -> List[Any]: torch.manual_seed(0 ) snake_case = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, num_vq_embeddings=self.num_embed, vq_embed_dim=3, ) return model @property def _lowerCamelCase ( self ) -> List[Any]: snake_case = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def _lowerCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=self.text_embedder_hidden_size, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(lowercase_ ) @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) snake_case = 12 snake_case = 12 snake_case = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } snake_case = TransformeraDModel(**lowercase_ ) return model def _lowerCamelCase ( self ) -> Tuple: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=lowercase_ ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_551, 0.6_168, 0.5_008, 0.5_676, 0.5_659, 0.4_295, 0.6_073, 0.5_599, 0.4_992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self ) -> Optional[Any]: snake_case = 'cpu' snake_case = self.dummy_vqvae snake_case = self.dummy_text_encoder snake_case = self.dummy_tokenizer snake_case = self.dummy_transformer snake_case = VQDiffusionScheduler(self.num_embed ) snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=lowercase_, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length ) snake_case = VQDiffusionPipeline( vqvae=lowercase_, text_encoder=lowercase_, tokenizer=lowercase_, transformer=lowercase_, scheduler=lowercase_, learned_classifier_free_sampling_embeddings=lowercase_, ) snake_case = pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) snake_case = 'teddy bear playing in the pool' snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe([prompt], generator=lowercase_, num_inference_steps=2, output_type='np' ) snake_case = output.images snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipe( [prompt], generator=lowercase_, output_type='np', return_dict=lowercase_, num_inference_steps=2 )[0] snake_case = image[0, -3:, -3:, -1] snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) snake_case = np.array([0.6_693, 0.6_075, 0.4_959, 0.5_701, 0.5_583, 0.4_333, 0.6_171, 0.5_684, 0.4_988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ) -> str: snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy' ) snake_case = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq' ) snake_case = pipeline.to(lowercase_ ) pipeline.set_progress_bar_config(disable=lowercase_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case = pipeline( 'teddy bear playing in the pool', num_images_per_prompt=1, generator=lowercase_, output_type='np', ) snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
332
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , *__lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=None , **__lowerCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) A__ = eval_examples A__ = post_process_function def a_ ( self : Dict , __lowerCAmelCase : Optional[Dataset] = None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "eval" , **__lowerCAmelCase : List[str] , ) -> Dict[str, float]: """simple docstring""" A__ = gen_kwargs.copy() A__ = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) A__ = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) A__ = gen_kwargs A__ = self.eval_dataset if eval_dataset is None else eval_dataset A__ = self.get_eval_dataloader(__lowerCAmelCase ) A__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( __lowerCAmelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default A__ = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) A__ = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): A__ = metrics.pop(__lowerCAmelCase ) metrics.update(output.metrics ) else: A__ = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) A__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCAmelCase ) return metrics def a_ ( self : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : str = "test" , **__lowerCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" A__ = gen_kwargs.copy() A__ = self.get_test_dataloader(__lowerCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. A__ = self.compute_metrics A__ = None A__ = time.time() A__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: A__ = eval_loop( __lowerCAmelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCAmelCase , metric_key_prefix=__lowerCAmelCase , ) finally: A__ = compute_metrics A__ = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __lowerCAmelCase , __lowerCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output A__ = self.post_process_function(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , """predict""" ) A__ = self.compute_metrics(__lowerCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): A__ = metrics.pop(__lowerCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCAmelCase )
274
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : str = '''▁''' A : Any = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } A : List[Any] = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } A : Tuple = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off A : Optional[int] = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Dict = ['''input_ids''', '''attention_mask'''] __lowerCamelCase : List[int] = [] __lowerCamelCase : List[int] = [] def __init__( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : str=None , __lowerCAmelCase : List[Any]="<s>" , __lowerCAmelCase : List[Any]="</s>" , __lowerCAmelCase : Optional[int]="</s>" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : Any="<unk>" , __lowerCAmelCase : Any="m2m100" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , __lowerCAmelCase : Dict=8 , **__lowerCAmelCase : Tuple , ) -> None: """simple docstring""" A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = language_codes A__ = FAIRSEQ_LANGUAGE_CODES[language_codes] A__ = {lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} A__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowerCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowerCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , language_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowerCAmelCase , **__lowerCAmelCase , ) A__ = vocab_file A__ = load_json(__lowerCAmelCase ) A__ = {v: k for k, v in self.encoder.items()} A__ = spm_file A__ = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) A__ = len(self.encoder ) A__ = { self.get_lang_token(__lowerCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase ) } A__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowerCAmelCase )} A__ = {v: k for k, v in self.lang_token_to_id.items()} A__ = src_lang if src_lang is not None else """en""" A__ = tgt_lang A__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) A__ = num_madeup_words @property def a_ ( self : Optional[int] ) -> int: """simple docstring""" return len(self.encoder ) + len(self.lang_token_to_id ) @property def a_ ( self : Optional[Any] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def a_ ( self : List[Any] , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a_ ( self : Optional[int] , __lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def a_ ( self : Optional[Any] , __lowerCAmelCase : Dict ) -> Optional[Any]: """simple docstring""" if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def a_ ( self : Optional[int] , __lowerCAmelCase : int ) -> str: """simple docstring""" if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowerCAmelCase , self.unk_token ) def a_ ( self : Optional[int] , __lowerCAmelCase : Dict ) -> str: """simple docstring""" A__ = [] A__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token A__ = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def a_ ( self : List[str] , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) A__ = [1] * len(self.prefix_tokens ) A__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def a_ ( self : Tuple , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self : int ) -> Dict: """simple docstring""" A__ = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: """simple docstring""" A__ = self.__dict__.copy() A__ = None return state def __setstate__( self : str , __lowerCAmelCase : Dict ) -> None: """simple docstring""" A__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A__ = {} A__ = load_spm(self.spm_file , self.sp_model_kwargs ) def a_ ( self : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A__ = Path(__lowerCAmelCase ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) A__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , """wb""" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def a_ ( self : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : str = "en" , __lowerCAmelCase : Optional[List[str]] = None , __lowerCAmelCase : str = "ro" , **__lowerCAmelCase : List[Any] , ) -> BatchEncoding: """simple docstring""" A__ = src_lang A__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[str] , __lowerCAmelCase : Optional[str] , **__lowerCAmelCase : Tuple ) -> Tuple: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A__ = src_lang A__ = self(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , **__lowerCAmelCase ) A__ = self.get_lang_id(__lowerCAmelCase ) A__ = tgt_lang_id return inputs def a_ ( self : Dict ) -> int: """simple docstring""" self.set_src_lang_special_tokens(self.src_lang ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self.set_tgt_lang_special_tokens(self.tgt_lang ) def a_ ( self : str , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Tuple , __lowerCAmelCase : str ) -> None: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) A__ = self.lang_token_to_id[lang_token] A__ = [self.cur_lang_id] A__ = [self.eos_token_id] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> str: """simple docstring""" return self.lang_code_to_token[lang] def a_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> int: """simple docstring""" A__ = self.get_lang_token(__lowerCAmelCase ) return self.lang_token_to_id[lang_token] def __lowerCamelCase ( __a :str , __a :Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" A__ = sentencepiece.SentencePieceProcessor(**__a ) spm.Load(str(__a ) ) return spm def __lowerCamelCase ( __a :str ) -> Union[Dict, List]: """simple docstring""" with open(__a , """r""" ) as f: return json.load(__a ) def __lowerCamelCase ( __a :List[Any] , __a :str ) -> None: """simple docstring""" with open(__a , """w""" ) as f: json.dump(__a , __a , indent=2 )
274
1
'''simple docstring''' def snake_case__ ( lowerCamelCase__ : Any ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("""Program to check whether a number is a Perfect number or not...""") snake_case__ = int(input("""Enter number: """).strip()) print(F'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
352
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline snake_case__ = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase_ (datasets.BuilderConfig ): """simple docstring""" _lowerCAmelCase = None _lowerCAmelCase = "utf-8" _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = True # deprecated _lowerCAmelCase = None # deprecated _lowerCAmelCase = 1_0 << 2_0 # 10MB _lowerCAmelCase = None class UpperCamelCase_ (datasets.ArrowBasedBuilder ): """simple docstring""" _lowerCAmelCase = JsonConfig def _a ( self : int ): """simple docstring""" if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) A_ : List[Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _a ( self : Any , _lowerCamelCase : List[str] ): """simple docstring""" if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) A_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): A_ : Union[str, Any] = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : List[str] = [files] A_ : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] A_ : Tuple = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): A_ : int = [files] A_ : Union[str, Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def _a ( self : int , _lowerCamelCase : pa.Table ): """simple docstring""" if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): A_ : Optional[int] = self.config.features.arrow_schema.field(_lowerCamelCase ).type A_ : Optional[int] = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example A_ : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def _a ( self : List[str] , _lowerCamelCase : int ): """simple docstring""" for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : int = json.load(_lowerCamelCase ) # We keep only the field we are interested in A_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): A_ : int = set().union(*[row.keys() for row in dataset] ) A_ : List[str] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: A_ : Tuple = dataset A_ : Dict = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: A_ : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small A_ : int = max(self.config.chunksize // 32 , 16 << 10 ) A_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: A_ : Any = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": A_ : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: A_ : List[Any] = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'Batch of {len(_lowerCamelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: A_ : Optional[Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: A_ : Optional[int] = set().union(*[row.keys() for row in dataset] ) A_ : Tuple = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} A_ : int = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError(f'Not able to read records in the JSON file at {file}.' ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(f'Failed to read file \'{file}\' with error {type(_lowerCamelCase )}: {e}' ) raise ValueError( f'Not able to read records in the JSON file at {file}. ' f'You should probably indicate the field of the JSON file containing your records. ' f'This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ' f'Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
4
0
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase ( snake_case_ ): def __init__( self : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple=13 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : int=99 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : Dict=37 , UpperCAmelCase__ : Optional[Any]="gelu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[str]=512 , UpperCAmelCase__ : Tuple=16 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Optional[Any]=0.0_2 , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Any="None" , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Optional[int]=None , ) -> List[str]: _a : Any = parent _a : Union[str, Any] = batch_size _a : List[str] = seq_length _a : List[str] = is_training _a : Optional[Any] = use_input_mask _a : Any = use_token_type_ids _a : str = use_labels _a : Tuple = vocab_size _a : List[str] = hidden_size _a : List[str] = num_hidden_layers _a : List[Any] = num_attention_heads _a : Tuple = intermediate_size _a : Dict = hidden_act _a : Tuple = hidden_dropout_prob _a : Tuple = attention_probs_dropout_prob _a : Dict = max_position_embeddings _a : Tuple = type_vocab_size _a : Optional[Any] = type_sequence_label_size _a : int = initializer_range _a : Optional[int] = num_labels _a : List[str] = num_choices _a : Any = relative_attention _a : Optional[Any] = position_biased_input _a : List[Any] = pos_att_type _a : str = scope def _lowercase ( self : int ) -> Any: _a : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a : Optional[int] = None if self.use_input_mask: _a : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _a : Optional[int] = None if self.use_token_type_ids: _a : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a : Union[str, Any] = None _a : Optional[Any] = None _a : int = None if self.use_labels: _a : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _a : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : List[str] ) -> Optional[Any]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] ) -> Tuple: _a : Any = DebertaVaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Union[str, Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )[0] _a : List[str] = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ )[0] _a : List[str] = model(UpperCAmelCase__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _lowercase ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ) -> int: _a : Optional[Any] = DebertaVaForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : List[str] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str ) -> str: _a : List[str] = self.num_labels _a : List[Any] = DebertaVaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Dict = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCAmelCase__ ) def _lowercase ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> Any: _a : Optional[Any] = self.num_labels _a : Any = DebertaVaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Union[str, Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]: _a : int = DebertaVaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : str = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] ) -> Union[str, Any]: _a : List[Any] = DebertaVaForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() _a : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a : Any = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : int ) -> Dict: _a : int = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : Any = config_and_inputs _a : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Optional[int] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase : Optional[int] = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : Tuple = True UpperCamelCase : Any = False UpperCamelCase : Tuple = False UpperCamelCase : int = False UpperCamelCase : str = False def _lowercase ( self : str ) -> List[Any]: _a : List[str] = DebertaVaModelTester(self ) _a : int = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def _lowercase ( self : str ) -> Dict: self.config_tester.run_common_tests() def _lowercase ( self : Dict ) -> List[str]: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ) -> str: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ) -> List[Any]: _a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ) -> int: _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCAmelCase__ ) def _lowercase ( self : str ) -> Union[str, Any]: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCAmelCase__ ) def _lowercase ( self : Any ) -> Tuple: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*UpperCAmelCase__ ) @slow def _lowercase ( self : Tuple ) -> Optional[int]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : Dict = DebertaVaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _lowercase ( self : Union[str, Any] ) -> Optional[Any]: pass @slow def _lowercase ( self : List[Any] ) -> Union[str, Any]: _a : str = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) _a : str = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) _a : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a : List[Any] = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] # compare the actual values for a slice. _a : List[Any] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
294
"""simple docstring""" import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCamelCase ( nn.Module ): def __init__( self : Union[str, Any] ) -> int: super().__init__() _a : Optional[Any] = nn.Linear(3 , 4 ) _a : Tuple = nn.BatchNormad(4 ) _a : Dict = nn.Linear(4 , 5 ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : List[str] ) -> int: return self.lineara(self.batchnorm(self.lineara(UpperCAmelCase__ ) ) ) class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Any , UpperCAmelCase__ : Any , *UpperCAmelCase__ : List[str] , **UpperCAmelCase__ : Optional[int] ) -> Optional[int]: return (args[0] + 1,) + args[1:], kwargs class UpperCamelCase ( snake_case_ ): def _lowercase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] ) -> List[str]: return output + 1 class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : Dict ) -> str: _a : List[Any] = ModelForTest() _a : str = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual(test_model._hf_hook , UpperCAmelCase__ ) self.assertTrue(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) def _lowercase ( self : Optional[int] ) -> Optional[int]: _a : Dict = ModelForTest() _a : Dict = ModelHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ , append=UpperCAmelCase__ ) self.assertEqual(isinstance(test_model._hf_hook , UpperCAmelCase__ ) , UpperCAmelCase__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(UpperCAmelCase__ ) self.assertFalse(hasattr(UpperCAmelCase__ , """_hf_hook""" ) ) self.assertFalse(hasattr(UpperCAmelCase__ , """_old_forward""" ) ) def _lowercase ( self : Dict ) -> int: _a : str = ModelForTest() _a : List[Any] = torch.randn(2 , 3 ) _a : Optional[Any] = test_model(x + 1 ) _a : str = test_model(x + 2 ) _a : Union[str, Any] = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a : int = PreForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : str = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a : int = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Tuple = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-5 ) def _lowercase ( self : Tuple ) -> int: _a : Tuple = ModelForTest() _a : Union[str, Any] = torch.randn(2 , 3 ) _a : Optional[int] = test_model(UpperCAmelCase__ ) _a : int = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain _a : List[Any] = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Dict = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks _a : Any = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : Optional[int] = test_model(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ , output + 2 , atol=1E-5 ) def _lowercase ( self : Dict ) -> Optional[Any]: _a : Any = ModelForTest() _a : List[Any] = torch.randn(2 , 3 ) _a : Dict = test_model(UpperCAmelCase__ ) _a : Any = PostForwardHook() add_hook_to_module(UpperCAmelCase__ , UpperCAmelCase__ ) _a : List[str] = test_model(UpperCAmelCase__ ) self.assertTrue(torch.allclose(UpperCAmelCase__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) _a : Any = True _a : Union[str, Any] = test_model(UpperCAmelCase__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def _lowercase ( self : Optional[Any] ) -> str: _a : List[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device _a : Optional[int] = torch.randn(2 , 3 ) _a : Any = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(UpperCAmelCase__ , AlignDevicesHook(io_same_device=UpperCAmelCase__ ) ) _a : str = torch.randn(2 , 3 ).to(0 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , torch.device(0 ) ) def _lowercase ( self : str ) -> Union[str, Any]: _a : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : List[Any] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Dict = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : int = torch.randn(2 , 3 ) _a : str = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload _a : List[str] = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**UpperCAmelCase__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**UpperCAmelCase__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : Tuple = torch.randn(2 , 3 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _lowercase ( self : Tuple ) -> List[str]: _a : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Dict = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : Union[str, Any] = torch.randn(2 , 3 ) _a : List[Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , offload_buffers=UpperCAmelCase__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : List[str] = torch.randn(2 , 3 ) _a : Union[str, Any] = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def _lowercase ( self : Dict ) -> str: _a : Optional[Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices _a : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device _a : Union[str, Any] = torch.device(UpperCAmelCase__ ) self.assertEqual(model.batchnorm.running_mean.device , UpperCAmelCase__ ) _a : Union[str, Any] = torch.randn(2 , 3 ) _a : int = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( UpperCAmelCase__ , execution_device=UpperCAmelCase__ , offload=UpperCAmelCase__ , weights_map=model.state_dict() , offload_buffers=UpperCAmelCase__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) _a : Any = torch.randn(2 , 3 ) _a : int = model(UpperCAmelCase__ ) self.assertEqual(output.device , UpperCAmelCase__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(UpperCAmelCase__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
294
1
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=64 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=32 ,UpperCAmelCase_=5 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=[1, 16, 4, 4] ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : Dict = image_size _lowercase : Union[str, Any] = patch_size _lowercase : str = num_channels _lowercase : Any = is_training _lowercase : Optional[Any] = use_labels _lowercase : List[Any] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Tuple = scope _lowercase : Optional[Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _lowercase : Tuple = (self.image_size // 32) ** 2 _lowercase : Union[str, Any] = num_patches + 1 def lowerCamelCase__ ( self ): _lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = None if self.use_labels: _lowercase : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : Dict = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): _lowercase : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,backbone_featmap_shape=self.backbone_featmap_shape ,backbone_config=UpperCAmelCase_ ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : int = ViTHybridModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = self.type_sequence_label_size _lowercase : Optional[int] = ViTHybridForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() _lowercase : Optional[Any] = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Optional[int] = config_and_inputs _lowercase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[int] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Any = False def lowerCamelCase__ ( self ): _lowercase : Dict = ViTHybridModelTester(self ) _lowercase : str = ConfigTester(self ,config_class=UpperCAmelCase_ ,has_text_modality=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): _lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : int = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _lowercase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,nn.Linear ) ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[str] = model_class(UpperCAmelCase_ ) _lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Optional[Any] = [*signature.parameters.keys()] _lowercase : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: _lowercase : Optional[Any] = model_class(config=UpperCAmelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _lowercase : Any = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @slow def lowerCamelCase__ ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Optional[Any] = ViTHybridModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase_ ) _lowercase : Union[str, Any] = self.default_image_processor _lowercase : Dict = prepare_img() _lowercase : Dict = image_processor(images=UpperCAmelCase_ ,return_tensors="""pt""" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): _lowercase : List[str] = model(**UpperCAmelCase_ ) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape ,UpperCAmelCase_ ) _lowercase : str = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 ) ) @slow @require_accelerate def lowerCamelCase__ ( self ): _lowercase : Dict = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) _lowercase : Union[str, Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" ,device_map="""auto""" ) _lowercase : Optional[Any] = prepare_img() _lowercase : Optional[Any] = image_processor(images=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[Any] = model(**UpperCAmelCase_ ) _lowercase : str = outputs.logits # model predicts one of the 1000 ImageNet classes _lowercase : Union[str, Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] ,"""tabby, tabby cat""" )
336
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : str ={ 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''decision_transformer''' SCREAMING_SNAKE_CASE__ : Dict = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : Any = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :Union[str, Any] , lowerCAmelCase__ :Dict=17 , lowerCAmelCase__ :Optional[Any]=4 , lowerCAmelCase__ :List[Any]=128 , lowerCAmelCase__ :Any=4_096 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[str]=1 , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :int=1 , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Any=1E-5 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=50_256 , lowerCAmelCase__ :List[Any]=50_256 , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :List[Any]=False , **lowerCAmelCase__ :Optional[Any] , ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = state_dim __SCREAMING_SNAKE_CASE : Any = act_dim __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = max_ep_len __SCREAMING_SNAKE_CASE : Optional[int] = action_tanh __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : Dict = n_positions __SCREAMING_SNAKE_CASE : Optional[int] = n_layer __SCREAMING_SNAKE_CASE : Optional[Any] = n_head __SCREAMING_SNAKE_CASE : List[str] = n_inner __SCREAMING_SNAKE_CASE : str = activation_function __SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop __SCREAMING_SNAKE_CASE : Dict = embd_pdrop __SCREAMING_SNAKE_CASE : List[str] = attn_pdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_range __SCREAMING_SNAKE_CASE : Any = scale_attn_weights __SCREAMING_SNAKE_CASE : int = use_cache __SCREAMING_SNAKE_CASE : int = scale_attn_by_inverse_layer_idx __SCREAMING_SNAKE_CASE : Optional[Any] = reorder_and_upcast_attn __SCREAMING_SNAKE_CASE : int = bos_token_id __SCREAMING_SNAKE_CASE : Dict = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
9
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowercase : '''simple docstring''' @staticmethod def __magic_name__( *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :str ) -> Union[str, Any]: pass def _UpperCamelCase ( lowercase__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. __lowerCAmelCase : str =( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __magic_name__( self :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = pipeline( '''document-question-answering''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) __SCREAMING_SNAKE_CASE : str = '''What is the placebo?''' __SCREAMING_SNAKE_CASE : str = [ { '''image''': load_image(lowerCAmelCase__ ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(lowerCAmelCase__ , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, {'''score''': ANY(lowerCAmelCase__ ), '''answer''': ANY(lowerCAmelCase__ ), '''start''': ANY(lowerCAmelCase__ ), '''end''': ANY(lowerCAmelCase__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : int = '''How many cats are there?''' __SCREAMING_SNAKE_CASE : Optional[int] = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , lowerCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __SCREAMING_SNAKE_CASE : Any = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) # We can optionnally pass directly the words and bounding boxes __SCREAMING_SNAKE_CASE : Union[str, Any] = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , words=lowerCAmelCase__ , boxes=lowerCAmelCase__ , top_k=2 ) self.assertEqual(lowerCAmelCase__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) __SCREAMING_SNAKE_CASE : Dict = INVOICE_URL __SCREAMING_SNAKE_CASE : Any = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : int = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Tuple = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[str] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : int = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : str = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :int ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : str = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : str = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __magic_name__( self :str ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=lowerCAmelCase__ , revision='''3dc6de3''' , max_seq_len=50 , ) __SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL __SCREAMING_SNAKE_CASE : Dict = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) __SCREAMING_SNAKE_CASE : List[str] = list(zip(*apply_tesseract(load_image(lowerCAmelCase__ ) , lowerCAmelCase__ , '''''' ) ) ) # This model should also work if `image` is set to None __SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=4 ) , [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL __SCREAMING_SNAKE_CASE : Optional[int] = '''What is the invoice number?''' __SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline(image=lowerCAmelCase__ , question=lowerCAmelCase__ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def __magic_name__( self :Union[str, Any] ) -> Tuple: pass
9
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCAmelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCAmelCase = [ord(letter) for letter in string.ascii_lowercase] UpperCAmelCase = {ord(char) for char in VALID_CHARS} UpperCAmelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCamelCase (a_ :list[int] , a_ :tuple[int, ...]) -> str | None: lowercase :str = "" lowercase :int lowercase :int lowercase :int for keychar, cipherchar in zip(cycle(a_) , a_): lowercase :Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(a_) return decoded def lowerCamelCase (a_ :list[int]) -> list[str]: lowercase :list[str] = [] for key in product(a_ , repeat=3): lowercase :Union[str, Any] = try_key(a_ , a_) if encoded is not None: possibles.append(a_) return possibles def lowerCamelCase (a_ :list[str] , a_ :str) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def lowerCamelCase (a_ :str = "p059_cipher.txt") -> int: lowercase :list[int] lowercase :list[str] lowercase :str lowercase :str lowercase :str = Path(a_).parent.joinpath(a_).read_text(encoding='''utf-8''') lowercase :int = [int(a_) for number in data.strip().split(''',''')] lowercase :Union[str, Any] = filter_valid_chars(a_) for common_word in COMMON_WORDS: lowercase :str = filter_common_word(a_ , a_) if len(a_) == 1: break lowercase :Union[str, Any] = possibles[0] return sum(ord(a_) for char in decoded_text) if __name__ == "__main__": print(F"""{solution() = }""")
172
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase (a_ :List[Any]) -> Any: lowercase :Tuple = 384 lowercase :int = 7 if "tiny" in model_name: lowercase :Union[str, Any] = 96 lowercase :Any = (2, 2, 6, 2) lowercase :Any = (3, 6, 12, 24) elif "small" in model_name: lowercase :int = 96 lowercase :Any = (2, 2, 18, 2) lowercase :Optional[int] = (3, 6, 12, 24) elif "base" in model_name: lowercase :Optional[int] = 128 lowercase :Any = (2, 2, 18, 2) lowercase :Dict = (4, 8, 16, 32) lowercase :Tuple = 12 lowercase :List[Any] = 512 elif "large" in model_name: lowercase :List[str] = 192 lowercase :Optional[int] = (2, 2, 18, 2) lowercase :Any = (6, 12, 24, 48) lowercase :Any = 12 lowercase :str = 768 # set label information lowercase :Optional[int] = 150 lowercase :str = '''huggingface/label-files''' lowercase :List[str] = '''ade20k-id2label.json''' lowercase :List[str] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :Union[str, Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = {v: k for k, v in idalabel.items()} lowercase :List[str] = SwinConfig( embed_dim=a_ , depths=a_ , num_heads=a_ , window_size=a_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) lowercase :List[str] = UperNetConfig( backbone_config=a_ , auxiliary_in_channels=a_ , num_labels=a_ , idalabel=a_ , labelaid=a_ , ) return config def lowerCamelCase (a_ :Any) -> Optional[Any]: lowercase :Any = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''')) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''')) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""")) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""")) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""")) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""")) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""")) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""")) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ]) # fmt: on return rename_keys def lowerCamelCase (a_ :int , a_ :str , a_ :Union[str, Any]) -> int: lowercase :Any = dct.pop(a_) lowercase :Tuple = val def lowerCamelCase (a_ :Optional[int] , a_ :int) -> Optional[int]: lowercase :int = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowercase :List[str] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase :Optional[Any] = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""") lowercase :int = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :Optional[Any] = in_proj_weight[:dim, :] lowercase :str = in_proj_bias[: dim] lowercase :Optional[Any] = in_proj_weight[ dim : dim * 2, : ] lowercase :Optional[int] = in_proj_bias[ dim : dim * 2 ] lowercase :List[str] = in_proj_weight[ -dim :, : ] lowercase :Any = in_proj_bias[-dim :] # fmt: on def lowerCamelCase (a_ :Tuple) -> Any: lowercase , lowercase :Tuple = x.shape lowercase :str = x.reshape(a_ , 4 , in_channel // 4) lowercase :str = x[:, [0, 2, 1, 3], :].transpose(1 , 2).reshape(a_ , a_) return x def lowerCamelCase (a_ :Optional[int]) -> Tuple: lowercase , lowercase :Any = x.shape lowercase :Union[str, Any] = x.reshape(a_ , in_channel // 4 , 4) lowercase :int = x[:, :, [0, 2, 1, 3]].transpose(1 , 2).reshape(a_ , a_) return x def lowerCamelCase (a_ :Any) -> Union[str, Any]: lowercase :int = x.shape[0] lowercase :Any = x.reshape(4 , in_channel // 4) lowercase :Any = x[[0, 2, 1, 3], :].transpose(0 , 1).reshape(a_) return x def lowerCamelCase (a_ :str) -> Union[str, Any]: lowercase :List[str] = x.shape[0] lowercase :Optional[Any] = x.reshape(in_channel // 4 , 4) lowercase :List[Any] = x[:, [0, 2, 1, 3]].transpose(0 , 1).reshape(a_) return x def lowerCamelCase (a_ :int , a_ :Optional[int] , a_ :List[Any]) -> Dict: lowercase :Dict = { '''upernet-swin-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth''', '''upernet-swin-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth''', '''upernet-swin-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth''', '''upernet-swin-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth''', } lowercase :List[Any] = model_name_to_url[model_name] lowercase :Tuple = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''' , file_name=a_)[ '''state_dict''' ] for name, param in state_dict.items(): print(a_ , param.shape) lowercase :Union[str, Any] = get_upernet_config(a_) lowercase :int = UperNetForSemanticSegmentation(a_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase :Union[str, Any] = state_dict.pop(a_) if "bn" in key: lowercase :int = key.replace('''bn''' , '''batch_norm''') lowercase :str = val # rename keys lowercase :List[str] = create_rename_keys(a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , config.backbone_config) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase :str = reverse_correct_unfold_reduction_order(a_) if "norm" in key: lowercase :int = reverse_correct_unfold_norm_order(a_) model.load_state_dict(a_) # verify on image lowercase :Dict = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' lowercase :str = Image.open(requests.get(a_ , stream=a_).raw).convert('''RGB''') lowercase :Union[str, Any] = SegformerImageProcessor() lowercase :int = processor(a_ , return_tensors='''pt''').pixel_values with torch.no_grad(): lowercase :Optional[int] = model(a_) lowercase :int = outputs.logits print(logits.shape) print('''First values of logits:''' , logits[0, 0, :3, :3]) # assert values if model_name == "upernet-swin-tiny": lowercase :Union[str, Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]]) elif model_name == "upernet-swin-small": lowercase :List[str] = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]]) elif model_name == "upernet-swin-base": lowercase :Tuple = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]]) elif model_name == "upernet-swin-large": lowercase :str = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]]) print('''Logits:''' , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving processor to {pytorch_dump_folder_path}""") processor.save_pretrained(a_) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""") model.push_to_hub(F"""openmmlab/{model_name}""") processor.push_to_hub(F"""openmmlab/{model_name}""") if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F"""upernet-swin-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
172
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "vit_mae" def __init__(self : int , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : int=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[Any]=0.02 , UpperCAmelCase_ : List[Any]=1E-1_2 , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : str=512 , UpperCAmelCase_ : List[Any]=8 , UpperCAmelCase_ : List[str]=2_048 , UpperCAmelCase_ : Dict=0.75 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : str , ) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =hidden_size lowerCamelCase__: int =num_hidden_layers lowerCamelCase__: str =num_attention_heads lowerCamelCase__: int =intermediate_size lowerCamelCase__: str =hidden_act lowerCamelCase__: Optional[int] =hidden_dropout_prob lowerCamelCase__: int =attention_probs_dropout_prob lowerCamelCase__: Dict =initializer_range lowerCamelCase__: int =layer_norm_eps lowerCamelCase__: List[str] =image_size lowerCamelCase__: Optional[Any] =patch_size lowerCamelCase__: Any =num_channels lowerCamelCase__: Optional[Any] =qkv_bias lowerCamelCase__: List[str] =decoder_num_attention_heads lowerCamelCase__: List[Any] =decoder_hidden_size lowerCamelCase__: str =decoder_num_hidden_layers lowerCamelCase__: List[Any] =decoder_intermediate_size lowerCamelCase__: Optional[int] =mask_ratio lowerCamelCase__: Optional[int] =norm_pix_loss
10
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : List[Any] ="BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Optional[int] =("BertTokenizer", "BertTokenizerFast") def __init__( self : Dict , __A : Optional[int] , __A : List[Any] ): __UpperCamelCase = False super().__init__(__A , __A ) __UpperCamelCase = self.image_processor def __call__( self : List[Any] , __A : ImageInput = None , __A : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A : bool = True , __A : Union[bool, str, PaddingStrategy] = False , __A : Union[bool, str, TruncationStrategy] = None , __A : Optional[int] = None , __A : int = 0 , __A : Optional[int] = None , __A : Optional[bool] = None , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = False , __A : bool = True , __A : Optional[Union[str, TensorType]] = None , **__A : List[Any] , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __UpperCamelCase = self.tokenizer __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) return text_encoding # add pixel_values __UpperCamelCase = self.image_processor(__A , return_tensors=__A ) if text is not None: __UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) else: __UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__A ) return encoding_image_processor def _lowerCamelCase ( self : List[Any] , *__A : Dict , **__A : Optional[int] ): return self.tokenizer.batch_decode(*__A , **__A ) def _lowerCamelCase ( self : List[Any] , *__A : List[str] , **__A : Dict ): return self.tokenizer.decode(*__A , **__A ) @property def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
53
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ :List[str] = { "configuration_graphormer": ["GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "GraphormerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :List[str] = [ "GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowercase__ :Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
97
lowercase__ :List[str] = 6_5521 def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 1 lowercase = 0 for plain_chr in plain_text: lowercase = (a + ord(lowerCAmelCase__ )) % MOD_ADLER lowercase = (b + a) % MOD_ADLER return (b << 16) | a
97
1
"""simple docstring""" def _lowerCAmelCase ( lowercase_ = 1000 ): UpperCAmelCase , UpperCAmelCase = 1, 1 UpperCAmelCase = 2 while True: UpperCAmelCase = 0 UpperCAmelCase = fa + fa UpperCAmelCase , UpperCAmelCase = fa, f index += 1 for _ in str(lowercase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
78
'''simple docstring''' from maths.prime_factors import prime_factors def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : int = f"""Input value of [number={number}] must be an integer""" raise TypeError(UpperCamelCase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
37
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowerCamelCase ) model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase , streamer=lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase ) _lowerCAmelCase = tokenizer.decode(greedy_ids[0] ) _lowerCAmelCase = TextIteratorStreamer(lowerCamelCase ) _lowerCAmelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=lowerCamelCase ) thread.start() _lowerCAmelCase = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase ) _lowerCAmelCase = greedy_ids[:, input_ids.shape[1] :] _lowerCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowerCamelCase , skip_prompt=lowerCamelCase ) model.generate(lowerCamelCase , max_new_tokens=10 , do_sample=lowerCamelCase , streamer=lowerCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowerCAmelCase = cs.out[:-1] self.assertEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""distilgpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""distilgpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = torch.ones((1, 5) , device=lowerCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowerCAmelCase = TextStreamer(lowerCamelCase , skip_special_tokens=lowerCamelCase ) model.generate(lowerCamelCase , max_new_tokens=1 , do_sample=lowerCamelCase , streamer=lowerCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowerCAmelCase = cs.out[:-1] # Remove the final "\n" _lowerCAmelCase = tokenizer(lowerCamelCase , return_tensors="""pt""" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) _lowerCAmelCase = AutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ).to(lowerCamelCase ) _lowerCAmelCase = -1 _lowerCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase ) _lowerCAmelCase = TextIteratorStreamer(lowerCamelCase , timeout=0.001 ) _lowerCAmelCase = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} _lowerCAmelCase = Thread(target=model.generate , kwargs=lowerCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase ): _lowerCAmelCase = """""" for new_text in streamer: streamer_text += new_text
368
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : def __init__(self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase = text, pattern _lowerCAmelCase , _lowerCAmelCase = len(lowerCamelCase ), len(lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def A__ (self , lowerCamelCase ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def A__ (self ): '''simple docstring''' _lowerCAmelCase = [] for i in range(self.textLen - self.patLen + 1 ): _lowerCAmelCase = self.mismatch_in_text(lowerCamelCase ) if mismatch_index == -1: positions.append(lowerCamelCase ) else: _lowerCAmelCase = self.match_in_pattern(self.text[mismatch_index] ) _lowerCAmelCase = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE : Any = '''ABAABA''' SCREAMING_SNAKE_CASE : Optional[int] = '''AB''' SCREAMING_SNAKE_CASE : str = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
317
0
def lowerCAmelCase_ ( __a , __a , __a ) -> bool: """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__a ) ) def lowerCAmelCase_ ( __a , __a , __a , __a ) -> bool: """simple docstring""" if index == len(__a ): return True # Recursive Step for i in range(__a ): if valid_coloring(graph[index] , __a , __a ): # Color current vertex lowerCamelCase__: int =i # Validate coloring if util_color(__a , __a , __a , index + 1 ): return True # Backtrack lowerCamelCase__: List[Any] =-1 return False def lowerCAmelCase_ ( __a , __a ) -> list[int]: """simple docstring""" lowerCamelCase__: Dict =[-1] * len(__a ) if util_color(__a , __a , __a , 0 ): return colored_vertices return []
10
from __future__ import annotations def UpperCAmelCase_ ( _A , _A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = word_bank or [] # create a table SCREAMING_SNAKE_CASE__ = len(_A ) + 1 SCREAMING_SNAKE_CASE__ = [] for _ in range(_A ): table.append([] ) # seed value SCREAMING_SNAKE_CASE__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(_A ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_A )] == word: SCREAMING_SNAKE_CASE__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_A )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_A )]: combination.reverse() return table[len(_A )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
314
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowerCAmelCase_ : Tuple = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowerCAmelCase_ : List[Any] = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase = numpy_to_pil(_SCREAMING_SNAKE_CASE ) return images def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' if images.ndim == 3: UpperCAmelCase = images[None, ...] UpperCAmelCase = (images * 255).round().astype("""uint8""" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase = [Image.fromarray(image.squeeze() , mode="""L""" ) for image in images] else: UpperCAmelCase = [Image.fromarray(_SCREAMING_SNAKE_CASE ) for image in images] return pil_images
351
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline lowerCAmelCase_ : Tuple = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , ): '''simple docstring''' output_path.parent.mkdir(parents=lowerCAmelCase , exist_ok=lowerCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase , lowerCAmelCase , f=output_path.as_posix() , input_names=lowerCAmelCase , output_names=lowerCAmelCase , dynamic_axes=lowerCAmelCase , do_constant_folding=lowerCAmelCase , use_external_data_format=lowerCAmelCase , enable_onnx_checker=lowerCAmelCase , opset_version=lowerCAmelCase , ) else: export( lowerCAmelCase , lowerCAmelCase , f=output_path.as_posix() , input_names=lowerCAmelCase , output_names=lowerCAmelCase , dynamic_axes=lowerCAmelCase , do_constant_folding=lowerCAmelCase , opset_version=lowerCAmelCase , ) @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = False ): '''simple docstring''' UpperCAmelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: UpperCAmelCase = """cpu""" UpperCAmelCase = StableDiffusionPipeline.from_pretrained(lowerCAmelCase , torch_dtype=lowerCAmelCase ).to(lowerCAmelCase ) UpperCAmelCase = Path(lowerCAmelCase ) # TEXT ENCODER UpperCAmelCase = pipeline.text_encoder.config.max_position_embeddings UpperCAmelCase = pipeline.text_encoder.config.hidden_size UpperCAmelCase = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowerCAmelCase , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase , ) del pipeline.text_encoder # UNET UpperCAmelCase = pipeline.unet.config.in_channels UpperCAmelCase = pipeline.unet.config.sample_size UpperCAmelCase = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), torch.randn(2 ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), torch.randn(2 , lowerCAmelCase , lowerCAmelCase ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), False, ) , output_path=lowerCAmelCase , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase , use_external_data_format=lowerCAmelCase , ) UpperCAmelCase = str(unet_path.absolute().as_posix() ) UpperCAmelCase = os.path.dirname(lowerCAmelCase ) UpperCAmelCase = onnx.load(lowerCAmelCase ) # clean up existing tensor files shutil.rmtree(lowerCAmelCase ) os.mkdir(lowerCAmelCase ) # collate external tensor files into one onnx.save_model( lowerCAmelCase , lowerCAmelCase , save_as_external_data=lowerCAmelCase , all_tensors_to_one_file=lowerCAmelCase , location="""weights.pb""" , convert_attribute=lowerCAmelCase , ) del pipeline.unet # VAE ENCODER UpperCAmelCase = pipeline.vae UpperCAmelCase = vae_encoder.config.in_channels UpperCAmelCase = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder UpperCAmelCase = lambda lowerCAmelCase , lowerCAmelCase : vae_encoder.encode(lowerCAmelCase , lowerCAmelCase )[0].sample() onnx_export( lowerCAmelCase , model_args=( torch.randn(1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase , ) # VAE DECODER UpperCAmelCase = pipeline.vae UpperCAmelCase = vae_decoder.config.latent_channels UpperCAmelCase = vae_decoder.config.out_channels # forward only through the decoder part UpperCAmelCase = vae_encoder.decode onnx_export( lowerCAmelCase , model_args=( torch.randn(1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: UpperCAmelCase = pipeline.safety_checker UpperCAmelCase = safety_checker.config.vision_config.num_channels UpperCAmelCase = safety_checker.config.vision_config.image_size UpperCAmelCase = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), torch.randn(1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).to(device=lowerCAmelCase , dtype=lowerCAmelCase ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=lowerCAmelCase , ) del pipeline.safety_checker UpperCAmelCase = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) UpperCAmelCase = pipeline.feature_extractor else: UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowerCAmelCase ) print("""ONNX pipeline saved to""" , lowerCAmelCase ) del pipeline del onnx_pipeline UpperCAmelCase = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') lowerCAmelCase_ : Union[str, Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
248
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class UpperCamelCase : lowercase = 42 # setable values lowercase = 42 lowercase = 42 lowercase = None @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' return cls(common=__UpperCamelCase ,init_noise_sigma=__UpperCamelCase ,timesteps=__UpperCamelCase ) @dataclass class UpperCamelCase ( _a ): lowercase = 42 class UpperCamelCase ( _a , _a ): lowercase = [e.name for e in FlaxKarrasDiffusionSchedulers] lowercase = 42 @property def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' return True @register_to_config def __init__( self ,__UpperCamelCase = 1000 ,__UpperCamelCase = 0.0001 ,__UpperCamelCase = 0.02 ,__UpperCamelCase = "linear" ,__UpperCamelCase = None ,__UpperCamelCase = "fixed_small" ,__UpperCamelCase = True ,__UpperCamelCase = "epsilon" ,__UpperCamelCase = jnp.floataa ,) -> Tuple: '''simple docstring''' lowercase_ : Union[str, Any] = dtype def _UpperCAmelCase ( self ,__UpperCamelCase = None ) -> DDPMSchedulerState: '''simple docstring''' if common is None: lowercase_ : str = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase_ : str = jnp.array(1.0 ,dtype=self.dtype ) lowercase_ : Any = jnp.arange(0 ,self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCamelCase ,init_noise_sigma=__UpperCamelCase ,timesteps=__UpperCamelCase ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ) -> jnp.ndarray: '''simple docstring''' return sample def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = () ) -> DDPMSchedulerState: '''simple docstring''' lowercase_ : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase_ : int = (jnp.arange(0 ,__UpperCamelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCamelCase ,timesteps=__UpperCamelCase ,) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ,__UpperCamelCase=None ) -> Any: '''simple docstring''' lowercase_ : List[str] = state.common.alphas_cumprod[t] lowercase_ : Tuple = jnp.where(t > 0 ,state.common.alphas_cumprod[t - 1] ,jnp.array(1.0 ,dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase_ : Tuple = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase_ : int = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase_ : List[Any] = jnp.clip(__UpperCamelCase ,a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase_ : Dict = jnp.log(jnp.clip(__UpperCamelCase ,a_min=1e-20 ) ) elif variance_type == "fixed_large": lowercase_ : Any = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase_ : str = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase_ : List[str] = variance lowercase_ : Any = state.common.betas[t] lowercase_ : Optional[Any] = (predicted_variance + 1) / 2 lowercase_ : Dict = frac * max_log + (1 - frac) * min_log return variance def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = True ,) -> Union[FlaxDDPMSchedulerOutput, Tuple]: '''simple docstring''' lowercase_ : Optional[int] = timestep if key is None: lowercase_ : List[str] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase_ : Union[str, Any] = jnp.split(__UpperCamelCase ,sample.shape[1] ,axis=1 ) else: lowercase_ : Any = None # 1. compute alphas, betas lowercase_ : List[Any] = state.common.alphas_cumprod[t] lowercase_ : List[Any] = jnp.where(t > 0 ,state.common.alphas_cumprod[t - 1] ,jnp.array(1.0 ,dtype=self.dtype ) ) lowercase_ : Union[str, Any] = 1 - alpha_prod_t lowercase_ : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase_ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase_ : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowercase_ : str = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase_ : Any = jnp.clip(__UpperCamelCase ,-1 ,1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : Tuple = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase_ : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase_ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase_ : List[str] = jax.random.split(__UpperCamelCase ,num=1 ) lowercase_ : Tuple = jax.random.normal(__UpperCamelCase ,shape=model_output.shape ,dtype=self.dtype ) return (self._get_variance(__UpperCamelCase ,__UpperCamelCase ,predicted_variance=__UpperCamelCase ) ** 0.5) * noise lowercase_ : Tuple = jnp.where(t > 0 ,random_variance() ,jnp.zeros(model_output.shape ,dtype=self.dtype ) ) lowercase_ : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCamelCase ,state=__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> jnp.ndarray: '''simple docstring''' return add_noise_common(state.common ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> jnp.ndarray: '''simple docstring''' return get_velocity_common(state.common ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) def __len__( self ) -> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
213
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' return None class __lowerCAmelCase : def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[str]: '''simple docstring''' return None class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Dict = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) @require_torch @slow def lowerCamelCase (self ) -> int: '''simple docstring''' from transformers import BertModel snake_case_ : str = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__magic_name__ ) ) vocab_file.flush() snake_case_ : Optional[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: snake_case_ : str = BertModel(BertConfig(vocab_size=len(__magic_name__ ) ) ) model.save_pretrained(__magic_name__ ) self._test_export(__magic_name__ , '''pt''' , 12 , __magic_name__ ) @require_tf @slow def lowerCamelCase (self ) -> Tuple: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Tuple = self._test_export(__magic_name__ , '''tf''' , 12 , **__magic_name__ ) snake_case_ : List[str] = quantize(Path(__magic_name__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def lowerCamelCase (self ) -> Any: '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: snake_case_ : Any = self._test_export(__magic_name__ , '''pt''' , 12 , **__magic_name__ ) snake_case_ : Any = quantize(__magic_name__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__magic_name__ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , **__magic_name__ ) -> Tuple: '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: snake_case_ : List[str] = Path(__magic_name__ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ) return path except Exception as e: self.fail(__magic_name__ ) @require_torch @require_tokenizers @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' from transformers import BertModel snake_case_ : Optional[Any] = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''pt''' ) @require_tf @require_tokenizers @slow def lowerCamelCase (self ) -> List[str]: '''simple docstring''' from transformers import TFBertModel snake_case_ : Any = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) snake_case_ : str = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__magic_name__ , __magic_name__ , '''tf''' ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : Tuple = FeatureExtractionPipeline(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[int] = infer_shapes(__magic_name__ , __magic_name__ ) # Assert all variables are present self.assertEqual(len(__magic_name__ ) , len(__magic_name__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __magic_name__ ) self.assertSequenceEqual(variable_names[3:] , __magic_name__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] snake_case_ : List[str] = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} snake_case_ , snake_case_ : Tuple = ensure_valid_input(FuncContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__magic_name__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__magic_name__ ) , set(__magic_name__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__magic_name__ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) snake_case_ , snake_case_ : Dict = ensure_valid_input(FuncNonContiguousArgs() , __magic_name__ , __magic_name__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__magic_name__ ) , 1 ) self.assertEqual(len(__magic_name__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
279
0
import doctest from collections import deque import numpy as np class _SCREAMING_SNAKE_CASE : def __init__( self : str ): UpperCamelCase :Optional[int] = [2, 1, 2, -1] UpperCamelCase :List[str] = [1, 2, 3, 4] def _A ( self : Union[str, Any] ): UpperCamelCase :int = len(self.first_signal ) UpperCamelCase :Tuple = len(self.second_signal ) UpperCamelCase :Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) # create a zero matrix of max_length x max_length UpperCamelCase :Tuple = [[0] * max_length for i in range(__lowerCamelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(__lowerCamelCase ): UpperCamelCase :List[Any] = deque(self.second_signal ) rotated_signal.rotate(__lowerCamelCase ) for j, item in enumerate(__lowerCamelCase ): matrix[i][j] += item # multiply the matrix with the first signal UpperCamelCase :Any = np.matmul(np.transpose(__lowerCamelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(__lowerCamelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
62
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) UpperCAmelCase_ : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Tuple: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase :List[Any] = model_type_to_module_name(__magic_name__ ) UpperCamelCase :Union[str, Any] = importlib.import_module(f""".{module_name}""" , """transformers.models""" ) try: return getattr(__magic_name__ , __magic_name__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__magic_name__ , """__name__""" , __magic_name__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase :List[str] = importlib.import_module("""transformers""" ) if hasattr(__magic_name__ , __magic_name__ ): return getattr(__magic_name__ , __magic_name__ ) return None def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Union[str, os.PathLike] , __magic_name__ : Optional[Union[str, os.PathLike]] = None , __magic_name__ : bool = False , __magic_name__ : bool = False , __magic_name__ : Optional[Dict[str, str]] = None , __magic_name__ : Optional[Union[bool, str]] = None , __magic_name__ : Optional[str] = None , __magic_name__ : bool = False , **__magic_name__ : Any , ) -> Dict: """simple docstring""" UpperCamelCase :Dict = get_file_from_repo( __magic_name__ , __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , resume_download=__magic_name__ , proxies=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , local_files_only=__magic_name__ , ) if resolved_config_file is None: logger.info( """Could not locate the image processor configuration file, will try to use the model config instead.""" ) return {} with open(__magic_name__ , encoding="""utf-8""" ) as reader: return json.load(__magic_name__ ) class _SCREAMING_SNAKE_CASE : def __init__( self : Any ): raise EnvironmentError( """AutoImageProcessor is designed to be instantiated """ """using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def _A ( cls : List[str] , __lowerCamelCase : List[Any] , **__lowerCamelCase : int ): UpperCamelCase :Optional[Any] = kwargs.pop("""config""" , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = kwargs.pop("""trust_remote_code""" , __lowerCamelCase ) UpperCamelCase :Any = True UpperCamelCase , UpperCamelCase :int = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :Union[str, Any] = config_dict.get("""image_processor_type""" , __lowerCamelCase ) UpperCamelCase :int = None if "AutoImageProcessor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase :Optional[Any] = config_dict["""auto_map"""]["""AutoImageProcessor"""] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase :Optional[int] = config_dict.pop("""feature_extractor_type""" , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( """Could not find image processor class in the image processor config or the model config. Loading""" """ based on pattern matching with the model's feature extractor configuration.""" ) UpperCamelCase :str = feature_extractor_class.replace("""FeatureExtractor""" , """ImageProcessor""" ) if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): UpperCamelCase :Any = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] UpperCamelCase :Dict = feature_extractor_auto_map.replace("""FeatureExtractor""" , """ImageProcessor""" ) logger.warning( """Could not find image processor auto map in the image processor config or the model config.""" """ Loading based on pattern matching with the model's feature extractor configuration.""" ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase :str = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` UpperCamelCase :Optional[Any] = getattr(__lowerCamelCase , """image_processor_type""" , __lowerCamelCase ) if hasattr(__lowerCamelCase , """auto_map""" ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase :Any = config.auto_map["""AutoImageProcessor"""] if image_processor_class is not None: UpperCamelCase :Tuple = image_processor_class_from_name(__lowerCamelCase ) UpperCamelCase :List[Any] = image_processor_auto_map is not None UpperCamelCase :Any = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase :Optional[int] = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: UpperCamelCase :Optional[int] = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) UpperCamelCase :int = kwargs.pop("""code_revision""" , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase :int = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( F"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ F"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def _A ( __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
62
1
import os import string import sys UpperCAmelCase_ = 1 << 8 UpperCAmelCase_ = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } UpperCAmelCase_ = KEYMAP['up'] UpperCAmelCase_ = KEYMAP['left'] if sys.platform == "win32": UpperCAmelCase_ = [] UpperCAmelCase_ = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): UpperCAmelCase_ = ord(str(i)) def lowerCamelCase__ ( ): '''simple docstring''' if os.name == "nt": import msvcrt __lowerCamelCase = """mbcs""" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(A__ ) == 0: # Read the keystroke __lowerCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowerCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowerCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) ) WIN_CH_BUFFER.append(A__ ) if ord(A__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) __lowerCamelCase = chr(KEYMAP["""esc"""] ) except KeyError: __lowerCamelCase = cha[1] else: __lowerCamelCase = ch.decode(A__ ) else: __lowerCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowerCamelCase = sys.stdin.fileno() __lowerCamelCase = termios.tcgetattr(A__ ) try: tty.setraw(A__ ) __lowerCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(A__ , termios.TCSADRAIN , A__ ) return ch def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = get_raw_chars() if ord(A__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(A__ ) == KEYMAP["esc"]: __lowerCamelCase = get_raw_chars() if ord(A__ ) == KEYMAP["mod_int"]: __lowerCamelCase = get_raw_chars() if ord(A__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(A__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
12
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int = 100 ) -> int: """simple docstring""" lowerCAmelCase_ : Any = (n * (n + 1) // 2) ** 2 lowerCAmelCase_ : Optional[int] = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
224
0
"""simple docstring""" def _a ( _snake_case ): """simple docstring""" if upper_limit < 0: raise ValueError("""Limit for the Catalan sequence must be ≥ 0""" ) UpperCAmelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCAmelCase = 1 if upper_limit > 0: UpperCAmelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(_snake_case ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("""\n********* Catalan Numbers Using Dynamic Programming ************\n""") print("""\n*** Enter -1 at any time to quit ***""") print("""\nEnter the upper limit (≥ 0) for the Catalan number sequence: """, end="""""") try: while True: _UpperCamelCase = int(input().strip()) if N < 0: print("""\n********* Goodbye!! ************""") break else: print(F"""The Catalan numbers from 0 through {N} are:""") print(catalan_numbers(N)) print("""Try another upper limit for the sequence: """, end="""""") except (NameError, ValueError): print("""\n********* Invalid input, goodbye! ************\n""") import doctest doctest.testmod()
356
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _UpperCamelCase = None _UpperCamelCase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _UpperCamelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _a ( _snake_case , _snake_case=1 , _snake_case=256 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _a ( _snake_case ): """simple docstring""" with open(_snake_case , """r""" ) as f: return json.load(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" with open(_snake_case , """w""" ) as f: json.dump(_snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case=True ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = os.path.join(_snake_case , """tmp""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = read_json(os.path.join(_snake_case , """params.json""" ) ) UpperCAmelCase = NUM_SHARDS[model_size] UpperCAmelCase = params["""n_layers"""] UpperCAmelCase = params["""n_heads"""] UpperCAmelCase = n_heads // num_shards UpperCAmelCase = params["""dim"""] UpperCAmelCase = dim // n_heads UpperCAmelCase = 10000.0 UpperCAmelCase = 1.0 / (base ** (torch.arange(0 , _snake_case , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase = params["""n_kv_heads"""] # for GQA / MQA UpperCAmelCase = n_heads_per_shard // num_key_value_heads UpperCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase = n_heads UpperCAmelCase = n_heads_per_shard UpperCAmelCase = dim # permute for sliced rotary def permute(_snake_case , _snake_case=n_heads , _snake_case=dim , _snake_case=dim ): return w.view(_snake_case , dima // n_heads // 2 , 2 , _snake_case ).transpose(1 , 2 ).reshape(_snake_case , _snake_case ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase = torch.load(os.path.join(_snake_case , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded UpperCAmelCase = [ torch.load(os.path.join(_snake_case , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(_snake_case ) ] UpperCAmelCase = 0 UpperCAmelCase = {"""weight_map""": {}} for layer_i in range(_snake_case ): UpperCAmelCase = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(_snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) ) UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) , _snake_case , _snake_case , _snake_case , ) UpperCAmelCase = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = inv_freq for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) UpperCAmelCase = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: UpperCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_snake_case )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_snake_case )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) # Write configs UpperCAmelCase = {"""total_size""": param_count * 2} write_json(_snake_case , os.path.join(_snake_case , """pytorch_model.bin.index.json""" ) ) UpperCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 UpperCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 UpperCAmelCase = LlamaConfig( hidden_size=_snake_case , intermediate_size=compute_intermediate_size(_snake_case , _snake_case , _snake_case ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_snake_case , ) config.save_pretrained(_snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) UpperCAmelCase = LlamaForCausalLM.from_pretrained(_snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=_snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_snake_case , safe_serialization=_snake_case ) shutil.rmtree(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) UpperCAmelCase = tokenizer_class(_snake_case ) tokenizer.save_pretrained(_snake_case ) def _a ( ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_snake_case , help="""Whether or not to save using `safetensors`.""" ) UpperCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _snake_case ) if __name__ == "__main__": main()
234
0
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _SCREAMING_SNAKE_CASE (A , A , A ) -> List[Any]: """simple docstring""" lowercase__ = OmegaConf.load(A ) lowercase__ = torch.load(A , map_location='''cpu''' )['''model'''] lowercase__ = list(state_dict.keys() ) # extract state_dict for VQVAE lowercase__ = {} lowercase__ = '''first_stage_model.''' for key in keys: if key.startswith(A ): lowercase__ = state_dict[key] # extract state_dict for UNetLDM lowercase__ = {} lowercase__ = '''model.diffusion_model.''' for key in keys: if key.startswith(A ): lowercase__ = state_dict[key] lowercase__ = config.model.params.first_stage_config.params lowercase__ = config.model.params.unet_config.params lowercase__ = VQModel(**A ).eval() vqvae.load_state_dict(A ) lowercase__ = UNetLDMModel(**A ).eval() unet.load_state_dict(A ) lowercase__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , ) lowercase__ = LDMPipeline(A , A , A ) pipeline.save_pretrained(A ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) lowerCamelCase : Dict = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
2
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __snake_case ="""\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ __snake_case ="""\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ __snake_case =""" Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def __UpperCAmelCase ( self : Tuple ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : Optional[int]=False ) -> int: lowerCAmelCase = compute_bleu( reference_corpus=UpperCAmelCase__ , translation_corpus=UpperCAmelCase__ , max_order=UpperCAmelCase__ , smooth=UpperCAmelCase__ ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
4
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class a__ ( unittest.TestCase ): def __init__( self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=False , A=True , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> Optional[Any]: '''simple docstring''' a = parent a = batch_size a = num_channels a = image_size a = min_resolution a = max_resolution a = do_resize a = size if size is not None else {"height": 18, "width": 20} a = do_thumbnail a = do_align_axis a = do_pad a = do_normalize a = image_mean a = image_std def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a__ ( UpperCamelCase__ , unittest.TestCase ): a : Optional[Any] = DonutImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = DonutImageProcessingTester(self ) @property def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , "do_resize" ) ) self.assertTrue(hasattr(A , "size" ) ) self.assertTrue(hasattr(A , "do_thumbnail" ) ) self.assertTrue(hasattr(A , "do_align_long_axis" ) ) self.assertTrue(hasattr(A , "do_pad" ) ) self.assertTrue(hasattr(A , "do_normalize" ) ) self.assertTrue(hasattr(A , "image_mean" ) ) self.assertTrue(hasattr(A , "image_std" ) ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order a = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' pass @is_flaky() def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched a = image_processing(A , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
180
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class a__ ( UpperCamelCase__ , unittest.TestCase ): a : List[Any] = RoFormerTokenizer a : Tuple = RoFormerTokenizerFast a : Dict = True a : Optional[Any] = True def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() def lowerCAmelCase_ ( self , **A ) -> Tuple: '''simple docstring''' return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self , **A ) -> Union[str, Any]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **A ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = "永和服装饰品有限公司,今天天气非常好" a = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = self.get_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = self.get_rust_tokenizer() a , a = self.get_chinese_input_output_texts() a = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) a = tokens + [tokenizer.unk_token] a = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' pass
180
1
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _snake_case ( _lowerCAmelCase ): def snake_case__ ( self): UpperCAmelCase__ : List[str] = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_lowerCamelCase , """width_multiplier""")) class _snake_case : def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=64 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase="swish" , _lowerCamelCase=3 , _lowerCamelCase=32 , _lowerCamelCase=0.1 , _lowerCamelCase=0.02 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=10 , _lowerCamelCase=None , _lowerCamelCase=0.25 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , ): UpperCAmelCase__ : Any = parent UpperCAmelCase__ : List[str] = batch_size UpperCAmelCase__ : Any = image_size UpperCAmelCase__ : Any = patch_size UpperCAmelCase__ : Tuple = num_channels UpperCAmelCase__ : Any = make_divisible(512 * width_multiplier , divisor=8) UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Optional[Any] = conv_kernel_size UpperCAmelCase__ : List[str] = output_stride UpperCAmelCase__ : int = classifier_dropout_prob UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : List[str] = is_training UpperCAmelCase__ : str = num_labels UpperCAmelCase__ : Optional[Any] = initializer_range UpperCAmelCase__ : Optional[int] = scope UpperCAmelCase__ : List[Any] = width_multiplier UpperCAmelCase__ : List[Any] = ffn_dropout UpperCAmelCase__ : Any = attn_dropout def snake_case__ ( self): UpperCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase__ : int = None UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size] , self.num_labels) UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) UpperCAmelCase__ : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Tuple = MobileViTVaModel(config=_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Tuple = self.num_labels UpperCAmelCase__ : Optional[Any] = MobileViTVaForImageClassification(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : Tuple = self.num_labels UpperCAmelCase__ : List[str] = MobileViTVaForSemanticSegmentation(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() UpperCAmelCase__ : Optional[Any] = model(_lowerCamelCase) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase__ : str = model(_lowerCamelCase , labels=_lowerCamelCase) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self): UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ : List[str] = config_and_inputs UpperCAmelCase__ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowerCAmelCase :int = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase :Tuple = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase :List[str] = False lowerCAmelCase :Any = False lowerCAmelCase :Tuple = False lowerCAmelCase :int = False def snake_case__ ( self): UpperCAmelCase__ : List[Any] = MobileViTVaModelTester(self) UpperCAmelCase__ : List[str] = MobileViTVaConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase) def snake_case__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""") def snake_case__ ( self): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""") def snake_case__ ( self): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""") def snake_case__ ( self): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""") def snake_case__ ( self): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def snake_case__ ( self): pass def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Tuple = model_class(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase) def snake_case__ ( self): def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase): UpperCAmelCase__ : str = model_class(_lowerCamelCase) model.to(_lowerCamelCase) model.eval() with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase)) UpperCAmelCase__ : List[str] = outputs.hidden_states UpperCAmelCase__ : int = 5 self.assertEqual(len(_lowerCamelCase) , _lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase__ : Any = 2 for i in range(len(_lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ : Dict = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCamelCase) @slow def snake_case__ ( self): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Dict = MobileViTVaModel.from_pretrained(_lowerCamelCase) self.assertIsNotNone(_lowerCamelCase) def _UpperCamelCase ( ): UpperCAmelCase__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def snake_case__ ( self): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""") if is_vision_available() else None ) @slow def snake_case__ ( self): UpperCAmelCase__ : Any = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""").to( _lowerCamelCase) UpperCAmelCase__ : List[Any] = self.default_image_processor UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : int = image_processor(images=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # forward pass with torch.no_grad(): UpperCAmelCase__ : List[Any] = model(**_lowerCamelCase) # verify the logits UpperCAmelCase__ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1]).to(_lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4)) @slow def snake_case__ ( self): UpperCAmelCase__ : Any = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""") UpperCAmelCase__ : Optional[Any] = model.to(_lowerCamelCase) UpperCAmelCase__ : Tuple = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""") UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # forward pass with torch.no_grad(): UpperCAmelCase__ : Tuple = model(**_lowerCamelCase) UpperCAmelCase__ : List[Any] = outputs.logits # verify the logits UpperCAmelCase__ : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , _lowerCamelCase) UpperCAmelCase__ : Any = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_lowerCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCamelCase , atol=1e-4)) @slow def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""") UpperCAmelCase__ : Optional[Any] = model.to(_lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""") UpperCAmelCase__ : Any = prepare_img() UpperCAmelCase__ : Any = image_processor(images=_lowerCamelCase , return_tensors="""pt""").to(_lowerCamelCase) # forward pass with torch.no_grad(): UpperCAmelCase__ : int = model(**_lowerCamelCase) UpperCAmelCase__ : Optional[Any] = outputs.logits.detach().cpu() UpperCAmelCase__ : Tuple = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase , target_sizes=[(50, 60)]) UpperCAmelCase__ : List[str] = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = image_processor.post_process_semantic_segmentation(outputs=_lowerCamelCase) UpperCAmelCase__ : int = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , _lowerCamelCase)
163
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : List[str] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int] ) -> Any: __snake_case : List[Any] = dataset __snake_case : Optional[int] = process __snake_case : str = params def __len__( self : Optional[Any] ) -> Any: return len(self.dataset ) def __getitem__( self : Dict , lowerCamelCase : List[Any] ) -> List[str]: __snake_case : List[Any] = self.dataset[i] __snake_case : Tuple = self.process(lowerCamelCase , **self.params ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : Dict=None ) -> int: __snake_case : List[Any] = loader __snake_case : Dict = infer __snake_case : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __snake_case : Union[str, Any] = None __snake_case : Optional[Any] = loader_batch_size # Internal bookkeeping __snake_case : int = None __snake_case : Optional[int] = None def __len__( self : Optional[Any] ) -> Tuple: return len(self.loader ) def __iter__( self : str ) -> Tuple: __snake_case : int = iter(self.loader ) return self def __snake_case ( self : int ) -> Any: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice __snake_case : Union[str, Any] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __snake_case : int = {} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase , lowerCamelCase ): # Convert ModelOutput to tuple first __snake_case : Dict = element.to_tuple() if isinstance(element[0] , torch.Tensor ): __snake_case : Any = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : Optional[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase , lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): __snake_case : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): __snake_case : str = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __snake_case : Union[str, Any] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : List[Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __snake_case : Optional[Any] = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. __snake_case : Tuple = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __snake_case : str = self._loader_batch_data.__class__(lowerCamelCase ) self._loader_batch_index += 1 return result def __snake_case ( self : Dict ) -> Union[str, Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __snake_case : List[str] = next(self.iterator ) __snake_case : int = self.infer(lowerCamelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : List[Any] = processed else: __snake_case : Optional[Any] = list(processed.keys() )[0] __snake_case : List[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : List[str] = len(lowerCamelCase ) else: __snake_case : Tuple = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Optional[Any] = observed_batch_size # Setting internal index to unwrap the batch __snake_case : Union[str, Any] = processed __snake_case : str = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : int , lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=None ) -> Any: super().__init__(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __iter__( self : Optional[int] ) -> Optional[int]: __snake_case : Union[str, Any] = iter(self.loader ) __snake_case : int = None return self def __snake_case ( self : List[Any] ) -> List[Any]: if self.subiterator is None: __snake_case : Optional[int] = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item __snake_case : int = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __snake_case : Union[str, Any] = self.infer(next(self.iterator ) , **self.params ) __snake_case : int = next(self.subiterator ) return processed class a (_lowerCAmelCase ): """simple docstring""" def __iter__( self : Any ) -> Optional[Any]: __snake_case : str = iter(self.loader ) return self def __snake_case ( self : Tuple ) -> str: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __snake_case : Dict = False __snake_case : Dict = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __snake_case : Union[str, Any] = self.loader_batch_item() __snake_case : Any = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator while not is_last: __snake_case : str = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase , torch.Tensor ): __snake_case : Optional[int] = processed else: __snake_case : Union[str, Any] = list(processed.keys() )[0] __snake_case : Optional[Any] = processed[key] if isinstance(lowerCamelCase , lowerCamelCase ): __snake_case : int = len(lowerCamelCase ) else: __snake_case : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __snake_case : Dict = observed_batch_size __snake_case : Union[str, Any] = processed __snake_case : List[str] = 0 while self._loader_batch_index < self.loader_batch_size: __snake_case : str = self.loader_batch_item() __snake_case : str = item.pop("is_last" ) accumulator.append(lowerCamelCase ) if is_last: return accumulator else: __snake_case : List[str] = processed __snake_case : Tuple = item.pop("is_last" ) accumulator.append(lowerCamelCase ) return accumulator class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : Dataset , lowerCamelCase : str ) -> Optional[Any]: __snake_case : int = dataset __snake_case : Union[str, Any] = key def __len__( self : Tuple ) -> Union[str, Any]: return len(self.dataset ) def __getitem__( self : Optional[Any] , lowerCamelCase : str ) -> Optional[int]: return self.dataset[i][self.key] class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCamelCase : Dataset , lowerCamelCase : str , lowerCamelCase : str ) -> List[str]: __snake_case : Any = dataset __snake_case : Any = keya __snake_case : Union[str, Any] = keya def __len__( self : Optional[int] ) -> Tuple: return len(self.dataset ) def __getitem__( self : Tuple , lowerCamelCase : List[str] ) -> Optional[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
123
0
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _UpperCamelCase ( ): UpperCAmelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=UpperCamelCase__ , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=UpperCamelCase__ , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=UpperCamelCase__ , default=4_2 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=UpperCamelCase__ , default=0 , help="""cuda_id.""" , ) UpperCAmelCase__ : Any = parser.parse_args() return args def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if not len(UpperCamelCase__ ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) UpperCAmelCase__ : str = imgs[0].size UpperCAmelCase__ : Optional[Any] = Image.new("""RGB""" , size=(cols * w, rows * h) ) UpperCAmelCase__ : int = grid.size for i, img in enumerate(UpperCamelCase__ ): grid.paste(UpperCamelCase__ , box=(i % cols * w, i // cols * h) ) return grid def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__="robotic cat with wings" , UpperCamelCase__=7.5 , UpperCamelCase__=5_0 , UpperCamelCase__=1 , UpperCamelCase__=4_2 , ): UpperCAmelCase__ : str = torch.Generator(pipeline.device ).manual_seed(UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = pipeline( UpperCamelCase__ , guidance_scale=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , generator=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , ).images UpperCAmelCase__ : Optional[Any] = int(math.sqrt(UpperCamelCase__ ) ) UpperCAmelCase__ : List[str] = image_grid(UpperCamelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __A =parse_args() # Load models and create wrapper for stable diffusion __A =CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __A =CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __A =AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __A =UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __A =StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __A =lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __A =load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __A =unet.to(torch.device('cuda', args.cuda_id)) __A =pipeline.to(unet.device) __A , __A =generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __A =os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
352
'''simple docstring''' import functools def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # Validation if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(UpperCamelCase__ ) != 3 or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(UpperCamelCase__ ) == 0: return 0 if min(UpperCamelCase__ ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(UpperCamelCase__ ) >= 3_6_6: raise ValueError("""All days elements should be less than 366""" ) UpperCAmelCase__ : Union[str, Any] = set(UpperCamelCase__ ) @functools.cache def dynamic_programming(UpperCamelCase__ ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 3_0 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
283
0
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase_ (__A , __A , __A , unittest.TestCase ): __magic_name__ = StableUnCLIPPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __magic_name__ = False def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: UpperCAmelCase_ : Tuple = 32 UpperCAmelCase_ : int = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase_ , projection_dim=lowerCAmelCase_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowerCAmelCase_ , num_layers=1 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=lowerCAmelCase_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase_ ) UpperCAmelCase_ : Dict = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase_ , layers_per_block=1 , upcast_attention=lowerCAmelCase_ , use_linear_projection=lowerCAmelCase_ , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[Any] = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = AutoencoderKL() UpperCAmelCase_ : List[str] = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int]=0 ) -> Tuple: if str(lowerCAmelCase_ ).startswith("mps" ): UpperCAmelCase_ : Any = torch.manual_seed(lowerCAmelCase_ ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: UpperCAmelCase_ : List[str] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase_ ) @slow @require_torch_gpu class UpperCamelCase_ (unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Any ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_ : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) UpperCAmelCase_ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = pipe("anime turle" , generator=lowerCAmelCase_ , output_type="np" ) UpperCAmelCase_ : Optional[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ : List[str] = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) UpperCAmelCase_ : Optional[int] = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCAmelCase_ : str = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
268
"""simple docstring""" from __future__ import annotations class UpperCamelCase_ : def __init__( self : Any , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : Any = data UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None def snake_case ( A__ ): # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def snake_case ( A__ ): return 1 + max(depth_of_tree(tree.left ) ,depth_of_tree(tree.right ) ) if tree else 0 def snake_case ( A__ ): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def snake_case ( ): # Main function for testing. UpperCAmelCase_ : List[str] = Node(1 ) UpperCAmelCase_ : Any = Node(2 ) UpperCAmelCase_ : Optional[Any] = Node(3 ) UpperCAmelCase_ : Union[str, Any] = Node(4 ) UpperCAmelCase_ : int = Node(5 ) UpperCAmelCase_ : Optional[int] = Node(6 ) UpperCAmelCase_ : Any = Node(7 ) UpperCAmelCase_ : List[str] = Node(8 ) UpperCAmelCase_ : List[Any] = Node(9 ) print(is_full_binary_tree(A__ ) ) print(depth_of_tree(A__ ) ) print("Tree is: " ) display(A__ ) if __name__ == "__main__": main()
268
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowerCAmelCase_ ( lowerCamelCase_ ): '''simple docstring''' lowerCAmelCase_ : torch.FloatTensor lowerCAmelCase_ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple=0.9_99 , SCREAMING_SNAKE_CASE__ : List[str]="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : str ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE__ : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase__ = [] for i in range(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase__ = i / num_diffusion_timesteps UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) return torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.floataa ) class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self : List[str] , _UpperCAmelCase : int = 10_00 , _UpperCAmelCase : str = "fixed_small_log" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[float] = 1.0 , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : str = "squaredcos_cap_v2" , ): """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) UpperCAmelCase__ = betas_for_alpha_bar(_UpperCAmelCase ) UpperCAmelCase__ = 1.0 - self.betas UpperCAmelCase__ = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase__ = 1.0 # setable values UpperCAmelCase__ = None UpperCAmelCase__ = torch.from_numpy(np.arange(0 , _UpperCAmelCase )[::-1].copy() ) UpperCAmelCase__ = variance_type def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Optional[int] = None ): """simple docstring""" return sample def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, torch.device] = None ): """simple docstring""" UpperCAmelCase__ = num_inference_steps UpperCAmelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase__ = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase__ = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None ): """simple docstring""" if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase__ = torch.log(torch.clamp(_UpperCAmelCase , min=1E-20 ) ) UpperCAmelCase__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase__ = variance.log() UpperCAmelCase__ = beta.log() UpperCAmelCase__ = (predicted_variance + 1) / 2 UpperCAmelCase__ = frac * max_log + (1 - frac) * min_log return variance def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase__ , UpperCAmelCase__ = torch.split(_UpperCAmelCase , sample.shape[1] , dim=1 ) else: UpperCAmelCase__ = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] UpperCAmelCase__ = self.alphas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ = torch.clamp( _UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase__ = 0 if t > 0: UpperCAmelCase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_UpperCAmelCase , device=model_output.device ) UpperCAmelCase__ = self._get_variance( _UpperCAmelCase , predicted_variance=_UpperCAmelCase , prev_timestep=_UpperCAmelCase , ) if self.variance_type == "fixed_small_log": UpperCAmelCase__ = variance elif self.variance_type == "learned_range": UpperCAmelCase__ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' """ for the UnCLIPScheduler.""" ) UpperCAmelCase__ = variance * variance_noise UpperCAmelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : torch.IntTensor , ): """simple docstring""" UpperCAmelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase__ = timesteps.to(original_samples.device ) UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
61
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = GPTSanJapaneseTokenizer lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" super().setUp() # fmt: off UpperCAmelCase__ = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 UpperCAmelCase__ = {"""unk_token""": """<unk>"""} UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , **_UpperCAmelCase : Optional[int] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.get_input_output_texts(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" pass # TODO add if relevant def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。 こんばんは、㔺界。""" UpperCAmelCase__ = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] UpperCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ = tokens + [tokenizer.unk_token] UpperCAmelCase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" UpperCAmelCase__ = """こんにちは、、、、世界。こんばんは、、、、世界。""" UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = """こんにちは、世界。こんばんは、世界。😀""" UpperCAmelCase__ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) UpperCAmelCase__ = tokenizer.encode(_UpperCAmelCase , prefix_text=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ = """こんにちは、世界。""" UpperCAmelCase__ = """こんばんは、㔺界。😀""" UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = len(tokenizer.encode(_UpperCAmelCase ) ) - 2 UpperCAmelCase__ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ = tokenizer(_UpperCAmelCase , prefix_text=_UpperCAmelCase ).token_type_ids self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = tokenizer.encode("""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) UpperCAmelCase__ = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertEqual(tokenizer.decode(_UpperCAmelCase ) , tokenizer.decode(_UpperCAmelCase ) ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] UpperCAmelCase__ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) UpperCAmelCase__ = tokenizer.batch_encode_plus(_UpperCAmelCase , padding=_UpperCAmelCase ) # fmt: off UpperCAmelCase__ = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] UpperCAmelCase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token.attention_mask , _UpperCAmelCase ) self.assertListEqual(x_token_a.input_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , _UpperCAmelCase ) self.assertListEqual(x_token_a.attention_mask , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" pass
61
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def lowercase( UpperCamelCase_=32 , UpperCamelCase_=10 , UpperCamelCase_=100 , UpperCamelCase_=1026 , UpperCamelCase_=True , UpperCamelCase_="data/tokenized_stories_train_wikitext103.jbl" , UpperCamelCase_="igf_context_pairs.jbl" , ) -> str: '''simple docstring''' set_seed(3 ) # generate train_data and objective_set UpperCamelCase , UpperCamelCase = generate_datasets( UpperCamelCase_ , UpperCamelCase_ , number=UpperCamelCase_ , min_len=1026 , trim=UpperCamelCase_ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? UpperCamelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model UpperCamelCase = load_gpta("""gpt2""" ).to(UpperCamelCase_ ) print("""computing perplexity on objective set""" ) UpperCamelCase = compute_perplexity(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).item() print("""perplexity on objective set:""" , UpperCamelCase_ ) # collect igf pairs and save to file demo.jbl collect_objective_set(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def lowercase( UpperCamelCase_ , UpperCamelCase_=15 , UpperCamelCase_=128 , UpperCamelCase_=100 , UpperCamelCase_="igf_model.pt" , ) -> Any: '''simple docstring''' set_seed(42 ) # Load pre-trained model UpperCamelCase = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model UpperCamelCase = SecondaryLearner(UpperCamelCase_ ) # Train secondary learner UpperCamelCase = train_secondary_learner( UpperCamelCase_ , UpperCamelCase_ , max_epochs=UpperCamelCase_ , batch_size=UpperCamelCase_ , eval_freq=100 , igf_model_path=UpperCamelCase_ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=32 , UpperCamelCase_=1000 , UpperCamelCase_=16 , UpperCamelCase_=1.0 , UpperCamelCase_=recopy_gpta , UpperCamelCase_=None , UpperCamelCase_=10 , UpperCamelCase_="gpt2_finetuned.pt" , ) -> List[Any]: '''simple docstring''' UpperCamelCase = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) UpperCamelCase = RandomSampler(UpperCamelCase_ ) UpperCamelCase = DataLoader(UpperCamelCase_ , sampler=UpperCamelCase_ ) UpperCamelCase = max_steps // (len(UpperCamelCase_ )) + 1 UpperCamelCase = 0 UpperCamelCase = torch.zeros((1, context_len) , dtype=torch.long , device=UpperCamelCase_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = recopy_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) model.train() if secondary_learner is not None: secondary_learner.to(UpperCamelCase_ ) secondary_learner.eval() UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = [] UpperCamelCase = [] # Compute the performance of the transformer model at the beginning UpperCamelCase = compute_perplexity(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) test_perps.append(UpperCamelCase_ ) print("""Test perplexity, step""" , UpperCamelCase_ , """:""" , UpperCamelCase_ ) for epoch in range(int(UpperCamelCase_ ) ): for step, example in enumerate(UpperCamelCase_ ): torch.cuda.empty_cache() UpperCamelCase = random.randint(0 , example.size(2 ) - context_len - 1 ) UpperCamelCase = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() UpperCamelCase = model(UpperCamelCase_ , labels=UpperCamelCase_ ) UpperCamelCase = True if secondary_learner is not None: UpperCamelCase = secondary_learner.forward( torch.tensor(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(UpperCamelCase_ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: UpperCamelCase = -1 if predicted_q < threshold: UpperCamelCase = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) UpperCamelCase = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() UpperCamelCase = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: UpperCamelCase = compute_perplexity(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) test_perps.append(UpperCamelCase_ ) print("""Test perplexity, step""" , UpperCamelCase_ , """:""" , UpperCamelCase_ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , UpperCamelCase_ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def lowercase( ) -> Optional[int]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=UpperCamelCase_ , type=UpperCamelCase_ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=UpperCamelCase_ , default=UpperCamelCase_ , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=UpperCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=UpperCamelCase_ , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=UpperCamelCase_ , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=UpperCamelCase_ , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=UpperCamelCase_ , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=UpperCamelCase_ , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=UpperCamelCase_ , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=UpperCamelCase_ , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=UpperCamelCase_ , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=UpperCamelCase_ , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=UpperCamelCase_ , type=UpperCamelCase_ , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=UpperCamelCase_ , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=UpperCamelCase_ , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=UpperCamelCase_ , type=UpperCamelCase_ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=UpperCamelCase_ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner UpperCamelCase = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner UpperCamelCase = training_secondary_learner( UpperCamelCase_ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model UpperCamelCase = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model UpperCamelCase , UpperCamelCase = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=UpperCamelCase_ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=UpperCamelCase_ , secondary_learner=UpperCamelCase_ , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
343
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
1
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _A = logging.get_logger(__name__) class A ( lowerCamelCase__ ): def __init__( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''', __snake_case, ) super().__init__(*__snake_case, **__snake_case )
358
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class A ( unittest.TestCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__=7, UpperCamelCase__=3, UpperCamelCase__=30, UpperCamelCase__=400, UpperCamelCase__=True, UpperCamelCase__=None, UpperCamelCase__=True, UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=[0.5, 0.5, 0.5], UpperCamelCase__=True, UpperCamelCase__=1 / 255, UpperCamelCase__=True, ): """simple docstring""" lowerCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__=False ): """simple docstring""" if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(UpperCamelCase__, Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size['''shortest_edge'''] * h / w ) lowerCAmelCase_ = self.size['''shortest_edge'''] elif w > h: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = int(self.size['''shortest_edge'''] * w / h ) else: lowerCAmelCase_ = self.size['''shortest_edge'''] lowerCAmelCase_ = self.size['''shortest_edge'''] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[0] )[0] lowerCAmelCase_ = max(UpperCamelCase__, key=lambda UpperCamelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__, '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_rescale''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''do_pad''' ) ) self.assertTrue(hasattr(UpperCamelCase__, '''size''' ) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCamelCase__, torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__, torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowerCAmelCase_ = image_processing(UpperCamelCase__, return_tensors='''pt''' ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(UpperCamelCase__, batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''image_id''': 3_9769, '''annotations''': target} # encode them lowerCAmelCase_ = DeformableDetrImageProcessor() lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} lowerCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowerCAmelCase_ = DeformableDetrImageProcessor(format='''coco_panoptic''' ) lowerCAmelCase_ = image_processing(images=UpperCamelCase__, annotations=UpperCamelCase__, masks_path=UpperCamelCase__, return_tensors='''pt''' ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCamelCase__, atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCamelCase__ ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCamelCase__, atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCamelCase__ ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCamelCase__ ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCamelCase__ ) ) # verify masks lowerCAmelCase_ = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), UpperCamelCase__ ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCamelCase__ ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCamelCase__ ) )
167
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a_ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name a_ : Optional[Any] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Union[PIL.Image.Image, np.ndarray] class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" super().__init__() self.register_modules( prior=lowerCAmelCase, image_encoder=lowerCAmelCase, image_processor=lowerCAmelCase, scheduler=lowerCAmelCase, renderer=lowerCAmelCase, ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" if latents is None: lowerCamelCase_ =randn_tensor(lowerCAmelCase, generator=lowerCAmelCase, device=lowerCAmelCase, dtype=lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) lowerCamelCase_ =latents.to(lowerCAmelCase ) lowerCamelCase_ =latents * scheduler.init_noise_sigma return latents def lowercase__ ( self, lowerCAmelCase=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase_ =torch.device(f'''cuda:{gpu_id}''' ) lowerCamelCase_ =[self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase, lowerCAmelCase ) @property def lowercase__ ( self ): """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder, '''_hf_hook''' ): return self.device for module in self.image_encoder.modules(): if ( hasattr(lowerCAmelCase, '''_hf_hook''' ) and hasattr(module._hf_hook, '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" if isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(image[0], torch.Tensor ): lowerCamelCase_ =torch.cat(lowerCAmelCase, axis=0 ) if image[0].ndim == 4 else torch.stack(lowerCAmelCase, axis=0 ) if not isinstance(lowerCAmelCase, torch.Tensor ): lowerCamelCase_ =self.image_processor(lowerCAmelCase, return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 ) lowerCamelCase_ =image.to(dtype=self.image_encoder.dtype, device=lowerCAmelCase ) lowerCamelCase_ =self.image_encoder(lowerCAmelCase )['''last_hidden_state'''] lowerCamelCase_ =image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCamelCase_ =image_embeds.repeat_interleave(lowerCAmelCase, dim=0 ) if do_classifier_free_guidance: lowerCamelCase_ =torch.zeros_like(lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ =torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(lowerCAmelCase ) def __call__( self, lowerCAmelCase, lowerCAmelCase = 1, lowerCAmelCase = 25, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = 4.0, lowerCAmelCase = 64, lowerCAmelCase = "pil", lowerCAmelCase = True, ): """simple docstring""" if isinstance(lowerCAmelCase, PIL.Image.Image ): lowerCamelCase_ =1 elif isinstance(lowerCAmelCase, torch.Tensor ): lowerCamelCase_ =image.shape[0] elif isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(image[0], (torch.Tensor, PIL.Image.Image) ): lowerCamelCase_ =len(lowerCAmelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(lowerCAmelCase )}''' ) lowerCamelCase_ =self._execution_device lowerCamelCase_ =batch_size * num_images_per_prompt lowerCamelCase_ =guidance_scale > 1.0 lowerCamelCase_ =self._encode_image(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) # prior self.scheduler.set_timesteps(lowerCAmelCase, device=lowerCAmelCase ) lowerCamelCase_ =self.scheduler.timesteps lowerCamelCase_ =self.prior.config.num_embeddings lowerCamelCase_ =self.prior.config.embedding_dim lowerCamelCase_ =self.prepare_latents( (batch_size, num_embeddings * embedding_dim), image_embeds.dtype, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, self.scheduler, ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCamelCase_ =latents.reshape(latents.shape[0], lowerCAmelCase, lowerCAmelCase ) for i, t in enumerate(self.progress_bar(lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ =self.scheduler.scale_model_input(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =self.prior( lowerCAmelCase, timestep=lowerCAmelCase, proj_embedding=lowerCAmelCase, ).predicted_image_embedding # remove the variance lowerCamelCase_, lowerCamelCase_ =noise_pred.split( scaled_model_input.shape[2], dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCamelCase_, lowerCamelCase_ =noise_pred.chunk(2 ) lowerCamelCase_ =noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCamelCase_ =self.scheduler.step( lowerCAmelCase, timestep=lowerCAmelCase, sample=lowerCAmelCase, ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=lowerCAmelCase ) lowerCamelCase_ =[] for i, latent in enumerate(lowerCAmelCase ): print() lowerCamelCase_ =self.renderer.decode( latent[None, :], lowerCAmelCase, size=lowerCAmelCase, ray_batch_size=4_096, n_coarse_samples=64, n_fine_samples=128, ) images.append(lowerCAmelCase ) lowerCamelCase_ =torch.stack(lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) lowerCamelCase_ =images.cpu().numpy() if output_type == "pil": lowerCamelCase_ =[self.numpy_to_pil(lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self, '''final_offload_hook''' ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=lowerCAmelCase )
75
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
0
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable A_ : List[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = ['GPTNeoXTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXForCausalLM', 'GPTNeoXForQuestionAnswering', 'GPTNeoXForSequenceClassification', 'GPTNeoXForTokenClassification', 'GPTNeoXLayer', 'GPTNeoXModel', 'GPTNeoXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys A_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
import argparse from collections import defaultdict def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[int] , lowercase_: Optional[Any] , lowercase_: Union[str, Any] , lowercase_: Any ) -> int: A__ : Optional[Any] = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowercase_ , """r""" ) as f: A__ : Union[str, Any] = f.readlines() A__ : str = f"""class {class_name}(""" A__ : Optional[Any] = f"""{4 * ' '}def {test_name}(""" A__ : Union[str, Any] = f"""{8 * ' '}{correct_line.split()[0]}""" A__ : Optional[int] = f"""{16 * ' '}{correct_line.split()[0]}""" A__ : int = False A__ : str = False A__ : Tuple = False A__ : Optional[int] = False A__ : Optional[Any] = 0 A__ : Dict = 0 A__ : List[str] = [] for line in lines: if line.startswith(lowercase_ ): A__ : Dict = True elif in_class and line.startswith(lowercase_ ): A__ : Optional[Any] = True elif in_class and in_func and (line.startswith(lowercase_ ) or line.startswith(lowercase_ )): A__ : Tuple = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: A__ : Any = True if in_class and in_func and in_line: if ")" not in line: continue else: A__ : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * ' '}{correct_line}""" ) A__ : List[str] = False else: new_lines.append(lowercase_ ) with open(lowercase_ , """w""" ) as f: for line in new_lines: f.write(lowercase_ ) def UpperCamelCase (lowercase_: List[str] , lowercase_: Optional[Any]=None ) -> Any: if fail is not None: with open(lowercase_ , """r""" ) as f: A__ : Dict = {l.strip() for l in f.readlines()} else: A__ : List[str] = None with open(lowercase_ , """r""" ) as f: A__ : int = f.readlines() A__ : Union[str, Any] = defaultdict(lowercase_ ) for line in correct_lines: A__ , A__ , A__ , A__ : Optional[int] = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": A_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) A_ : Optional[Any] = parser.parse_args() main(args.correct_filename, args.fail_filename)
141
0
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCamelCase( UpperCAmelCase_ ): return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Any = np.max(_outputs , axis=-1 , keepdims=_UpperCamelCase ) UpperCAmelCase : Optional[int] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_UpperCamelCase ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """sigmoid""" UpperCAmelCase_ : Union[str, Any] = """softmax""" UpperCAmelCase_ : Tuple = """none""" @add_end_docstrings( _snake_case , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : int = False UpperCAmelCase_ : int = ClassificationFunction.NONE def __init__( self : Any , **lowercase_ : Union[str, Any] ) -> Any: super().__init__(**lowercase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : Any=None , lowercase_ : int=None , lowercase_ : List[Any]="" , **lowercase_ : List[str] ) -> Tuple: UpperCAmelCase : Dict = tokenizer_kwargs UpperCAmelCase : Union[str, Any] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: UpperCAmelCase : Optional[Any] = self.model.config.return_all_scores if isinstance(lowercase_ , lowercase_ ) or top_k is None: UpperCAmelCase : List[Any] = top_k UpperCAmelCase : Optional[int] = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , lowercase_ , ) if return_all_scores: UpperCAmelCase : Optional[int] = None else: UpperCAmelCase : Union[str, Any] = 1 if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase : Optional[int] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: UpperCAmelCase : Dict = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Optional[Any] , *lowercase_ : Union[str, Any] , **lowercase_ : Union[str, Any] ) -> Optional[int]: UpperCAmelCase : Tuple = super().__call__(*lowercase_ , **lowercase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. UpperCAmelCase : List[str] = """top_k""" not in kwargs if isinstance(args[0] , lowercase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[Any] , **lowercase_ : List[str] ) -> Tuple: UpperCAmelCase : List[Any] = self.framework if isinstance(lowercase_ , lowercase_ ): return self.tokenizer(**lowercase_ , return_tensors=lowercase_ , **lowercase_ ) elif isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) == 1 and isinstance(inputs[0] , lowercase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=lowercase_ , **lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.' ) return self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : List[Any] ) -> Any: return self.model(**lowercase_ ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any]=None , lowercase_ : str=1 , lowercase_ : int=True ) -> Union[str, Any]: if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: UpperCAmelCase : Tuple = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: UpperCAmelCase : Optional[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: UpperCAmelCase : Tuple = self.model.config.function_to_apply else: UpperCAmelCase : int = ClassificationFunction.NONE UpperCAmelCase : Dict = model_outputs["""logits"""][0] UpperCAmelCase : int = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: UpperCAmelCase : str = sigmoid(lowercase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: UpperCAmelCase : Optional[Any] = softmax(lowercase_ ) elif function_to_apply == ClassificationFunction.NONE: UpperCAmelCase : Optional[int] = outputs else: raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} UpperCAmelCase : Dict = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(lowercase_ ) ] if not _legacy: dict_scores.sort(key=lambda lowercase_ : x["score"] , reverse=lowercase_ ) if top_k is not None: UpperCAmelCase : Any = dict_scores[:top_k] return dict_scores
151
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase : Dict = logging.get_logger(__name__) UpperCAmelCase : Union[str, Any] = torch.device('cpu') def lowerCamelCase ( ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Optional[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = dct.pop(_UpperCamelCase ) __UpperCAmelCase : List[str] = val def lowerCamelCase ( _UpperCamelCase : List[Any] ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Tuple = [] for k in state_dict.keys(): __UpperCAmelCase : int = k if ".pwconv" in k: __UpperCAmelCase : Optional[int] = k_new.replace(""".pwconv""" , """.point_wise_conv""" ) if ".dwconv" in k: __UpperCAmelCase : List[Any] = k_new.replace(""".dwconv""" , """.depth_wise_conv""" ) if ".Proj." in k: __UpperCAmelCase : str = k_new.replace(""".Proj.""" , """.proj.""" ) if "patch_embed" in k_new: __UpperCAmelCase : int = k_new.replace("""patch_embed""" , """swiftformer.patch_embed.patch_embedding""" ) if "network" in k_new: __UpperCAmelCase : str = k_new.split(""".""" ) if ls[2].isdigit(): __UpperCAmelCase : Dict = """swiftformer.encoder.network.""" + ls[1] + """.blocks.""" + ls[2] + """.""" + """.""".join(ls[3:] ) else: __UpperCAmelCase : List[str] = k_new.replace("""network""" , """swiftformer.encoder.network""" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __UpperCAmelCase : Optional[int] = 1_0_0_0 __UpperCAmelCase : Optional[int] = """huggingface/label-files""" __UpperCAmelCase : str = """imagenet-1k-id2label.json""" __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Any = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[Any] = idalabel __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __UpperCAmelCase : Tuple = [3, 3, 6, 4] __UpperCAmelCase : List[Any] = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": __UpperCAmelCase : Optional[int] = [3, 3, 9, 6] __UpperCAmelCase : Tuple = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": __UpperCAmelCase : Dict = [4, 3, 1_0, 5] __UpperCAmelCase : Optional[Any] = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": __UpperCAmelCase : str = [4, 4, 1_2, 6] __UpperCAmelCase : str = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("""https""" ): __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location="""cpu""" , check_hash=_UpperCamelCase ) else: __UpperCAmelCase : Dict = torch.load(_UpperCamelCase , map_location="""cpu""" ) __UpperCAmelCase : str = checkpoint __UpperCAmelCase : Union[str, Any] = create_rename_keys(_UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # load HuggingFace model __UpperCAmelCase : int = SwiftFormerForImageClassification(_UpperCamelCase ).eval() hf_model.load_state_dict(_UpperCamelCase ) # prepare test inputs __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : int = ViTImageProcessor.from_pretrained("""preprocessor_config""" ) __UpperCAmelCase : Optional[Any] = processor(images=_UpperCamelCase , return_tensors="""pt""" ) # compare outputs from both models __UpperCAmelCase : Tuple = get_expected_output(_UpperCamelCase ) __UpperCAmelCase : Dict = hf_model(inputs["""pixel_values"""] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , _UpperCamelCase , atol=1E-3 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') UpperCAmelCase : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
115
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :Dict = logging.get_logger(__name__) __snake_case :List[Any] = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class _A ( __UpperCAmelCase ): UpperCamelCase__ : List[str] = '''gptsan-japanese''' UpperCamelCase__ : Dict = [ '''past_key_values''', ] UpperCamelCase__ : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any]=36_000 , __SCREAMING_SNAKE_CASE : Tuple=1_280 , __SCREAMING_SNAKE_CASE : List[Any]=1_024 , __SCREAMING_SNAKE_CASE : List[Any]=8_192 , __SCREAMING_SNAKE_CASE : str=4_096 , __SCREAMING_SNAKE_CASE : Any=128 , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : Optional[int]=0 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : List[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=128 , __SCREAMING_SNAKE_CASE : Tuple=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=1E-5 , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Optional[int]=0.0 , __SCREAMING_SNAKE_CASE : List[str]="float32" , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : int=0.0_02 , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : int=35_998 , __SCREAMING_SNAKE_CASE : Optional[int]=35_995 , __SCREAMING_SNAKE_CASE : List[str]=35_999 , **__SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' __a = vocab_size __a = max_position_embeddings __a = d_model __a = d_ff __a = d_ext __a = d_spout __a = num_switch_layers __a = num_ext_layers __a = num_switch_layers + num_ext_layers __a = num_heads __a = num_experts __a = expert_capacity __a = dropout_rate __a = layer_norm_epsilon __a = router_bias __a = router_jitter_noise __a = router_dtype __a = router_ignore_padding_tokens __a = output_hidden_states __a = output_attentions __a = initializer_factor __a = output_router_logits __a = use_cache super().__init__( separator_token_id=__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
368
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __snake_case ( _UpperCAmelCase ): if isinstance(_UpperCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Any): '''simple docstring''' pass def _lowerCamelCase ( self : Dict): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim)) def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = {'''vision_model''': vision_model, '''text_model''': text_model} __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim)) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim)) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE) __a = after_output[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int=None , **__SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float): '''simple docstring''' __a = np.abs((a - b)).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).') def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : List[str]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[int]): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE) @slow def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a , __a = self.get_pretrained_model_and_inputs() __a = model_a(**__SCREAMING_SNAKE_CASE) __a = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE) __a = model_a(**__SCREAMING_SNAKE_CASE) __a = after_outputs[0].numpy() __a = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1E-5) @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = TFViTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Dict): '''simple docstring''' __a = TFViTModelTester(self) __a = TFBertModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]=None , **__SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a , __a = self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE) __a = model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE) __a = output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , vision_config.num_hidden_layers) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __a = to_atuple(vision_model.config.image_size) __a = to_atuple(vision_model.config.patch_size) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __a = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len)) __a = output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE) , text_config.num_hidden_layers) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = TFDeiTModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFRobertaModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = TFDeiTModelTester(self) __a = TFRobertaModelTester(self) __a = vit_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( __UpperCAmelCase ,unittest.TestCase ): def _lowerCamelCase ( self : Any): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''') __a = 13 __a = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ]) __a = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size) __a = random_attention_mask([batch_size, 4]) __a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _lowerCamelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name='''vision_model''') __a = TFBertModel(__SCREAMING_SNAKE_CASE , name='''text_model''') return vision_model, text_model def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' __a = TFCLIPVisionModelTester(self) __a = TFBertModelTester(self) __a = clip_model_tester.prepare_config_and_inputs() __a = bert_model_tester.prepare_config_and_inputs() __a , __a = vision_config_and_inputs ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): @slow def _lowerCamelCase ( self : str): '''simple docstring''' __a = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE) __a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''') __a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') __a = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''') __a = model(**__SCREAMING_SNAKE_CASE) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __a = np.array([[1.2_28_47_27, 0.3_10_41_22]]) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1E-3))
131
0
import qiskit def A ( lowercase = 2 ) -> qiskit.result.counts.Counts: '''simple docstring''' UpperCamelCase = qubits # Using Aer's simulator UpperCamelCase = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register UpperCamelCase = qiskit.QuantumCircuit(lowercase , lowercase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowercase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowercase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowercase ) ) , list(range(lowercase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCamelCase = qiskit.execute(lowercase , lowercase , shots=1_000 ) return job.result().get_counts(lowercase ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
222
from __future__ import annotations import os from collections.abc import Mapping _UpperCAmelCase : Tuple = tuple[int, int] class lowercase : def __init__( self , A_ , A_ ) -> None: """simple docstring""" UpperCamelCase = vertices UpperCamelCase = { (min(A_ ), max(A_ )): weight for edge, weight in edges.items() } def __UpperCamelCase ( self , A_ , A_ ) -> None: """simple docstring""" self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase = weight def __UpperCamelCase ( self ) -> Graph: """simple docstring""" UpperCamelCase = Graph({min(self.vertices )} , {} ) UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase = edge UpperCamelCase = weight subgraph.add_edge(A_ , A_ ) return subgraph def A ( lowercase = "p107_network.txt" ) -> int: '''simple docstring''' UpperCamelCase = os.path.abspath(os.path.dirname(lowercase ) ) UpperCamelCase = os.path.join(lowercase , lowercase ) UpperCamelCase = {} UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 with open(lowercase ) as f: UpperCamelCase = f.read().strip().split('\n' ) UpperCamelCase = [line.split(',' ) for line in data] for edgea in range(1 , len(lowercase ) ): for edgea in range(lowercase ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase = int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase = Graph(set(range(len(lowercase ) ) ) , lowercase ) UpperCamelCase = graph.prims_algorithm() UpperCamelCase = sum(graph.edges.values() ) UpperCamelCase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
222
1
"""simple docstring""" import re def lowercase ( a__ : str ) -> list: return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''' , str_ )] def lowercase ( a__ : str ) -> str: _UpperCamelCase = split_input(str_ ) return "".join( [''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowercase ( a__ : str , a__ : bool , a__ : str ) -> str: try: _UpperCamelCase = split_input(a__ ) if upper: _UpperCamelCase = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCamelCase = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowercase ( a__ : str ) -> str: return to_simple_case(a__ ) def lowercase ( a__ : str ) -> str: try: _UpperCamelCase = to_simple_case(a__ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowercase ( a__ : str , a__ : bool ) -> str: return to_complex_case(a__ , a__ , '''_''' ) def lowercase ( a__ : str , a__ : bool ) -> str: return to_complex_case(a__ , a__ , '''-''' ) if __name__ == "__main__": __import__("""doctest""").testmod()
54
"""simple docstring""" def lowercase ( a__ : Tuple , a__ : str ) -> Tuple: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowercase ( a__ : Optional[int] , a__ : List[str]=0 ) -> Optional[Any]: return sorted(a__ , key=lambda a__ : x[column] ) def lowercase ( a__ : Optional[int] , a__ : Optional[int] , a__ : Tuple=float('''inf''' ) ) -> int: for i in range(points_counts - 1 ): for j in range(i + 1 , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[Any]=float('''inf''' ) ) -> str: for i in range(min(6 , points_counts - 1 ) , a__ ): for j in range(max(0 , i - 6 ) , a__ ): _UpperCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: _UpperCamelCase = current_dis return min_dis def lowercase ( a__ : int , a__ : str , a__ : Any ) -> str: # base case if points_counts <= 3: return dis_between_closest_pair(a__ , a__ ) # recursion _UpperCamelCase = points_counts // 2 _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[:mid] , a__ ) _UpperCamelCase = closest_pair_of_points_sqr( a__ , points_sorted_on_y[mid:] , points_counts - mid ) _UpperCamelCase = min(a__ , a__ ) _UpperCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(a__ ) _UpperCamelCase = dis_between_closest_in_strip( a__ , len(a__ ) , a__ ) return min(a__ , a__ ) def lowercase ( a__ : Dict , a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = column_based_sort(a__ , column=0 ) _UpperCamelCase = column_based_sort(a__ , column=1 ) return ( closest_pair_of_points_sqr( a__ , a__ , a__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("""Distance:""", closest_pair_of_points(points, len(points)))
54
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class snake_case_( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any=7 , UpperCamelCase_ : str=3 , UpperCamelCase_ : str=1_8 , UpperCamelCase_ : int=3_0 , UpperCamelCase_ : Union[str, Any]=4_0_0 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=True , ): lowerCAmelCase : Dict = size if size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase : List[Any] = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Any = image_size lowerCAmelCase : List[str] = min_resolution lowerCAmelCase : Dict = max_resolution lowerCAmelCase : List[str] = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : str = do_normalize def lowerCamelCase__ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = ImageGPTImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = ImageGPTImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : int ): lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''clusters''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 1_8, '''width''': 1_8} ) lowerCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'''height''': 4_2, '''width''': 4_2} ) def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase : List[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(UpperCamelCase_ , '''image_processor.json''' ) image_processor_first.to_json_file(UpperCamelCase_ ) lowerCAmelCase : Tuple = self.image_processing_class.from_json_file(UpperCamelCase_ ).to_dict() lowerCAmelCase : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCamelCase_ ) lowerCAmelCase : Any = self.image_processing_class.from_pretrained(UpperCamelCase_ ).to_dict() lowerCAmelCase : Optional[int] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCamelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCamelCase_ ) @unittest.skip('''ImageGPT requires clusters at initialization''' ) def lowerCamelCase__ ( self : Dict ): pass def _snake_case ( ): lowerCAmelCase : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_image_utils''' , split='''test''' ) lowerCAmelCase : Tuple = Image.open(dataset[4]['''file'''] ) lowerCAmelCase : str = Image.open(dataset[5]['''file'''] ) lowerCAmelCase : Dict = [imagea, imagea] return images @require_vision @require_torch class snake_case_( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Any ): lowerCAmelCase : Any = ImageGPTImageProcessor.from_pretrained('''openai/imagegpt-small''' ) lowerCAmelCase : Union[str, Any] = prepare_images() # test non-batched lowerCAmelCase : Optional[Any] = image_processing(images[0] , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) lowerCAmelCase : int = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCamelCase_ ) # test batched lowerCAmelCase : Dict = image_processing(UpperCamelCase_ , return_tensors='''pt''' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) lowerCAmelCase : Union[str, Any] = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCamelCase_ )
60
from __future__ import annotations lowerCamelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : dict[str, list[str]] , __lowercase : str ): '''simple docstring''' __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def UpperCamelCase_ ( self : Any ): '''simple docstring''' __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowercase ) __a = vertex queue.append(__lowercase ) def UpperCamelCase_ ( self : Optional[int] , __lowercase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(__lowercase ) if target_vertex_parent is None: __a = ( F"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowercase ) return self.shortest_path(__lowercase ) + F"->{target_vertex}" if __name__ == "__main__": lowerCamelCase__ = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
302
0
import numpy # List of input, output pairs lowerCAmelCase__ = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) lowerCAmelCase__ = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) lowerCAmelCase__ = [2, 4, 1, 5] lowerCAmelCase__ = len(train_data) lowerCAmelCase__ = 0.009 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__="train" ): """simple docstring""" return calculate_hypothesis_value(lowerCamelCase__ , lowerCamelCase__ ) - output( lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : List[Any] = 0 for i in range(len(lowerCamelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__=m ): """simple docstring""" lowercase__ : int = 0 for i in range(lowerCamelCase__ ): if index == -1: summation_value += _error(lowerCamelCase__ ) else: summation_value += _error(lowerCamelCase__ ) * train_data[i][0][index] return summation_value def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = summation_of_cost_derivative(lowerCamelCase__ , lowerCamelCase__ ) / m return cost_derivative_value def __lowerCamelCase ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase__ : Optional[int] = 0.000002 lowercase__ : List[Any] = 0 lowercase__ : Optional[Any] = 0 while True: j += 1 lowercase__ : Any = [0, 0, 0, 0] for i in range(0 , len(lowerCamelCase__ ) ): lowercase__ : str = get_cost_derivative(i - 1 ) lowercase__ : List[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCamelCase__ , lowerCamelCase__ , atol=lowerCamelCase__ , rtol=lowerCamelCase__ , ): break lowercase__ : Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def __lowerCamelCase ( ): """simple docstring""" for i in range(len(lowerCamelCase__ ) ): print(("Actual output value:", output(lowerCamelCase__ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowerCamelCase__ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
356
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
121
0
from string import ascii_uppercase _SCREAMING_SNAKE_CASE = {str(ord(c) - 55): c for c in ascii_uppercase} def snake_case ( snake_case__ :int , snake_case__ :int) -> str: if isinstance(snake_case__ , snake_case__): raise TypeError("""int() can't convert non-string with explicit base""") if num < 0: raise ValueError("""parameter must be positive int""") if isinstance(snake_case__ , snake_case__): raise TypeError("""'str' object cannot be interpreted as an integer""") if isinstance(snake_case__ , snake_case__): raise TypeError("""'float' object cannot be interpreted as an integer""") if base in (0, 1): raise ValueError("""base must be >= 2""") if base > 36: raise ValueError("""base must be <= 36""") _A = """""" _A = 0 _A = 0 while div != 1: _A , _A = divmod(snake_case__ , snake_case__) if base >= 11 and 9 < mod < 36: _A = ALPHABET_VALUES[str(snake_case__)] else: _A = str(snake_case__) new_value += actual_value _A = num // base _A = div if div == 0: return str(new_value[::-1]) elif div == 1: new_value += str(snake_case__) return str(new_value[::-1]) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
180
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> List[Any]: _A = tempfile.mkdtemp() _A = BlipImageProcessor() _A = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _A = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _A = InstructBlipProcessor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Any: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).tokenizer def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).image_processor def UpperCAmelCase ( self , **lowerCAmelCase_ ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ).qformer_tokenizer def UpperCAmelCase ( self ) -> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _A = [Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ) -> str: _A = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _A = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _A = self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) _A = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> int: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = self.prepare_image_inputs() _A = image_processor(lowerCAmelCase_ , return_tensors="""np""" ) _A = processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ) -> Dict: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = processor(text=lowerCAmelCase_ ) _A = tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) _A = qformer_tokenizer(lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def UpperCAmelCase ( self ) -> List[str]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def UpperCAmelCase ( self ) -> int: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _A = processor.batch_decode(lowerCAmelCase_ ) _A = tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Optional[Any]: _A = self.get_image_processor() _A = self.get_tokenizer() _A = self.get_qformer_tokenizer() _A = InstructBlipProcessor( tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ , qformer_tokenizer=lowerCAmelCase_ ) _A = """lower newer""" _A = self.prepare_image_inputs() _A = processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
180
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup UpperCAmelCase__ = logging.get_logger(__name__) class __lowerCAmelCase ( A ): def __init__( self : Dict , **A : Tuple) -> int: """simple docstring""" requires_backends(self , ['bs4']) super().__init__(**A) def _lowerCamelCase ( self : Union[str, Any] , A : List[str]) -> List[Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _UpperCAmelCase = parent.find_all(child.name , recursive=A) xpath_tags.append(child.name) xpath_subscripts.append( 0 if 1 == len(A) else next(i for i, s in enumerate(A , 1) if s is child)) _UpperCAmelCase = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _lowerCamelCase ( self : str , A : List[Any]) -> Any: """simple docstring""" _UpperCAmelCase = BeautifulSoup(A , 'html.parser') _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = [] for element in html_code.descendants: if type(A) == bsa.element.NavigableString: if type(element.parent) != bsa.element.Tag: continue _UpperCAmelCase = html.unescape(A).strip() if not text_in_this_tag: continue all_doc_strings.append(A) _UpperCAmelCase , _UpperCAmelCase = self.xpath_soup(A) stringaxtag_seq.append(A) stringaxsubs_seq.append(A) if len(A) != len(A): raise ValueError('Number of doc strings and xtags does not correspond') if len(A) != len(A): raise ValueError('Number of doc strings and xsubs does not correspond') return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _lowerCamelCase ( self : List[Any] , A : Optional[Any] , A : Union[str, Any]) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = '' for tagname, subs in zip(A , A): xpath += F"/{tagname}" if subs != 0: xpath += F"[{subs}]" return xpath def __call__( self : Optional[Any] , A : str) -> BatchFeature: """simple docstring""" _UpperCAmelCase = False # Check that strings has a valid type if isinstance(A , A): _UpperCAmelCase = True elif isinstance(A , (list, tuple)): if len(A) == 0 or isinstance(html_strings[0] , A): _UpperCAmelCase = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F"but is of type {type(A)}.") _UpperCAmelCase = bool(isinstance(A , (list, tuple)) and (isinstance(html_strings[0] , A))) if not is_batched: _UpperCAmelCase = [html_strings] # Get nodes + xpaths _UpperCAmelCase = [] _UpperCAmelCase = [] for html_string in html_strings: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.get_three_from_single(A) nodes.append(A) _UpperCAmelCase = [] for node, tag_list, sub_list in zip(A , A , A): _UpperCAmelCase = self.construct_xpath(A , A) xpath_strings.append(A) xpaths.append(A) # return as Dict _UpperCAmelCase = {'nodes': nodes, 'xpaths': xpaths} _UpperCAmelCase = BatchFeature(data=A , tensor_type=A) return encoded_inputs
290
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( A , unittest.TestCase ): UpperCamelCase = KandinskyVaaPipeline UpperCamelCase = [ '''image_embeds''', '''negative_image_embeds''', ] UpperCamelCase = ['''image_embeds''', '''negative_image_embeds'''] UpperCamelCase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def _lowerCamelCase ( self : Tuple) -> List[str]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" return 32 @property def _lowerCamelCase ( self : Any) -> List[Any]: """simple docstring""" return self.time_input_dim @property def _lowerCamelCase ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def _lowerCamelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" return 1_00 @property def _lowerCamelCase ( self : Dict) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _UpperCAmelCase = UNetaDConditionModel(**A) return model @property def _lowerCamelCase ( self : Dict) -> List[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _UpperCAmelCase = VQModel(**self.dummy_movq_kwargs) return model def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" _UpperCAmelCase = self.dummy_unet _UpperCAmelCase = self.dummy_movq _UpperCAmelCase = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=A , set_alpha_to_one=A , steps_offset=1 , prediction_type='epsilon' , thresholding=A , ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _lowerCamelCase ( self : List[str] , A : str , A : Tuple=0) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A)).to(A) _UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( A) if str(A).startswith('mps'): _UpperCAmelCase = torch.manual_seed(A) else: _UpperCAmelCase = torch.Generator(device=A).manual_seed(A) _UpperCAmelCase = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : str) -> str: """simple docstring""" _UpperCAmelCase = 'cpu' _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**A) _UpperCAmelCase = pipe.to(A) pipe.set_progress_bar_config(disable=A) _UpperCAmelCase = pipe(**self.get_dummy_inputs(A)) _UpperCAmelCase = output.images _UpperCAmelCase = pipe( **self.get_dummy_inputs(A) , return_dict=A , )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy') _UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa) pipe_prior.to(A) _UpperCAmelCase = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa) _UpperCAmelCase = pipeline.to(A) pipeline.set_progress_bar_config(disable=A) _UpperCAmelCase = 'red cat, 4k photo' _UpperCAmelCase = torch.Generator(device='cuda').manual_seed(0) _UpperCAmelCase , _UpperCAmelCase = pipe_prior( A , generator=A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _UpperCAmelCase = torch.Generator(device='cuda').manual_seed(0) _UpperCAmelCase = pipeline( image_embeds=A , negative_image_embeds=A , generator=A , num_inference_steps=1_00 , output_type='np' , ) _UpperCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A , A)
290
1
UpperCAmelCase_ = [ 'Audio', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'ClassLabel', 'Features', 'Sequence', 'Value', 'Image', 'Translation', 'TranslationVariableLanguages', ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
12
"""simple docstring""" from scipy.stats import pearsonr import datasets __lowerCAmelCase : List[Any] =""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ __lowerCAmelCase : Optional[int] =""" Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ __lowerCAmelCase : str =""" @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def A__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" if return_pvalue: lowercase = pearsonr(__lowerCAmelCase , __lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] )}
197
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' SCREAMING_SNAKE_CASE__ = nn.Parameter(UpperCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' SCREAMING_SNAKE_CASE__ = nn.Parameter(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.asarray(weights[0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[2] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = weights[0][0][0] SCREAMING_SNAKE_CASE__ = np.asarray(layer_norm_a[0] ) SCREAMING_SNAKE_CASE__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # lsh weights + output SCREAMING_SNAKE_CASE__ = weights[0][1] if len(UpperCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ ) else: set_layer_weights_in_torch_local(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ ) # intermediate weighs SCREAMING_SNAKE_CASE__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase_ ) == 4: SCREAMING_SNAKE_CASE__ = intermediate_weights[2] # layernorm 2 SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[0][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # intermediate dense SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[1][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) # intermediate out SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[4][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch_model.reformer # word embeds SCREAMING_SNAKE_CASE__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase_ ) , ) if isinstance(weights[3] , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): SCREAMING_SNAKE_CASE__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.tensor(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): SCREAMING_SNAKE_CASE__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # output layer norm SCREAMING_SNAKE_CASE__ = np.asarray(weights[7][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # output embeddings SCREAMING_SNAKE_CASE__ = np.asarray(weights[9][0] ) SCREAMING_SNAKE_CASE__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = ReformerConfig.from_json_file(UpperCamelCase_ ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE__ = ReformerModelWithLMHead(UpperCamelCase_ ) with open(UpperCamelCase_ , 'rb' ) as f: SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase_ )['weights'] set_model_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
169
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __snake_case = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="""relu""") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="""relu""")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation="""relu""")) classifier.add(layers.Dense(units=1, activation="""sigmoid""")) # Compiling the CNN classifier.compile( optimizer="""adam""", loss="""binary_crossentropy""", metrics=["""accuracy"""] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __snake_case = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) __snake_case = train_datagen.flow_from_directory( """dataset/training_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) __snake_case = test_datagen.flow_from_directory( """dataset/test_set""", target_size=(64, 64), batch_size=32, class_mode="""binary""" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("""cnn.h5""") # Part 3 - Making new predictions __snake_case = tf.keras.preprocessing.image.load_img( """dataset/single_prediction/image.png""", target_size=(64, 64) ) __snake_case = tf.keras.preprocessing.image.img_to_array(test_image) __snake_case = np.expand_dims(test_image, axis=0) __snake_case = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __snake_case = """Normal""" if result[0][0] == 1: __snake_case = """Abnormality detected"""
169
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Union[str, Any] = logging.get_logger(__name__) _a : str = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = "bert" def __init__( self , a__=30522 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=0 , a__="absolute" , a__=True , a__=None , **a__ , ): super().__init__(pad_token_id=a__ , **a__ ) _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = position_embedding_type _lowerCAmelCase : str = use_cache _lowerCAmelCase : Union[str, Any] = classifier_dropout class __A ( SCREAMING_SNAKE_CASE_ ): @property def __A ( self ): if self.task == "multiple-choice": _lowerCAmelCase : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : str = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
44
"""simple docstring""" from math import ceil def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ) -> int: _lowerCAmelCase : Dict = list(range(0 ,_lowerCamelCase ) ) _lowerCAmelCase : Tuple = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _lowerCAmelCase : Union[str, Any] = [] for i in device_map_blocks: if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_lowerCamelCase ) # Missing blocks _lowerCAmelCase : int = [i for i in blocks if i not in device_map_blocks] _lowerCAmelCase : List[Any] = [i for i in device_map_blocks if i not in blocks] if len(_lowerCamelCase ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(_lowerCamelCase ) ) if len(_lowerCamelCase ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Tuple ) -> str: _lowerCAmelCase : Optional[Any] = list(range(_lowerCamelCase ) ) _lowerCAmelCase : Optional[Any] = int(ceil(n_layers / len(_lowerCamelCase ) ) ) _lowerCAmelCase : Optional[int] = [layers[i : i + n_blocks] for i in range(0 ,_lowerCamelCase ,_lowerCamelCase )] return dict(zip(_lowerCamelCase ,_lowerCamelCase ) )
44
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=3 , snake_case=True , snake_case=True , snake_case=0.1 , snake_case=0.1 , snake_case=224 , snake_case=1000 , snake_case=[3, 3, 6, 4] , snake_case=[48, 56, 112, 220] , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = num_labels snake_case_ = image_size snake_case_ = layer_depths snake_case_ = embed_dims def a ( self ): snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def a ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=UpperCAmelCase_ , layer_scale_init_value=1e-5 , ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = SwiftFormerModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = SwiftFormerForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) snake_case_ = SwiftFormerForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self ): (snake_case_) = self.prepare_config_and_inputs() snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( snake_case__ , snake_case__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __SCREAMING_SNAKE_CASE : Optional[int] = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : int = False __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def a ( self ): snake_case_ = SwiftFormerModelTester(self ) snake_case_ = ConfigTester( self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='SwiftFormer does not use inputs_embeds' ) def a ( self ): pass def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(UpperCAmelCase_ ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def a ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwiftFormerModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip(reason='SwiftFormer does not output attentions' ) def a ( self ): pass def a ( self ): def check_hidden_states_output(snake_case , snake_case , snake_case ): snake_case_ = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) snake_case_ = outputs.hidden_states snake_case_ = 8 self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(UpperCAmelCase_ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def a ( self ): def _config_zero_init(snake_case ): snake_case_ = copy.deepcopy(UpperCAmelCase_ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(UpperCAmelCase_ , UpperCAmelCase_ , 1e-1_0 ) if isinstance(getattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ): snake_case_ = _config_zero_init(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return configs_no_init snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(UpperCAmelCase_ ) for model_class in self.all_model_classes: snake_case_ = model_class(config=UpperCAmelCase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self ): pass def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a ( self ): return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None @slow def a ( self ): snake_case_ = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(UpperCAmelCase_ ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): snake_case_ = model(**UpperCAmelCase_ ) # verify the logits snake_case_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) snake_case_ = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) )
365
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Dict = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
200
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowerCAmelCase__ ( __lowercase ): a__ : List[Any] = ["""vqvae"""] def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : AutoencoderKL , SCREAMING_SNAKE_CASE__ : UNetaDConditionModel , SCREAMING_SNAKE_CASE__ : Mel , SCREAMING_SNAKE_CASE__ : Union[DDIMScheduler, DDPMScheduler] , ) -> List[str]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , mel=SCREAMING_SNAKE_CASE__ , vqvae=SCREAMING_SNAKE_CASE__ ) def __A ( self : Optional[Any] ) -> int: return 50 if isinstance(self.scheduler , SCREAMING_SNAKE_CASE__ ) else 10_00 @torch.no_grad() def __call__( self : Dict , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : np.ndarray = None , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = None , SCREAMING_SNAKE_CASE__ : torch.Generator = None , SCREAMING_SNAKE_CASE__ : float = 0 , SCREAMING_SNAKE_CASE__ : float = 0 , SCREAMING_SNAKE_CASE__ : torch.Generator = None , SCREAMING_SNAKE_CASE__ : float = 0 , SCREAMING_SNAKE_CASE__ : torch.Tensor = None , SCREAMING_SNAKE_CASE__ : torch.Tensor = None , SCREAMING_SNAKE_CASE__ : Any=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: __lowerCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowerCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowerCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=SCREAMING_SNAKE_CASE__ , device=self.device , ) __lowerCamelCase = noise __lowerCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = self.mel.audio_slice_to_image(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __lowerCamelCase = (input_image / 2_55) * 2 - 1 __lowerCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowerCamelCase = self.vqvae.encode(torch.unsqueeze(SCREAMING_SNAKE_CASE__ , 0 ) ).latent_dist.sample( generator=SCREAMING_SNAKE_CASE__ )[0] __lowerCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowerCamelCase = self.scheduler.add_noise(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler.timesteps[start_step - 1] ) __lowerCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowerCamelCase = int(mask_start_secs * pixels_per_second ) __lowerCamelCase = int(mask_end_secs * pixels_per_second ) __lowerCamelCase = self.scheduler.add_noise(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['''sample'''] else: __lowerCamelCase = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['''sample'''] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , eta=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )['''prev_sample'''] else: __lowerCamelCase = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , sample=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )['''prev_sample'''] if mask is not None: if mask_start > 0: __lowerCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: __lowerCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowerCamelCase = 1 / self.vqvae.config.scaling_factor * images __lowerCamelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE__ )['''sample'''] __lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowerCamelCase = (images * 2_55).round().astype('''uint8''' ) __lowerCamelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(SCREAMING_SNAKE_CASE__ , mode='''RGB''' ).convert('''L''' ) for _ in images) ) __lowerCamelCase = [self.mel.image_to_audio(SCREAMING_SNAKE_CASE__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(SCREAMING_SNAKE_CASE__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(SCREAMING_SNAKE_CASE__ ) ) @torch.no_grad() def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Image.Image] , SCREAMING_SNAKE_CASE__ : int = 50 ) -> np.ndarray: assert isinstance(self.scheduler , SCREAMING_SNAKE_CASE__ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __lowerCamelCase = (sample / 2_55) * 2 - 1 __lowerCamelCase = torch.Tensor(SCREAMING_SNAKE_CASE__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowerCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowerCamelCase = self.scheduler.alphas_cumprod[t] __lowerCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowerCamelCase = 1 - alpha_prod_t __lowerCamelCase = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )['''sample'''] __lowerCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowerCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowerCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __A ( SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : torch.Tensor , SCREAMING_SNAKE_CASE__ : float ) -> torch.Tensor: __lowerCamelCase = acos(torch.dot(torch.flatten(SCREAMING_SNAKE_CASE__ ) , torch.flatten(SCREAMING_SNAKE_CASE__ ) ) / torch.norm(SCREAMING_SNAKE_CASE__ ) / torch.norm(SCREAMING_SNAKE_CASE__ ) ) return sin((1 - alpha) * theta ) * xa / sin(SCREAMING_SNAKE_CASE__ ) + sin(alpha * theta ) * xa / sin(SCREAMING_SNAKE_CASE__ )
270
import os def __magic_name__ ( ) -> str: __lowerCamelCase = os.path.join(os.path.dirname(__lowerCAmelCase ) , '''num.txt''' ) with open(__lowerCAmelCase ) as file_hand: return str(sum(int(__lowerCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
270
1
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : list[int] , lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : Any = int(lowerCamelCase_ ) # Initialize Result UpperCAmelCase_ : Any = [] # Traverse through all denomination for denomination in reversed(lowerCamelCase_ ): # Find denominations while int(lowerCamelCase_ ) >= int(lowerCamelCase_ ): total_value -= int(lowerCamelCase_ ) answer.append(lowerCamelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": snake_case__ : Union[str, Any] = [] snake_case__ : str = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): snake_case__ : str = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) snake_case__ : List[Any] = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter snake_case__ : int = [1, 2, 5, 10, 20, 50, 100, 500, 2000] snake_case__ : str = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(f'''Following is minimal change for {value}: ''') snake_case__ : Optional[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
274
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : str = nn.Parameter(torch.ones(1 , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : int = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) UpperCAmelCase_ : Tuple = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = (embeds * self.std) + self.mean return embeds
274
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A ( lowercase , lowercase ) -> Any: '''simple docstring''' UpperCamelCase = args.log_outputs UpperCamelCase = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric UpperCamelCase = load_metric('wer' ) UpperCamelCase = load_metric('cer' ) # compute metrics UpperCamelCase = wer.compute(references=result['target'] , predictions=result['prediction'] ) UpperCamelCase = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results UpperCamelCase = f'''WER: {wer_result}\nCER: {cer_result}''' print(lowercase ) with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(lowercase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase = f'''log_{dataset_id}_predictions.txt''' UpperCamelCase = f'''log_{dataset_id}_targets.txt''' with open(lowercase , 'w' ) as p, open(lowercase , 'w' ) as t: # mapping function to write output def write_to_file(lowercase , lowercase ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(lowercase , with_indices=lowercase ) def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase = re.sub(lowercase , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: UpperCamelCase = ' '.join(text.split(lowercase ) ) return text def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase = feature_extractor.sampling_rate # resample audio UpperCamelCase = dataset.cast_column('audio' , Audio(sampling_rate=lowercase ) ) # load eval pipeline if args.device is None: UpperCamelCase = 0 if torch.cuda.is_available() else -1 UpperCamelCase = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase ): UpperCamelCase = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCamelCase = prediction['text'] UpperCamelCase = normalize_text(batch['sentence'] ) return batch # run inference on all examples UpperCamelCase = dataset.map(lowercase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase , lowercase ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) _UpperCAmelCase : List[str] = parser.parse_args() main(args)
222
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def A ( lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCamelCase = s_dict.pop(lowercase ) elif "subsample" in key: UpperCamelCase = s_dict.pop(lowercase ) def A ( lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(lowercase , lowercase , bias=lowercase ) UpperCamelCase = emb.weight.data return lin_layer def A ( lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = torch.load(lowercase , map_location='cpu' ) UpperCamelCase = mam_aaa['args'] UpperCamelCase = mam_aaa['model'] UpperCamelCase = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(lowercase ) rename_keys(lowercase ) UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCamelCase = args.share_decoder_input_output_embed UpperCamelCase = [int(lowercase ) for i in args.conv_kernel_sizes.split(',' )] UpperCamelCase = SpeechaTextConfig( vocab_size=lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowercase , num_beams=5 , max_length=200 , use_cache=lowercase , decoder_start_token_id=2 , early_stopping=lowercase , ) UpperCamelCase = SpeechaTextForConditionalGeneration(lowercase ) UpperCamelCase , UpperCamelCase = model.model.load_state_dict(lowercase , strict=lowercase ) if len(lowercase ) > 0 and not set(lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCamelCase = lm_head_weights model.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _UpperCAmelCase : Dict = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
222
1
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def _a ( _lowercase : int = 2000000 ): '''simple docstring''' __UpperCAmelCase : list[int] = [0] __UpperCAmelCase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __UpperCAmelCase : int = 0 # the area corresponding to the grid that gives the product closest to target __UpperCAmelCase : int = 0 # an estimate of b, using the quadratic formula __UpperCAmelCase : float # the largest integer less than b_estimate __UpperCAmelCase : int # the largest integer less than b_estimate __UpperCAmelCase : int # the triangle number corresponding to b_floor __UpperCAmelCase : int # the triangle number corresponding to b_ceil __UpperCAmelCase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __UpperCAmelCase : Any = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __UpperCAmelCase : Tuple = floor(_lowercase ) __UpperCAmelCase : List[str] = ceil(_lowercase ) __UpperCAmelCase : Optional[int] = triangle_numbers[b_floor] __UpperCAmelCase : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase : str = triangle_b_first_guess * triangle_a __UpperCAmelCase : Tuple = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase : List[Any] = triangle_b_second_guess * triangle_a __UpperCAmelCase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
240
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : torch.FloatTensor class a ( _a , _a ): """simple docstring""" @register_to_config def __init__( self : str , snake_case : int = 32 , snake_case : int = 64 , snake_case : int = 20 , snake_case : int = 768 , snake_case : Tuple=77 , snake_case : List[Any]=4 , snake_case : float = 0.0 , snake_case : str = "silu" , snake_case : Optional[str] = None , snake_case : Optional[str] = None , snake_case : Optional[str] = "linear" , snake_case : Optional[str] = "prd" , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , ) -> List[str]: super().__init__() __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : List[str] = attention_head_dim __UpperCAmelCase : int = num_attention_heads * attention_head_dim __UpperCAmelCase : List[Any] = additional_embeddings __UpperCAmelCase : Any = time_embed_dim or inner_dim __UpperCAmelCase : Any = embedding_proj_dim or embedding_dim __UpperCAmelCase : Union[str, Any] = clip_embed_dim or embedding_dim __UpperCAmelCase : List[Any] = Timesteps(snake_case , snake_case , 0 ) __UpperCAmelCase : Optional[Any] = TimestepEmbedding(snake_case , snake_case , out_dim=snake_case , act_fn=snake_case ) __UpperCAmelCase : str = nn.Linear(snake_case , snake_case ) if embedding_proj_norm_type is None: __UpperCAmelCase : str = None elif embedding_proj_norm_type == "layer": __UpperCAmelCase : str = nn.LayerNorm(snake_case ) else: raise ValueError(f'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) __UpperCAmelCase : List[Any] = nn.Linear(snake_case , snake_case ) if encoder_hid_proj_type is None: __UpperCAmelCase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) else: raise ValueError(f'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) __UpperCAmelCase : Dict = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case ) ) if added_emb_type == "prd": __UpperCAmelCase : Any = nn.Parameter(torch.zeros(1 , 1 , snake_case ) ) elif added_emb_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError( f'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) __UpperCAmelCase : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( snake_case , snake_case , snake_case , dropout=snake_case , activation_fn='''gelu''' , attention_bias=snake_case , ) for d in range(snake_case ) ] ) if norm_in_type == "layer": __UpperCAmelCase : Tuple = nn.LayerNorm(snake_case ) elif norm_in_type is None: __UpperCAmelCase : List[Any] = None else: raise ValueError(f'Unsupported norm_in_type: {norm_in_type}.' ) __UpperCAmelCase : Dict = nn.LayerNorm(snake_case ) __UpperCAmelCase : Any = nn.Linear(snake_case , snake_case ) __UpperCAmelCase : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) __UpperCAmelCase : str = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , snake_case , persistent=snake_case ) __UpperCAmelCase : Tuple = nn.Parameter(torch.zeros(1 , snake_case ) ) __UpperCAmelCase : List[str] = nn.Parameter(torch.zeros(1 , snake_case ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self : int ) -> Dict[str, AttentionProcessor]: __UpperCAmelCase : Optional[Any] = {} def fn_recursive_add_processors(snake_case : str , snake_case : torch.nn.Module , snake_case : Dict[str, AttentionProcessor] ): if hasattr(snake_case , '''set_processor''' ): __UpperCAmelCase : Union[str, Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' , snake_case , snake_case ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case , snake_case , snake_case ) return processors def lowerCamelCase__ ( self : Optional[Any] , snake_case : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(snake_case , snake_case ) and len(snake_case ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(snake_case )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(snake_case : str , snake_case : torch.nn.Module , snake_case : int ): if hasattr(snake_case , '''set_processor''' ): if not isinstance(snake_case , snake_case ): module.set_processor(snake_case ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' , snake_case , snake_case ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case , snake_case , snake_case ) def lowerCamelCase__ ( self : str ) -> Tuple: self.set_attn_processor(AttnProcessor() ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[Any] , snake_case : Union[torch.Tensor, float, int] , snake_case : torch.FloatTensor , snake_case : Optional[torch.FloatTensor] = None , snake_case : Optional[torch.BoolTensor] = None , snake_case : bool = True , ) -> List[Any]: __UpperCAmelCase : Any = hidden_states.shape[0] __UpperCAmelCase : Optional[int] = timestep if not torch.is_tensor(snake_case ): __UpperCAmelCase : str = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case ) and len(timesteps.shape ) == 0: __UpperCAmelCase : Any = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Optional[int] = timesteps * torch.ones(snake_case , dtype=timesteps.dtype , device=timesteps.device ) __UpperCAmelCase : Tuple = self.time_proj(snake_case ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __UpperCAmelCase : int = timesteps_projected.to(dtype=self.dtype ) __UpperCAmelCase : Optional[int] = self.time_embedding(snake_case ) if self.embedding_proj_norm is not None: __UpperCAmelCase : Optional[Any] = self.embedding_proj_norm(snake_case ) __UpperCAmelCase : str = self.embedding_proj(snake_case ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __UpperCAmelCase : Dict = self.encoder_hidden_states_proj(snake_case ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) __UpperCAmelCase : Optional[int] = self.proj_in(snake_case ) __UpperCAmelCase : Optional[Any] = self.positional_embedding.to(hidden_states.dtype ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(snake_case ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __UpperCAmelCase : Optional[int] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __UpperCAmelCase : Union[str, Any] = hidden_states[:, None, :] __UpperCAmelCase : Union[str, Any] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __UpperCAmelCase : Any = self.prd_embedding.to(hidden_states.dtype ).expand(snake_case , -1 , -1 ) additional_embeds.append(snake_case ) __UpperCAmelCase : Dict = torch.cat( snake_case , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __UpperCAmelCase : str = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __UpperCAmelCase : Union[str, Any] = F.pad( snake_case , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __UpperCAmelCase : Optional[int] = hidden_states + positional_embeddings if attention_mask is not None: __UpperCAmelCase : List[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 __UpperCAmelCase : str = F.pad(snake_case , (0, self.additional_embeddings) , value=0.0 ) __UpperCAmelCase : Optional[int] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __UpperCAmelCase : Optional[int] = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __UpperCAmelCase : str = self.norm_in(snake_case ) for block in self.transformer_blocks: __UpperCAmelCase : Optional[int] = block(snake_case , attention_mask=snake_case ) __UpperCAmelCase : int = self.norm_out(snake_case ) if self.prd_embedding is not None: __UpperCAmelCase : Optional[int] = hidden_states[:, -1] else: __UpperCAmelCase : List[Any] = hidden_states[:, additional_embeddings_len:] __UpperCAmelCase : Dict = self.proj_to_clip_embeddings(snake_case ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case ) def lowerCamelCase__ ( self : Optional[int] , snake_case : List[str] ) -> str: __UpperCAmelCase : Dict = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
240
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = '''▁''' _UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _UpperCamelCase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } _UpperCamelCase = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off _UpperCamelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class _lowerCamelCase ( UpperCAmelCase_ ): """simple docstring""" UpperCAmelCase_ : int =VOCAB_FILES_NAMES UpperCAmelCase_ : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[str] =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Dict =["""input_ids""", """attention_mask"""] UpperCAmelCase_ : List[int] =[] UpperCAmelCase_ : List[int] =[] def __init__( self , UpperCAmelCase , UpperCAmelCase="<s>" , UpperCAmelCase="</s>" , UpperCAmelCase="</s>" , UpperCAmelCase="<s>" , UpperCAmelCase="<unk>" , UpperCAmelCase="<pad>" , UpperCAmelCase="<mask>" , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase=None , **UpperCAmelCase , ) -> List[Any]: '''simple docstring''' __snake_case : Optional[int] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token __snake_case : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , tokenizer_file=__lowercase , src_lang=__lowercase , tgt_lang=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __snake_case : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) __snake_case : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __snake_case : List[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case : Tuple = 1 __snake_case : List[Any] = len(self.sp_model ) __snake_case : Optional[int] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowercase ) } __snake_case : Union[str, Any] = {v: k for k, v in self.lang_code_to_id.items()} __snake_case : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __snake_case : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __snake_case : Optional[int] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __snake_case : List[str] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Dict = self.lang_code_to_id[self._src_lang] __snake_case : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: '''simple docstring''' __snake_case : Dict = self.__dict__.copy() __snake_case : Union[str, Any] = None __snake_case : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCAmelCase ) -> Any: '''simple docstring''' __snake_case : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case : str = {} __snake_case : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def UpperCAmelCase ( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) __snake_case : Optional[int] = [1] * len(self.prefix_tokens ) __snake_case : List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowercase )) + suffix_ones return prefix_ones + ([0] * len(__lowercase )) + ([0] * len(__lowercase )) + suffix_ones def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> List[int]: '''simple docstring''' __snake_case : Dict = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __snake_case : List[Any] = src_lang __snake_case : Dict = self(__lowercase , add_special_tokens=__lowercase , return_tensors=__lowercase , **__lowercase ) __snake_case : str = self.convert_tokens_to_ids(__lowercase ) __snake_case : List[Any] = tgt_lang_id return inputs def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case : Optional[int] = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__lowercase , out_type=__lowercase ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case : Union[str, Any] = self.sp_model.PieceToId(__lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , UpperCAmelCase ) -> Any: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , UpperCAmelCase ) -> List[str]: '''simple docstring''' __snake_case : List[Any] = ''''''.join(__lowercase ).replace(__lowercase , " " ).strip() return out_string def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Any = os.path.join( __lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , "wb" ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = "en_XX" , UpperCAmelCase = None , UpperCAmelCase = "ro_RO" , **UpperCAmelCase , ) -> BatchEncoding: '''simple docstring''' __snake_case : Optional[int] = src_lang __snake_case : str = tgt_lang return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def UpperCAmelCase ( self ) -> List[str]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self ) -> Tuple: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : Optional[Any] = self.lang_code_to_id[src_lang] __snake_case : Optional[Any] = [] __snake_case : Tuple = [self.eos_token_id, self.cur_lang_code] def UpperCAmelCase ( self , UpperCAmelCase ) -> None: '''simple docstring''' __snake_case : str = self.lang_code_to_id[lang] __snake_case : Any = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code]
326
from __future__ import annotations from PIL import Image # Define glider example __lowercase = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example __lowercase = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): __UpperCamelCase :Dict = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __UpperCamelCase :List[str] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(SCREAMING_SNAKE_CASE ) - 1: neighbour_count += cells[i + 1][j] if i < len(SCREAMING_SNAKE_CASE ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __UpperCamelCase :List[str] = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(SCREAMING_SNAKE_CASE ) return next_generation def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = [] for _ in range(SCREAMING_SNAKE_CASE ): # Create output image __UpperCamelCase :Dict = Image.new('''RGB''' , (len(cells[0] ), len(SCREAMING_SNAKE_CASE )) ) __UpperCamelCase :Any = img.load() # Save cells to image for x in range(len(SCREAMING_SNAKE_CASE ) ): for y in range(len(cells[0] ) ): __UpperCamelCase :Optional[Any] = 255 - cells[y][x] * 255 __UpperCamelCase :int = (colour, colour, colour) # Save image images.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = new_generation(SCREAMING_SNAKE_CASE ) return images if __name__ == "__main__": __lowercase = generate_images(GLIDER, 16) images[0].save('''out.gif''', save_all=True, append_images=images[1:])
43
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _a : List[str]= logging.get_logger(__name__) def __UpperCAmelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' __snake_case : int = original_name.split('.' )[0] __snake_case : int = key.split('.' ) __snake_case : Optional[Any] = int(key_list[key_list.index(UpperCAmelCase_ ) - 2] ) __snake_case : Tuple = int(key_list[key_list.index(UpperCAmelCase_ ) - 1] ) __snake_case : Dict = orig_block_num - offset __snake_case : Optional[Any] = key.replace(F"{orig_block_num}.{layer_num}.{original_name}" , F"block.{new_block_num}.{layer_num}.{new_name}" ) return key def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' __snake_case : List[Any] = OrderedDict() __snake_case , __snake_case : Optional[int] = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __snake_case : List[str] = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __snake_case : int = key[: key.find('proj' )] __snake_case : List[Any] = key.replace(UpperCAmelCase_ , F"patch_embeddings.{total_embed_found}." ) __snake_case : List[str] = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __snake_case : List[Any] = 'poolformer.encoder.' + key if "mlp.fc1" in key: __snake_case : Any = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __snake_case : str = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __snake_case : Dict = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , 'norm1' , 'before_norm' ) if "norm2" in key: __snake_case : List[str] = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __snake_case : Optional[int] = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __snake_case : Optional[int] = replace_key_with_offset(UpperCAmelCase_ , UpperCAmelCase_ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __snake_case : Optional[int] = key.replace('head' , 'classifier' ) __snake_case : List[str] = value return new_state_dict def __UpperCAmelCase ( ) -> List[str]: '''simple docstring''' __snake_case : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return image @torch.no_grad() def __UpperCAmelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] ) -> str: '''simple docstring''' __snake_case : Any = PoolFormerConfig() # set attributes based on model_name __snake_case : Union[str, Any] = 'huggingface/label-files' __snake_case : Dict = model_name[-3:] __snake_case : Optional[int] = 10_00 __snake_case : str = 'imagenet-1k-id2label.json' __snake_case : str = (1, 10_00) # set config attributes __snake_case : Optional[int] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) __snake_case : Tuple = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __snake_case : int = idalabel __snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} if size == "s12": __snake_case : int = [2, 2, 6, 2] __snake_case : List[Any] = [64, 1_28, 3_20, 5_12] __snake_case : Optional[int] = 4.0 __snake_case : int = 0.9 elif size == "s24": __snake_case : Tuple = [4, 4, 12, 4] __snake_case : str = [64, 1_28, 3_20, 5_12] __snake_case : Dict = 4.0 __snake_case : Union[str, Any] = 0.9 elif size == "s36": __snake_case : Dict = [6, 6, 18, 6] __snake_case : Optional[Any] = [64, 1_28, 3_20, 5_12] __snake_case : str = 4.0 __snake_case : int = 1E-6 __snake_case : Union[str, Any] = 0.9 elif size == "m36": __snake_case : Union[str, Any] = [6, 6, 18, 6] __snake_case : Dict = [96, 1_92, 3_84, 7_68] __snake_case : List[str] = 4.0 __snake_case : str = 1E-6 __snake_case : List[Any] = 0.95 elif size == "m48": __snake_case : Tuple = [8, 8, 24, 8] __snake_case : str = [96, 1_92, 3_84, 7_68] __snake_case : Optional[Any] = 4.0 __snake_case : List[Any] = 1E-6 __snake_case : Dict = 0.95 else: raise ValueError(F"Size {size} not supported" ) # load image processor __snake_case : int = PoolFormerImageProcessor(crop_pct=UpperCAmelCase_ ) # Prepare image __snake_case : List[str] = prepare_img() __snake_case : Union[str, Any] = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).pixel_values logger.info(F"Converting model {model_name}..." ) # load original state dict __snake_case : Tuple = torch.load(UpperCAmelCase_ , map_location=torch.device('cpu' ) ) # rename keys __snake_case : str = rename_keys(UpperCAmelCase_ ) # create HuggingFace model and load state dict __snake_case : str = PoolFormerForImageClassification(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() # Define image processor __snake_case : int = PoolFormerImageProcessor(crop_pct=UpperCAmelCase_ ) __snake_case : int = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __snake_case : Any = model(UpperCAmelCase_ ) __snake_case : Optional[int] = outputs.logits # define expected logit slices for different models if size == "s12": __snake_case : Optional[Any] = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": __snake_case : List[Any] = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": __snake_case : Optional[Any] = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": __snake_case : List[Any] = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": __snake_case : Optional[int] = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1E-2 ) # finally, save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": _a : List[str]= argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _a : str= parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
95
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _a : Any= [num for num in range(3, 100_001, 2) if not is_prime(num)] def __UpperCAmelCase ( UpperCAmelCase_ : int ) -> list[int]: '''simple docstring''' if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) __snake_case : int = [] for num in range(len(UpperCAmelCase_ ) ): __snake_case : List[str] = 0 while 2 * i * i <= odd_composites[num]: __snake_case : List[Any] = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase_ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase_ ) == n: return list_nums return [] def __UpperCAmelCase ( ) -> int: '''simple docstring''' return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
95
1
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 'efficientnet' def __init__( self : List[Any] ,lowercase__ : int = 3 ,lowercase__ : int = 6_0_0 ,lowercase__ : float = 2.0 ,lowercase__ : float = 3.1 ,lowercase__ : int = 8 ,lowercase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowercase__ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] ,lowercase__ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] ,lowercase__ : List[int] = [] ,lowercase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowercase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowercase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowercase__ : float = 0.2_5 ,lowercase__ : str = "swish" ,lowercase__ : int = 2_5_6_0 ,lowercase__ : str = "mean" ,lowercase__ : float = 0.0_2 ,lowercase__ : float = 0.0_0_1 ,lowercase__ : float = 0.9_9 ,lowercase__ : float = 0.5 ,lowercase__ : float = 0.2 ,**lowercase__ : int ,): super().__init__(**lowercase__ ) __lowercase = num_channels __lowercase = image_size __lowercase = width_coefficient __lowercase = depth_coefficient __lowercase = depth_divisor __lowercase = kernel_sizes __lowercase = in_channels __lowercase = out_channels __lowercase = depthwise_padding __lowercase = strides __lowercase = num_block_repeats __lowercase = expand_ratios __lowercase = squeeze_expansion_ratio __lowercase = hidden_act __lowercase = hidden_dim __lowercase = pooling_type __lowercase = initializer_range __lowercase = batch_norm_eps __lowercase = batch_norm_momentum __lowercase = dropout_rate __lowercase = drop_connect_rate __lowercase = sum(lowercase__ ) * 4 class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self : Any ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return 1e-5
104
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = {} lowercase__: List[Any] = {} lowercase__: Dict = {} # preprocess args if "points_per_batch" in kwargs: lowercase__: Dict = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: lowercase__: Any = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: lowercase__: Union[str, Any] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: lowercase__: Optional[Any] = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: lowercase__: Union[str, Any] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: lowercase__: Any = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: lowercase__: Tuple = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: lowercase__: List[str] = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: lowercase__: str = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: lowercase__: List[str] = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: lowercase__: Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: lowercase__: int = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , *_UpperCAmelCase , num_workers=_UpperCAmelCase , batch_size=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase = 0 , _UpperCAmelCase = 512 / 1500 , _UpperCAmelCase = 32 , _UpperCAmelCase = 1 , ): lowercase__: Union[str, Any] = load_image(_UpperCAmelCase ) lowercase__: Dict = self.image_processor.size['''longest_edge'''] lowercase__, lowercase__, lowercase__, lowercase__: Optional[Any] = self.image_processor.generate_crop_boxes( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": lowercase__: Tuple = self.get_inference_context() with inference_context(): lowercase__: Optional[Any] = self._ensure_tensor_on_device(_UpperCAmelCase , device=self.device ) lowercase__: Any = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) lowercase__: Tuple = image_embeddings lowercase__: Optional[Any] = grid_points.shape[1] lowercase__: Tuple = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = grid_points[:, i : i + points_per_batch, :, :] lowercase__: int = input_labels[:, i : i + points_per_batch] lowercase__: Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0.88 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , ): lowercase__: List[Any] = model_inputs.pop('''input_boxes''' ) lowercase__: List[Any] = model_inputs.pop('''is_last''' ) lowercase__: Any = model_inputs.pop('''original_sizes''' ).tolist() lowercase__: Union[str, Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() lowercase__: List[Any] = self.model(**_UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase__: int = model_outputs['''pred_masks'''] lowercase__: str = self.image_processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , binarize=_UpperCAmelCase ) lowercase__: str = model_outputs['''iou_scores'''] lowercase__, lowercase__, lowercase__: Optional[int] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.7 , ): lowercase__: int = [] lowercase__: str = [] lowercase__: List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) lowercase__: Any = torch.cat(_UpperCAmelCase ) lowercase__: Dict = torch.cat(_UpperCAmelCase ) lowercase__, lowercase__, lowercase__, lowercase__: Any = self.image_processor.post_process_for_mask_generation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = defaultdict(_UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_UpperCAmelCase ) lowercase__: Any = {} if output_rle_mask: lowercase__: Optional[Any] = rle_mask if output_bboxes_mask: lowercase__: Optional[int] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
177
0
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> str: """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
348
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCamelCase__ ).to(lowerCamelCase__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) __lowerCamelCase = tokenizer('Hello there' , return_tensors='pt' ).input_ids __lowerCamelCase = tokenizer('Hi I am' , return_tensors='pt' ).input_ids __lowerCamelCase = model(input_ids.to(lowerCamelCase__ ) , labels=labels.to(lowerCamelCase__ ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase_ = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) lowerCAmelCase_ = dataset.iloc[:, 1:2].values lowerCAmelCase_ = dataset.iloc[:, 2].values lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase_ = PolynomialFeatures(degree=4) lowerCAmelCase_ = poly_reg.fit_transform(X) lowerCAmelCase_ = LinearRegression() pol_reg.fit(X_poly, y) def __UpperCAmelCase ( ) -> Tuple: plt.scatter(__lowerCamelCase , __lowerCamelCase , color='''red''' ) plt.plot(__lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(__lowerCamelCase ) ) , color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
16
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a : int = logging.get_logger(__name__) __a : str = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Optional[int] = '''deta''' __a : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=9_00 , lowerCAmelCase__=20_48 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=8 , lowerCAmelCase__=6 , lowerCAmelCase__=10_24 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1.0 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="sine" , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=True , lowerCAmelCase__=3_00 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.25 , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowercase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = backbone_config.pop('''model_type''' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCAmelCase__ ) __lowercase = backbone_config __lowercase = num_queries __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = auxiliary_loss __lowercase = position_embedding_type # deformable attributes __lowercase = num_feature_levels __lowercase = encoder_n_points __lowercase = decoder_n_points __lowercase = two_stage __lowercase = two_stage_num_proposals __lowercase = with_box_refine __lowercase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.d_model def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
210
0
'''simple docstring''' import csv import tweepy # Twitter API credentials __snake_case : Union[str, Any] = '' __snake_case : Any = '' __snake_case : int = '' __snake_case : int = '' def _UpperCAmelCase ( _UpperCamelCase : str ) -> None: # authorize twitter, initialize tweepy A_ = tweepy.OAuthHandler(_UpperCamelCase, _UpperCamelCase ) auth.set_access_token(_UpperCamelCase, _UpperCamelCase ) A_ = tweepy.API(_UpperCamelCase ) # initialize a list to hold all the tweepy Tweets A_ = [] # make initial request for most recent tweets (200 is the maximum allowed count) A_ = api.user_timeline(screen_name=_UpperCamelCase, count=2_00 ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # save the id of the oldest tweet less one A_ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCamelCase ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates A_ = api.user_timeline( screen_name=_UpperCamelCase, count=2_00, max_id=_UpperCamelCase ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # update the id of the oldest tweet less one A_ = alltweets[-1].id - 1 print(F'''...{len(_UpperCamelCase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv A_ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''', '''w''' ) as f: A_ = csv.writer(_UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
367
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Dict: A_ = ArgumentParser('''Accelerate CLI tool''', usage='''accelerate <command> [<args>]''', allow_abbrev=_UpperCamelCase ) A_ = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go A_ = parser.parse_args() if not hasattr(_UpperCamelCase, '''func''' ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
18
0
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): __UpperCamelCase :int = f"""Input value of [number={number}] must be an integer""" raise TypeError(snake_case__ ) if number < 0: return False __UpperCamelCase :Optional[int] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
43
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int ,A_ : int ) -> Union[str, Any]: A = n A = [None] * self.n A = 0 # index of the first element A = 0 A = 0 def __len__( self : int ) -> int: return self.size def _SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.size == 0 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> int: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) A = data A = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: if self.size == 0: raise Exception('UNDERFLOW' ) A = self.array[self.front] A = None A = (self.front + 1) % self.n self.size -= 1 return temp
74
0
"""simple docstring""" from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __snake_case ( ) -> Any: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : List[Any] = 9, 14 # noqa: F841 _UpperCAmelCase : str = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _UpperCAmelCase : List[Any] = defaultdict(SCREAMING_SNAKE_CASE__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _UpperCAmelCase : List[Any] = mst(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase : Tuple = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _UpperCAmelCase : List[str] = tuple(answer[:2] ) _UpperCAmelCase : int = tuple(edge[::-1] ) assert edge in result or reverse in result
202
"""simple docstring""" from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : str = ['pixel_values'] def __init__( self : List[Any] , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BICUBIC , A : bool = True , A : Dict[str, int] = None , A : bool = True , A : Union[int, float] = 1 / 2_5_5 , A : bool = True , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **A : List[Any] , ): super().__init__(**A ) _UpperCAmelCase : int = size if size is not None else {"shortest_edge": 2_2_4} _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : int = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} _UpperCAmelCase : Union[str, Any] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : str = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Tuple = resample _UpperCAmelCase : List[Any] = do_center_crop _UpperCAmelCase : List[Any] = crop_size _UpperCAmelCase : Tuple = do_rescale _UpperCAmelCase : List[Any] = rescale_factor _UpperCAmelCase : Dict = do_normalize _UpperCAmelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self : Optional[int] , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BICUBIC , A : Optional[Union[str, ChannelDimension]] = None , **A : Union[str, Any] , ): _UpperCAmelCase : Tuple = get_size_dict(A , default_to_square=A ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _UpperCAmelCase : Any = int((2_5_6 / 2_2_4) * size["shortest_edge"] ) _UpperCAmelCase : Union[str, Any] = get_resize_output_image_size(A , size=A , default_to_square=A ) _UpperCAmelCase : str = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( A , size=(size_dict["height"], size_dict["width"]) , resample=A , data_format=A , **A ) def snake_case_ ( self : int , A : np.ndarray , A : Dict[str, int] , A : Optional[Union[str, ChannelDimension]] = None , **A : Optional[Any] , ): _UpperCAmelCase : Dict = get_size_dict(A ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(A , size=(size["height"], size["width"]) , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[int, float] , A : Optional[Union[str, ChannelDimension]] = None , **A : Dict , ): return rescale(A , scale=A , data_format=A , **A ) def snake_case_ ( self : List[str] , A : np.ndarray , A : Union[float, List[float]] , A : Union[float, List[float]] , A : Optional[Union[str, ChannelDimension]] = None , **A : str , ): return normalize(A , mean=A , std=A , data_format=A , **A ) def snake_case_ ( self : Tuple , A : ImageInput , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : PILImageResampling = None , A : Optional[bool] = None , A : Optional[Dict[str, int]] = None , A : Optional[bool] = None , A : Optional[float] = None , A : Optional[bool] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[Union[float, Iterable[float]]] = None , A : Optional[TensorType] = None , A : ChannelDimension = ChannelDimension.FIRST , **A : Dict , ): _UpperCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = resample if resample is not None else self.resample _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : List[str] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : Tuple = image_std if image_std is not None else self.image_std _UpperCAmelCase : Any = size if size is not None else self.size _UpperCAmelCase : Optional[int] = get_size_dict(A , default_to_square=A ) _UpperCAmelCase : List[str] = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[str] = get_size_dict(A , param_name="crop_size" ) _UpperCAmelCase : List[Any] = make_list_of_images(A ) if not valid_images(A ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCAmelCase : Any = [to_numpy_array(A ) for image in images] if do_resize: _UpperCAmelCase : str = [self.resize(A , A , A ) for image in images] if do_center_crop: _UpperCAmelCase : Dict = [self.center_crop(A , A ) for image in images] if do_rescale: _UpperCAmelCase : Dict = [self.rescale(A , A ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(A , A , A ) for image in images] _UpperCAmelCase : Union[str, Any] = [to_channel_dimension_format(A , A ) for image in images] _UpperCAmelCase : List[Any] = {"pixel_values": images} return BatchFeature(data=A , tensor_type=A )
202
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
58
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int, _lowerCAmelCase : int ) -> int: _UpperCAmelCase : str = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _UpperCAmelCase : Dict = n - k # Calculate C(n,k) for i in range(_lowerCAmelCase ): result *= n - i result //= i + 1 return result def UpperCamelCase ( _lowerCAmelCase : int ) -> int: return binomial_coefficient(2 * node_count, _lowerCAmelCase ) // (node_count + 1) def UpperCamelCase ( _lowerCAmelCase : int ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) _UpperCAmelCase : str = 1 for i in range(1, n + 1 ): result *= i return result def UpperCamelCase ( _lowerCAmelCase : int ) -> int: return catalan_number(_lowerCAmelCase ) * factorial(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = int(input('''Enter the number of nodes: ''').strip() or 0) if node_count <= 0: raise ValueError('''We need some nodes to work with.''') print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
246
0
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : Dict ) -> Optional[int]: UpperCAmelCase_ = [x.strip() for x in open(__UpperCamelCase ).readlines()] UpperCAmelCase_ = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] UpperCAmelCase_ = calculate_rouge(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
177
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str]=5 ) -> Dict: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 UpperCAmelCase_ = torch.tensor(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 UpperCAmelCase_ = model(__UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple UpperCAmelCase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() UpperCAmelCase_ = logits[0, masked_index, :] UpperCAmelCase_ = logits.softmax(dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ = prob.topk(k=__UpperCamelCase , dim=0 ) UpperCAmelCase_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCamelCase ) )] ) UpperCAmelCase_ = tokenizer.mask_token UpperCAmelCase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): UpperCAmelCase_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__UpperCamelCase ) , __UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCamelCase , __UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _lowerCamelCase = CamembertTokenizer.from_pretrained('camembert-base') _lowerCamelCase = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() _lowerCamelCase = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
177
1